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Abstract— Recent availability of high-speed analog to digi-
tal converters (ADC) has enabled the development of digital
radiometers for Earth remote sensing. In the unprotected C
band, undesired radio frequency interferences (RFI) have been
observed and mitigation efforts are currently being carried out
in the research community. They mainly consist of detection
and filtering in the time or frequency domain. Because RFI
can be very small and mistaken as geophysical signals, an
additional approach could rely on the inversion of a model
describing internal noise, RFI and geophysical data processed
through the radiometer. Such an approach demands a thorough
understanding of receiver internal noise statistics. As a first step,
we propose to model the system by taking advantage of the
time series record available at the digital back end of a receiver.
The experimental setup includes an X band benchtop radiometer
serving as a standard analog gain chain, and various inputs
fed into the radiometer front end. The digital output of an
eight-bit ADC following the analog chain was recorded using
a logic analyzer. An exploratory data analysis enabled us to
select a priori valid data. Statistical signal processing techniques
encompassed loglog relationships, classical spectral estimation
(smoothed periodogram and windowed autocovariance), and
autoregressive modeling.

I. INTRODUCTION

Radio frequency interferences (RFI) have been observed
in unprotected spectrum band for passive observations [1]
and mitigation efforts are currently being carried out in the
research community. As high speed analog to digital converter
(ADC) are enabling the development of digital radiometers
for Earth remote sensing, the same digitization process allow
various mitigation techniques. Mitigation strategies have been
first developed in radioastronomy. Among them, those that
are actually implemented in Earth Science passive remote
sensing include detection and removal in the time domain [2],
[3], in the frequency domain [3].

When RFI are very small and and can be mistaken as
geophysical signals, a detection in the time domain or the

frequency domain may be delicate if the expected time
domain or frequency domain response are not well known.
Here, we propose to investigate a system model that can
actually predict the time series output characteristics and the
frequency domain response to various receiver inputs. The
model development is solely based on the output process
available for analysis and on the assumption of a linear time
invariant system with wide sense stationary inputs. Indeed,
spectral density can characterize a noise process completely
only if the process is stationary, ergodic, and gaussian.

Section II describes the experimental setup and some of
the available data. The next section presents an preliminary
analysis that includes an exploratory data analysis, autocor-
relation function evaluation and classical spectral estimation.
Section IV develops an autoregressive model for the receiver
tested. Finally, future work to this experimental and modeling
investigation are discussed in the last section.

II. EXPERIMENT

A. Laboratory set up

A block diagram of the measurement set up is given in
Fig. 1. The device under test consists of an X band benchtop
heterodyne receiver followed by a Maxim MAX 104 8 bit
analog to digital converter (ADC). A primary and secondary
stimuli to the receiver are fed to the receiver via the two SMA
ports of the front end directional coupler, and the digitized
outputs are recorded with a high speed digital logic analyzer.
The analog front end downconverts a 100MHz band from X
band to 150MHz. This nominal IF passband of 100-200MHz
is filtered by a last stage 450MHz low passfilter. A waveguide
network and a noise diode can provide the input excitation.
This source can produce output noise temperatures ranging
from ambiant 300K to about 14,200K.
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Fig. 2. Mean corrected time series and associated histogram of amplitudes

B. Available data

Sine waves at Xband and Gaussian white noise at various
power were fed into port A and port B of the directional
coupler. For most of the data recorded, the logic analyzer
recorded data on the rising edge of the ADC clock. At
500MHz, the maximum frequency bandwidth that can be
captured is 250MHz. With a spectral analyzer plugged before
the ADC, we verified that the power level of the signal after
250MHz was low enough so that it cannot be captured by
the LSB of the ADC. Hence, no aliasing of the data is
expected [4]. In the study presented here, we will work on
the data corresponding to an input excitation of about 1200K
on the main port of the directional coupler, and a 50€2 load
at ambiant temperature on the coupling port. This setting
corresponds to the beginning of the ADC saturation as shown
on the histogram of the amplitudes of Fig. 2. A 65,536 data
record length is acceptable for statistical data analysis.

III. PRELIMINARY ANALYSIS

A. Exploratory Data Analysis

Exploratory Data Analysis (EDA) [5] allowed to gain
qualitative insight into the ensemble of the data set and to
preselect a potentially interesting data set. By visual inspection
of quantile-quantile plots and lag plots, we saw some slight
deviation from gaussianity and whiteness. As expected, no
growth trend can be seen in the time series plots. Plots of
the histogram of the amplitudes didn’t show any skewness,
see Fig. 2.
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B. Autocorrelation function

A more quantitative assessment of the data includes plots
of the autocorrelation function (ACF), where self correlation
can be inspected. A (stochastic) signal is called stationary it
its statistical properties do not change with time. We’ll assume
that it is the case in the experiment above. For stationary
signals, the following can be defined:

o the Autocovariance sequence (ACV). The empirical or
sample acv is:

—ls|
o1 i )
C‘S| =7 = ; 21: (It - xt)(xt-‘rs - xn) (1)
— 1 n . ..
where Z,, = - > ", x; is the empirical or sample mean.

o the (normalized) autocorrelation sequence or function
(ACF). The empirical or sample ACF is:

ﬁs =Ts = CS/CO (2)

In Fig. 3, within fewer than 30 lags, the ACF settles down,
which suggest a reasonable order if parametric modeling is
used.

C. Classical spectral estimation

Moving to the frequency domain, two basic methods are
considered classical approaches to spectral estimation. The
first one called the direct or periodogram method develops an
estimator from the Fourier transform of the sample function,
it is based on Parseval’s theorem:

_ %P

I, (w) .

3)

The second method, called indirect method of Blackman-
Tukey method considers the spectral density function as the
Fourier transform of the autocovariance function.

n—1
L(w)= Y Ce* e
—(n—1)

Both of these methods yield a very noisy periodogram as
shown in Fig. 4. Several approaches strive to obtain a better
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Fig. 5. Windowed ACV periodogram with Bartlett window. 2M+1 is the
window span.

estimate. Any technique that reduces the variance of the esti-
mate also increases its bias and vice versa. Several techniques
aim at developing a consistent estimator of the periodogram.
We will work on the windowed ACV periodogram and the
smoothed periodogram method to gain insight into the actual
spectrum.

1) Windowed autocovariance periodogram: This method
consists in windowing out the noise estimates of the autoco-
variance sequence in (4). Using a Bartlett or triangle window,
we obtain the plots of Fig. 5.

2) Smoothed periodogram: The idea is to average over
neighbouring values to reduce the variance of the periodogram.
This introduces bias but the continuity of the spectrum limits
this effect. The estimator is:

- 1

21k
B =50

D hwtw) e === (5

with 2m + 1 the spectral window span and n the number
of record points. m is a tuning parameter that can be found
using Lee’s unbiased risk estimator (URE) [6]. The optimal m
is found to be 166 for a sample record of length 15,000. Fig. 6
illustrates the smoothed periodogram for various frequency
window span. As m gets bigger that 166, the periodogram
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Fig. 6. Smoothed periodogram

gets smoother, the bias rises and the variance decreases. The
periodogram misses some spectral details.

IV. PARAMETRIC SYSTEM MODEL
A. Parametric spectral analysis

Second order statistics of a random process can be
represented alternatively by either the autocorrelation function
(ACF) of the power spectrum density (PSD), both of
which are non parametric descriptions. Classical methods of
spectral estimation use Fourier transform operations on either
windowed data or windowed ACF estimates as shown in the
previous section. Therefore these methods make the implicit
unrealistic assumption that the unobserved data or the ACF
outside of the window are zero.

We propose in this section to use a parametric approach
to spectral estimation. Parametric spectral estimation yields
a better spectral estimate by basing it on a chosen model
and estimating the parameters of the model from the
observations [6]. Parametric spectral estimation involves three
steps: model selection, parameters estimation of the assumed
model using the available data samples, and spectral estimate.

The autoregressive (AR) spectral estimator or linear
prediction spectral estimator is the most popular of the time
series modeling approaches to spectral estimation because
AR model parameters can be accurately estimated by solving
a set of linear equations. Because the observed system is
assumed to be causal linear time invariant, an AR model
was chosen, keeping in mind that the AR, MA and ARMA
models can be related by the Wold decomposition theorem [7].

1) AR model: We assume the system input is gaussian
white noise. An AR model can produce an output with
structure when its input is uncorrelated.

Yt :¢1yt71+¢2yt72+-“+6t1t: 17"'7” (6)
where €, is white noise, with zero mean and variance o2,
¢i,i = 1,...,n are the AR parameters such that |¢;| < 0 to



-115

-125F R

AIC

-135} R

10 20 30 40 50 60 70 80 90 100
order of AR model

Fig. 7.
27.

Akaike’s Information Criterion. The minimum AR model order is

ensure stability, and n is the order of the AR(n) model.

a) Yule Walker and Levinson algorithm: Estimation of
the AR parameters begins with the estimation of the ACF.
Then, the Levinson-Durbin recursive algorithm was used to
solve the Yule-Walker matrix equation:

Yo Y1 Yn—1 Qn,n Tn
st Yo TYn—2 An,n—1 TYn—1
Tn—1 TYm-2 .- Yo Qp,1 et
where the left hand matrix is the positive definite

autocovariance matrix.

The Levinson algorithm allows the retrieval of the AR model
coefficients as well as the partial acf coefficients, and the
residual sums of squares after regressors are fitted.

b) AIC: The order p of the AR model can be practically
estimated by obtaining the minimum value of the final pre-
diction error FPE of Akaike or of the Akaike’s information
criterion AIC [8], such that:

AIC(p) =Iné} + ap/N (8)

with:
&7 =3,/(N —p) ©)

where N is the number of recorded points and 512, the residual
sums of squares after p; regressors are fitted. a=2 was used.
A plot of AIC for AR models shows an AR(27) model
is preferred, see Fig. 7. Hence, an AR(27) model can be
considered to model the receiver.

2) Spectrum: The power spectral density (PSD) function
can be estimated from the AR model. For the AR(27) system,
the transfer function in the spectral domain is:

H27(f):H(f): 27 !

> a e—jmef’(Oglﬂfl/Q)
m=0 dm

(10)

Using the system input-output relationship, the power spec-
trum densities of the input and the output of the system are
related by:

Sy(f) = [H(f)>S=(f) (11)

Therefore, the PSD for the output signal assuming a gaussian
white noise input can be obtained by substituting for the noise
variance and the system parameters:

N o2

S = ,
o) | S22 dge—i2mmi |2

where o2 is the variance of ¢;.

O<|fl<1/2)  12)

V. CONCLUSION

An analog receiver and its back end analog to digital
converter were modeled using an autoregressive model, using
modern spectral estimation techniques. In the time domain,
this AR model enables the simulation of the expected output
time series for different brightness temperature inputs, whereas
in the spectral domain, fine spectral resolution power spectral
density can be simulated. The natural next step is to use
the parametric model to find the spectral characteristics of
the receiver internal noise, and combine this new element of
understanding with the AR model to yield a complete system
description.
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