THE NATIONAL SHIPBUILDING RESEARCH PROGRAM

REAPS 5th Annual Technical Symposium Proceedings

Paper No. 4: MAPS - GP (Graphic Piping) Present and Future Capability

U.S. DEPARTMENT OF THE NAVY
CARDEROCK DIVISION,
NAVAL SURFACE WARFARE CENTER
The National Shipbuilding Research Program REAPS 5th Annual Technical Symposium Proceedings Paper No. 4: MAPS - GP (Graphic Piping) Present and Future Capability

Naval Surface Warfare Center CD Code 2230 - Design Integration Tools Building 192 Room 128 9500 MacArthur Blvd Bethesda, MD 20817-5700

Approved for public release, distribution unlimited

<table>
<thead>
<tr>
<th>Subject Terms</th>
</tr>
</thead>
<tbody>
<tr>
<td>unclassified</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Security Classification of:</th>
<th>Limitation of Abstract</th>
<th>Number of Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. REPORT</td>
<td>SAR</td>
<td>18</td>
</tr>
<tr>
<td>b. ABSTRACT</td>
<td>unclassified</td>
<td></td>
</tr>
<tr>
<td>c. THIS PAGE</td>
<td>unclassified</td>
<td></td>
</tr>
</tbody>
</table>
Proceedings of the REAPS Technical Symposium
June 27-28, 1978
St. Louis, Missouri
DISCLAIMER

These reports were prepared as an account of government-sponsored work. Neither the United States, nor the United States Navy, nor any person acting on behalf of the United States Navy (A) makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness or usefulness of the information contained in this report/ manual, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or (B) assumes any liabilities with respect to the use of or for damages resulting from the use of any information, apparatus, method, or process disclosed in the report. As used in the above, “Persons acting on behalf of the United States Navy” includes any employee, contractor, or subcontractor to the contractor of the United States Navy to the extent that such employee, contractor, or subcontractor to the contractor prepares, handles, or distributes, or provides access to any information pursuant to his employment or contract or subcontract to the contractor with the United States Navy. ANY POSSIBLE IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR PURPOSE ARE SPECIFICALLY DISCLAIMED.
MAPS-GP (GRAPHIC PIPING)
PRESENT AND FUTURE CAPABILITY

Kenzou Kobayashi
Mitsui Engineering and Shipbuilding Company, Ltd.
Tokyo, Japan

Mr. Kobayashi is a member of the engineering department in the system headquarters and is the group leader of the team developing MAPS-GP. His past experience includes work with a graphic N/C system for steel plate flame cutting and a graphic piping system for a chemical plant.

Mr. Kobayashi is a graduate of Tohoku University, department of science.
MAPS

Originaly

Mitsui Automated Pipe Shop system
(Mitsui Shipbuilding & Engineering Co., LTD.)

present

Mitsui Advanced production System
(Mitsui Engineering & Shipbuilding Co., LTD)

MAPS-GP ; Graphic Piping system
MAPS-NC ; Graphic Steel plate Cutting system
MAPS-DATA ; MD 7000 work station terminal
MAPS-GRAPH ; YM9000 satellite graphic terminal
MAPS-M ; Modularized plant production
Why MAPS-GP?

- High... Low Economic Development
- Alter company's need
- Reduce Input Cost
 - Shorten the EXEC. Time
- Change Organization
- Enhance production design
- Distributed System Request
Long Range Plan of MAPS-GP

<table>
<thead>
<tr>
<th>Step</th>
<th>Range</th>
<th>Object</th>
<th>Technology</th>
<th>Need</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1970-75</td>
<td>Ž Numerical Information System</td>
<td>Large scale Computer</td>
<td>Ž Mass Production system</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ž Automated Pipe Shop</td>
<td>Ž Part coding & Batch job</td>
<td>Ž Improved Shipbuilding</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ž Separation the routine and judgement work</td>
<td>Ž Interactive Computer Graphics</td>
<td>Ž Large scale investment of equipment</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ž Elimination Part coding</td>
<td>Ž Distributed Systems</td>
<td>Ž Reduce ship acquisition time</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ž Reduce the TAT'</td>
<td></td>
<td>Ž Design power up</td>
</tr>
<tr>
<td></td>
<td>1976-78</td>
<td>Multi purpose system</td>
<td>Ž High accurate digitizer</td>
<td>Ž Cut the equipment</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cut off the drawing work</td>
<td>Load sharing System</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>High speed data input</td>
<td>Large scale file</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1979-80</td>
<td>Automated piping design</td>
<td>Ž Computer Network</td>
<td>Concentrate design office</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ž Perfect unmanned pipe shop</td>
<td>Ž Advanced CAD/CAM</td>
<td>Wide range application</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ž Full Automated pipe shop)</td>
<td>Separate production design</td>
</tr>
<tr>
<td></td>
<td>IV</td>
<td>1981–</td>
<td></td>
<td>Engineering power up</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ž Perfect unmanned pipe shop</td>
<td></td>
<td>Ž Concentrate production management</td>
</tr>
</tbody>
</table>
The Object of II step MAPS=GP

- Low Cost
 - Simultaneous operation with GNC system effective use
 - Cost down 30\% of design cost
 - Shorten the design time
 - Improve: the design accuracy

- Step by Step Approach
 - Eliminate part coding
 - Move the most load from center to work station
 - Shorten T. A. T.

- Output Production Management Data
 - Reduce the Pipe shop idle time
System’s Characteristics

Interactive Graphics

2 Tutorial Operation

2 Function Key

2 Easy Programming

• instant Correcting Errors
Operation Functions

Ž Pipe Line Generation
 (Piping Root, Node Point, Branch)

* Setting parts
 .Valve, Reducer, Flange, Elbow, ...

Ž Pipe piece Data Generation
 Ž NC Cutting & Fitting control Data
 Ž NC Bender Data
 Ž Pipe piece Drawing Dimension, comment

Ž Scale

Ž View change

Ž Display Hull Line

Ž Change
YM-9000 Graphic Display

Remote (Full, Half duplex), or Local

• Refresh type CRT display
• 17 or 21 inch Screen
• 2048 X 2048 dot matrix
• 16 intensities
• Blinking, Scroll, Rotate
• Light pen, Tablet
• Random scan
• Analogue stroke
• using 2 µ processors
MAPS - GP Software

Application Software

Geometric functions

File data management

- Interactive graphic package (I. G. P.)
- standard data file maintenance
- Generate production management data

Support Software

. G O S (Graphic Operating System)

. Multi programming (4 job)

. Virtual memory management

. Fortran executable
III Step MAPS-GP

- Improve the IIstep MAPS-GP
 - Complete it as a tool of production design
 - promote the high contact with pipe shop"
 - Link with host machine (2400 ~ 48000 bps)
 - Load Sharing System
 - Work Station Type
- Yard plan Drawing
OVERVIEW of FILES & SOFTWARE

- DESIGN STANDARD
- ITEM SPEC
- PROJECT SPEC.
- HULL BODY OFFSET DATA
- PIPE SHOP SPEC.

MODELING & DATA VALIDATION PROGRAM

3-D PIPE PIECE DIGITAL MODEL FILE

- DRAWING PROGRAM
- PIPE DETAIL PROGRAM
- PIPE PIECE DETAIL & ASSEMBLY DWG.
- MATERIAL COUNTING PROGRAM
- PAILLET, ORDER, MATERIAL LIST
- PIPE STRESS ROUTINE
- STRESS ANALYSIS
- WEIGHT & MOMENT ROUTINE
- W & MOMENT SUMMARY
- FLOW & ROOT ANALYSIS

(!: FUTURE)
MAPS-GP & OBJECTIVES:

- Total production cost down
 - Low cost automation
 - Enhanced Management control

Maximize Man power & System resource

Full Modularized System

- Flexible system
 - Coordinate CAD/CAM System
 - Interface Engineering/Manufacturing
 - General purpose System

Promote GP system use by wide segment of industry
Additional copies of this report can be obtained from the
National Shipbuilding Research and Documentation Center:

http://www.nsnet.com/docctr/

Documentation Center
The University of Michigan
Transportation Research Institute
Marine Systems Division
2901 Baxter Road
Ann Arbor, MI 48109-2150

Phone: 734-763-2465
Fax: 734-763-4862
E-mail: Doc.Center@umich.edu