$^{31}\text{P MAS NMR}$ – A Useful Tool for the Evaluation of VX Natural Weathering in Various Urban Matrixes

Dana M. Mizrahi and Ishay Columbus
Department of Organic Chemistry
Israel Institute for Biological Research
4. TITLE AND SUBTITLE
31P MAS NMR A Useful Tool for the Evaluation of VX Natural Weathering in Various Urban Matrixes

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Department of Organic Chemistry Israel Institute for Biological Research

13. SUPPLEMENTARY NOTES
Contamination Risk Assessment

- Recent unconventional terror attacks:
 - 1995 Tokyo subway GB attack
 - 2001 US anthrax envelops
 - Numerous threats by various terror groups worldwide

- Unconventional Terrorism aimed at civilians:
 - Large population
 - Versatile ages and health conditions
 - Physically and mentally sensitive when compared to the military.
Major Goal: Help Defense Planners

- Analysis of the risk emerging from contaminated urban matrixes helps decide:
 - What to instruct population at the initial stage, after contamination
 - What to do with the contamination:
 » Let it weather naturally
 » Decontaminate actively (which decon and how much to use)
 - When it is safe to bring population back (full remediation)
Urban Area
(Matrixes Likely to be Contaminated)

- Plants
- Roads and Runways
- Roofs
- Soil / Sand
- Buildings and Pavements
Evaluation of Organic Matter on Matrix Particles

- **Extraction**
 - Need to find suitable solvent
 - e.g. heptane and toluene dissolve asphalt and bitumen
 - Sometimes requires additional steps
 - e.g. add base
 - Destructive

- **Solid State NMR**
 - In most cases involves no solvent
 - Carried out directly on particles
 - Not destructive; same sample is analyzed many times
 - Limited resolution
Related Published Works

- Reactions of VX, GB, GD, and HD with Nanosize Al$_2$O$_3$. Formation of Aluminophosphonates.
 Wagner et al., JACS 2001, 123, 1636-1644

- Preliminary Study on the Fate of VX in Concrete.
 Wagner et al., Langmuir 2001, 17, 4336-4341

- Effect of Drop Size on the Degradation of VX in Concrete.
 Wagner et al., Langmuir 2004, 20, 7146-7150

- 31P HR-MAS NMR Serves as a Convenient Tool for the Detection of VX Decay on Sand.
 Mizrahi & Columbus, poster presented at Decon 2002 Conference, San-Diego.
Materials

- Mediterranean sea sand
- Negev desert sand (including small rocks)
- Asphalt from local roads (ground by a ball mill)

 mean particle size=21.4 μm, SD=35.9%
- Bitumen-polymer sheets
- New concrete (manually crushed)

 mean particle size=27.6 μm, SD=15.4%
Experimental Method

- 500 MHz NMR (Bruker) equipped with a CP-MAS probe
- 4 mm rotor filled with powder (or a suitable piece of bitumen-polymer sheet), (ca. 100 mg)
- Matrix contaminated with ~99% VX (ca. 5 mg)
- 31P MAS NMR carried out using direct excitation (no CP) and high-power proton decoupling.
Sand Results or: What on Earth Is Soil?

Time “0” comparison between sea and desert sand

Sea sand

Desert sand

VX “endogenic” phosphate(s)
VX Degradation on Sea Sand

Phosphonate degradation product

3-4% S\(^-\) moiety
\(~75\) ppm

19 days
14 days
12 days
6 days
1 day

“0”
Unusual intermediate During VX Degradation on Sea Sand

Proposed Mechanism

\[
\text{Me} \quad \text{P} \quad \text{S}^- \quad \text{O} \quad \text{OEt} \\
\]

\[
\text{Me} \quad \text{P} \quad \text{S}^- \quad \text{O} \quad \text{OEt} \\
\]

\[
\text{N}^+ \\
\]

\[
\text{VX} \\
\]

\[
\text{Me} \quad \text{P} \quad \text{O}^- \quad \text{O} \quad \text{Et} \\
\]

\[
\text{Me} \quad \text{P} \quad \text{S}-\text{X} \\
\]

\[
\text{x}=\text{K salt (solution NMR)} \quad 71.51 \text{ ppm} \\
\text{x}=\text{K salt (spike on sand)} \quad 75.51 \text{ ppm} \\
\text{x}=\text{H} \quad 85.75 \text{ ppm} \\
\]

phosphonothiolate \(\sim 75 \) ppm

phosphonate

slow sand organisms
VX Degradation on Desert sand

Decreasing VX

Increasing phosphonate

Days

15

11

7

3.5

2.5

1.5

0.5

ppm
Fate of VX on Sand
A Comparison

![Graph showing the fate of VX on sand.](image-url)
Fate of VX on Sand

Different behavior of VX on sea and desert sand:

- VX degradation on desert sand:
 » Starts immediately and takes 18-24 days.

- VX degradation on sea sand:
 » Delayed for ca. 15 days (autocatalytic?)
 » High inconsistency between sea sand samples
 ■ Full degradation takes 26-70 days

Proposed explanation: sea sand contains salts:

- VX is less absorbed into sea sand;
- Peaks are sharper;
- Degradation is delayed and sometimes uncompleted.
Degradation of VX on Asphalt Powder

Decreasing VX

Increasing phosphonate

Two VX forms?

“0”
Fate of VX on Asphalt Powder

- VX degradation on asphalt powder is delayed for 15-25 days.
- Overall degradation process lasts 25-60 days.
- High inconsistency between samples, due to asphalt nature.
Degradation of VX on Bitumen-Polymer Sheet

Decreasing VX

Increasing phosphonate

Absorbed Form?

“0”
Fate of VX on Bitumen-Polymer Sheet

- About 10 days delay in VX degradation process.
- Small VX amounts still evident after 42 days.
Degradation of VX on Concrete

or: Does Israeli Concrete Obey Dr. Wagner’s Observations?

Increasing phosphonate

Decreasing VX

168
96
72
48
24
5
1

hours

100 90 80 70 60 50 40 30 20 10 0 -10 -20 ppm
Fast and active degradation, takes less than a week.
Conforms with previous observations for new concrete.
Conclusions - Method

- 31P solid-state NMR has been proven to afford reliable detection of VX on different matrixes.
- Experiments exclude the possibility of desorption.
- Since the method is non-destructive, samples were monitored repeatedly and degradation process easily normalized.

Method limitation:

- 2000 scans – down to 50 μg VX per sample
- Overnight experiment – down to 5-10 μg VX per sample
Conclusions - Operational

- One cannot predict the fate of CWAs on any complex matrix, due to:
 - an indefinite number of environmental matrixes
 - highly heterogeneous environmental matrixes
 - CWAs react chemically with most matrixes (beside the physical processes…)

- We propose looking at:
 - the most common matrix likely to face contamination;
 - general trends in behavior of similar matrixes;
 - taking worst-case-scenario as a recommendation for action, for untested matrixes.
General Trends for VX Fate or Matrix Families

Decontaminating I
Active, Fast
almost linear degradation

Decontaminating II
Slower
Follows one- or two-phase exponential decay pattern

Conserving
Slow degradation,
Following a delay
Thank You !!