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1. Introduction 

Optical turbulence is an atmospheric effect that acts on the propagation of light waves to distort 
electro-magnetic propagation paths and intensity.  It is brought about by fluctuations in the refractive 
index in air, i.e., air density, which affects the speed at which light wave-fronts propagate.  
Atmospheric refractions of electro-magnetic energy can cause spatial and temporal (intensity) 
variations in transmitted signals (Chiba, 1971; Fried, 1967; Ishimaru, 1978; and Parry, 1981).  In turn, 
these effects can significantly degrade (blur, shimmer, and distort) infrared images or increase 
transmission bit error rates in free-space laser and microwave communication systems.  In an 
experiment to establish the first known optical communication link using lasers (from a mountaintop 
observatory) to a low earth orbiting satellite, Wilson et al. (1997) commented, “If left uncompensated 
(i.e., no adaptive beam forming or beam steering techniques applied) these [optical turbulence related] 
effects would cause fades and surges in the uplink signal, and result in high bit errors in the uplink 
communications data stream.”  Similarly, for satellite communication systems at frequencies above 
10 GHz, Vasseur (1999) commented that optical turbulence can bring about random fades and 
enhancements of received signals, which could impair the overall availability of the system and 
interfere with tracking and fade mitigation applications.  In contrast, Vander Vorst et al. (1997) 
contended that the most significant effect on satellite communication links (at frequencies above 
10 GHz) was tropospheric scintillation due to turbulence in clouds, in particular, that brought about by 
the entrainment process at the top of cumulus clouds, for example.  Other signal degrading effects 
discussed in the paper by Vander Vorst et al. (1997) were those due to depolarization induced by rain 
and ice crystals and interference between space and terrestrial radio communication links sharing the 
same frequency bands.   

Nevertheless, many research studies focusing on optical turbulence and its influences on electro-
magnetic wave propagation in the atmosphere have highlighted measured and modeled estimates for 
the refractive index structure parameter, Cn2.  As outlined in the following sections, Cn2 is a 
quantitative measure of the intensity of optical turbulence that can be derived for visible, infrared, 
millimeter, and radio wavelengths.  However, it is generally agreed that path-integrated values of Cn2 
are more useful than values of Cn2 at several discrete points (Kopeika, 1998).  Calculation of the 
angle-of-arrival fluctuation variance, 2

Aσ , and the log-intensity (or log-amplitude) variance of 

transmitted electromagnetic signals, 2
xσ , contain this type of information (Beland, 1993).  Thus, 

improving future optical turbulence calculations will provide better estimates of Cn2 along more 
complex optical lines-of-site.  This will result in better estimates of displacement, 2

Aσ , and intensity 

fluctuations, 2
xσ , which are just two examples of the kinds improved work product that may 
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contribute important information on the performance of many electro-optical systems and sensors 
(Tunick, 2005).  

2. Microwave Cn2 Data and Models 

Values of visible and infrared wavelength Cn2 in the atmospheric surface layer near the ground have 
been generally observed to range from about 10–12 to 10–16 m–2/3 (Kallistratova and Timanovskiy, 
1971; Darizhapov et al., 1988).  High values of visible or infrared Cn2, 10–12 m–2/3 or greater, 
usually indicate a highly turbulent atmosphere and the potential for considerable visual blurring (e.g., 
the wavy lines one might encounter looking out over a hot paved road).  At lower values of this Cn2, 
10–16 to 10–15 m–2/3, atmospheric optical turbulence might be considered negligible over shorter 
(≤ 2 km) optical paths although there could be other image-degrading effects due to aerosols, 
precipitation, fog, or smoke.  In contrast, Tunick and Rachele (1991) found that model estimates of 
millimeter and radio wave Cn2 were equal to or greater than 10–11 m–2/3 over wet and dry soils.  
They and others [see Tunick (2002) for a critical analysis of selected past research on optical 
turbulence in diverse microclimate environments] have suggested that the magnitude of Cn2 generally 
increases with increasing wavelength.  This is because the overall contribution to Cn2 due to moisture 
(i.e., humidity gradient) effects significantly increases with increasing wavelength.  As an example, 
Bohlander et al. (1985) commented that the values for near-millimeter wave Cn2 can be larger by an 
order of magnitude or more than ones in the infrared, which are mainly dependent on temperature 
structure.  The data for microwave Cn2 reported by Medeiros Filho et al. (1988) appear to agree quite 
well with this rule.  Medeiros Filho et al. (1988) derived values for microwave Cn2 from atmospheric 
temperature and humidity spectra information, which were collected on an instrumented mast above a 
50 m building in an urban setting.  Considering altitude scaling, i.e.,  3/2−z (nighttime) or 

3/4−z (daytime), their microwave Cn2 data (which were in the range 10–15 to 10–13 m–2/3) were quite 
plausibly 103 or more times larger than values for Cn2 that might have been calculated for visible or 
infrared wavelengths along that elevated path.  Finally, Medeiros Filho et al. (1988) found that the 
average temperature, temperature-humidity cross-correlation, and humidity contributions to Cn2 
(based on 17 daytime and nighttime cases) were 12%, 39%, and 49%, respectively.  From this they 
concluded that (within the inertial sub-range) the main contribution to microwave Cn2 is atmospheric 
humidity (e.g., water vapor pressure) while, at the same time, the cross-correlation term has a 
considerable influence and therefore should not be neglected.  [Note Wesely (1976) provided one of 
the best earlier papers to discuss the combined effect of temperature and humidity fluctuations on 
refractive index.] 

Based on the structure function formulations given by Tatarski (1971), a useful expression for Cn2 can 
be written as, 
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 ⎟
⎠
⎞

⎜
⎝
⎛
∂
∂−

z
nKb=C

2

H
2
n 3

1
ε   , (1) 

where b  is a constant, HK  is the exchange coefficient for turbulent heat diffusion, k is Karman's 
constant, ε  is the turbulent kinetic energy dissipation rate, and zn/∂∂  is the partial derivative of the 
index of refraction (n).  A list of symbols and constants are given in the appendix.  Equation 1 is 
assumed valid for rr  in the inertial sub-range, where rr  is a turbulent eddy length scale between the 
inner (viscous-dissipation) and outer (energy producing) turbulent scales (Tatarski, 1971; Ochs and 
Hill, 1985).  Numerous atmospheric surface layer models of this type have been developed for 
estimating the refractive index structure parameter, Cn2, especially for visible, near-infrared, and 
infrared wavelengths (e.g., Wesely and Alcarez, 1973; Davidson et al., 1981; Kunkel and Walters, 
1983; Andreas, 1988; Miller and Ricklin, 1990; Rachele and Tunick, 1994; de Bruin et al., 1995; 
Thiermann et al., 1995; Frederickson et al., 2000; and Tunick, 1998, 2003).  In contrast, quite a few 
other authors have reported on measurements and model calculations of microwave refractivity and 
Cn2 in the boundary layer and troposphere (e.g., Cole et al., 1978; VanZandt et al., 1978; Burk, 1980; 
Morrissey et al., 1987; Medeiros Filho et al., 1988; d’Auria et al., 1993; and Hocking and Mu, 1997).  
Table 1 lists selected reports on microwave Cn2 data collected in diverse microclimates.  Table 2 lists 
selected reports on computer models to derive microwave refractivity and Cn2 profile information in 
the boundary layer and troposphere.   As an example, Burk (1980) shows modeled profiles for 
microwave Cn2, wherein the main influences on Cn2 are due to moisture (figure 1).  Similarly, 
Hocking and Mu (1997) show measured profiles for microwave Cn2, wherein the effects on Cn2 due 
to moisture gradients are highlighted (figure 2). 



 4

Table 1.  List of selected reports on microwave Cn2 data in diverse microclimates. 

Microclimate category / subcategory 
 

Data summary Lead Scientists / 
Laboratory, Agency, and 
University Affiliations 

Rural – Agricultural, forests, rivers, and lakes 
 
Boulder Atmospheric Observatory, Erie, CO Cn

2, radio wave, FM-CW boundary layer profiles Gossard et al., (1984), 
CIRES, Univ. of Colorado 
 

Meadows, grass-covered fields, and wooded areas, 
The Netherlands 

Cn
2, radio wave, derived from a 30GHz (1 cm) radio 

link, LOS 8.2 km @ 44-77 m a.g.l.    
 

Herben and Kohsiek (1984), 
Eindhoven Univ. of 
Technology and KNMI, The 
Netherlands 

CASES-99 field site, grass-covered fields and 
wooded areas, Central Kansas 
 

Cn
2, microwave, 915 MHz turbulent eddy profiler;  

Cn
2, radio-wave, 2.7 GHz FM-CW boundary layer radar 

Ince et al., (2000) 
Univ. of Massachusetts, 
Amherst 

Urban – City and residential buildings 
 
Above and in between city buildings, 
Central London 

Cn
2, millimeter (110GHz); Cn

2, microwave (36 GHz), 
derived from log-amplitude fluctuation data,  
LOS 4.1 km @ 50 m a.g.l., on average 
 

Cole et al., (1978) 
University College London, 
England 
 

Above and in between city buildings, 
Central London 
 

Cn
2, microwave, derived from wet- and dry-bulb 

temperature and wind data 

Medeiros Filho et al., (1988) 
University College London, 
England 

Coastal Areas 
 
Over barrier islands and along coastline, 
Chatham, MA 
 

Cn
2, aircraft-mounted microwave refractometer, 

boundary layer optical turbulence data 

Morrissey et al., (1987) 
Air Force Geophysics 
Laboratory, Hanscom, AFB 
 

Over the continental and coastal regions of the 
Asiatic Arctic, Siberia 
 

Radio-wave refractive index gradient data derived from 
radiosonde water vapor and temperature profile data 
 

Darizhapov et al., (1988) 
Academy of Sciences, USSR 
 

Southern California coastal region,  
Point Magu, CA  

Radio-wave refractive index profiles derived from 
(uv/visible) Lidar and radiosonde retrieved water vapor 
and temperature data 

Blood et al., (1994),  
Space and Naval Warfare 
Systems Command 
(SPAWAR) Systems Center, 
San Diego, CA 
 

Southern California coastal region,  
Point Magu, CA 

Radio-wave refractive index profiles derived from 
Ground-Based High Resolution Interferometer 
Sounder- and radiosonde-retrieved water vapor and 
temperature data 
 
 
 

Wash and Davidson (1994) 
Space and Naval Warfare 
Systems Command 
(SPAWAR) Systems Center, 
San Diego, CA 
 

Buckland Park VHF radar facility,  
Southern Australia 
 

Cn
2, radio wave, 54.1 MHz (VHF) Doppler radar and 

thermosonde data 

Hocking and Mu, (1997), 
Univ. of Western Ontario, 
Canada Univ. of Adelaide, 
Australia 

Ocean – Tropical 
 
East of Singapore, close to the equator,  
South China Sea 

Radio-wave refractive index gradient data derived from 
radiosonde water vapor and temperature profile data 

Ong and Ong (2000) 
Nanyang Technical Univ., 
Republic of Singapore 
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Table 2.  List of selected reports on computer models to derive microwave refractivity and Cn2 profile information. 

Range 
 

Model summary Lead Scientists / Laboratory, Agency, or 
University 
 

5 km  < h  < 15 km a.g.l. Cn
2 microwave; 

Radiosonde temperature, humidity, and wind speed data model; 
Includes formulations of Tatarski (1971) for the radio refractive 
index structure constant. 
 

VanZandt et al., (1978) 
NOAA Aeronomy Laboratory, Boulder, CO 

10 m < h < 2000 m a.g.l. Cn
2 optical and microwave;  

Higher-order turbulence closure model; includes expressions for 
the temperature, and moisture structure parameters given by 
Wesley (1976).  
 
 

Burk (1980) 
Naval Environmental Prediction Research 
Facility, Monterey, CA 
 

100 m < h < 6000 m a.g.l. Cn
2 microwave; 

Model for ground-based clear-air FM-CW Doppler radars;  
determines velocity variance,  t.k.e. dissipation rate, and wind 
shear. 
 

Gossard et al., (1982) 
NOAA Wave Propagation Laboratory,   
Boulder, CO 
 

 0.01 km < h < 20 km a.g.l.  Cn
2 optical, infrared, and microwave;  

–2/3, –4/3 power law profile expressions;  
additional empirical models based on tropospheric wind 
observations.     
 

Good et al., (1988) 
Air Force Geophysical Laboratory,  
Hanscom AFB, MA 
 

10 m < h < 4200 m a.g.l. Cn
2 microwave; 

Radiosonde temperature, humidity, and wind speed model;  
includes formulations of Tatarski (1971);  
includes algorithm to calculate turbulence due to intermittency. 
 

d’Auria et al., (1993) 
University of Rome, Italy 

10 m < h < 1200 m a.g.l. Cn
2 microwave; 

4D refractivity field forecast model;.temperature, wind speed, and 
humidity gradients derived from Navy hydrostatic mesoscale 
numerical model. 
 

Burk and Thompson (1997) 
Naval Research Laboratory, Monterey, CA 
 
 

10 m < h < 2000 m a.g.l. Cn
2 microwave;   

3D time-dependent fields of turbulent refractivity calculated using 
a large eddy simulation (LES) model for the daytime boundary 
layer, convective case. 
 

Gilbert et al., (1999) 
National Center for Physical Acoustics 
Univ. of Mississippi, MS 
 

10 m < h < 1200 m a.g.l. Cn
2 microwave; 

4D refractivity field forecast model;  
Temperature, wind speed, and humidity gradients derived from the 
UK Meteorological Office, non-hydrostatic, mesoscale numerical 
model 

Atkinson et al., (2001)  
University of London, UK 
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Figure 1. Modeled profiles of microwave Cn2 over oceans 
(from Burk, 1980). 

 

 

 

Figure 2. Measured profiles of microwave Cn2 and the humidity gradient over Adelaide, Australia, collected at 
the Buckland Park (54.1 MHz) Radar Facility. The vertical lines are centered at log10 Cn2 = –14.25 (from 
Hocking and Mu, 1997). 
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3. Computational Algorithms 

The refractive index in air (n) can be expressed in terms of air density (i.e., pressure, temperature, and 
water vapor content).   The following equations are expressions for the real index of refraction in air as 
reported by Andreas (1988), who references Owens (1967), for visible and near-infrared regions.  
Andreas' formulations, which are expressed in terms of air temperature, T, and absolute humidity, Q, 
alternatively can be given in terms of the conserved variables potential temperature (θ ) and specific 

humidity (q).  Absolute humidity expressed as 
T
e

R
Q

v

.100
=  where 1150.461 −−= KKgJRv  is the gas constant 

for water vapor and vapor pressure, as shown in Hess (1979), given as Pqe 622.0≈ , combine to yield 

the expression 
T
PqQ 348.0= . 

Within visible and near-infrared regions from 0.36 to 3 mμ  (as indicated by the subscript v), the real 
index of refraction in air can be written as,  

 

 10x
T
Pq

))(M-)(M(+
T
P)(M+1=n -6

121v ⎟
⎠

⎞
⎜
⎝

⎛ λλλ 61.1 , (2) 

 

which are basically the first order terms of the refractivity (dispersion) and density formulas for dry air, 
water vapor, and carbon dioxide (Owens, 1967) as a function of wavelength (λ ), where 

 

 
σσ

λ
221

-38.9
45.473+

-130
6839.397+23.7134=)(M   , (3) 

and 

 

 σσσλ 642
2 0.0008851+0.007115-0.58058+64.8731=)(M   , (4) 

where 1−= λσ  (wavelength–1).  Assuming steady state, homogeneous conditions, and considering the 
pressure partial derivative (in the surface layer) to be negligible, then taking the partial derivative of 
equation 2 yields, 

 
z

10x
T
Pq))(M-)(M1.61(-

T
P)(M-=

z
n 6-

21221
v

∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂ θλλλ  (5) 

                           
z
q

10x
T
P))(M-)(M1.61(+ 6-

12 ∂
∂λλ  
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In the lower atmosphere (z < 10 km) the potential temperature (θ ) and moisture (q) partial derivatives 
z∂∂θ  and zq ∂∂ , can be calculated from atmospheric data via instrumented radio-sondes (e.g., 

d’Auria et al., 1993; Vasseur, 1999).  Similar expressions for the partial derivative of the refractive 
index can be derived for infrared (7.8 to 19 mμ ), near-millimeter (0.3 to 3 mm) and microwave (radio) 
wavelengths (reference Andreas, 1988), as had been shown, for example, in the paper given by Tunick 
and Rachele (1991).  

For infrared (IR) wavelengths from 7.8 to 19 mμ   (as indicated by the subscript i) the real index of 
refraction in air can be written as described by Hill and Lawrence (1986) and Owens (1967), as 

 ( ) 6101 −×++= w
i

d
vi nnn  (6) 

where in the range –40 to +40 ºC, 

 ( ) ,
.12499

10747.3
7.12.88.1903.1

1.928.957
2

6

84217.0

4.0

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−

×
+

−+−

−−
=

XXXX
XQnw

i
α

α  (7) 

and 

 ⎟
⎠
⎞

⎜
⎝
⎛ − )Q(M4.615

T
P)(M=n 11

d
v λλ  (8) 

where 
λ
μm10

=Χ ,  and 
15.273

T
=α .   

 

( ) ( ) [ ] [ ]
zT

PqBA
T
Pq

T
PqM

T
PM

z
n

ii
i

∂
∂θλλ

∂
∂ 6

222
1034875.034875.06095.1 −×⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−++−=  (9) 

                           [ ] ( )( )
z
q

T
PMB

∂
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1 106095.134875.0 −×−+  

where 

[ ] ( ) ( )
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⎛

−+−

−
+
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For the radio region (wavelengths greater than 3 mm) as indicated by the subscript r, Andreas (1988) 
provides the following expression for the refractive index, i.e.,  

 ( ) 6101 −×++= rwrdr nnn   , (12) 

where, from Hill et al. (1982) and Boudouris (1963),  

 ( )
T

ePnrd
−

= 6.77   , (13) 

and 

 
2

610375.00.72
T
e

T
enrw ×+=   , (14) 

where e (vapor pressure) = 4.615 QT.  Since, 
T
PqQ 34875.0=  (for P in millibars) then  Pqe 6096.1= .  

Substituting this expression for vapor pressure (e) into equations 13 and 14 yields, 

 
T
Pq

T
Pnrd

210249.16.77 ×−=   , (15) 

and 

 
2

52 100356.610159.1
T
Pq

T
Pqnrw ×+×=   . (16) 

Now, from equations 12, 15, and 16 we obtain 

 

 

z
q

T
P

T
P

zT
Pq

T
Pq

T
P

z
nr

∂
∂

∂
∂θ

∂
∂

6
2

5

6
3

6
22

10100356.60.9

10102071.10.96.77

−

−

×⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×+−+

×⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×−+−=

  . (17) 

For the near-millimeter region (wavelengths from 0.3 to 3 mm) as indicated by the subscript m, 
Andreas (1988) provides the following expression for the refractive index, i.e.,  

 ( ) 6
21 101 −×++++= mwmwrwrdm nnnnn  (18) 

where nrd and nrw are given above, nmw1 is due to vapor resonances at wavelengths < 0.3 mm, and nmw2 
is due to water-vapor resonances at wavelengths > 0.3 mm.  According to Andreas (1988), Hill (1988) 
evaluated the nmw1 and nmw2  terms, and although the nmw2  term requires a line-by-line summation of the 
resonances and consequently does not have a single analytical form, he did produce an approximation 
for nmw1, i.e.,  
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 ( ) ( )[ ]( ) j
j

ja

j
jmw TBTQn 24

1
1 303.02961296 λα −∑=

=
  , (19) 

where  jα , ja , and jB are given in table 3. 

 

Table 3.  The coefficients in equation 19. 

j jα  ja  jB  

1 1.388221 x 103 1.650 0.1993324 

2 -0.2135129 x 103 0.1619430 3.353494 

3 -0.1485997 x 103 0.1782352 3.100942 

4 -0.1088790 x 103 0.1918662 3.004944 

 

For  the sake of an analytic solution, Andreas (1988) does not consider the effect of nmw2.  We follow 
his lead in our formulation.  As such the approximation should be accurate to ± 10% in the window 
regions 0.31 – 0.34 mm (880 – 970 GHz), 0.42 – 0.44 mm (680 – 720 GHz), and 0.83 – 3.0 mm (100 – 
360 GHz). 

Rewriting equation 19 in terms of specific humidity (q) gives, 

 ( )∑=
T
Pqnmw 34875.01   . (20) 

The contribution of equation 20 to 
z

nm
∂
∂ is 

 ( ) ( )
z
q

T
Pq

zT
Pq

z
nm

∂
∂

×∑+
∂
∂

×∑−= −− 66
2 1034875.01034875.0 θ

∂
∂   . (21) 

Finally, combining equations 18 and 21 yields,   
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∂
∂
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−
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⎠

⎞
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⎝

⎛
∑+×+−+

×⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∑−×−+−=

  . (22) 
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4. Summary and Conclusions  

Optical turbulence is important because it can significantly degrade the performance of electro-
magnetic systems and sensors, such as laser and microwave ground to satellite communications and 
infrared imaging.  For example, changes in the refractive index of air along the transmission path can 
influence the temporal intensities of microwaves causing signal fades and surges.  Changes in the 
refractive index or air can also cause wave-fronts to distort and change direction from their original 
path.  This may lead to a significant increase in bit-error rates for communication downlinks or lead to 
system unavailability.  While an earlier paper (Tunick, 2002) mainly described data and models 
associated with optical sensors, e.g., those aligned horizontally over various paths close to the ground, this 
paper focused instead on data and models for microwave Cn2 through the boundary layer and 
troposphere.  We have highlighted the importance of humidity effects on microwave Cn2 and have 
presented a comprehensive reference list for selected past research on this topic of interest.  We 
anticipate that our report will be of interest to scientists and engineers concerned with the design and 
performance of earth and space communication systems. 
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Appendix – List of Symbols and Constants 

Symbol Name or Description 

ja  Coefficient in equation 19 given in table 3. 

B Obukhov-Corrsin constant 

jB  Coefficient in equation 19 given in table 3. 

Cn2 or C2
n  Refractive index structure parameter 

e Water vapor pressure 

KH Turbulent eddy exchange coefficient for heat 

LOS Line of sight 

)(M 1 λ  Constant in equations 2 and 5 

)(M 2 λ  Constant in equations 2 and 5 

n  Index of refraction 

ni  Index of refraction (infrared wavelengths) 

w
in  Refractivity due to water vapor (infrared wavelengths) 

nm  Index of refraction (near-millimeter wavelengths) 

nmw1  Refractivity due to water-vapor resonances at wavelengths < 0.3 mm 

nmw2  Refractivity due to water-vapor resonances at wavelengths > 0.3 mm.   

nr  Index of refraction (radio wavelengths) 

nrd  Contribution from dry air to the instantaneous refractivity (radio wavelengths) 

nrw  Refractivity due to water vapor (radio wavelengths) 

nv  Index of refraction (visible wavelengths) 

d
vn  Contribution from dry air to the instantaneous refractivity (visible wavelengths) 

P Atmospheric pressure in millibars 

q Specific humidity in kg/kg 

Q Absolute humidity in kg/m3 
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rr  Turbulent eddy length scale between the inner (viscous-dissipation) and outer 
(energy producing) turbulent scales 

Rv Gas constant for water vapor 

T Air temperature in Kelvin 

X Scaled wavelength 

Z Height in meters above ground 

α  Scaled temperature 

jα  Coefficient in equation 19 given in table 3. 

ε   Energy dissipation rate 

λ  Wavelength in mμ  

θ  Potential temperature 

σ  
wavelength

1  

2
Aσ  Angle of arrival fluctuation variance 

2
xσ  Log-intensity (long-amplitude) variance of transmitted electromagnetic signals 

z∂
∂θ

 Vertical gradient of potential temperature 

z
q
∂
∂

 Vertical gradient of specific humidity 

[ ]A , [ ]B  Placement variables in equation 9 

z/n ∂∂  Vertical gradient of the index of refraction 

z
ni

∂
∂

 Vertical gradient of the index of refraction (infrared wavelengths) 

z
nm
∂
∂

 Vertical gradient of the index of refraction (near-millimeter wavelengths) 
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z
nr
∂
∂

 Vertical gradient of the index of refraction (radio wavelengths) 

z
nv

∂
∂

 Vertical gradient of the index of refraction (visible wavelengths) 
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