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Abstract

We present a time-dependent semiclassical transport model for mixed-state scattering with thin

quantum barriers. The idea is to use a multiscale approach as a means of connecting regions for

which a classical description of the system dynamics is valid across regions for which the classical

description fails, such as when the gradient of the potential is undefined. We do this by first solving

a stationary Schrödinger equation in the quantum region to obtain the scattering coefficients. These

coefficients allow us to build an interface condition to the particle flux that bridges the quantum

region, connecting the two classical regions. Away from the barrier, the problem may be solved by

traditional numerical methods. Therefore, the overall numerical cost is roughly the same as solving

a classical barrier.

We construct numerical methods based on this semiclassical approach and validate the model

using various numerical examples. In the one-dimensional case, we use a finite-volume method that

extends the Hamiltonian-preserving scheme introduced by Jin and Wen for a classical barrier. In

the two-dimensional case, we consider a mesh-free particle method that can be computed efficiently

and that may be extended to higher-dimensions. The semiclassical transport model is verified

numerically by examining the convergence of the Schrödinger and the von Neumann equations to

the semiclassical limit for several examples. Finally, we examine an extension of the model to

coherent dynamics necessary for periodic crystalline and mesoscopic scale quantum barriers.
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Chapter 1

Introduction

In this work, we develop a semiclassical model of particle dynamics in the presence of a thin

quantum barrier. Thin quantum barriers include quantum dot and quantum wire structures, res-

onant tunneling diodes, thin films, and interfaces between two dissimilar materials such as p-n

junctions. Simulation of electron distributions in the presence of such barriers is important to

the understanding of the behavior of plasmas, semiconductors, and modern electronic devices. Ad-

vances in nanoscale materials fabrication technology have prompted the need for efficient numerical

simulation of quantum structures. However, simulation is difficult when the system reacts over dif-

ferent length and time scales since the smaller scale usually drives the accuracy and consistency of

the solution. Even when only interested in the macroscopic behavior, one may be forced to resolve

the microscopic dynamics. Correspondence principles allow us to extract macroscopic behavior

from microscopic dynamics in terms of a weak limit. When the scales act over several orders of

magnitude, the numerical solution to the problem at the smallest scale becomes computationally

intractable. In these cases, one often relies on a multiscale approach to provide a numerically

efficient solution.

An example is the modeling of electron transport in nanostructures, such as resonant tunneling

diodes, superlattices or quantum dots, where quantum phenomena in localized regions of the devices

cannot be ignored. While one can use quantum mechanics in the entire region, it is clearly more

computationally efficient to take a multiscale approach using classical mechanics in the rest of the

device by using a domain decomposition technique. Such a model was introduced by Ben Abdallah,

Gamba and Degond [6, 7, 8]. In this model, interface conditions connecting the classical and the

quantum regions were used to couple two classical regions with a quantum region.
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This work is an extension of the Hamiltonian-preserving finite-volume method introduced by Jin

and Wen [21, 22] for solving the multi-dimensional classical Liouville equation with a discontinuous

(but classical) potential. The idea there was to build an interface condition, such as used in [7],

that properly incorporates transmission and reflection information at the barrier into the numerical

flux. This produces a scheme that connects momenta (velocities) on both sides of the barrier via

the Hamiltonian preservation principle. Such a method is stable in both l1- and l∞-norms under

a hyperbolic stability condition and captures sharply the weak semiclassical limit of the linear

Schrödinger equation or geometrical optics through the barrier or interface.

The quantum barrier that separates the two classical regions differs from a classical barrier

in that a quantum wave can tunnel through a barrier, be partially transmitted and reflected by a

barrier, and resonate inside a barrier. The method proposed in this thesis is to solve the Schrödinger

equation (either exactly or numerically) inside the quantum barrier in order to generate transmission

and reflection coefficients, and then use that information in the interface condition to solve the

classical Liouville equation through the barrier, in the spirit of the Hamiltonian-preserving method

of Jin and Wen. When the quantum barrier is thin (on the order of a de Broglie wavelength), solving

the time-independent Schrödinger equation suffices. Thus, the first step is merely preprocessing.

Once the transmission and reflection coefficients are generated, the time marching is based on

classical mechanics. Hence, this approach, which efficiently handles a thin quantum barrier, has a

computational cost similar to a classical simulation in the entire device.

The primary focus of this dissertation is the development and numerical implementation of the

semiclassical model. While a model may be rigorously defined mathematically, we are often unable

understand its intricacies without computer experiments and simulation. Mathematician Peter Lax

once stated “It is impossible to exaggerate the extent to which modern applied mathematics has

been shaped and fueled by the general availability of fast computers with large memories. Their

impact on mathematics, both applied and pure, is comparable to the role of the telescopes in astron-

omy and microscopes in biology.” [27] Therefore, a secondary focus of this thesis is the simulation

of the semiclassical Liouville equation and the von Neumann equation for several examples. In this

manner, we are able to both validate and verify the model and also illustrate particle dynamics in

a variety of environments.
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In Chapter 2 we introduce the semiclassical model. The chapter provides a brief review of the

underlying physics and derives the semiclassical limit of the Schrödinger equation. The correspon-

dence between classical and quantum mechanics is discussed. The formal model is developed in

terms of the weak Hamiltonian property and an interface condition. Finally, we examine limitations

of the model in terms of entropy and time-irreversibility.

In Chapter 3 we propose the implementation of the semiclassical model and its numerical dis-

cretization in one-dimension. The one-dimensional interface condition is derived using the transfer

matrix method and the model is employed using a finite-volume method. We present four numeri-

cal examples to verify the numerical method and validate the semiclassical model. Our numerical

results indicate that the model correctly captures the solution of the Schrödinger equation in the

entire domain in the limit of the vanishing scaled Planck constant.

In Chapter 4 we extend of the numerical implementation of the semiclassical model to two

dimensions. The two-dimensional interface condition is derived using the quantum transmitting

boundary method and the model is employed using a mesh-free particle method. We present two

numerical examples to verify and validate the semiclassical model and the numerical method. The

results indicate that the model correctly captures the Schrödinger solution in the limit semiclassical

limit.

In Chapter 5 we discuss corrections to the model for thin barriers to extend it to mesoscopic

and periodic barriers. This chapter attempts to circumvent the shortcomings of the model and

provide a direction for future research.
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Chapter 2

Semiclassical Model

2.1 Correspondence between classical and quantum mechanics

2.1.1 From classical to quantum mechanics

A typical problem under consideration is particle flow in a plasma or through a solid-state device

over a macroscopic scale. If the potential is sufficiently smooth we may describe non-interacting

particle dynamics in phase space classically as the Hamiltonian system

dx

dt
=

p

m
= ∇pH(x, p),

dp

dt
= −∇xV = −∇xH(x, p) (2.1)

where x(t) ∈ R
d is the particle position, p(t) ∈ R

d is the momentum, m is the effective mass

and V (x) is a time-independent potential. The Hamiltonian function H(x, p) represents the total

energy of the system

H(x, p) =
|p|2
2m

+ V (x) = E. (2.2)

One may introduce a probability distribution of particles f(x, p, t) in phase space. By requiring

that the probability be conserved along the particle trajectories (the Liouville condition), one has

d

dt
f =

∂

∂t
f +

dx

dt
· ∇xf +

dp

dt
· ∇pf = 0.

With the help of equation (2.1), one gets the classical Liouville equation

∂

∂t
f = {H, f} = ∇pf · ∇xH −∇xf · ∇pH (2.3)

where { · , · } is the Poisson bracket. Alternatively,

∂

∂t
f +

p

m
· ∇xf −∇xV (x) · ∇pf = 0. (2.4)

By considering the zeroth-order moment of f(x, p, t), one obtains the probability position density

in physical space

ρ(x, t) =

∫

Rd

f(x, p, t) dp,
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which serves as a primary observable for the comparison of the model.

When the potential fluctuates rapidly over a short distance or the particles impinge on a sharp

jump in potential, the classical description fails to capture the quantum wave-like nature of the

particle and the Liouville description produces an incorrect solution. In particular, the classical Li-

ouville equation does not model barrier tunneling, probabilistic partial reflection and transmission,

or resonance which are crucial to the behavior of many modern electronic devices.

By considering Dirac quantization, one has the formal correspondence between the classical

quantities and the quantum operators

x → x, p → − i~∇, and E → i~ ∂
∂t
, (2.5)

where ~ is Planck’s constant. Using this quantization, one obtains the Schrödinger equation from

the classical Hamiltonian (2.2)

i~
∂

∂t
ψ = Ĥψ =

(

− ~
2

2m
∆ + V (x)

)

ψ (2.6)

which describes the time evolution of the probability amplitude ψ(x, t; x̃, p̃) initially centered at x̃

with an initial energy state E = H(x̃, p̃). The square of the magnitude of the probability amplitude

ρ(x, t) = |ψ(x, t)|2 gives the position density in physical space.

Instead of considering a pure state system, one may also consider a mixed state system for which

the initial state H(x, p) of the particle is given in terms of a macroscopic statistical distribution

f̃(x, p). Define the density matrix as

ρ̂(x, x′, t) =

∫

Rd

∫

Rd

f̃(x̃, p̃)ψ(x, t; x̃, p̃)ψ(x′, t; x̃, p̃) dx̃ dp̃ . (2.7)

The time evolution of the density matrix is found by taking the partial derivative of equation (2.7)

with respect to t. By using the Schrödinger equation (2.6) and the hermicity of Hamiltonian

operator Ĥ, one obtains the von Neumann equation

i~
∂

∂t
ρ̂(x, x′, t) =

(

− ~
2

2m
[∆x −∆x′ ] + V (x)− V (x′)

)

ρ̂(x, x′, t). (2.8)

The formal correspondence between the Liouville equation and the von Neumann equation is

seen by replacing the Poisson bracket in equation (2.3) with the commutator

{H, f} → −i~−1[Ĥ, ρ̂]
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giving

i~
∂

∂t
ρ̂ = [Ĥ, ρ̂] = Ĥρ̂− ρ̂Ĥ. (2.9)

which is equivalent to equation (2.8).

The von Neumann representation may be thought of as the fundamental description of quan-

tum mechanics [9]. By taking f̃(x̃, p̃) = δ(x̃− x0)δ(p̃ − p0) in (2.7), the density matrix reduces to

ρ̂(x, x′, t) = ψ(x, t; x0, p0)ψ(x′, t; x0, p0) and the physical observables of the mixed state von Neu-

mann equation correspond to those of the pure state Schrödinger equation. In this manner, the

Schrödinger equation is simply a limiting case of the von Neumann equation. By taking the diagonal

of the density matrix, one gets the position density in physical space

ρ̂(x, x, t) =

∫

Rd

∫

Rd

f̃(x̃, p̃)|ψ(x, t; x̃, p̃)|2 dx̃ dp̃.

2.1.2 Semiclassical limit: quantum to classical

Consider a characteristic length and time scale Lδx and Lδt where δx is the natural length scale

such as a de Broglie wavelength δx = ~/p for some momentum p. By rescaling x, x′ and t

x 7→ x/Lδx, x′ 7→ x′/Lδx, t 7→ t/Lδt

in the von Neumann equation we have

iε
∂

∂t
ρ̂(x, x′, t) =

(

− ε2

2m
[∆x −∆x′ ] + V (x) − V (x′)

)

ρ̂(x, x′) (2.10)

where the dimensionless scaled Planck constant ε = [mL(δx)2/δt]−1
~ and the effective mass m

has been nondimensionalized. Solving the Schrödinger and von Neumann equations numerically

presents several difficulties. The de Broglie wavelength must be resolved numerically to ensure

correct physical observables of the solution. Typically, this requires that the mesh size ∆x = O(ε)

or even o(ε) with a similar constraint on the time discretization ∆t [4, 33]. When ε is small,

computation is expensive since we need to use O(Nd+1) operations to compute the Schrödinger

solution and O(N2d+1) operations to compute the von Neumann solution where N = O(ε−1) is the

number of grid points in each space dimension. Because of such reasons, semiclassical methods are

important for the solutions when ε� 1.

A typical path to the derivation of semiclassical limit is through the WKB approximation.

However, the WKB approximation to the Schrödinger equation fails to capture multiphase infor-

mation beyond caustics [19, 40]. An alternative method is to use the Wigner transform, the Fourier
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transform of the density matrix,

W (x, p, t) =
1

(2π)d

∫

Rd

ρ̂(x+ 1
2
εy, x− 1

2
εy, t)e−ip·y dy. (2.11)

By applying the transform to the von Neumann equation one has the Wigner equation [43]

∂

∂t
W +

p

m
· ∇xW −ΘεW = 0

where the nonlocal term

ΘεW (x, p, t) =
1

(2π)d

∫

Rd

i

ε

[

V (x+ 1
2
εy)− V (x− 1

2
εy)
]

W̌ (x, y, t)e−ip·y dy

with

W̌ (x, y, t) =

∫

Rd

W (x, p, t)eip·y dp

being the inverse Fourier transform of W (x, p, t). The expression for ΘεW may also be expressed

using the Wigner-Moyal expansion

ΘεW = ∇xV · ∇pW +

∞
∑

n=1

(−1)n
(

ε
2

)2n

(2n+ 1)!
∇2n+1

x V · ∇2n+1
p W.

When the potential V (x) is sufficiently smooth, one recovers the classical Liouville equation in the

limit as ε→ 0 [12, 31]
∂f

∂t
+
p

m
· ∇xf −∇xV · ∇pf = 0. (2.12)

However, the classical limit is not valid at the discontinuities of the potential [3, 36, 38], where

the potential behaves as a quantum scatterer. In the case of a quantum barrier, we may consider

a multiscale domain decomposition approach for a solution [7]. In the next section, we present a

semiclassical model of a thin quantum barrier with the mixed-state dynamics.

2.2 Particle behavior at a quantum barrier

To model quantum dynamics, we consider a top-down multiscale approach by considering the

quantum effects as local corrections to the global classical particle dynamics. In order to isolate

and simplify the problem, we make the following assumptions/limitations:

1. The effective width of a barrier is O(ε). On the classical scale, this means that we may

approximate the barrier as having zero width; on the quantum scale, this means that we may

typify it as a single scattering center and we may neglect particle dwell time in the quantum

region in the semiclassical limit.
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2. The distance between neighboring barriers is O(1) and hence each barrier may be considered

independently.

3. The change in the potential ∇V (x) is O(1) except at quantum barriers.

4. The coherence time is sufficiently short and therefore we may neglect interference away from

the barrier.

Naturally, one would like to be able to treat a wider class of problems including periodic crystalline

domains and mesoscopic barriers for which ε is nonvanishing. We will examine corrections and

extensions to these simplifications in Chapter 5.

We begin with the Hamiltonian system discussed in Section 2.1

d

dt
x = ∇pH(x, p),

d

dt
p = −∇xH(x, p).

Let a bicharacteristic of the function H(x, p) be the integral curve ϕ(t) = (x(t), p(t)). Note that

ϕ(t) may not be defined for all time t ∈ R. When H(ϕ(t)) is differentiable,

d

dt
H(ϕ(t)) =

d

dt
x · ∇xH +

d

dt
p · ∇pH = 0 (2.13)

from which it follows that the Hamiltonian is constant along any bicharacteristic ϕ(t), i.e.,

H(ϕ(t)) = const. (2.14)

Condition (2.13) may be interpreted as the strong form of the conservation of energy, while con-

dition (2.14) may be interpreted as the weak form. If the potential V (x) is discontinuous or not

defined in some region Q ∈ R
d, the Liouville equation fails to have a global solution since ∇xV (Q)

is undefined.

The key idea behind Hamiltonian preserving schemes [21, 22] is to (a) solve the Liouville equation

locally; (b) use the weak form of the conservation of energy to connect the local solutions together;

and (c) incorporate a physically relevant interface condition to choose the correct solution. Let L
be the locally defined set of bicharacteristics of the function H(x, p). By requiring the Hamiltonian

to be constant along trajectories, we create an equivalence class of bicharacteristics [ϕ] = { ϕ∗ ∈
L | H(ϕ∗) = H(ϕ) }.

Generating a global bicharacteristic is a matter of connecting equivalent bicharacteristics at the

barriers. Consider the incident and scattered trajectory limits (x(t−), p(t−)) and (x(t+), p(t+)) on a
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barrier in one-dimensional physical space—the two-dimensional case will be considered in Chapter 4.

From equation (2.2) the scattered momenta are

p(t+) = −p(t−) (2.15a)

for reflection and

p(t+) = p(t−)
√

1 + 2m[V (x(t−))− V (x(t+))]/|p(t−1)|2 (2.15b)

for transmission. Unless |p(t−)|2 < 2m[V (x(t+)−V (x(t−))], for which the transmitted momentum

is imaginary, the conservation of energy does not tell us which of these two bicharacteristics a

particle should physically follow. In order to resolve the nonuniqueness, we require an additional

interface condition which we derive from the Schrödinger solution across the interface. By inter-

preting a wave function as a statistical ensemble of a large number of particles [35], we have the

interface condition

f(x(t+), p(t+)) = R(pR(t−))f(x(t+), pR(t−)) + T (pT (t−))f(x(t−), pT (t−)) (2.16)

where T (p) denotes the probability of an incident particle being transmitted across some region,

R(p) denotes the probability of an incident particle being reflected, and the incident momenta

pR(t−) = −p(t+) and

pT (t−) = p(t+)
√

1 + 2m[V (x(t+)− V (x(t−))]/|p(t+)|2.

come from equations (2.15b) and (2.15a). The multiple-dimensional interface condition is an ex-

tension of the one-dimensional interface condition (2.16) and will be discussed in Section 4.2.

By considering the time-reversibility of the scattering process, we may formulate an alternative

but equally valid interface condition

f(x(t−), p(t−)) = R(pR(t+))f(x(t−), pR(t+)) + T (pT (t+))f(x(t+), pT (t+)) (2.17)

where the scattered momenta pR(t+) ans pT (t+) are functions of the incident momenta

pR(t+) = −p(t−) and

pT (t+) = p(t−)
√

1 + 2m[V (x(t−)− V (x(t+))]/|p(t−)|2
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To differentiate between the two interface conditions, we will refer to (2.16) as a pull interface

condition and (2.17) as a push interface condition. The choice between the two equivalent interface

conditions is an issue of implementation. An Eulerian method, such as the finite-volume method

developed in Section 3.1.2, combines information by pulling information from the appropriate bicar-

acteristics upwind of the barrier. A Lagrangian method, such as the particle method developed

in Section 4.2.3, pushes the information to the appropriate bicharacteristics located downwind of

the barrier. Note that the pull interface condition (2.16) is a many-to-one function and the push

interface condition (2.17) interface condition is a one-to-many function. In contrast, the scattering

for the classical Liouville equations and von Neumann equations are both one-to-one functions.

We assume that the probability of a particle being absorbed by the barrier is zero and hence

T (p) +R(p) = 1. By defining

T (p(t−)) =











1 if |p(t−)|2 > 2m [V (x(t+))− V (x(t−))] and

0 otherwise,

i.e., total transmission/reflection, condition (2.16) reduces to the classical Liouville condition for

which bicharacteristics are uniquely determined for each (x, p). When T (p) ∈ (0, 1), i.e., partial

transmission/reflection, the bicharacteristics are no longer unique and instead we consider multiple

bicharacteristic solutions.

Every interaction with a barrier potentially introduces a reflected and transmitted solution

resulting in an additional bicharacteristic. We may enumerate the solutions and define a bicharac-

teristic solution to the Liouville equation as

fk(x, p, t) =

∫

f̃(x̃, p̃)ϕk(x, p, t; x̃, p̃) dx̃ dp̃

where

ϕk(x, p, t; x̃, p̃) = δ(x(t)− x̃)δ(p(t) − p̃)

is the kth global bicharacteristic for H(x̃, p̃). By linearity of the Liouville equation we may consider

the general solution as the superposition of the bicharacteristic solutions

f(x, p, t) =
∑

k

sk(H(x, p))fk(x, p, t). (2.18)

where sk(H(x, p)) is product of reflection and transmission probabilities along the kth bicharacter-

istic.
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Figure 2.1. Particle position as a function of time for potential V (x) = 2|x| − H(x) where H(x) is the
Heaviside step function. Particle has initial conditions δ(x− 1)δ(p).

Except for simple solutions such as the global-in-time solution for a piecewise-constant poten-

tial or the local-in-time solution for a piecewise-quadratic potential, an exact solution cannot be

explicitly given. Even for a simple discontinuous oscillator the number of bicharacteristics that

need to be tracked becomes cumbersome in a short time interval. See Figure 2.2. By solving the

model numerically, we mitigate these difficulties.

2.3 Time irreversibility and entropy

The Liouville solution at time t for an initial distribution given by f(x, p, 0) is f(x, p, t) =

etLf(x, p, 0) where the Liouville operator L = ∇pH · ∇x −∇xH · ∇p. By reversing the momentum

(p 7→ −p), we have f(x,−p, t) = e−tLf(x,−p, 0) and equivalently f(x,−p, 0) = etLf(x,−p, t).
Hence, the Liouville equation is time reversible under the negation of the momentum. Similarly,

the solution of the Schrödinger equation at time t for an initial value ψ(x, 0) is ψ(x, t) = e−itĤψ(x, 0)

where the Hamiltonian operator is Ĥ = − ε2

2m∆ + V (x). By reversing the phase, i.e., by taking the

complex conjugate of the probability amplitude (ψ 7→ ψ), we have ψ(x, 0) = e−itĤψ(x, t). Hence,

the Schrödinger equation is time-reversible. Unlike the Schrödinger model or the classical Liouville

model, the semiclassical Liouville model does not preserve time reversibility.

Consider a statistical ensemble of particles—f(x, p, 0) for the Liouville equation and ψ(x, 0)

for the Schrödinger equation. Suppose that over a some time interval [0, t] this ensemble collides

with a barrier resulting in the scattered solutions, f(x, p, t) and ψ(x, t) respectively, consisting

of transmitted and reflected parts. Now consider the transmitted and reflected solutions with

the momenta and phases reversed as initial conditions, namely f(x,−p, t) and ψ(x, t). The time

evolution traces backward along the bicharacteristics, striking the barrier and resulting in scattered
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solutions. The classical Liouville and von Neumann solutions correspond to the original ensemble

f(x,−p, 0) for and ψ(x, 0); the semiclassical solution does not. The classical Liouville equation is

time reversible because there is only one bicharacteristic for each initial condition. The Schrödinger

equation is time reversible because the solution is coherent, containing additional phase information

which results in constructive and destructive interference across the barrier. The semiclassical

model is not time reversible because it has neither of these properties—the solution is completely

decoherent and the bicharacteristics are not unique.

Entropy is a concept closely connected to time irreversiblity. The statistical entropy S of a

system is defined as

S(t) =
∑

i

pi log pi. (2.19)

where pi is the probability of being on the ith local bicharacteristc at time t. Whereas the clas-

sical Liouville and the von Neumann equations are isentropic, the semiclassical model is not. As

previously stated, the scattering relation for the classical Liouville equations and von Neumann

equations are both one-to-one functions, but the scattering relation for the semiclassical model

is not. The semiclassical interface condition mixes information from different bicharacteristics,

thereby increasing the entropy of the system. The interface condition may be equally posed in

terms of a semiclassical scattering matrix




T R

R T





which relates incident and scattered states. The inverse semiclassical scattering matrix




T
T−R

R
R−T

R
R−T

T
T−R





which solves the time-reversed semiclassical scattering problem will be important in the construction

of ghost densities for the slope limiters in the finite-volume method in Section 3.1.2.

As an example, consider the harmonic oscillator with a delta-function barrier

V (x) = 1
2x

2 + εαδ(x)

where ε is the scaled Planck constant and α is some parameter. The delta-function quantum barrier

transmits a particle with momentum p with probability [1 + (α/p)2]−1 [42]. Furthermore, for the

Schrödinger equation, the phase of a transmitted wavepacket are shifted by θT = − tan−1(α/p) and
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the phase of a reflected wavepacket is shifted by θR = 1
2π+θT . The phase is also shifted by π when

the wavepacket changes direction near ±1. Take the initial conditions, f(x, p, 0) = δ(x − 1)δ(p).

Then the particle strikes the barrier with momentum p = 1 at every time t = (n+ 1
2)π for integer n.

Let α =
√

3. Then the phase shift is −π/3 for transmission and π/6 for reflection. A semiclassical

particle with momentum p = 1 will be transmitted with probability 1
4 and reflected with probability

3
4
. Consider the probability of finding the particle in R

+ at t = 0, π, 2π, . . . . For the semiclassical

model, it is

1, 3
4 ,

5
8 ,

9
16 ,

17
32 ,

33
64 ,

65
128 , . . .

because we take each scattering event independently. For the Schrödinger equation, it is

1, 3
4 ,

1
4 , 0, 1

4 ,
3
4 , 1, . . .

because the probability amplitude constructively and destructively interferes with itself. The en-

tropy of the semiclassical system may be calculated using equation (2.19). We have that at t = nπ,

the entropy is

0, 0.562, 0.661, 0.685, 0.691, 0.6926, 0.6930, . . .

which is a monotonically increasing function asymptotic to the equilibrium value log 2. By time

t = 2π the semiclassical Liouville solution disagrees with the Schrödinger solution. This discrepancy

is due to limitations of the semiclassical model. Clearly, this example violates assumptions 2

and 4 on page 8 that require each interaction with the quantum barrier to be independent.

While the semiclasssical solution is nonisentropic, this does not invalidate the model. Since

particles at the classical scale interact with environment, a decoherent, time-irreversible solution is

a physically realistic solution. However, a coherent solution is necessary inside a quantum region

for mesoscopic and periodic potentials. We shall examine such a model in Chapter 5.
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Chapter 3

Semiclassical Model and Numerical Method in One Dimension

3.1 A semiclassical approach

When the quantum barrier is sufficiently narrow, the barrier may be modeled using the time-

independent Schrödinger equation. We may then derive the transmission/reflection probabilities

for the interface condition (2.16) by considering the current density. The interface condition is used

to connect two classical domains modeled by the classical Liouville equation (2.12).

We consider an algorithm consisting of an initialization routine and a Liouville solver:

1. During initialization, we determine the stationary states at the barrier by solving the time-

independent Schrödinger equation. The solutions may be found by considering the barrier

as an open quantum system [2] outside of which the potential is constant. Typically, this

may be done by using a quantum transmitting boundary method [28], a spectral projection

method [32], or a transfer matrix method [1, 23, 15]. With this solution, we compute the

scattering information, namely the transmission and reflection coefficients.

2. Following initialization, we solve the Liouville equation using a finite volume method. As

done in [20] the interface condition (2.16) is built into the numerical flux in a framework

called the Hamilton preserving scheme. This yields a numerical scheme for which the stabil-

ity condition—the CFL condition—is hyperbolic, namely ∆t = O(∆x,∆p) with l∞ and l1

stability. See [20].

This approach aims at capturing the weak limit of the Schrödinger and von Neumann equations

as ε → 0, without solving the Schrödinger or von Neumann equations over the entire domain,

but rather just at the quantum barrier and only in the initialization step. We now discuss the

initialization routine and the finite volume routine in detail.
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3.1.1 Routine initialization

We use the transfer matrix method because it is robust over a wide range of momenta. On

the quantum scale we decompose a one-dimensional barrier into a sequence of step potentials over

which we solve the time-independent Schrödinger equation exactly. Take a quantum barrier in the

bounded region Q = [x1, x2] and take the potential to be constant outside this barrier—V (x) = V1

in C1 = (−∞, x1) and V (x) = V2 in C1 = (x2,∞).

For a state E = p2/2m the time-independent Schrödinger equation

−ε2ψ′′(x) + 2mV (x)ψ(x) = p2ψ(x)

has the solution

ψ(x) =























a1e
iκ1(x−x1)/ε + b1e

−iκ1(x−x1)/ε, x ∈ C1,

ψQ, x ∈ Q

a2e
iκ2(x−x2)/ε + b2e

−iκ2(x−x2)/ε, x ∈ C2

(3.1)

where κ1,2 =
√

p2 − 2mV1,2 and the coefficients a1, a2, b1 and b2 are uniquely determined by

the boundary conditions at x1 and x2. By requiring that the solution ψ(x) and its derivative be

continuous, ψQ is uniquely determined by the values a1 and b1 using the boundary conditions

ψQ(x1) and ψ′
Q(x1). In turn, the values a2 and b2 are uniquely determined by the values ψQ(x2)

and ψ′
Q(x2). Since the Schrödinger equation is linear, a2 and b2 may be expressed as linear functions

of a1 and b1. Hence, for each momentum p we may relate the solution in C2 with the solution C1
in terms of the transfer matrix M





a2

b2



 = M





a1

b1



 =





m11 m12

m21 m22









a1

b1



 . (3.2)

An arbitrary quantum barrier may be discretized and approximated by a series of step potentials,

for each of which a transfer matrix may be computed analytically. Specifically, the transfer matrix

may be approximated as M = Mn · · ·M2M1 with Mj = D
1/2
j+1PjD

1/2
j where

Pj = 1
2





1 + κj/κj+1 1− κj/κj+1

1− κj/κj+1 1 + κj/κj+1



 (3.3)
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Figure 3.1. Approximation of a potential barrier by a series of step potentials. The effective transfer
matrix M = Mn · · ·M2M1 where Mj is the transfer matrix for a step potential at xj .

is the transfer matrix associated with a potential jump V (x+
j )− V (x−j ) and

Dj =





exp(i∆xκj/ε) 0

0 exp(−i∆xκj/ε)



 (3.4)

is the transfer matrix associated with the displacement ∆x = xj − xj−1.

One may also express the solutions in C1 and C2 in terms of a scattering matrix S which relates

the incident and scattered waves




b1

a2



 = S





a1

b2



 =





r1 t2

t1 r2









a1

b2



 =





−m21/m22 1/m22

∆/m22 m12/m22









a1

b2



 . (3.5)

where ∆ = detM = m22m11 −m12m21. By considering the time evolution of the position density

ρ(x, t) = |ψ(x, t)|2 in the Schrödinger equation, one derives the continuity equation

∂

∂t
ρ +∇ · J = 0

where the current-density is defined as J(x) = εm−1Im (ψ∇ψ). From equations (3.1), one has that

J(x) =











κ1

(

|a1|2 − |b1|2
)

/m, x ∈ C1

κ2

(

|a2|2 − |b2|2
)

/m, x ∈ C2
(3.6)

where m is the effective particle mass. The positive-valued terms of the J(x) express the flux

of right-traveling waves and the negative-valued terms express the flux of left-traveling waves. In

particular, for a wave incident on the barrier from the left (b2 ≡ 0), we have a2 = t1a1 and b1 = r1a1.

It follows that the reflection coefficient R1, the ratio of the reflected to incident current densities,

and the transmission coefficient T1, the ratio of the transmitted to incident current densities, are

R1 = |r1|2 and T1 = (κ2/κ1)|t1|2. (3.7)
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Similarly, for a wave incident from the right

R2 = |r2|2 and T2 = (κ1/κ2)|t2|2. (3.8)

The transmission and reflection coefficients are uniquely determined along a bicharacteristic. It is

clear by time-reversibility that the transmission coefficient along any bicharacteristic is independent

of direction

T1(p) = T2

(

−
√

p2 + 2m(V2 − V1)
)

. (3.9)

3.1.2 A second-order finite-volume Liouville solver

Without loss of generality, we shall take the mass m = 1 in which case we equate the velocity

with the momentum p. To solve the semiclassical Liouville equation (2.12), we use a Hamiltonian-

preserving finite-volume method [21]. We consider a uniform mesh in phase space with grid points

at (xi+1/2, pj+1/2) and denote grid spacing ∆x = xi+1/2 − xi−1/2 and ∆p = pj+1/2 − pj−1/2 with

i, j ∈ Z. Let the cell centers be xi = 1
2
(xi+1/2 + xi−1/2) and pj = 1

2
(pj+1/2 + pj−1/2). For

convenience of notation, we shall take p0 ≡ 0 and p−j = −pj . We shall consider the quantum

barrier to be located at a cell interface xZ+1/2 for some integer(s) Z.

Define the cell average over the cell Cij = [xi−1/2, xi+1/2)× [pj−1/2, pj+1/2) as

fn
ij =

1

∆x∆p

∫∫

Cij

f(x, p, tn) dx dp.

The finite-volume discretization of the one-dimensional Liouville equation (2.12) is

fn+1
ij = fn

ij −∆t
[

pj∂xf
n
ij − ∂xVi∂pf

n
ij

]

(3.10)

where the discrete operators ∂xfij , ∂pfij and ∂xVi are

∂xfij = (f−
i+1/2,j − f

+
i−1/2,j)/∆x,

∂pfij = (fi,j+1/2 − fi,j−1/2)/∆p, and

∂xVi = (V −
i+1/2 − V

+
i−1/2)/∆x
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with

f±
i+1/2,j = lim

x→x±

i+1/2

1

∆p

∫ pj+1/2

pj−1/2

f(x, p) dp,

fi,j+1/2 =
1

∆x

∫ xi+1/2

xi−1/2

f(x, pj+1/2) dx, and

V ±
i+1/2 = lim

x→x±

i+1/2

V (x).

Upwinding is used to approximate the fluxes f±
i+1/2,j and fi,j+1/2. If the potential V (x) is con-

tinuous at some point xi+1/2, then p(t+) = p(t−) and hence f−
i+1/2,j = f+

i+1/2,j which reduces

the discretized Liouville equation (3.10) to the usual upwind finite volume scheme. At the barrier

xZ+1/2 special consideration must be taken.

From conservation of the Hamiltonian (2.15) we have that the incident velocity qj (upwind of

the barrier) for a particle transmitted with velocity pj is

qj = pj

√

1 + 2(V +
Z+1/2 − V

−
Z+1/2)/pj |pj |.

Similarly, the transmitted velocity (downwind of the barrier) for a particle incident with velocity

pj is −q−j . The incident velocity for a particle reflected with velocity pj is simply −pj . Note that,

whereas −p−j = pj , in general −q−j 6= qj . Further note that by time reversibility T (q−j) = T (pj)

and R(q−j) = R(pj).

The left and right limits of the probability distribution f in the cells immediately downwind of

the quantum barrier are determined by the interface condition (2.16)

f+
Z+1/2,j = R(qj)f

+
Z+1/2,−j + T (qj)f(x−Z+1/2, qj) for j > 0

f−
Z+1/2,j = R(qj)f

−
Z+1/2,−j + T (qj)f(x+

Z+1/2, qj) for j < 0.

The values for f(x±Z+1/2, qj) are approximated in a manner similar to Scheme II of [21]. Consider

the flux incident from the left (qj > 0)—the same treatment applies to flux incident from the right.

We define f(x−Z+1/2, qj) as the cell average

f(x−Z+1/2, qj) =
1

pj∆p

∫ qj+1/2

qj−1/2

pf(x−Z+1/2, p) dp (3.11)

where

qj±1/2 =
√

p2
j±1/2 + 2(V +

Z+1/2 − V
−
Z+1/2).
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The integral is approximated by a composite mid-point rule. Since the limits of the integral are not

generally gridpoints in the p-direction, some care must be taken. If pk−1/2 ≤ qj−1/2 < qj+1/2 ≤
pk+1/2 for some k, then we take

f(x−Z+1/2, qj) = f−
Z+1/2,k + qjσp(f

−
Z+1/2,k)

where the slope σp(·) in the p-direction is calculated using the van Leer limiter

σp(fij) =

(

fij − fi,j−1

∆p

)

φ

(

fi,j+1 − fij

fij − fi,j−1

)

(3.12)

with φ(θ) = (θ+ |θ|)/(1 + |θ|) [29]. Otherwise pk−1/2 ≤ qj−1/2 < · · · < qj+1/2 ≤ pk+s+1/2 for some

k and s, and we take

f(x−Z+1/2, qj) =

1

pj∆p

{

(pk+1/2 − qj−1/2)
[

pkf
−
Z+1/2,k + 1

2(pk+1/2 + qj−1/2)σp(pkf
−
Z+1/2,k)

]

+ pk+1∆pf
−
Z+1/2,k+1 + · · · + pk+s−1∆pf

−
Z+1/2,k+s−1

+ (qj+1/2 − pk+s−1/2)
[

pk+sf
−
Z+1/2,k+s + 1

2 (pk+s−1/2 + qj+1/2)σp(pk+sf
−
Z+1/2,k+s)

]}

. (3.13)

For a second-order accurate method we use a slope-limited piecewise-linear interpolant to ap-

proximate the right and left density limits

f±
i∓1/2,j = fij ∓ 1

2
(1− λj)∆xσx(fij) (3.14)

where λj = |vj |∆t/∆x and the slope σx(·) in the x-direction is calculated using the van Leer limiter

σx(fij) =

(

fij − fi−1,j

∆x

)

φ

(

fi+1,j − fij

fij − fi−1,j

)

. (3.15)

Since the slope σx(·) is a function of fi−1,j, fi,j and fi+1,j and the density f is not necessarily

continuous across the barrier in the x-direction, we can not directly use (3.14) and (3.15) to calculate

the density limits at the barrier interface. Rather, we first need to construct the ghost densities f∗
Z

and f∗
Z+1 across the barrier using the scattered densities at xZ and xZ+1 based on conservation of

mass. Specifically, downwind of the barrier

f+
Z+1/2 ≡ f

+
Z+1/2(f

∗
Z , fZ+1, fZ+2) and f−

Z+1/2 ≡ f
−
Z+1/2(fZ−1, fZ , f

∗
Z+1)

with ghost densities f∗
Z and f∗

Z+1 located upwind of the barrier; and upwind of the barrier

f+
Z−1/2 ≡ f

+
Z−1/2(fZ−1, fZ , f

∗
Z+1) and f−

Z+3/2 ≡ f
−
Z+3/2(f

∗
Z , fZ+1, fZ+2)



20

with ghost densities f∗
Z and f∗

Z+1 located downwind of the barrier.

Construction of the ghost densities is analogous to using ghost cells to enforce inflow and

outflow semipermeable reflecting boundary conditions. To calculate the ghost densities upwind of

the barrier we use the interface condition (2.16) to mix together the densities upwind of the barrier

that will subsequently be combined through transmission and reflection. In this case

f∗
Z,j = R(qj)fZ+1,−j + T (qj)f(xZ , qj) for j > 0,

f∗
Z+1,j = R(qj)fZ,−j + T (qj)f(xZ+1, qj) for j < 0.

To calculate the ghost densities downwind of the barrier we unmix the densities downwind of the

barrier that were previously combined through transmission and reflection at the barrier. In this

case

f∗
Z+1,j =

T (pj)f(xZ+1,−q−j)−R(pj)fZ,−j

T (pj)−R(pj)
for j > 0,

f∗
Z,j =

T (pj)f(xZ ,−q−j)−R(pj)fZ+1,−j

T (pj)−R(pj)
for j < 0.

The densities f(xZ+1,±q±j) and f(xZ ,±q±j) are approximated in a manner similar to defini-

tion (3.11).

To approximate f±
i,j+1/2 to second-order in the p-direction we have

f±
i,j∓1/2 = fi,j ∓ 1

2 (1− λi)∆pσp(fij)

with λi = |∂xVi|∆t/∆p and the slope σp(·) defined using the van Leer limiter (3.12).

3.2 Numerical examples

In this section we present a few examples of both pure state dynamics and mixed state dynamics

in order to verify and validate the semiclassical model and numerical scheme.

For a mixed state solution with a macroscopic distribution, we are not limited by the support of

the wavepacket, and the complexity of the scheme is O((∆x∆p∆t)−1) where ∆x, ∆p, and ∆t� ε.

For direct simulation of the von Neumann equation, not only must we resolve ε in space and time

but we must solve the equation over two space dimensions and one time dimension so the complexity

of the scheme is O(ε−3). When ε � 1, the computing time for a direct von Neumann solution is

considerably longer than for the multiscale semiclassical Liouville solution.
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The numerical Schrödinger solution may be computed using the Crank-Nicolson operator

ψ(xi, t+ ∆t) = (1 + iε−1∆tHD)−1(1− iε−1∆tHD)ψ(xi, t) (3.16)

where the discrete Hamiltonian operator

HD =
−ε2
2m

δi,i−1 − 2δii + δi,i+1

(∆x)2
+ V (xi) (3.17)

with Kronecker delta δii = 1 and δij = 0 if i 6= j. Markowich, Pietra and Pohl [33] show that for

such a scheme, in order to guarantee correct approximation to observables for small ε, one needs to

take ∆x = o(ε) and ∆t = o(ε). One may also compute the numerical Schrödinger solution using a

pseudospectral method with Strang splitting [4]. In this case, one splits the kinetic and potential

terms, so that for each time step

ψ(x, t + ∆t) = e∆tB/2F−1
[

e∆tAF
[

e∆tB/2ψ(x, t)
]]

where

A =
ε

2mi
k2 and B =

1

iε
V (x)

and the operators F and F−1 denote the one-dimensional discrete Fourier transform and discrete

inverse Fourier transform with respect to the x and k variables. One can use a mesh that is

coarser than the mesh required by a finite-difference method to resolve ε and capture the correct

dynamics [4, 5]. Based on numerical observation, we find that we require ∆x < ε/4 to ensure

numerical convergence to the correct physical observables and for numerical error to be insignificant.

When the potential is discontinuous, we find that the solution exhibits artificial oscillations unless

∆t < (∆x)2/ε and ∆t < ε/V (x).

The von Neumann equation

iε
∂

∂t
ρ̂ = Ĥρ̂− (Ĥρ̂T )T with Ĥ = − ε2

2m
∂xx + V (x)

has the formal solution

ρ̂(x, x′, t+ ∆t) = eiε∆tĤ ρ̂(x, x′, t)e−iε∆tĤ .

By using the discrete Hamiltonian operator (3.17), we may approximate the von Neumann solution

in terms of the Crank-Nicolson operator (3.16) to get a method without splitting error

ρ̂n+1
ij = (1 + iε−1∆tHD)−1(1 − iε−1∆tHD)ρ̂∗ji with

ρ̂∗ij = (1− iε−1∆tHD)−1(1 + iε−1∆tHD)ρ̂n
ji



22

where ρn
ij = ρ̂(xi, x

′
j , tn). We may also solve the von Neumann equation using a pseudospectral

method with Strang splitting [17],

ρ̂n+1 = e∆tB/2F−1
(

e∆tAF
(

e∆tB/2ρ̂n
))

where

A =
ε

2mi
(k2 − k′2) and B =

1

iε
(V (x)− V (x′))

and the operators F and F−1 denote the two-dimensional discrete Fourier transform and discrete

inverse Fourier transform with respect to the (x, x′) and (k, k′) variables. The FFTs may be

optimized by exploiting the hermicity of the density matrix.

Alternatively, we may calculate the von Neumann solution indirectly by solving the Schrö-

dinger equation for several states and then using definition (2.7) to construct the density matrix.

This simplifies a two-dimensional problem over N2 gridpoints to n independent one-dimensional

problems over N gridpoints. If the initial distribution is localized in phase space, n may be chosen

to be appreciably smaller than N , saving not only memory but also contributing to a considerable

reduction in computation time. Furthermore, this approach allows us to implement the solution

using a parallel computer cluster. One way to implement such a scheme is to use states generated

by taking thin slices of the initial distribution along the x-direction. Consider the WKB initial

condition

ψ(x, 0; x̃, p̃) = (σx

√
2π)−1/4 exp(−(x− x̃)2/4σ2

x) exp(ip̃x/ε), (3.18)

which describes a wave packet with an O(1) spread in position and O(ε) spread in momentum. Let

the weight distribution in the definition of the density matrix (2.7) be

f̃(x̃, p̃) = δ(x̃− x0) exp(−(p̃− p0)
2/2s2εσ

2
p)/(s2εσp

√
2π) (3.19)

where the scaling factor sε = 1/
√

1 + (ε/2σxσp)2. Then

ρ̂(x, x′, 0) =

∫∫ ∞

−∞

f̃(x̃, p̃)ψ(x, 0; x̃, p̃)ψ(x′, 0; x̃, p̃) dx̃ dp̃

=
1

σx

√
2π

exp

(

−(x− x0)
2 + (x′ − x0)

2

4σ2
x

− (x− x′)2
2ε2s−2

ε σ−2
p

− ip0(x− x′)
ε

)

=
1

σx

√
2π

exp

(

−(1
2
(x+ x′)− x0)

2

2σ2
x

− (x− x′)2
2ε2σ−2

p

− ip0(x− x′)
ε

)

.
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Using the Wigner transform (2.11), we have the equivalent Liouville initial distribution

f(x, p, 0) =
1

2πσxσp
exp

(

−(x− x0)
2

2σ2
x

− (p− p0)
2

2σ2
p

)

(3.20)

which is independent of ε.

To compare the convergence of the Schrödinger and von Neumann solution in the semiclassical

limit, we use the L1-error of the position probability density function (pdf),

∫ ∞

−∞

∣

∣ρ(x, t) − |ψ(x, t)|2
∣

∣ dx

with ρ(x, t) =
∫∞

−∞
f(x, p, t) dp. We replace |ψ(x, t)|2 with ρ̂(x, x, t) for the von Neumann solu-

tion. The semiclassical Liouville model should also predict the correct weak limit for multiphase

solutions when interference in the Schrödinger and von Neumann solutions produce oscillations in

the probability density distribution. To measure the weak convergence in the semiclassical limit,

we determine the L1-error in the cumulative distribution function (cdf), i.e., the antiderivative of

position density [14]
∫ ∞

−∞

∣

∣

∣

∣

∫ x

−∞

ρ(s, t)− |ψ(s, t)|2 ds
∣

∣

∣

∣

dx.

In each example we compare the exact or numerical semiclassical Liouville solution with nu-

merical Schrödinger or von Neumann solutions for equivalent initial distributions and potentials.

Since the interactions with the boundaries are not relevant to the study, a sufficiently large domain

is chosen and simulation is stopped before the wave envelope reaches the boundaries.

3.2.1 Schrödinger O(1) wave envelope with a step potential

Consider the step potential

V (x) =











0 if x < 0,

1
2

if x > 0.
(3.21)

A particle impinging on this potential from the left is totally reflected when the incident velocity

is less than 1.

We find the exact solution by the method of characteristics by tracing along the bicharacteristics

backward in time to the initial conditions. Let Ω(t) = { (x, p) | x < 0 and x − pt < 0, or x >

0 and x − pt > 0 } be the region in phase space where the bicharacteristics have not crossed the
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quantum barrier at x = 0 within a time t. Then the exact solution

f(x, p, t) =











f(x− pt, p, 0), (x, p) ∈ Ω(t)

T · f
(

q

p
x− qt, q, 0

)

+R · f (−x+ pt,−p, 0) , otherwise
(3.22)

where the incident velocity is given by q =
√

p2 + 1 if p > 0 and q = −
√

p2 − 1 if p ≤ 0. From

equations (3.3) and (3.7), the reflection coefficient is given by

R =

∣

∣

∣

∣

p− q
p+ q

∣

∣

∣

∣

2

= |p− q|4.

Note that when p ∈ [−1, 0], q is imaginary and R = 1 indicating total reflection.

Consider the WKB initial condition

ψ(x, 0) = A(x)eiS(x)/ε

as a wavepacket generalization with the amplitude and phase functions given by

A(x) = (πσ2)−1/4e−(x−x0)
2/2σ2

S(x) = ax2 + bx+ c.

Since S(x) is a quadratic function, we can calculate the Wigner transform of ψ(x, 0) exactly to get

f(x, p, 0) = (πε)−1e(x−x0)
2/σ2

e−(2ax+b−p)2/(ε/σ)2 .

In the semiclassical limit (ε→ 0), we have

f(x, p, 0) = A2(x)δ(p−∇xS(x))

= (σ
√
π)−1e−(x−x0)

2/σ2

δ(p− (2ax + b)). (3.23)

By taking σ = O(1) in A(x), we create a wave envelope that is independent of ε, allowing us to

study the convergence of solutions as ε → 0. When a 6= 0, the distribution of phases included in

the Schrödinger solution is also O(1).

Using the above semiclassical WKB initial conditions (3.23), we note that when t = −1/2a

the position density for the Liouville solution (3.22) exhibits a caustic with all bicharacteristics

intersecting at either x = b/2a, or x = −b/2a for reflected solutions. Because of the nonlinear

change to the incident velocities, the transmitted bicharacteristics do not cross simultaneously

resulting in a traveling front, the leading edge of which is unbounded.
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Take (x0, p0) = (−1
2 , 1) and take a = −1

4 , b = p0− 2a = 3
2 and σ = 1

10 . Then we have the initial

conditions

ψ(x, 0) = (10/π)1/4 e−100(x−x0)
2

ei(ax2+(p0−2ax0)x)ε

for the Schrödinger equation and

f(x, p, 0) = (10/π)1/2 e−200(x−x0)
2

δ(p− p0 − 2a(x − x0))

for the semiclassical Liouville equation. The numerical Schrödinger solution is solved using a

Crank-Nicolson finite-difference method over the domain [−1, 1] with mesh size ∆x = ∆t = 10−6.

The exact semiclassical Liouville solution is solved by tracking characteristics forward in time with

values determined by the initial velocity given by ∇S = 3
4 − 1

2x. We compute the solution at time

t = 0.8.

The position densities for several values of ε are shown in Figure 3.2. The convergence results

of the errors in the two solutions are listed in Table 3.1. Based on this study, we find that the l1

convergence rate in ε of the pdf is about 0.6 and the l1 convergence rate in ε of the cdf is about

1.1.

3.1. Errors in solutions of Example 3.2.1 for different values of ε.

ε 200−1 800−1 3200−1 12800−1

l1-error (pdf) 8.78 × 10−1 3.37× 10−1 1.55 × 10−1 8.61× 10−2

l1-error (cdf) 5.15 × 10−2 1.00× 10−2 2.28 × 10−3 1.08× 10−4

3.2.2 Von Neumann solution with step potential

We now consider the solution to the von Neumann equation with the step potential given

Example 3.2.1. To construct a von Neumann initial condition ρ̂(x, x′, 0) which corresponds to a

Liouville initial condition f(x, p, 0), we may directly use the definition of the density matrix (2.7)

for some weight function with the probability amplitudes ψ(x, t) given by Gaussian ε-wavepackets

ψ(x, 0) = (πε)−1/4e−(x−x0)
2/2εeip0x/ε. (3.24)

The Liouville initial condition may subsequently be calculated by a Wigner transform of the density

matrix. Alternatively, we may construct the density matrix by using the inverse Wigner transform
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applied to the Liouville initial conditions f(x, p, 0) to get

ρ̂(x, x′, 0) =

∫ ∞

−∞

f(1
2
(x+ x′), p, 0)eip(x−x′)/ε dp.

By taking the Liouville initial conditions to be the Gaussian

f(x, p, 0) =
1

2πσxσp
exp

(−(x− x0)
2

2σ2
x

)

exp

(−(p− p0)
2

2σ2
p

)

(3.25)

we may compute the von Neumann initial conditions exactly to get

ρ̂(x, x′, 0) =
1

σx

√
2π

exp

(

−(1
2 (x+ x′)− x0)

2

2σ2
x

− (x− x′)2
2ε2σ−2

p

− ip0(x− x′)
ε

)

. (3.26)

We chose σx = σp = 0.05, x0 = −0.5 and p0 = 1.0 and compared the solutions to the von Neu-

mann and semiclassical Liouville equations at time t = 1.0. The von Neumann equation was solved

using the psuedospectral method with Strang splitting over the domain [−1, 1] with ε = 64−1,

128−1, 256−1 and 512−1. The grid spacing was fixed at ∆x = 2048−1 with ∆t = (∆x)2/ε to ensure

consistency and stability. The exact solution to the semiclassical Liouville model is calculated using

equation (3.22).

The position densities for the semiclassical Liouville solution and the von Neumann solution for

several values of ε are shown in Figure 3.3. The errors in the two solutions are listed in Table 3.2.

Based on our study, we find the convergence rate of the l1-error of the pdf is about 0.7 as ε → 0

and the convergence of the l1-error of the cdf is about 0.9 as ε→ 0.

3.2. Errors in solutions of Example 3.2.2 for different values of ε .

ε 64−1 128−1 256−1 512−1

l1-error (pdf) 6.03 × 10−1 4.04× 10−1 2.50 × 10−1 1.40× 10−1

l1-error (cdf) 9.22 × 10−2 4.83× 10−2 2.53 × 10−2 1.32× 10−2

We may also consider the effect of incorporating barrier time delay in the approximation of

the von Neumann equation for nonvanishing ε. As evident from the offset of the centers of the

distributions on the left side of Figure 3.3, one source of error is the time delay which vanishes in

the semiclassical limit. The time delay may be considered as an O(ε) correction and hence we may

neglect it in the semiclassical limit. While the the addition of a delay time is numerically nontrivial,

for the analytic solution (3.22) it is a straight-forward modification.
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Typically, time delay is defined in terms of the Wigner time delay, the delay to the group

velocity of a wave packet resulting from reflection and transmission. As such it is meaningful when

the wave packet has a well-defined peak. This is not generally the case, especially when the barrier

is sufficiently wide. Considering the scattering relation (3.5), the reflection and transmission group

delay times for unit mass are [35]

τt =
ε

p

d

dp
arg t =

ε

p
Im (

1

t

dt

dp
) and τr =

ε

p

d

dp
arg r =

ε

p
Im (

1

r

dr

dp
).

For the step potential (3.21), we have from equation (3.3) that the reflection time delay is

τr = 2εIm [(pq)−1] =
2ε

p
√

1− p2

when p ∈ [−1, 0]. There is no transmission or reflection delay time for p /∈ [−1, 0]. To incorporate

the time delay, we make the replacement

f (−x+ pt,−p, 0) → f (−x+ p(t+ τr),−p, 0)

in the reflected term of the exact solution (3.22).

We compare the von Neumann solution with the Liouville solution with time delay correction.

The l1-errors are listed in Table 3.3. Based on this study, we find that the addition of delay time

provides some improvement to the model. The convergence rate of the l1-error of the pdf is about

1.3 and convergence rate of the l1-error of the cdf is about 0.9 as ε→ 0.

3.3. Errors in solutions of Example 3.2.2 with time delay correction.

ε 64−1 128−1 256−1 512−1

l1-error (pdf) 3.67 × 10−1 1.78× 10−1 7.05 × 10−2 2.23× 10−2

l1-error (cdf) 2.62 × 10−2 1.65× 10−2 7.80 × 10−3 3.90× 10−3

3.2.3 Von Neumann solution with two step potentials

We may consider more complicated geometries by considering multiple barriers. In this example

we construct an O(1)-wide rectangular barrier by taking two step barriers sequentially. Consider

V (x) =











1
2

if x ∈ [0, 1
5
],

0 otherwise.
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We take the initial conditions given in equations (3.25) and (3.26) with σx = σp = 0.05, x0 = −0.45

and p0 = 1.1. We compute over the domain [−1.25, 1.25] and compare the solutions at time t = 1.2.

The von Neumann equation is solved using a pseudospectral method with Strang splitting as in

Example 3.2.2. The semiclassical Liouville solution is solved using the numerical method proposed

in Section 3.1 using N grid points in x and p and 1.5N steps in time. The results are shown

in Figure 3.4 with ε = 0.002. Even with a fairly coarse mesh, the numerical semiclassical solution

agrees well with the von Neumann equation both in the strong limit away from the barrier and in

the weak limit between the two step potentials. See Figure 3.5.

We calculate convergence rate as ∆x, ∆p, ∆t → 0 of numerical scheme for the semiclassical

Liouville equation by computing the l1-error of the numerical solutions using a mesh with N = 50,

100, 200, and 400 grid points. For an “exact” solution, we use the numerical solution using N =

3200. The errors are listed in Table 3.4. Based on this study, we find the convergence rate of the

numerical scheme using the l1-norm is about 1.2.

3.4. Errors in solutions of Example 3.2.3 for various mesh sizes ∆x.

grid points 50 100 200 400

l1-error 3.32× 10−1 1.15× 10−1 4.72 × 10−2 2.56× 10−2

3.2.4 Resonant tunneling von Neumann solution

We present a final example to illustrate a specific physical model, the resonant tunneling diode

(RTD) [24, 34, 41]. An RTD consists of thin layers (a few nanometers thick) of different semi-

conductors, such as gallium arsenide (GaAs) and aluminum gallium arsenide (AlGaAs), that are

sandwiched together to form a double-barrier quantum well structure. For semiconductors the

de Broglie wavelength is on the order of tens of nanometers, so the length of the entire RTD struc-

ture is on the length scale of a de Broglie wavelength. The region outside the barrier is doped

to provide a sufficient number of free electrons. Unlike the transmission probabilities of the step

potentials presented the previous examples, the transmission probability of an RTD is not a mono-

tonic function of the incident particle energy. Rather, it is oscillatory and admits narrow peaks

of total or almost total transmission well below the cutoff energy for classical transmission. By
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changing the bias voltage of an external electrostatic potential applied to the system, the resonance

may be tuned to admit electrons of varying energies.

We shall assume that the electron trajectory is ballistic. In the quantum region, this simpli-

fication is appropriate since the electron mean free path is substantially larger than the barrier

thickness. However, away from the barrier this simplification is physically unrealistic since the

electron mean free path is small compared to the classical length scale for a dense medium. In this

case, a relaxation term or collision operator should be added to the Liouville equation to capture

the particle dynamics. Since we require that the Hamiltonian be only locally preserved, the model

may be extended to a dissipative system, for which the Hamiltonian is continuous, without chang-

ing the approach discussed in Section 2.2 and Section 3.1. Hence, for the purpose of validation, the

assumption is reasonable.

We construct a representative barrier

V (x) =



















+1
2V0 x ∈ (−∞,−a − b]
−1

2
V0x/(a+ b) + Vb x ∈ (−a− b,−a] ∪ (a, a + b]

−1
2V0x/(a+ b) x ∈ [−a, a + b]

−1
2
V0 x ∈ (a+ b,∞)

where the external potential bias V0 = 0.48, the thickness of each barrier b = 0.9ε, the thickness of

the well separating the barriers 2a = 1.2ε, and the height of each barrier Vb = 2.25. See Figure 3.6.

We take Gaussian initial distributions (3.25) and (3.26) with σx = 0.05, σp = 0.15, x0 = −1 and

p0 = 1. The solutions are computed over the domain [−4, 4] and compared at time t = 2.5.

The von Neumann equation is solved indirectly using the WKB initial conditions (3.18) with

weight distribution (3.19). We use a Crank-Nicolson finite-difference method to solve the Schrö-

dinger equations. To ensure that the weight function is sufficiently resolved, we take N = (5ε)−1

Schrödinger solutions with initial values equally spaced over 8σp about p0.

The semiclassical Liouville solution is solved using the numerical method proposed in Section 3.1

using an N grid points over [−4, 4] in x, 2N grid points over [−3, 3] in p and 3N steps in time.

The exact solution is computed using equation (3.22) with transmission and reflection probabili-

ties calculated using the transfer matrix method. In computing the transfer matrix for both the

numerical and exact solutions, the quantum barrier is discretized using 2000 grid point over the

length 6ε for an arbitrary ε. The results are shown in Figure 3.7 and Table 3.5. We calculate an

l1-convergence rate of 1.7 in ∆x,∆p,∆t.
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3.5. Errors in solutions of Example 3.2.4 for various mesh sizes ∆x.

grid points 80 160 320 640

l1-error 3.01× 10−1 1.37× 10−1 4.43 × 10−2 8.90× 10−3
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Figure 3.2. Position densities for the semiclassical Liouville (top) and Schrödinger (bottom) solutions of

Example 3.2.1. The Schrödinger solution shows ε = (a) 200−1, (b) 800−1, (c) 3200−1 and (d) 12800−1. The
position density of Liouville solution exhibits a caustic near x = 0.08 and the peak is unbounded. For the
Schrödinger solution the peak reaches a height of 19 for the ε = 12800−1.
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Figure 3.3. Position densities for the semiclassical Liouville (top) and von Neumann (bottom) solutions of

Example 3.2.2. The von Neumann plot shows ε equal to (a) 64−1, (b) 128−1, (c) 256−1 and (d) 512−1.
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Figure 3.4. Position densities for the numerical semiclassical Liouville (top) and von Neumann (bottom)
solutions of Example 3.2.3. The • in the Liouville plot shows the numerical solution for with 150 grid
points over the domain [−1.25, 1.25]. The solid line shows the numerical solution for 3200 grid points. The
von Neumann solution is for ε = 0.002.

−0.05 0 0.05 0.1 0.15 0.2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

x

ρ
(x

)

Figure 3.5. Detail of Figure 3.4 showing position densities for the numerical semiclassical Liouville and
von Neumann solutions. The • shows the numerical solution for with 150 grid points over the domain
[−1.25, 1.25]. The solid line shows the “exact” Liouville solution and the von Neumann solution using
ε = 0.002.
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Figure 3.6. Transmission probability as a function of the momentum p for the RTD barrier—shown in the
inset—presented in Example 3.2.4.
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Figure 3.7. Position densities for the numerical semiclassical Liouville (top) and von Neumann (bottom)
solutions of Example 3.2.4. The Liouville solution shows the numerical solution for (a) 80, (b) 160,(c) 320
and (d) 640 grid points. The von Neumann solution is plotted for ε = (a) 50−1, (b) 100−1, (c) 200−1 and
(d) 400−1. The exact solution (∗) is also plotted in each case.
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Chapter 4

Semiclassical Model and Numerical Method in Two Dimensions

4.1 Extension to multiple dimensions

Multiple dimensions presents several challenges to computing both the quantum von Neumann

equation and the semiclassical limit. Not only do the algorithms become more complicated as more

variables must be taken into account but also limitations in computer resources (computing time

and memory) introduce unavoidable obstacles. Such obstacles are the primary motivation for the

development of a computationally efficient and tractable semiclassical model. The von Neumann

model for d-dimensional dynamics requires a 2d-dimensional density matrix. Whereas one may

need 15MB of computer memory to compute one-dimensional dynamics over a unit interval with

the ε = 500−1 using a direct method, one would need 15TB of computer memory to compute

the equivalent two-dimensional dynamics using the same method. Aside from memory, a two-

dimensional solution needs a million times as many floating point operations as the equivalent

one-dimensional solution. While an indirect method of solution mitigates the memory concern by

solving a large number of d-dimensional Schrödinger equations independently, such an approach is

impractical for general initial distributions.

The so-called “curse of dimensionality” also afflicts the numerical solution to the semiclassical

model. One could solve most one-dimensional problems with a typical computer using a dense,

concurrent finite volume approach. In higher dimensions, such an approach in general is simply

not effective. Consider the solution to a two-dimensional problem, which requires four dimensions

in phase space. Even a rather coarse mesh using an array of 1004 floating-point numbers requires

380MB of memory. Since we also require an additional “swap” array, we find that 1004 is a practical

limit for brute calculation. Because a typical problem requires at least 100 grid-points over a unit

interval to resolve details (see Figure 3.7), the finite-volume method developed in Section 3.1.2 is
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ineffective for general multi-dimensional semiclassical problems. A sparse matrix algorithm may al-

leviate some of the difficulty; however, such an approach is viable only when the density information

is sufficiently local (such as a front), which is typically an exception for von Neumann solutions. In

addition, sparse matrices introduce numerical record-keeping issues further reducing the numerical

efficiency of the approach.

Instead, we consider a mesh-free, particle method as an effective alternative. For non-interacting

particles, the bicharacteristic solutions may be computed independently thereby eliminating the

memory constraints. While a finite-volume approach requires a concurrent solution using a dense

array, a particle method algorithm may be easily adapted for parallel computation on a distributed

computer cluster reducing the simulation run time. Furthermore, because other related physical

models, such as for plasmas, often rely on particle methods for simulation it is quite natural to use

such an approach for thin quantum barriers.

While mitigating one set of challenges, the particle method introduces another set. Since we

use the bicharacteristics to track information directly, divergence of the bicharacteristics is prob-

lematic for all but trivial examples. Because of this one must periodically reconstruct of the data.

Furthermore, reconstruction of the data is difficult in regions where the particles are sparse and

smoothing techniques may required to mollify the numerical solution.

Formally, we define a particle as the approximation to a Dirac measure using some type of

cutoff function [37]. The particle method consists of first approximating the initial conditions

f0(r) =
∫

f0(r)δ(r − r̃) dr̃ by a linear combination of Dirac measures fh
0 =

∑N
j=1wjδ(r − rj) for

some set {rj , wj} with position rj ∈ R
d × R

d and weight wj ≥ 0 where N is the sample size.

The set {rj , wj} may be chosen by either a Monte Carlo method or a deterministic method. In a

Monte Carlo method, one samples rj randomly from a distribution and sets wj = N−1
∫

f0(r) dr.

In a deterministic approach, one assigns rj based on a uniform or nonuniform mesh and sets wj =
∫

Cj
f0(r) dr for a cell Cj ∈ R

d×R
d. A problem is solved by considering the time evolution of these

particles with the appropriate weights. To solve the Liouville equation, where δ(x(t)− x̃)δ(p(t)− p̃)
defines a single bicharacteristic for the Hamiltonian H(x̃, p̃), we solve the Hamiltonian system of

equations (2.1) for each particle sampled from f0(x, p).

The focus of this chapter is to develop an efficient numerical discretization of the semiclassi-

cal model presented in Section 2.2 in two dimensions. Although we limit the discussion to two-

dimensional physical space, the extension three dimensions follows using a similar treatment. As
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in the one-dimensional case, we use the simplifying assumptions that the effective width of a thin

quantum barrier is O(ε), the distance between neighboring barriers is O(1), and the gradient in

the the potential is O(1) except at quantum barriers. Furthermore, we require that coherence time

be sufficiently short so that we may neglect interference away from the barrier. In two-dimensional

space, we consider the quantum barrier as a smooth one-dimensional curve ΓQ separating two clas-

sical regions C1 and C2. In addition to changing across the width of the barrier, the potential may

also change along the length of the barrier at either the classical O(1) length scale or a quantum

O(ε) length scale. Hence, in the semiclassical limit not only is the potential discontinuous at the

barrier in a direction normal to the barrier curve, but the potential may also be discontinuous along

the barrier curve. As in the one-dimensional case, we prescribe an interface condition to match local

solutions in order to construct the global bicharacteristic solution. But unlike the interface condi-

tion for one-dimensional dynamics that combines just two bicharacteristics, the interface condition

for two-dimensional dynamics, potentially joins a continuum of bicharacterist computed using the

time-independent Schrödinger equation.

4.2 A semiclassical approach and numerical discretization

4.2.1 A semiclassical approach

Whereas in one dimension for which there are only two momenta associated with a Hamil-

tonian E (namely +p and −p), in two dimensions there are a continuum of momenta p(θ) =

(p cos θ, p sin θ). Along a local bicharacteristic the momentum of a particle is uniquely determined

by continuity of the potential. But across a quantum barrier, where potential is discontinuous

and the gradient of the potential is classically undefined, the continuation of the momenta is not

unique. In order to match bicharacteristics, we use information at the quantum scale to construct

an interface condition.

The two-dimensional analogues to the pull interface condition (2.16) and the push interface

condition (2.17) are

f(xout, pout, θout) =

∫ π/2

−π/2

R(θ; pin, θout)f(xin, pin, θ) dθ +

∫ π/2

−π/2

T (θ; qin, θout)f(xin, qin, θ) dθ (4.1)

and

f(xin, pin, θin) =

∫ π/2

−π/2

R(θ; pout, θin)f(xout, pout, θ) dθ+

∫ π/2

−π/2

T (θ; qout, θin)f(xout, qout, θ) dθ (4.2)
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respectively. Here, R(θout; pin, θin) is the probability of a particle incident with momentum pin at

an incident angle θin being reflected at a reflection angle θout, T (θout; pin, θin) is the probability of

a particle incident with momentum pin at incident angle θin being transmitted at a refraction angle

θout, and q2 = p2 − 2m∆V .

Where the potential is discontinuous, one may treat the gradient of the potential as an impulse

force. However, the direction of such a force may not be well-defined at the classical scale. If the

potential is discontinuous both in the direction normal to the barrier and also along the length of

the barrier, we must use the solution at the quantum scale to determine the appropriate scattering

angles. We shall refine this idea when we discuss the quantum scale solution in Section 4.2.2. If

the semiclassical potential V (x, y) is discontinuous in the direction normal to the quantum barrier

curve ΓQ but is continuous along the length of ΓQ, we take the impulse force normal to the barrier

curve. In this case, one has as a consequence of conservation of the Hamiltonian that the change

in momentum for a reflected particle is

∆p = −2(pin · n̂)n̂ (4.3)

where n̂ is the unit normal to the barrier pin denotes the incident momentum; and for a transmitted

particle, the change in momentum is

∆p = (
√

|pin · n̂|2 + 2m∆V − pin · n̂)n̂. (4.4)

One may relate the angle of refraction to the angle of incidence (defined with respect to the unit

normal) by using the conservation of the Hamiltonian to derive an expression analogous to Snell’s

law of geometric optics

sin θ2 = sin θ1/
√

1 + 2m(V1 − V2)/|p|2

where θ1 is the angle of incidence, θ2 is the angle of refraction, V1 is the potential on the incident

side and V2 is the potential on the scattered side. From this expression, one may note that when

the angle of incidence is greater (shallower) than a critical angle

θ1 > θc ≡ cos−1
(

√

2m(V2 − V1)/|p|2
)

(4.5)

the particle is totally reflected by the barrier.

In the following sections, we present the particle method which solves the semiclassical Liouville

equation. As in the one-dimensional case, the algorithm consists of an initialization routine and



38

a Liouville solver. During initialization, we determine transmission and reflection coefficients as a

function of the incident momentum along the interface from both sides. Calculation of transmission

and reflection coefficients for a two-dimensional interface is an extension of calculation of those

coefficients in the one-dimensional case. As in one dimension, we solve the problem by computing

the stationary solution to the time-independent Schrödinger equation. For the semiclassical model,

we consider the quantum barrier as a curve ΓQ separating two classical regions C1 and C2. Because

the potential may change along the length of the curve, we compute the transmission and reflection

coefficients locally at each point along the curve. Consider a point (x0, y0) ∈ ΓQ and define the

local coordinates (x, y) where the x-direction is normal to ΓQ the barrier at (x0, y0) and the y-

direction is parallel to ΓQ at (x0, y0). By assumption, the width of the quantum barrier is O(ε) in

the x-direction and the length of the quantum barrier is O(1) in the y-direction. Formally, we will

associate the semiclassical quantum barrier ΓQ with a region Q bordered by the classical regions

C1 and C2. By assumption the gradient of the potential V (x, y) in classical regions is O(1).

Consider the two-dimensional time-independent Schrödinger equation

− ε2

2m

(

∂2

∂x2
+

∂2

∂y2

)

ψε(x, y) + V ε(x, y)ψε(x, y) = Eψε(x, y). (4.6)

By rescaling x and y by ε (x̃ = εx and ỹ = εy), the Schrödinger equation (4.6) may locally be

expressed as

− 1

2m

(

∂2

∂x̃2
+

∂2

∂ỹ2

)

ψ(x̃, ỹ) + V (x̃, ỹ)ψ(x̃, ỹ) = Eψ(x̃, ỹ). (4.7)

By letting ε → 0, we may regard C1 and C2 as the semiinfinite regions C1 = { (x, y) | x < x1 }
and C2 = { (x, y) | x > x2 } separated by an infinite strip Q = { (x, y) | x1 ≤ x ≤ x2 } for

some x1 and x2. We solve the time-independent Schrödinger equation over Q using information

in C1 and C2 to generate transmission and reflection coefficients. We are interested in computing

the transmission and reflection coefficients locally, so variations in the potential that are on the

classical O(1) lengthscale in the y-direction may be neglected at the quantum O(ε) lengthscale.

Hence, we define

V (x, y) =











V1, (x, y) ∈ C1
VQ(x, y), (x, y) ∈ Q
V2, (x, y) ∈ C2

(4.8)

where V1 and V2 are constants.
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4.2.2 Routine initialization

In this section we discuss the quantum transmitting boundary (QTB) method [7, 28] as a means

of determining the reflection and transmission coefficients of the thin two-dimensional quantum bar-

rier. The QTB method is used to solve the time-independent Schrödinger equation in a region with

open boundary conditions. By using continuity of the solution and its derivative at the boundaries

of an open quantum system in conjunction with a solution with undetermined coefficients in the

exterior region, one formulates a boundary value problem for the interior region. The unknown co-

efficients are eliminated from the problem by combining the Dirichlet boundary conditions with the

Neumann boundary conditions to get mixed boundary conditions. Once the solution in the interior

is known, it may be used on boundaries to recover the unknown coefficients. The approach differs

from the transfer matrix method in that the QTB method first solves the Schrödinger equation

numerically in the quantum region as a means of deriving the scattering coefficients. The transfer

matrix method, on the other hand, uses the exact solution to the Schrödinger equation over several

smaller regions as a means of connecting boundary values. While the transfer matrix method is

accurate over a wider range of momenta, the QTB has a natural extension to two or more dimen-

sions. Approaches to compute the solution to the time-independent Schrödinger equation using

transfer-matrix methods for two-dimensional geometries are discussed in [10, 39].

We adapt the approach proposed by Lent and Kirkner [28]. Consider the solution to the local

time-independent Schrödinger equation (4.7). Here, and in the sequel, the tildes on x and y are

dropped in order to simplify notation. Without loss of generality, we take the potential in region

C1 to be zero (V1 ≡ 0). In this case, E = p2
1/2m = p2

2/2m + V2 where p1 is the magnitude of the

momentum of a particle in region C1 and p2 is the magnitude of the momentum of a particle in

region C2.
The solution to the local Schrödinger equation (4.7) may be written as the piecewise function

ψ(x, y) =











ψ1(x, y), (x, y) ∈ C1
ψQ(x, y), (x, y) ∈ Q
ψ2(x, y), (x, y) ∈ C2

for which the components ψ1(x, y), ψQ(x, y) and ψ2(x, y) are related by appropriate matching

conditions. In regions C1 and C2, where the potential V (x, y) is constant, the Schrödinger equation

simplifies to the Helmholtz equations

−∆ψj(x, y) = p2
jψj(x, y), j = 1, 2 (4.9)
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which have the general solutions

ψj(x, y) =

∫ π

−π

aj(θ)e
ipj(x cos θ+y sin θ) dθ, j = 1, 2. (4.10)

The current density as discussed in Section 3.1.1 is defined as J(x, y) = m−1Im
(

ψ(x, y)∇ψ(x, y)
)

where m is the effective mass. For

ψ(x, y) =

∫ π

−π

a(θ)eip(x cos θ+y sin θ) dθ

we have

ψ(x, y)∇ψ(x, y) = ip

∫ π

−π

a(θ)e−ip(x cos θ+y sin θ) dθ

∫ π

−π

(cos θ, sin θ)a(θ)eip(x cos θ+y sin θ) dθ

= ip

∫ π

−π

∫ π

−π

a(θ1)a(θ2)(cos θ2, sin θ2)e
−ip(x(cos θ1−cos θ2)+y(sin θ1−sin θ2)) dθ1 dθ2.

To determine transmission and reflection coefficients, we need the average directional flux at the

barrier. Integrating this over y we have
∫ ∞

−∞

ψ(x, y)∇ψ(x, y) dy

= ip

∫ π

−π

∫ π

−π

∫ ∞

−∞

a(θ1)a(θ2)(cos θ2, sin θ2)e
−ipx(cos θ1−cos θ2)e−ipy(sin θ1−sin θ2) dy dθ1 dθ2

= ip

∫ π

−π

∫ π

−π

a(θ1)a(θ2)(cos θ2, sin θ2)e
−ipx(cos θ1−cos θ2)δ(θ1 − θ2) dθ1 dθ2

= ip

∫ π

−π

|a(θ)|2(cos θ, sin θ) dθ

Hence, the directional contribution to average current density along the y-axis is

Jj(x, y, θ) = |aj(θ)|2pj(cos θ, sin θ) j = 1, 2 (4.11)

which says that the magnitude of the particle flux through a point in region C1 at an angle θ is

p1|a1(θ)|2 and the magnitude of the particle flux through a point in region C2 at an angle θ is

p2|a2(θ)|2.
Consider particle initially in region C1 that strikes the barrier from the left with momentum p1

at an angle of incidence θin. The particle scatters with momentum p1 into region C1 if reflected

and momentum p2 into region C2 if transmitted. In this case, the solutions to equations (4.9) are

ψ1(x, y) = eip1((x−x1) cos θin+y sin θin) +

∫ π/2

−π/2

r(θ)e−ip1((x−x1) cos θ+y sin θ) dθ (4.12a)

ψ2(x, y) =

∫ π/2

−π/2

t(θ)eip2((x−x2) cos θ+y sin θ) dθ. (4.12b)
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where r(θ) and t(θ) are some yet unknown scattering distributions. The probability that a particle

is scattered at some angle equals the ratio of the scattered current density to the incident current

density. From (4.12),

p1(cos θin, sin θin) =

∫ π/2

−π/2

|r(θ)|2p1(cos θ, sin θ) dθ +

∫ π/2

−π/2

|t(θ)|2p2(cos θ, sin θ) dθ.

Hence, the reflection and transmission probability distributions over the sector (θ − 1
2dθ, θ + 1

2dθ)

for incident (p1, θin) are

dR(θ) = |r(θ)|2 cos θ

cos θin
dθ and dT (θ) = |t(θ)|2 p2 cos θ

p1 cos θin
dθ.

While the form of the solutions (4.12) is convenient for discussing scattering solutions, it is

inconvenient for actually determining them since the unknows r(θ) and t(θ) are coupled through

the integrals. The Schrödinger solution in region Q is a boundary value problem with boundaries

parallel to the y-axis. By expressing the solutions (4.12) in terms of the y-components of the

momenta, we may rewrite them in the equivalent forms

ψ1(x, y) = eiη1(ξin)(x−x1)eiξiny +

∫ ∞

−∞

s1(ξ)e
−iη1(ξ)(x−x1)eiξy dξ, with ξ = p1 sin θ (4.13a)

ψ2(x, y) =

∫ ∞

−∞

s2(ξ)e
iη2(ξ)(x−x2)eiξy dξ, with ξ = p2 sin θ (4.13b)

where the x-components of the momenta are

η1(ξ) =
√

p2
1 − ξ2 and η2(ξ) =

√

p2
2 − ξ2;

the complex scattering coefficients are

s1(ξ) =











r(θ)p1 cos θ, if |ξ| ≤ p1

0, otherwise

and s2(ξ) =











t(θ)p2 cos θ, if |ξ| ≤ p2

0, otherwise;

(4.14)

and y-component of momentum of the incident particle is ξin = p1 sin θin. Note that r(θ) =

s1(ξ)η1(ξ) and t(θ) = s2(ξ)η2(ξ) for η1(ξ) and η2(ξ) real. By taking the Fourier transform of the

solutions (4.13) with respect to y we have

ψ̂1(x, ξ) = δ(ξ − ξin)eiη1(ξ)(x−x1) + s1(ξ)e
−iη1(ξ)(x−x1) (4.15a)

ψ̂2(x, ξ) = s2(ξ)e
iη2(ξ)(x−x2). (4.15b)
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The Fourier transform of the Schrödinger equation (4.7) is

− ∂2

∂x2
ψ̂Q(x, ξ) − η2

1(ξ)ψ̂Q(x, ξ) + 2m

∫ ∞

−∞

VQ(x, y)ψ(x, y)e−iξy dy = 0. (4.16)

where we define

ψ̂Q(x, ξ) =

∫ ∞

−∞

ψ(x, y)e−iξy dy

to be the Fourier transform of ψQ(x, y) analogous to our definitions for ψ̂1(x, ξ) and ψ̂2(x, ξ).

By requiring that the solution ψ(x, y) and its first derivatives be continuous, we have the

matching conditions at x = x1 and x = x2

ψ̂j(xj , ξ) = ψ̂Q(xj , ξ) and
∂

∂x
ψ̂j(xj , ξ) =

∂

∂x
ψ̂Q(xj , ξ) (4.17a)

for j = 1, 2. Applying these matching conditions to equations (4.15) we have

ψ̂Q(x1, ξ) = δ(ξ − ξin) + s1(ξ), ψ̂Q(x2, ξ) = s2(ξ), (4.18a)

∂

∂x
ψ̂Q(x1, ξ) = iη1(ξ)δ(ξ − ξin)− iη1(ξ)s1(ξ),

∂

∂x
ψ̂Q(x2, ξ) = iη2(ξ)s2(ξ). (4.18b)

Eliminating the unknowns s1(ξ) and s2(ξ) gives the boundary conditions

iη1(ξ)ψ̂Q +
∂

∂x
ψ̂Q = 2iη1(ξ)δ(ξ − ξin) at x = x1, (4.19a)

iη2(ξ)ψ̂Q −
∂

∂x
ψ̂Q = 0 at x = x2. (4.19b)

To recover the scattering distribution, we must solve equation (4.16) with the mixed boundary

conditions (4.19). From equations (4.14) and (4.18), it follows that

r(θ; p, θin) = ψ̂Q(x1, p sin θ)− 1θ=θin
and t(θ; p, θin) = ψ̂Q(x2, p2(p) sin θ)

where the indicator function 1θ=θin
equals 1 if θ = θin and it equals 0 otherwise.

If the potential VQ(x, y) is constant along the y-direction, i.e., VQ(x, y) ≡ VQ(x), then equa-

tion (4.16) simplifies to the separable equation

− ∂2

∂x2
ψ̂Q − η2

1(ξ)ψ̂Q + 2mVQ(x)ψ̂Q = 0. (4.20)

Since Ex ≡ η2(ξ)/2m is simply the contribution of the x-component of the momentum to the

kinetic energy, we have the one-dimensional Schrödinger equation

− 1

2m

∂2

∂x2
ψ̂Q + VQ(x)ψ̂Q = Exψ̂Q (4.21)
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with boundary conditions (4.19). One may also solve the boundary value problem (4.21) by using

the transfer matrix method presented in Section 3.1.1. Note that since the solution is constant in

the y-direction, the semiclassical impulse force is normal to the barrier curve.

To solve the boundary value problem (4.16) for general potential V (x, y) one may use an iterative

solver

Au(n+1) = Bu(n)

where uij is the discretization of ψ̂Q(xi, ξj), A is the finite difference operator

Auij = −1
2
(∆x)−2 [ui+1,j − 2uij + ui−1,j ] + η2

1(ξj)uij (4.22)

and

Buij = −2mFVijF−1uij

where F is the discrete Fourier transform with respect to y and Vij = V (xi, yj) is the discretization

of the potential.

4.2.3 A particle method for the semiclassical Liouville equation

Following initialization, we solve the Liouville equation using the particle method by sampling

N particles from an initial distribution, solving Hamilton’s equations over a given time interval,

and then fitting the data to an appropriate mesh. By linearity of the Liouville equation, the

particle method may be implemented for each particle independently, permitting us to speed up

computation by using a parallel computer cluster.

A particle is sampled from the initial distribution deterministically, for which we associate a

weight

wn =

∫

Cn

f(x,p) dx dp (4.23)

to the particle (x0,p0, 0), or using Monte Carlo sampling, for which we associate a uniform weight

wn = N−1. Monte Carlo sampling is important in higher dimensions because it mollifies the

“curse of dimensionality” which afflicts deterministic sampling, restricting it to a rather coarse

mesh in higher dimensions. In 6-dimensional phase space (R3×R
3), a billion particle sample when

sampled deterministically allows only 30 grid points in each direction. On the other hand, Monte

Carlo sampling is inefficient for nonstandard distributions and the solution is noisy even with a

substantial sample size.
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At each time step we use a symplectic solver [16] to compute (xn+1,pn+1, tn+1) where we take

tn = n∆t. We estimate the updated position of the particle

x∗ = xn + ∆tpn − 1
2 (∆t)2∇V (xn) (4.24a)

p∗ = pn − 1
2∆t (∇V (xn) +∇V (x∗)) . (4.24b)

If x∗ is in the same region as xn, i.e., if the particle has not crossed the barrier ΓQ during the time

interval [tn, tn+1], we let (xn+1,pn+1) = (x∗,p∗). If x∗ is in a different region from xn, then we

determine the time ∆t∗ of the barrier crossing

∆t∗ =

∣

∣

∣

∣

d(xn)

d(x∗)− d(xn)

∣

∣

∣

∣

∆t (4.25)

where d(x) is the signed-distance to the barrier. The time, position and momentum of intersection

with the barrier are estimated by the solver (4.24) using ∆t∗

We use the push interface condition (4.2) to connect the appropriate bicharacteristics at the

barrier. Since the bicharacteristics are not unique, either a Monte Carlo approach or a deterministic

branching method must be used to select a bicharacteristic using conditional probabilities based on

the incident momentum. In the Monte Carlo method, the scattering angle is chosen by randomly

sampling from the distribution of scattering directions. Once an outgoing bicharacteristic is chosen,

we compute the position (xn+1,pn+1) of the particle at time tn+1 by using the solver (4.24) with

the remaining time step given by ∆t−∆t∗ with ∆t∗ defined by (4.25).

The unit normal vector to ΓQ at x∗ may be calculated either analytically or approximated by

using

n̂ = ∇d(x∗)/|∇d(x∗)|

where the signed-distance d(x∗) is interpolated linearly. The component of the momentum normal

to ΓQ at x∗ is

p⊥ = (p⊥, q⊥) = (p · n̂)n̂ = (px|n̂x|+ py|n̂y|)(|n̂x|, |n̂y |).

When the potential V (x, y) is continuous along the length of the barrier curve, there are only two

branches—one transmitted branch and one reflected branch. In this case, the correction to the

momentum is

(∆p,∆q) = (p⊥, q⊥)

(

−1 +
√

1 + 2m∆V |p⊥|−2

)

for transmission,

(∆p,∆q) = −2(|p⊥|, |q⊥|) for reflection.
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Figure 4.1. Phase plane bicharacteristics and the associated binary tree. By considering the solution in
terms of a binary tree, one may construct a deterministic solution.

In the case of two branches, it is convenient to use a deterministic branching algorithm by contin-

uing the solution along both transmitted and reflected bicharacteristics. Consider a binary tree with

nodes representing the intersections of the bicharacteristic with the barrier. See Figure 4.1. To each

branch we associate a conditional scattering (transmission and reflection) probability sk,j. We track

along a branch using the solver (4.24) until we reach a new node. The particle information (x,p, t)

is saved at the node and we take the reflection branch. We continue in such a manner—taking the

reflection branch at each new node—until the end of the simulation time. The probability that a

particle follows the kth forward global bicharacteristic is the product of the conditional probabilities

sk,j for each node. Therefore, from equation (2.18) the contribution is

wn,k = wn

Nk
∏

j=1

sk,j. (4.26)

We back up to the most recent node that has an unexplored transmission branch. The particle

information (x,p, t) is set to information previously stored at that specific node. We then take the

transmission branch, continuing as above until the end of the simulation. Once all transmission

branches have already been explored, i.e., once we have backed up to zeroth node, we have found

all the forward bicharacteristics for the particle initially at (x0,p0).

The solution ρ(x, t) =
∫∫∞

−∞
f(x,p, t) dp is reconstructed by interpolating over a uniform mesh

using a smoothing kernel such as a bicubic spline. Let ∆x and ∆y denote the mesh spacing and let

the nearest mesh point to (x, y) be (xi, yj) for some (i, j). Let r = (x−xi)/∆x and s = (y−yj)/∆y

denote the offset from that meshpoint. Since we are interested in recovering the position density,
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we do not need to reconstruct over the momentum. For l,m ∈ {−2, . . . , 2} define mesh-constrained

approximation to (x, y) as

f̃i+l,j+m = wn,kΛ(r, l)Λ(s,m) (4.27)

where

Λ(r, l) = σ(r + l + 1
2
)− σ(r + l − 1

2
)

with the cut-off function [30]

σ(u) =







































0 u < −2
1
24

(2 + u)4 −2 < u < −1
1
2 + 1

3(2u − u3)− 1
8u

4 −1 < u < 0
1
2

+ 1
3
(2u − u3) + 1

8
u4 0 < u < 1

1− 1
24 (2 + u)4 1 < u < 2

1 2 < u

.

The deterministic and Monte Carlo particle methods are summarized in algorithms 4.2.3 and 4.2.3

on page 55.

4.3 Numerical Examples

In this section, we present two examples to verify the numerical scheme and validate the semi-

classical model. Because of limitations in computer resources required to solve the von Neumann

equation, even using an indirect method, we shall limit the analysis to the O(1) Schrödinger

wavepacket. In the first example, we consider the scattering on a circular step-potential. This

geometry is important because it captures phenomena such as caustics and internal reflection. In

the second example, we consider the scattering on an electron diffraction grating for which the

potential varies on the quantum length scale along the length of the barrier. Such an interface

produces multiple scattering angles.

To solve the time-dependent Schrödinger equation we use a pseudospectral method with Strang

splitting similar to the method used for the one-diminsional Schrödinger equation in Section 3.2.

The kinetic and potential terms are split so that for each time step we have

ψ(x, y, t + ∆t) = e∆tB/2F−1
[

e∆tAF
(

e∆tB/2ψ(x, y, t)
)]

(4.28)

where

A = exp(∆t
ε

2mi
(k2

x + k2
y)) and B = exp(∆t

1

iε
V (x, y))
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Figure 4.2. Reflection (R) and transmission (T ) coefficients (left) for the absorbing potential V (x) =

i 98 sech2(x/4ε) (right). Note that the potential is “tuned” to absorb the momenta near p = 1.06 used in
Example 4.3.1.

and the operators F and F−1 denote the two-dimensional discrete Fourier transform and discrete

inverse Fourier transform with respect to the (x, y) and (kx, ky) variables. When the potential is

discontinuous, the solution exhibits artificial oscillations unless ∆t < (∆x)2/ε and ∆t < ε/V (x).

Because computer memory and computing time constraints in two-dimensional computation, we

weaken the conditions that we used in the one-dimensional case and take ∆x < ε/2, allowing us to

take ∆t < ε/4.

By solving the Schrödinger equation over a periodic domain (rather than an unbounded do-

main), spurious solutions are eventually introduced as information is transmitted across the domain

boundaries. By embedding the domain in a larger domain we can emulate an unbounded domain

for a sufficiently short simulation time; however, this approach is inefficient especially in higher

dimensions. An alternative method to approximate an unbounded domain is to employ an absorb-

ing potential VB(x, y) near the boundaries [18, 25]. By adding a negative imaginary potential that

decays rapidly away from the domain boundaries, we have the modified Schrödinger equation

∂

∂t
ψ(x, y, t) = 1

2 im
−1∆ψ(x, y, t) − iV (x, y)ψ(x, y, t) − VB(x, y)ψ(x, y, t)

where VB(x, y) > 0. Such a potential should be strong enough to eliminate (at least to machine

precision) any wave information passing through the boundaries, yet not so strong as to reflect the

wave. In addition, the potential should be sufficiently narrow so that it does not affect the solution

away from the boundary or require an overly large border. In this case, we take

VB(x) = V0sech
2((x− xb)/ε`)
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where xb is the position of the domain boundary, V0 is the barrier strength, and ` is the characteristic

barrier width. (One may examine other absorbing potentials by using transfer matrices discussed

in Section 3.1.1.) For this potential the transmission and reflections coefficients may be found

exactly giving [11]

T =

∣

∣

∣

∣

Γ(−ip`− γ)Γ(−ip` + γ + 1)

Γ(−ip`)Γ(−ip` + 1)

∣

∣

∣

∣

2

and R =

∣

∣

∣

∣

Γ(−ip`− γ)Γ(−ip`+ γ + 1)

Γ(−γ)Γ(γ + 1)

∣

∣

∣

∣

2

where γ = −1
2 + 1

2

√
1− 8iV0`2 and p is the normal component of the incident momentum. When

p` � 1, γ ≈ (1 − i)V 1/2
0 `, and hence T ≈ R at p = V

1/2
0 . By adjusting V0 we may “tune” the

barrier to absorb a specific range of energies. Note that the reflection and transmission coefficients

are independent of ε and by taking ∆x = ε/2, we may specify the barrier thickness in terms of grid

points.

To compare the convergence of the Schrödinger to the semiclassical limit in two dimensions we

consider the following L1-errors:

• the L1-error of the position probability density function (pdf)

∫∫ ∞

−∞

|ρ(x, y, t) − ρ̂(x, y, t)| dy dx

• the L1-error of the cumulative density function (cdf)

∫∫ ∞

−∞

∣

∣

∣

∣

∫ x

−∞

∫ y

−∞

ρ(r, s, t) − ρ̂(r, s, t) ds dr
∣

∣

∣

∣

dy dx

• the L1-error of the marginal probability distribution function (mpdf)

∫ ∞

−∞

∣

∣

∣

∣

∫ ∞

−∞

ρ(x, y, t) − ρ̂(x, y, t) dy
∣

∣

∣

∣

dx

• the L1-error in the cumulative marginal distribution function (mcdf)

∫ ∞

−∞

∣

∣

∣

∣

∫ x

−∞

∫ ∞

−∞

ρ(s, y, t) − ρ̂(x, y, t) dy ds
∣

∣

∣

∣

dx.

In the above definitions, ρ(x, y, t) =
∫∫∞

−∞
f(x, y, p, q, t) dp dq for the semiclassical Liouville solution

and ρ̂(x, y, t) = |ψ(x, y, t)|2 for the Schrödinger solution. In both examples we take the effective

mass m = 1.
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4.3.1 Schrödinger O(1) wave envelope with a circular barrier

Consider the circular barrier with unit diameter

V (x) =

{

0 x ∈ Ω1
1
2

x ∈ Ω2

where Ω1 = { x | |x| > 1
2
} and Ω2 = Ω

C

1 . Consider initial conditions

ψ(x, y, 0) =
1√

2πσ2
exp

(−(x− x0)
2 − (y − y0)2
4σ2

)

exp

(

i(p0x+ q0y)

ε

)

(4.29)

describing a symmetric Gaussian wavepacket initially located at (x0, y0) traveling with momentum

(p0, q0). In the semiclassical limit we take the initial conditions

f(x, y, p, q) =
1

2πσ2
exp

(−(x− x0)
2 − (y − y0)2
2σ2

)

δ(p− p0)δ(q − q0). (4.30)

Let (x0, y0) = (−1,−1), (p0, q0) = (3
4
, 3

4
) and σ = 1

4
. We compute over a square domain with length

L = 4. Using equations (3.3) and (3.7), we determine the reflection coefficient to be

R(p) =

{

∣

∣p−
√

p2 + 1
∣

∣

4
for a particle entering Ω1 from Ω2

∣

∣p−
√

p2 − 1
∣

∣

4
for a particle entering Ω2 from Ω1.

Also, using equation (4.5) we may determine the critical angle θc = cos−1
(

|p|−1
)

. For the initial

speed |p0| ≈ 1.06, the critical angle θc ≈ 0.34 and the momenta of the particle in the region Ω2 is

approximately 0.35.

To solve the Schrödinger equation, we use a pseudospectral method with Strang splitting (4.28)

with ∆x = ε/2 and ∆t = ε/4. To mollify spurious reflections and transmissions across the periodic

boundary conditions, we employ an absorbing boundary with width ` = 50ε = 100∆x encircling the

domain. The semiclassical solution is computed using a deterministic particle method with approx-

imately 109 particles and reconstructed using a mesh spacing ∆x = 100−1. Since the semiclassical

solution is reconstructed over a coarser mesh than the Schrödinger solution, we linear interpolate

the semiclassical solution to match the semiclassical and Schrödinger solutions.

The marginal probability (position) density function
∫

ρ(x, y, t) dy for the semiclassical Liouville

solution and the Schrödinger solution for several values of ε are shown in Figure 4.3 on page 51. Time

evolution of the Schrödinger solutions and semiclassical solutions are shown in Figures 4.4 and 4.5

on pages 56 and 57. The errors in the two solutions are listed in Table 4.1. Based on our study,

we find the convergence rate of the l1-errors to be about first order.
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4.1. Errors in solutions of Example 4.3.1 for different values of ε

ε 50−1 100−1 200−1 400−1 convergence

l1-error (pdf) 4.52 × 10−1 2.90 × 10−1 1.73× 10−1 1.24 × 10−1 0.6
l1-error (cdf) 1.52 × 10−1 6.01 × 10−2 3.64× 10−2 1.72 × 10−2 1.0
l1-error (mpdf) 3.20 × 10−1 1.01 × 10−1 5.03× 10−2 2.37 × 10−2 1.2
l1-error (mcdf) 9.56 × 10−2 3.08 × 10−2 1.42× 10−2 7.20 × 10−3 1.2

Notable phenomena emergent in the Schrödinger solution to this example are formation of

interior caustics and internal reflection. See Figures 4.4 and 4.5. Suppose a particle originally in a

region Ω1 with potential V1 is transmitted across an interface ΓQ near the critical angle and enters

a convex region Ω2 with potential V2 > V1. The particle “creeps” internally along the interface

ΓQ, and with a nonvanishing probability the particle is trapped in the region of higher potential.

While the semiclassical model accurately captures both caustics and internal reflection, the classical

model does not.

4.3.2 Electron diffraction grating

Consider the semiclassical potential

V (x, y) =

{

V 0
Q if (x, y) ∈ ΓQ

0 otherwise

where ΓQ is the y-axis. Note that ΓQ may be any smooth curve—we take the ΓQ to be y-axis to

simplify analysis. The quantum potential V 0
Q = limε→0 VQ(εx′, εy′) where x′-axis is normal to ΓQ

and the y′-axis is parallel to the ΓQ. Let the local quantum potential (with x and y scaled by ε)

be given by

VQ(x, y) = f(x) (1 + cosαy) with f(x) = 1
2
(1 + cos πx)

if x ∈ [−1, 1] and y ∈ R where α is some parameter. Take V (x, y) = 0 elsewhere.

We begin by determining the scattering coefficients for the barrier. Consider a particle with

momentum p (and energy E = 1
2p

2) with an incident angle θin and a scattering angle θ. The

y-component of the incident momentum is ξin = p sin θin and the y-component of the scattered

momentum is ξ = p sin θ. Then the x-component of the momentum is η(ξ) =
√

p2 − ξ2. Let ψ̂Q
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Figure 4.3. Marginal position density function for Example 4.3.1 for ε = (a) 50−1, (b) 100−1, (c) 200−1,

(d) 400−1 at time t = 2. The numerical semiclassical limit is indicated by ∗. The plots are offset by 0.25 for
clarity.

be the Fourier transform of ψQ with respect to y as defined in Section 4.2.2. By using the identity

∫ ∞

−∞

f(x)(1 + cosαy)ψQ(x, y)e−iξy dy = 1
2f(x)

(

ψ̂Q(x, ξ + α) + 2ψ̂Q(x, ξ) + ψ̂Q(x, ξ − α)
)

equation (4.16) becomes

− ∂2

∂x2
ψ̂Q(x, ξ) − η2(ξ)ψ̂Q(x, ξ) + f(x)

(

ψ̂Q(x, ξ + α) + 2ψ̂Q(x, ξ) + ψ̂Q(x, ξ − α)
)

=0 (4.31)

with the mixed boundary values

iη(ξ)ψ̂Q +
∂

∂x
ψ̂Q = 2iη(ξ)δ(ξ − ξin) at x = −1 (4.32a)

iη(ξ)ψ̂Q −
∂

∂x
ψ̂Q = 0 at x = +1. (4.32b)

To solve the boundary value problem (4.31) and (4.32) we consider a finite difference method.

Let xi be the discretization of x over [−1, 1] using m grid points with uniform spacing ∆x. Let ξj

be the discretization of ξ using a uniform spacing ∆ξ = α/d for an integer d. The second-order

centered-difference approximation of (4.31) is

−ui+1,j − 2uij + ui−1,j

(∆x)2
− η2

juij + (ui,j+d + 2uij + ui,j−d)fi = 0 (4.33)
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where we define uij = ψ̂Q(xi, ξj), fi = f(xi), and ηj = η(ξj). Note the convention that the coeffi-

cient i denotes the complex constant i and the subscript i denotes an index. As a simplification,

one may restrict ξin to a gridpoint k (ξin = ξk) and interpolate over the scattering coefficients to ap-

proximate intermediate values. The second-order approximation of the boundary conditions (4.32)

are

iηju1j +
u2,j − u0,j

2∆x
= 2iηjδjk (4.34a)

iηjumj −
um+1,j − um−1,j

2∆x
= 0. (4.34b)

Substituting the value for u0,j from the left boundary condition (4.34a) and substituting the value

for um+1,j from the right boundary condition (4.34b) into equation (4.33), we have the equivalent

system of equations

(

(∆x)2η2
j − 2(∆x)2fi − 2

)

uij + ui+1,j + ui−1,j

− (∆x)2fiui,j+d − (∆x)2fiui,j−d = 0for 1 < i < m
(4.35a)

2u2,j +
(

(∆x)2η2
j − 2(∆x)2f1 − 2 + i2(∆x)ηj

)

u1j

− (∆x)2f1u1,j+d − (∆x)2f1u1,j−d = 4i(∆x)ηjδjk

(4.35b)

2um−1,j +
(

(∆x)2η2
j − 2(∆x)2fm − 2 + i2(∆x)ηj

)

umj

− (∆x)2fmum,j+d − (∆x)2fmum,j−d = 0.
(4.35c)

By condition (4.14) we have that uij = 0 if |ξj | ≥ p. Furthermore, the solutions uij = 0 if

j /∈ {. . . , k − d, k, k + d, . . . }. Therefore, for each incident momenta ξk, we solve system (4.35) for

j ∈ {. . . , k − d, k, k + d, . . . }. Let {J} be the n-element enumeration of this set. In this case, we

may express the equations as the system Mv = b where the nm-element vector v is defined using

vi+mj = uij , b is defined using bi+mj = 4i(∆x)ηj , and M is the block tridiagonal matrix

M =















T (1) D
D T (2) D

. . .
. . .

. . .

D T (n−1) D
D T (n)















.

In this matrix, D are m × m diagonal matrices with Dij = −(∆x)2fiδij and T (J) are m × m

tridiagonal matrices

T
(J)
ij =

(

(∆x)2η2
J − 2(∆x)2fi − 2

)

δij + δi+1,j + δi−1,j
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with the exceptions T
(J)
ii = (∆x)2η2

J − 2(∆x)2fi − 2 + i2(∆x)ηJ for i = 1,m and T
(J)
12 = 2 and

T
(J)
m,m−1 = 2.

From (4.11), the transmission coefficients are given by |vm+Jn|2η−1
k ηJ . The reflection coefficients

are given by |1−v1+Jn|2 when J corresponds to k incident and |v1+J |2η−1
k ηJ otherwise. The discrete

scattering angles are given by

θJ = − sin−1

(

ξk − Jα
|p|

)

which is simply the Fraunhofer diffraction grating formula

Jλ = d(sin θin + sin θJ)

with wavelength λ = 2πε/|p| and groove spacing d = 2πα−1.

When n and m are large, we can use a few manipulations to efficiently solve the system Mv = b.

By moving the top row of M to the bottom (and doing the same for the vector b), we get an

equivalent system with an almost upper triangular matrix

M ′ =















D T (2) D
. . .

. . .
. . .

D T (n−1) D
D T (n)

T (1) D 0















.

To invert such a matrix we rely on the useful Sherman–Morrison–Woodbury algorithm [13]

M ′−1 = (A+ UV T )−1 = A−1 −A−1U(I + V TA−1U)−1V TA−1 (4.36)

where we take

A =















D T (2) D
. . .

. . .
. . .

D T (n−1) D
D T (n)

I















, U =















0
...
...
0
I















, V =



















T1

D
0
...
0
−I



















.

Because A is upper triangular, it is easy and fast to invert by back substitution. The matrix

I + V TA−1U is a dense m ×m matrix that is inverted using LU decomposition. The number of

floating-point operations needed to invert M ′ when n and m are large is 10m2n+ 2
3m

3. The usual

block tridiagonal algorithm using the Thomas algorithm requires 14
3 m

3n floating-point operations

because forward-substitution does not preserve the sparsity of the block matrices.
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If the incident momentum is p ≤ 1
2α then n = 1 and for each incident bicharacteristic there

is one transmitted bicharacteristic and one reflected bicharacteristic. In general, the number of

transmitted/reflected bicharacteristics will be

N(ξin) = 1 + floor
[

α−1|p− ξin|
]

+ floor
[

α−1|p+ ξin|
]

≤ 2α−1p+ 1.

To validate the semiclassical model, we took α = 1
2

and considered the initial conditions (4.29)

and (4.29) with σ = 1/16 and (p0, q0) = (cos θin, sin θin), (x0, y0) = 0.3(− cos θin, sin θin) where

θin = 10◦. The solve the semiclassical model can be solved exactly by considering the method of

characteristics and the scattering coefficients computed numerically. In this case

ρ(x, y, t) = ρ0(x
∗, y∗) +

∑

k

s(θk)ρ0

(

x∗ − cos θk − cos θin
cos θk

x, y∗ − sin θk + sin θin
cos θk

x

)

1(x cos θk>0)

where x∗ = x − t cos θin and y∗ = y + t sin θin and ρ0(x, y) is the position density of the initial

distribution (4.29).

The ρ(x, y) = 2 contours of the position density for the Schrödinger solution and the semiclas-

sical solution are shown in Figures 4.6 and 4.7 on pages 58 and 59 for ε = 200−1 and 800−1. The

errors in the two solutions are listed in Table 4.2. Although the solutions have roughly first-order

convergence in probability density functions, the solutions fail to converge in the cumulative density

functions. Furthermore, as evident in Figures 4.6 and 4.7, while the semiclassical model does agrees

with the Schrödinger solution for small scattering angles, there is a significant discrepancy at larger

scattering angles. A possible explanation for this discrepancy is underresolution of the mesh for

the Schrödinger solution.

4.2. Errors in solutions of Example 4.3.2 for different values of ε

ε 100−1 200−1 400−1 800−1 convergence

l1-error (pdf) 6.09 × 10−1 3.05 × 10−1 2.25× 10−1 2.09 × 10−1 0.8
l1-error (cdf) 4.86 × 10−2 4.82 × 10−2 5.00× 10−2 5.07 × 10−2 —
l1-error (mpdf) 3.46 × 10−1 1.81 × 10−2 1.33× 10−1 1.04 × 10−1 0.9
l1-error (mcdf) 6.57 × 10−2 6.58 × 10−2 6.82× 10−2 6.93 × 10−3 —
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Algorithm 4.1. Deterministic semiclassical particle method

0. Initialization. Calculate the transmission/reflection coefficients associated with the compo-
nents of momentum normal to the interface. Save the coefficients in a table over which to
interpolate.

1. Choose a point (x0,p0, t0 = 0) and calculate the weight w associated with the initial distri-
bution using (4.23) .

2. While the node index I > 0

(a) Calculate (x∗,p∗) from (xn,pn) using (4.24).

(b) If x∗ and xn are both in the same regions, take (xn+1,pn+1) = (x∗,p∗). Otherwise:

i. Compute the position and momentum at barrier (x∗,p∗) using (4.25). Compute the
unit normal n̂ at x∗.

ii. Increment the node index I and save (x∗,p∗, t∗) to the new node.

iii. Take the reflection branch and calculate (xn+1,pn+1) using (4.24) with timestep
∆t−∆t∗ given by (4.25).

(c) If t > tmax

i. Reconstruct the solution using (4.27) and (4.26).

ii. Decrease I to latest node with an unexplored transmission branch.

iii. Set (x∗,p∗, t∗) to value stored at node I.

iv. Take the transmission branch and calculate (xn+1,pn+1) using (4.24) with ∆t−∆t∗.

Algorithm 4.2. Monte Carlo semiclassical particle method

0. Initialization. Calculate the scattering distribution associated with the momentum incident
to the quantum barrier. Save the coefficients in a table over which to interpolate.

1. Choose an initial particle (x0,p0) from the initial distribution using Monte Carlo sampling.

2. For each particle, while tn < tmax

(a) Calculate (x∗,p∗) from (xn,pn) using (4.24).

(b) If x∗ and xn are both in the same regions, take (xn+1,pn+1) = (x∗,p∗). Otherwise:

i. Compute the position and momentum at barrier (x∗,p∗) using (4.25) and compute
the unit normal n̂ at x∗.

ii. Use Monte Carlo sampling of the scattering coefficient s(θ) to determine the scat-
tering momentum p∗.

iii. Calculate (xn+1,pn+1) using (4.24) with timestep ∆t−∆t∗ given by (4.25).

3. Reconstruct the solution using (4.27).
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Figure 4.4. Solutions for Example 4.3.1 for ε = 50−1 (left) and ε = 100−1 (right) at times t = 0, 2, 4, 6, 8.
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Figure 4.5. Solutions for Example 4.3.1 for ε = 200−1 (left) and the semiclassical limit (right) at times
t = 0, 2, 4, 6, 8.
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Figure 4.6. Contour plot of solution to Example 4.3.2 at ρ(x, y) = 2 for ε = 200−1 at t = 0.25, 0.5, 0.75
and 1.0. The contour of the Schrödinger solution is filled in and the contour for numerical semiclassical limit
is illustrated by a bold line.
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Figure 4.7. Contour plot of solution to Example 4.3.2 at ρ(x, y) = 2 for ε = 800−1 at t = 0.25, 0.5, 0.75
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Chapter 5

Extensions to the Model and Further Research

In this chapter we consider corrections to the semiclassical model as motivation and direction

for future research. Since the goal of this chapter is to explore extrapolations to the ideas developed

in previous chapters as a vehicle for future research, the results are presented without the same

level of rigor as in previous chapters.

In developing the semiclassical model we imposed several limiting assumptions on the potential

barrier. Namely, the width of the barrier is O(ε), the distance between neighboring barriers is

O(1), the change in the potential ∇xV (x) is O(1) except at quantum barriers, and the coherence

time is sufficiently short. Two notable potentials that are exceptions to these limitations are crys-

talline domains and mesoscopic barriers. Periodic crystalline domains, such as the Kronig-Penney

model [26], consist of narrow, closely-spaced potential barriers or wells. Because the separation be-

tween neighboring barriers is O(ε), the barriers may not be considered independent. Furthermore,

since the barriers extend across the whole the domain, the classical region is effectively coupled into

the quantum region. A mesoscopic barrier arises when the scaled Planck constant ε, while small,

is nonvanishing or when the barrier width is substantially larger than the effective support of the

quantum wavepacket. In this case, the barrier may not act like a single scatterer but rather like a

series of multiple scatters.

As discussed in Section 2.3, the barrier scattering in the semiclassical model is a time-irreversible

and entropy-increasing process because the interface condition is not one-to-one. That is, the

interface condition combines information from multiple separate bicharacteristics. The Schröding-

er equation, on the other hand, is time reversible. As discussed in Section 3.1.1, the transmission

and reflection coefficients are computed by solving the Schrödinger equation in order to derive a

quantum scattering matrix for the barrier

SQ =

(

r1 t2
t1 r2

)

(5.1)
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where rj and tj for j = 1, 2 are complex numbers. The complex-valued scattering matrix (3.5)

contains not only information about scattering probabilities, but also the phase shift and ultimately

the phase delay time. The semiclassical scattering matrix

S =

(

R1 T2

T1 R2

)

=

( |r1|2 κ1

κ2
|t2|2

κ2

κ1
|t1|2 |r2|2

)

where κi =
√

p2 − 2mVi

discards the phase information. Since we only track the particle density, the solution is decoherent

away the barrier.

The difference between the semiclassical solution f(x, p, t) and the Schrödinger solution ψ(x, t)

becomes evident by examining the position density ρ(x, t). The Schrödinger equation and the

Liouville equations are linear with respect to ψ and f , respectively. But the position density

is only linear with respect to f . Consider ψ1, ψ2, f1 and f2 with ρ1 =
∫

f1 dp = |ψ1|2 and

ρ2 =
∫

f2 dp = |ψ2|2. The position density for the superpositioned solutions f1 + f2 is ρ1 + ρ2, but

the position density for the superpositioned solutions ψ1 + ψ2 is

ρ1 + ρ2 + 2
√
ρ1ρ2 cos(θ1 − θ2) (5.2)

where θj is the phase of ψj for j = 1, 2. The probability amplitude ψ1 + ψ2 contains an additional

coherence term which is not captured by the semiclassical interface conditions (2.16) and (2.17).

Hence, the physical observables of the semiclassical Liouville solution in general will not agree with

the physical observables of the Schrödinger solution. This point was highlighted in Section 2.3 for

the harmonic oscillator with a delta-function barrier. A natural correction to the semiclassical model

is one that not only tracks density along the bicharacteristics but also phase-offset information from

the barrier.

5.1 Coherent semiclassical model

In this section we shall consider a coherent semiclassical model and discuss the numerical imple-

mentation. In the limit as the scaled Planck constant ε→ 0, phase offset may not be well-defined

if only because the semiclassical measurements cannot resolve quantum distances. Furthermore,

since the solution is less likely to to exhibit coherence in two-dimensions, we limit the discussion

to one dimension.

Define the semiclassical probability amplitude as

Φ(x, p, t) =
√

f(x, p, t)eiθ(p)
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where θ(p) is the phase offset from the initial conditions Φ(x, p, 0) =
√

f(x, p, 0). Define the

coherent probability density as

fcoh(x, p, t) = |Φ(x, p, t)|2 .

If Φ(x, p, t) satisfies the evolution equation

dΦ

dt
=
∂Φ

∂t
+
dx

dt

∂Φ

∂x
+
dp

dt

∂Φ

∂p
= 0

then fcoh(x, p, t) satisfies
∂fcoh
∂t

+
dx

dt

∂fcoh
∂x

+
dp

dt

∂fcoh
∂p

= 0.

Hence, if Φ(x, p, t) is a solution to the Liouville equation for initial condition Φ(x, p, 0) then

fcoh(x, p, t) is a solution to the Liouville equation for initial condition fcoh(x, p, 0). Furthermore,

|Φ1 + Φ2|2 = f1 + f2 + 2
√
f1f2 cos(θ1 − θ2). If fcoh is independent of p or if f1 is a scalar multiple

of f2, then this condition is equivalent to condition (5.2).

When there are several bicharacteristics stemming from a scattering barrier, we define the

semiclassical probability amplitude as the superposition

Φ(x, p, t) =
∑

k

sk(H(x, p))Φk(x, p, t)

where Φk(x, p, t) is the solution along the k-th bicharacteristic

Φk(x, p, t) =

∫

Φ(x̃, p̃, 0)ϕk(x, p, t; x̃, p̃) dx̃ dp̃

and kth global bicharacteristic for the Hamiltonian H(x̃, p̃) is defined as

ϕk(x, p, t; x̃, p̃) = δ(x(t) − x̃)δ(p(t) − p̃).

We define scattering term sk(H(x, p)) as the product of complex-valued transmission and reflection

coefficients (5.1) along the kth bicharacteristic. The definition is similar to the superpositioning

of the particle density of the semiclassical model Section 2.2, but in this case, it incorporates the

linearity of the Schrödinger solution. Hence, we have the coherent probability density

fcoh(x, p, t) =
∣

∣

∣

∑

k

sk(H(x, p))Φk(x, p, t)
∣

∣

∣

2

.

We define the position density in the usual manner

ρ(x, t) =

∫

fcoh(x, p, t) dp.
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Consider implementation of the coherent semiclassical model numerically using either the de-

terministic or the Monte Carlo particle method discussed in the preceding chapter. A first-order

finite volume approach is analogous to the method discussed in Chapter 3 may also be constructed.

In the deterministic particle approach, we take the weight

wk =

∫

Ck

Φ(x, p, 0) dx dp

for a cell Ck. At each node j record either sj = t or sj = r where t is the complex-valued

transmission coefficient and r is the complex-valued reflection coefficient defined by the scattering

matrix (3.5) for the barrier associated with the node. Take Φk(xn, pn, tn) =
∑

j wkδ(x− xn)δ(p−
pn)

∏

skj
. Use the cutoff function (4.27) over phase space (x, p) to associate the Dirac measure

δ(x−xn)δ(p−pn) with the mesh (xi, pj). Finally, combine the results with the previous solution. In

the Monte Carlo approach, we sample N particles randomly from Φ(x, p, 0) and take wn = N−1/2.

At a barrier, define the transmission and reflection probabilities as usual T = |t|2 and R = |r|2.
Sample a uniform random variable X. If X < T , the particle is transmitted; otherwise, the

particle is reflected. Set wk ← twk/T for transmission and wk ← rwk/R. for reflection. Take

Φk(xn, pn, tn) = wkδ(x − xn)δ(p − pn). Use the cutoff function (4.27) over phase space (x, p)

to associate δ(x − xn)δ(p − pn) with the mesh (xi, pj). Combine the results with the previous

solution. The obvious shortcoming of the deterministic approach is that it is impractical to track all

bicharacteristic branches for complicated geometries with several barriers, such as in a crystalline

material. The shortcoming to the Monte Carlo approach is inherently unstable because of the

rescaling.

As a simple example we compare the Schrödinger equation, the semiclassical model and the

coherent semiclassical model for the harmonic oscillator with a delta-function barrier

V (x) = 1
2x

2 + εαδ(x)

introduced in Section 2.3. The complex-valued scattering coefficients for the delta-function barrier

are [42]

t =
ip

ip− α and r =
α

ip− α.
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Let α =
√

3 and take the Gaussian initial distribution

ψ(x, 0) = (πσ2)−1/4 exp

(

−x− x0

2σ2

)

exp
(

iε−1p0x
)

f(x, p, 0) = (πε)−1 exp

(

−(x− x0)
2

σ2

)

exp

(

−(p− p0)
2

ε2σ−2

)

Φ(x, p, 0) = (πε)−1/2 exp

(

−(x− x0)
2

2σ2

)

exp

(

−(p− p0)
2

2ε2σ−2

)

with ε = 0.01, σ = 0.1, x0 = 1 and p0 = 0. The semiclassical model is solved using the finite-volume

method developed in Section 3.1.2 and the coherent semiclassical model is solved using the deter-

ministic method. The Schrödinger equation is solved using the Crank-Nicolson scheme (3.16) with

the delta-potential δ(x) approximated by (∆x)−1δi0. The coherent semiclassical model accurately

describes the coherent behavior exhibited by the Schrödinger solution. The solutions are plotted

in Figure 5.1 on the following page.

5.2 Conclusion and directions

Chapter 2 mentioned that conservation of energy, by providing a constraint on the solutions,

creates an equivalence class of bicharacteristics but does not yield a unique solution. An interface

condition based on the physical characteristics of the barrier was needed in order to isolate appro-

priate mixing. In Chapter 3 and Chapter 4 we implemented the model in the case of a decoherent

interface condition. For the class of one and two-dimensional thin barriers, we demonstrated that

the Schrödinger and the von Neumann solutions converge to the semiclassical Liouville solutions at

a rate of O(ε). Finally, we introduced a coherent semiclassical by modifying the interface condition.

While the coherent semiclassical model is valid for a limited set of problems, the existence of an-

other model, consistent with the Hamiltonian preservation principle and with an interface condition

that is as physically justifiable as the decoherent model, underscores the importance of choosing

the appropriate interface condition. A wrong interface condition can only give a wrong solution.

The future goal of this research is to overcome the shortcomings of the coherent semiclassical model

and to develop a robust, viable model that serves as the logical first step to solving problems over

periodic and mesoscopic potentials.
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Figure 5.1. Comparison of Schrödinger, decoherent semiclassical, and coherent semiclassical solutions to
the example in Section 5.1 at t = 0, π . . . 6π.
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