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Abstract 
 

Intense, short light pulses can form filaments capable of propagating kilometers 

through the atmosphere. This is due to the nonlinear index of refraction of the atmosphere 

in response to the pulse’s high intensity, which creates a self-focusing effect that further 

intensifies the pulse. This focusing is balanced by the formation of defocusing plasma by 

the pulse. A split-step propagation model was used to simulate the propagation of these 

pulses through the atmosphere and investigate the collapse of long ultraviolet pulses of 

10-100 picoseconds in duration due to transient edge effects. The structures of individual 

collapse events in the pulse were characterized. The pulses collapsed linearly, yet 

independently of the initial pulse power. The number of collapses the pulse undergoes 

scaled with the initial power, and the plasma decay rate was found to dictate collapse 

event spacing. Additional collapses on the trailing edge of the pulse were also observed, 

and may have been created by the pulse field overflowing the grid used to model the 

propagation. Group velocity dispersion was included to add capabilities to model short 

pulses in the ultraviolet. Short pulses of 100 femtoseconds or less were observed to 

collapse in a manner similar to the longer pulses.  
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A STUDY OF COLLAPSE EVENTS IN ULTRAVIOLET LIGHT FILAMENTS DUE 

TO TRANSIENT EDGE EFFECTS 

 

 
 
 

I. Introduction 

 
 
 

Background 
  

Remote sensing protects the user from harmful environmental effects, allows him 

reach to denied areas, and shields him from exposure to enemy sensing capabilities.  

Remote sensing technologies such as light detection and ranging (LIDAR) based on long-

path absorption methods including Fourier-transform infrared spectroscopy and 

differential optical absorption spectroscopy are constrained by their light sources [1, 2]. 

These sources are limited by their inability to propagate over long paths or through 

atmospheric obscurations such as rain, clouds, and turbulence, and to operate on multiple 

wavelengths simultaneously [1, 3]. Finding ways to increase sensor range is crucial in 

extending sensor capabilities and increasing the safety of the user. The study of the 

propagation of ultra-short light pulses or filaments holds promise in overcoming range 

limitations of current remote sensor systems.  
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Short, intense light pulses introduce a nonlinear self-focusing effect that aids in 

long distance propagation by changing the refractive index of the surrounding air [4, 5, 6, 

7].  Low-intensity laser pulses diffract as they pass through the atmosphere, resulting in 

unwanted scattering and yielding low intensities on the target. If a pulse is sufficiently 

short and high enough in peak power, a nonlinear self-focusing effect will cause the pulse 

to intensify, overcome diffraction, and in turn focus tighter as it propagates, which will 

further intensify the beam [7, 8]. This nonlinear Kerr effect, or intensity dependent 

refractive index occurs above a certain critical power and creates a focusing lens in the 

refractive profile of the air [9]. When the pulse reaches a certain intensity, it ionizes the 

air, forming plasma. The presence of plasma causes two processes to occur – it absorbs 

photons from the pulse and changes the refractive index of the air, defocusing the pulse, 

which reduces the index of refraction as the pulse intensity diminishes [1, 10]. If the 

focusing and defocusing effects are balanced, the pulse can form a filament that is 

capable of propagating over long distances and possibly through atmospheric turbulence 

and scattering bodies such as clouds or aerosols much more effectively than a continuous 

wave (CW) beam or low intensity pulse could [1, 11].  

As the pulse temporally compresses and self-phase modulates it can generate a 

white light supercontinuum [1, 8, 11] that could be used in spectroscopic techniques for 

detecting chemicals or bio-agents present in the air. This continuum of light ranges from 

the ultraviolet to the infrared in wavelength. By creating this supercontinuum and 

directing it at targets such as airborne particles, aerosols, or gaseous clouds, remote 

spectroscopy could be possible by observing the absorption of certain wavelengths or 

emitted lines by the material under inspection. This could lead to increased standoff 
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distances for existing sensors as well as increased safety in detecting possible chemical-

biological threats in the field. In addition, the plasma channels created by the filaments 

could be used to control an electrical discharge such as lightning [1, 12, 13, 14]. 

Filaments could also be used for long-range (1 km or more) ablation of materials for 

spectroscopic purposes [5, 15]. Therefore, many applications for these filaments exist in 

the field of remote sensing. 

The high intensity required to create each filament induces a self-phase 

modulation, which leads to the broadband white light continuum being created [1, 11, 

12]. This white light can be useful in applications where a broad range of wavelengths are 

needed, and the long distances these white light pulses are capable of traveling open up 

new possibilities for spectroscopy [1, 2, 10, 16]. There has been significant work done in 

modeling and observing the propagation of filaments through the atmosphere with 

emphasis on using it for spectroscopy [2]. Kasparian et al. are using a mobile 

femtosecond pulse generator known as the Teramobile for generating white-light 

filaments for atmospheric analysis purposes using lasers in the infrared (IR) range [1]. 

Current LIDAR techniques are limited to single wavelengths, which can make 

spectroscopy tedious because only one wavelength can be examined at a time, and a large 

scan of wavelengths may be required before one interacts with the target of interest in a 

meaningful way [1, 2]. By including all wavelengths at once in a LIDAR pulse, 

spectroscopy could become much more efficient. The Teramobile team hopes to utilize 

these white light pulses over long distances in the atmosphere (several kilometers) to 

perform spectroscopy on pollutants and other substances present in the air [1]. The same 
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technique could be applied for military applications to areas with supposed chemical or 

biological contamination, or on remote targets of interest such as vehicles.  

Modeling work done with the interaction of light filaments with aerosol 

obscurants [17] will be useful in determining the feasibility of atmospheric spectroscopy 

and the use of filaments in propagating through a cloud of chemical or biological 

obscurants in the air. For powers much larger than the critical power required to create a 

filament, instability can cause the initial pulse to break up into several spots during the 

self-focusing process [18]. These pieces can propagate as a parallel bundle of filaments, 

and vanish and reappear as they travel [1, 4, 18]. They may also self-heal and form a 

single filament as they propagate [18]. A benefit of this instability is that if the filament 

encounters an obscurant such as an aerosol, the filament may still be able to propagate 

after it has split into several pieces, and eventually recombine into a single filament with 

little loss of energy [17, 18]. Early simulations have shown that this occurs with a 10-

15% loss in power [17]. This shows promise in the possibility of propagation through a 

cloud of obscurants, and insuring that enough power remains in the filament to be of use 

in long range sensing. 

Problem Statement 
 

While many studies and experiments concerning light filaments have 

concentrated on the infrared region of the spectrum, the ultraviolet (UV) region offers 

lower peak powers required to generate pulses of sufficient intensity to cause self-

focusing effects, as well as the ability to use longer pulses, on the order of picoseconds 

rather than the femtosecond scale. However, current long pulse filament models in the 
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ultraviolet exhibit spatial and temporal instabilities in the pulse that limit the propagation 

distance due to collapse, as well as edge effects that consume the pulse as it propagates 

[19]. In Niday’s model, the initial collapse event that forms on the leading edge of the 

pulse leads to non-physical results in modeling further pulse propagation and collapse 

events due to the extremely high intensities and plasma levels output by the model in a 

very small region of space. Finding ways to stabilize the propagation of the pulse and 

understand the collapse events taking place would serve to strengthen the code and 

validate its output in a meaningful, physical way. The main goal of this project was to 

gain a deeper understanding of collapse events that consume the leading edge of the pulse 

due to edge effects, and to determine if there are initial physical characteristics that can 

be used when generating the pulse in the model that will eliminate or minimize this 

collapse. Efforts to understand and characterize the collapse events were constrained to 

the ultraviolet region.  

Research Objectives/Focus 
 

Figure 1.1 shows the breakdown of a finite pulse as the instabilities of the pulse 

edges cause it to collapse as generated by Niday’s filament propagation code [19]. The 

pulse modeled is 400 ps in duration and has 500 MW of initial peak power. It was also 

initially seeded with noise, which contributes to the modulational instability that leads to 

the collapse of the pulse. The leading edge of the pulse is also undergoing a series of 

collapses, which is an additional cause of the inability of the pulse to propagate long 

distances. Determining a relationship between beam characteristics and the way the edge 

effects cause the beam to collapse was the focus of the project. In order to achieve larger 
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propagation ranges, this instability in pulse propagation needs to be addressed. 

Propagation distances of several Rayleigh ranges are considered to be long distances 

when compared to a standard Gaussian beam [1]. This is due to the low number of 

photons required to ionize air when operating in the UV range, which absorbs energy 

quickly from the pulse as it propagates through the atmosphere.  

Niday came to several conclusions in his study of UV long pulse propagation 

[19]. First, the collapse events on the leading edge of the pulse are due to the transient 

shape of the edge of the pulse, which does not match a steady state solution. While results 

indicated that the pulse may still collapse regardless of the initial pulse shape, a 

supergaussian shape was chosen because it emulates a steady state solution in the middle 

of the pulse, while still retaining edges. Because the edges are not flat (i.e., steady state) 

like the rest of the pulse, they begin to break down and collapse. The plasma created by 

these pulses causes a dip in the field, which forms a ring and seeds the next collapse. This 

occurs because the pulse is attempting to move towards a steady state solution.  
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Figure 1.1: Propagation of a 400 ps, 500 MW finite pulse illustrating how edge effects and modulational 
instability causes a complete collapse in time. These effects limit the ability of the pulse to travel distances 
over a few centimeters as a filament in the current model. The pulse is shown at varying values of z, or 
distance of propagation that the pulse has traveled. The T axis refers to the pulse duration, the X axis is the 
pulse width, and the Z axis (not labeled) is the relative amplitude of the pulse in arbitrary units. 
Reproduced, with permission, from Niday [19].  
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Niday also stated that the collapse events themselves seem to consume the pulse 

at a linear rate [19]. That is, they do not become more rapid as more of the pulse is 

consumed. The shape and spacing of the collapsed peaks seems to be defined by the 

numerical parameters of the model grid. Studies done to check the convergence of these 

collapse peaks in time were not able to completely resolve the peaks for long pulses, so 

their exact shape is not known. More information is required about these individual 

collapse events, including their creation, shape and spacing. These observations served as 

a starting point in the attempt to more fully understand why the pulses collapse and what 

could be done to prevent this from happening, or at least mitigate the collapse.  

Methodology  
 

This project is based on prior work completed by Niday [19] and his simulation of 

filament propagation in the UV range. He created a filament propagation model in 

Fortran 90 along with a graphical user-interface (GUI) in OpenGL. Niday’s work was 

based on studies and simulations conducted by Schwarz and Diels [20]. These two 

previous works are the basis for studying the characteristics of long pulse filament 

propagation in the UV using numerical modeling techniques. The results of these studies 

still leave room for many areas to be investigated, such as the collapse of the pulses after 

a certain time period due to transient edge effects, and the effects of varying physical and 

numerical parameters within the models.  

The propagation of UV light filaments was modeled by a numerical split-step 

spectral technique [19, 21]. The model was used to generate results and altered to more 

fully understand the collapse events that the pulses undergo as they travel through the 
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atmosphere. In addition, the model was made more sophisticated to allow for variations 

on the filament being studied including studying short pulses of the length traditionally 

studied in the IR. Numerical and physical parameters of the model were varied in an 

effort to mitigate the collapse of the pulse, and reasons for the creation and spacing of the 

collapse events were determined.  

The collapse events were shown to be independent of the initial peak power of the 

pulse, and the leading edge collapses would consume the pulse at a linear rate. The 

number of collapse events generated varied with the initial peak power, as a higher power 

pulse could generate collapses more rapidly, and the spacing between each collapse event 

was limited by the decay rate of the plasma once the pulse had dropped in intensity to 

such a degree that the plasma was no longer able to be sustained. In addition, the addition 

of group velocity dispersion and an attempt to model shorter UV pulses with durations of 

10 -100 fs resulted in the collapse of the pulses very similar to the collapse of the long 

(>1 ps) pulses.  
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II. Literature Review 

Chapter Overview 
 

This chapter addresses the equations that form the basis of modeling pulse 

propagation and introduces several physical characteristics such as the nonlinear index of 

refraction, group velocity dispersion, and the plasma that balances the focusing effects 

during filament propagation. It also covers the numerical model used to simulate pulse 

propagation and existing issues with this model that were studied during the project.  

Propagation Equation  
 

Starting with the Maxwell wave equation and including a nonlinear polarization 

term, Schwarz and Diels [20] and Niday [19] add the effects of plasma generated by the 

pulse and obtain a propagation equation as such: 

 

( )'' 2
2 22
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2 2
0 2 0 2

2 2 2

(1 ) ' ( ') ( ')
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Ki ik

z k t

i ik n ik n dt R t t t

β
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−∞

∂ ∂
= ∇ − −

∂ ∂
⎡ ⎤
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E E E

E E E E E��
 (2.1)       

Under certain conditions, this equation can be reduced to the nonlinear Schrödinger 

equation, so it is sometimes referred to by that name. Here, is the complex amplitude, 

or slowly varying envelope of the real electric field, E, and has units of intensity such that 

E

2
E is the intensity in .  is related to the electric field by  2/W m E

 ( )1( , , , ) ( , , , ) . .
2

i kz tE x y z t x y z t e c cω−= +E   (2.2) 

where c.c. is the complex conjugate [19]. Equation 2.1 describes how E changes as a 

function of the propagation distance, z. On the right side of the equation, the first term 
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represents transverse diffraction where k is a wave number, the second term describes 

group velocity dispersion where  is the group velocity dispersion coefficient, and the 

third term is loss due to multi-photon ionization (MPI) generation, where 

k' '

( )Kβ  is the MPI 

coefficient at order K. The fourth term is a plasma defocusing and absorption term where 

σ is the cross section for inverse bremsstrahlung, ω is the optical reference frequency of 

the light, τ is the electron collision time, and ρ is the electron plasma density. The next 

two terms describe the self-focusing, with the final term in the equation describing the 

Raman effect, which is important if the time scale of the pulse is such that the nonlinear 

refractive index term  can not be assumed to be instantaneous. 2n

 The electron density of the plasma is a time-dependent quantity described as  

                  
2( )

2 2 2
KK

C
t K

βρ Dρ αρ ρ
ω ⊥

∂
= + − + ∇

∂
E

E                                (2.3) 

where C is a coefficient for avalanche ionization, α  is an electron-positive ion 

recombination coefficient, and D is diffusion strength. For pulses less than tens of 

nanoseconds, C can be neglected [20] because the time scale of the pulse is such that C 

does not have time to effect the pulse before the pulse has moved on in space. For pulses 

long enough that the plasma can reach a steady state, 
t
ρ∂
∂

 = 0. Long UV pulses are on the 

order of a hundred or more picoseconds, which is short enough to neglect C but long 

enough that the plasma can reach steady state, as the temporal duration of the pulse is 

much longer than the response (rate of change) of the plasma. Neglecting the diffusion 

term as well gives a steady state plasma density that is the solution of a quadratic 

equation at each point in space [19].  
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 Equation 2.1 is used as the basis for simulating the propagation of the light pulse 

through the atmosphere using numerical computational techniques. Some numerical 

propagation models [19, 20] neglect group velocity dispersion (GVD) and let the self-

focusing term be instantaneous by not including the Raman effect. These approximations, 

along with a steady state plasma solution cause Equation 2.1 to become time-independent 

and reduce it to 

       
( )

2 2 22
0 2(1 )

2 2 2

K
Ki i ik n

z k
β σ ωτ ρ−

⊥

∂
= ∇ − − + +

∂
E

E E E E E E�.      (2.4)   

GVD is evident in the propagation of pulses with durations several orders of magnitude 

smaller than the 100 ps pulses dealt with in the model. Therefore, it is possible to neglect 

it initially because the code is dealing with either continuous wave (CW) beams, or long 

pulses on the order of hundreds of picoseconds. GVD typically does not have an effect on 

pulse propagation unless the time scale is 100 femtoseconds or less, because the large 

spectral content of the pulses cause shorter pulses to be more affected by GVD. This 

topic will be covered further in Chapter 3.  

 The plasma can also be modeled in another, time-independent way. Schwarz and 

Diels make the plasma term an effective  term [19, 20] and neglect MPI generation, 

which changes the form of Equation 2.4 slightly to  

3n

         
22

0 2 0 32
i ik n ik n

z k ⊥
∂

= ∇ + +
∂
E

E E E E
3
E .        (2.5) 

Here, 3
0 3k n E  is equal to the plasma defocusing coefficient / 2σωτρ  in Equation 2.4, 

and  is equal to 3n
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(3) 2
0

2
02 e

N e
n m

σ
α ω ε0

−
,  (2.6) 

where e is the charge of the electron, ε0  is the permittivity of free space, and is the 

mass of an electron [20]. This simplified model allows for a propagation equation that is 

easier to work with because the plasma equation does not need to be solved as a function 

of time, and the  value is taken from Schwarz and Diels [20]. Once the propagation 

equation is in the form of Equation 2.4 or Equation 2.5, it can be used to model the 

propagation of a pulse using the split operator method, which is covered in the section on 

numerical modeling. Both Equation 2.4 and Equation 2.5 can be used to study pulse 

propagation where the pulse is time independent, and will be discussed further in the 

section covering numerical techniques, though Equation 2.4 is used in this work because 

it includes the time-dependent plasma term. 

em

3n

Self-Focusing  
 
 

Several theories exist for the reasoning behind the propagation of these intense 

light pulses [19]. The self-guiding theory is the case in which the pulse is guided by a 

balance between the Kerr effect and ionized plasma that creates an effective waveguide 

in the atmosphere [22]. The moving focus model states that each section of the pulse in 

time focuses at a different distance along the axis of propagation due to a different peak 

power, which produces the elongated filament that is observed [8, 22]. Finally, a dynamic 

spatial replenishment theory hypothesizes that the pulse experiences multiple collapses as 

it decays in space and is replenished each time by power from the trailing edge of the 

pulse. The leading edge of the pulse collapses due to self-focusing effects while the 
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trailing edge of the pulse defocuses due to the plasma created by the leading edge [22, 

23]. As propagation continues, the leading edge dissipates from nonlinear absorption 

present in the plasma, but the trailing edge refocuses and replenishes the pulse intensity. 

The pulse appears to be one continuous filament, when in fact it is actually several pulses 

forming and dissipating.  

A certain critical power must be reached before self-focusing can occur and a 

filament can be formed. This critical power is given by 

     
2

0 22critP
n n
λ
π

=         (2.7) 

where  is the background index and 0n λ  is the wavelength [20]. For UV propagation, the 

critical power is around 125 MW for a wavelength of 248 nm [19]. The propagation 

distance is equivalent to several times the Rayleigh range [18, 24], which is the distance 

over which the pulse radius expands by 2 and the intensity is halved [22, 24]: 

 z0 = πw0
2nb /λ0, (2.8) 

where is the distance from the waist and  is the waist size of the initial pulse. The 

self-focusing  term causes the field to continually generate a higher index of refraction, 

leading to a self-focusing collapse of the pulse. This collapse stops once it is balanced by 

the ionization of air particles by the pulse itself, causing defocusing and losses from the 

generated plasma. This balance is crucial in the pulse’s propagation, because if the 

collapse continues unbalanced, the plasma it has generated will quickly absorb the pulse 

and propagation will cease. If the collapse is balanced correctly, the pulse will begin to 

0z w0

2n
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expand until its intensity is too weak to maintain the plasma, and the plasma is no longer 

strong enough to stop the collapse, and the process begins again with a new self-collapse. 

 There are also issues with the length of time over which the plasma is generated 

versus the distance the filament propagates in space. In the models proposed by Schwarz 

and Diels [20] and Niday [19], the pulse is taken to be independent of time by assuming 

that the scale of the pulse, which is typically hundreds of picoseconds in length in the 

UV, is much greater than the time scale of the nonlinear response of the air as the pulse 

travels through it [19, 20]. This version of the nonlinear propagation equation is dealing 

with an effective continuous wave (CW) solution rather than a pulsed beam, which 

corresponds with the aforementioned self-guiding theory. 

Both Schwarz and Diels [20] and Niday [19] studied long pulses in the UV. With 

long pulses, the plasma is treated as an instantaneous effect and that the time dependence 

has been removed. This approximation only works if the plasma has enough time to reach 

a steady state, so the time scale of the pulses must be long enough for this to occur. The 

upper limit of the time scale is constrained by inverse bremsstrahlung, and is between 4-

60 ns [20]. The lower limit is determined by how long the plasma takes to reach a steady 

state, and is 30-200 ps [20]. Generally, a value of 100 or more picoseconds is used to 

model a long pulse. This is important because it allows the use of a  term to model the 

plasma and makes modeling the propagation of the pulse much simpler as a differential 

or quadratic equation does not need to be used to model the behavior of the plasma as the 

pulse evolves. 

3n
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Numerical Techniques for Modeling Propagation 
 

An important issue that should be introduced initially is what is meant by the 

terms two and three dimensions in the case of the numerical method used to model pulse 

propagation. The 2D and 3D code model a 2D spatial field, and use a 2D grid (array) to 

hold the information describing the field. In both cases, the direction of propagation is 

designated as the z direction, which is the third spatial dimension. Therefore, all three 

spatial dimensions are represented, but only two are used to describe the field, and 

therefore are affected by the numerical transformations that the code performs. The 

model follows the pulse along the z-axis as it propagates in space, staying in a reference 

frame situated at the beginning of the pulse. This reference frame moves along at the 

group velocity of the pulse to observe how the pulse evolves at each step of propagation. 

It is more convenient to talk about the propagation of the pulse in units of distance rather 

than time, though time can easily be extracted from the distance the pulse has traveled by 

the relationship 

 z c t= Δ ,  (2.9) 

where z is the distance traveled along the z axis, c is the speed of light and  is the 

amount of time that has passed. Because c is very large when compared to the size scale 

of the pulse and spatial grid used to model the field, allowing the pulse to propagate in 

space as a function of time would result in the pulse immediately going off of the spatial 

grid. Alternatively, one could increase the grid size used in describing the field, but this 

would slow the calculations down and reduce the efficiency of the code, or require a grid 

with very large spatial increments to be used, which is not useful when studying the 

evolution of pulses that are only tens of microns in size. Again, while both the 2D and 3D 

tΔ
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models use three spatial dimensions, in the 2D code only the x and y dimensions are 

transformed via a Fast Fourier Transform (FFT) while z has a specific value in each 

propagation step. In the 3D code, the third dimension transformed by the FFT is time, as 

the plasma evolves over time as described by Equation 2.3, instead of existing as a steady 

state. This means that for each propagation step, a differential equation must be solved to 

evolve the plasma, which will be discussed in further detail in the section covering the 3D 

propagation method.  

Fortran 90 was used to numerically model the propagation of a light filament in 

the UV region using Equation 2.3. A graphical user interface (GUI) created by Niday and 

written in OpenGL provides real time feedback on the various characteristics of the pulse, 

including the beam profile in real and frequency space, beam width, and beam profile 

history [19]. The program allows for both two (2D) and three-dimensional (3D) beam 

propagation. As stated previously, in the 3D case, the third dimension refers to a temporal 

dimension rather than a third spatial dimension. While the 2D code is useful for 

verification of time-independent beam propagation, the 3D case is used to study the 

observed collapse events on the leading edge of the pulse. The basic methods for solving 

both of these cases are discussed in the next section.   

2D Propagation Method 
 

The 2D code solves the propagation of a CW beam rather than a finite pulse.  It 

only deals with the two spatial dimensions of the field being propagated. Therefore, the 

2D method is time independent and allows the use of the simplified  term to model the 

plasma being generated by the beam. Figure 2.1 gives an example of a 2D beam. 

3n
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Figure 2.1. Two-dimensional beam shown in both spatial dimensions. This form is utilized in the 2D code 
to propagate the beam along the third spatial dimension, the z-axis.  
 
 
 

 Starting with the following form of the propagation equation  

 

2 32
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  (2.10) 

a decision based on the numerical modeling method to be used must be made to use 

either the  term or the term 3n (1 )
2

iσ ωτ ρ+ E , depending on how the plasma is to be 

modeled. Whichever term is not chosen can be set to zero in the model. Generally, the  

term is chosen for simplicity when solving the equation. The split operator method may 

then be used to propagate the field in the z direction. This method defines the propagation 

operator as two components: a nonlinear index change piece given as 

3n
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and a linear diffraction piece given as 

 
2

0

ˆ
2

T
k
⊥∇= . (2.12) 

Starting with a Gaussian beam as the 2D field, the field may be acted upon with the two 

operators separately. However, the linear operator is split into two pieces, and the overall 

operation can be defined as 

 ( )ˆ ˆˆexp exp exp
2 2

T z T zi iV z i
⎛ ⎞ ⎛ ⎞Δ Δ

Δ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 , (2.13) 

where each term will operate on the field E  in turn for every step in the z direction, 

defined by . The method is designated by the name split because not only do the two 

operators not commute, and therefore must be split apart, but also because the  operator 

is split into two parts to minimize the error in the calculations. Because is diagonal in 

the k space representation, and  is diagonal in real space, the field must be transformed 

using a Fourier transform prior to the first operation, and then transformed back to the 

spatial representation at the end using another Fourier transform in order to study the 

behavior of the field in real space as it propagates along z. The Fourier transformations 

are handled numerically with a FFT routine.  

zΔ

T̂

T̂

V̂

 The code first transforms the field to k space to allow half of to operate as the 

initial step in the split-operator method. Once this is accomplished, another FFT 

transformation converts the field back to the spatial representation where operates on 

the field. This is where the nonlinear effects act on the field and the self-focusing occurs. 

T̂

V̂
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Then, one more transformation back to k space allows the second half of to operate and 

the process begins again for the next 

T̂

zΔ step. This continues until the desired distance 

along z has been reached, and the field is transformed back into the spatial representation 

so that the final beam profile can be studied in real space. In the 2D code, a one-

dimensional slice of the field is extracted to a new array after every operation so that a 

beam history can be output to see the evolution of the beam intensity as it propagates 

along z. Figure 2.2 illustrates how the beam history is recorded and plotted.  

V̂

 

Figure 2.2. History plot of 2D field propagation that shows the evolution of the field as it propagates in the 
z direction as a function of intensity in arbitrary units. Each z step contains a slice of the field at its 
maximum value so that focusing and defocusing trends can be easily distinguished.  
 

The main reason for moving between real and frequency space with the split 

operator method is the way in which derivatives are handled. As is evident in Equation 
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2.10 and the original form of the propagation equation, Equation 2.1, the derivative of the 

propagating field is calculated in both the spatial and temporal dimensions. However, the 

code uses no differentiation algorithm to calculate these values; no finite difference 

method or explicit and separate differentiation routine calculates the derivatives in the 

model. An inherent property of the Fourier transform is that the derivative of a function 

f (x)  with respect to x is simply the Fourier transform, F(k) , multiplied by ik and 

transformed back to real space via another Fourier transformation. Likewise, a function’s  

derivative with respect to t is accomplished simply multiplying its Fourier transform by 

iω  and then transforming back to real space: 

 f ( j )(x) = (ik) j F (k)eikxdk
−∞

∞

∫ .  (2.14)  

A complete, formal treatment of this can be found in Gaskill [25].  

3D Propagation Method 
 

The three-dimensional code uses a field that consists of two spatial dimensions 

defined as x and y, and one time dimension, t. An example is shown in Figure 2.3. The 

third spatial dimension is still z, the axis along which the pulse propagates, but it is not 

transformed by the code like the x and y dimensions. A steady state plasma solution is no 

longer assumed; instead, the differential equation to determine plasma density must be 

solved: 

 2 2.Kb a
t
ρ ρ∂
= −

∂
E   (2.15) 
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In addition, the nonlinear index operator changes because the Schwarz and Diels 

term is no longer being used to describe the plasma defocusing effect. The operator 

now takes the form 

V̂

3n
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2 2 2
0 2

ˆ (1
2

K
KV k n iβ σ ωτ ρ−= − − +

2
E E ) .   (2.16) 

The code uses a method based on the exact solution of Equation 2.15 to solve for the 

plasma density at every x and y value over time [19]. These values are then put back into 

Equation 2.13 and used to complete the split operator method. The propagation is still 

accomplished using the split operator method as in the 2D case, but with the new 

nonlinear index operator and a changing value for the plasma.  

The 3D code can compute the evolution of the pulse as a finite pulse or as a 

section of a CW beam. By using periodic boundary conditions in time, the code treats the 

pulse as a section of a CW beam. This method is used to study the modulational 

instability of a section of the pulse as the instability grows [19]. When the pulse is 

modeled as a finite object, other factors need to be considered, such as the transient edge 

effects that can also cause the pulse to collapse as it propagates. Because of these edge 

effects, the pulse can no longer be considered independent of time, as it is not a steady 

state solution. The issues with both of these types of instabilities seen in Figure 1.1 cause 

the pulse to collapse. The collapse of the leading edge is the main focus of this project.  

 

    22 
 



 
Figure 2.3. Three-dimensional pulse representation. Here, the x and y spatial dimensions define the pulse 
shape, while the temporal dimension displays the pulse duration. The pulse is now finite in time and is no 
longer a continuous beam.  

 

An initial beam profile such as the one shown in Figure 2.1 is required for the 3D 

code to model pulse propagation correctly. For the finite pulse propagation model, 

inputting the desired parameters into the 2D code and initializing the program accomplish 

this. The key input parameters are the pulse waist size, initial pulse power or peak 

intensity, and desired grid size. The grid has a certain number of elements, defined as nx, 

while the total physical size of the grid is broken into discrete steps, defined as dx. The 

product of nx and dx returns the length scale of the grid in meters. Once these parameters 

are chosen, the code is initialized and the field is saved to a file. This file is then used as 

an input field in the 3D code to begin the propagation. The 3D code loads the input field 

and uses it as the initial beam profile in the propagation model.  
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Stability Issues 
 

Physically, the effects of self-focusing must be balanced by the generation of 

plasma and other losses to allow filaments to propagate over long distances. In order to 

model this propagation, it is desired to find mathematically stable solutions emulating 

this physical balance. However, the solutions tend to be unstable because those with more 

or less than exactly one critical power will eventually collapse or diffract [19]. Any slight 

perturbation of the field causes the model to collapse or diffract the pulse. This is due to 

the unstable mathematical balance between self-focusing and diffraction of the beam 

solution [4]. In Chapter 4, the effects of initial beam powers that are several times the 

critical power on the propagation of a pulse will be examined.  

While including the generation of plasma in these filament models would 

theoretically allow for a balance to be reached and therefore filament propagation to take 

place, short (less than one picosecond duration) UV pulses have previously been shown 

to be unstable due to the delayed response of the Kerr effect and plasma defocusing [26]. 

Schwarz and Diels assume in their model that the leading edge of a pulse can develop 

into the steady state middle region, or flat portion of the pulse [20]. These long pulses are 

based on Kerr and plasma defocusing response times that are instantaneous, which should 

supposedly avoid the instabilities that cause the breakup of short pulses. Niday looked at 

both spatial and temporal modulational instabilities in long pulses to determine their 

stability, and the effect these perturbations and transient edge effects would have on the 

propagation of the filaments [19].   

As previously mentioned, the pulse can be modeled in two ways – as a CW beam 

or as a finite pulse. In each case, the pulse can be seeded with random noise, or 
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perturbations, before propagation begins. This noise is given as a temporal perturbation 

frequency, designated by , or as a spatial perturbation field in the form of plane waves 

such as: 

Ω

 
ε+(x,y,z) = u+ exp(λz + ik⊥ ⋅ r)

ε−(x,y,z) = u− exp(λz − ik⊥ ⋅ r)
,  (2.17) 

where k⊥  is a spatial frequency and transverse wave vector. The perturbations can be 

purely spatial with = 0, time-perturbed, or a combination of the two types of 

perturbations. In a real pulse, all frequencies in a temporal perturbation would be 

represented because the pulse would contain the full spectrum. Because the grids used to 

model the pulses are finite in size due to the numerical method used, the frequencies used 

to seed the pulse with noise must be bounded at some upper limit. In the current model, 

however, the method in which the noise frequencies are bounded prevent the model from 

propagating short pulses on the order of 100 fs or less. This is due to the pulses being at 

frequencies that are being cut out by the bounding methods. Therefore, it is not currently 

possible to model noise at the same time as short pulses less than 100 fs in duration due 

to this windowing conflict. This could be remedied in future work by changing how the 

unwanted frequencies are filtered in the model.  

Ω

As mentioned above, Schwarz and Diels assume that the leading edge of a pulse 

should develop into the steady state region, which forms the flat, middle portion of the 

pulse [20]. The expression steady state refers to neglecting the time dependence of the 

plasma, and assuming that it does not change over the time scale of the pulses being 

modeled. This allows you to set ∂ρ
∂t

= 0 and solve directly for your plasma term. In 
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addition, this steady state solution must be stable. However, Niday determined that even 

when starting with a steady state solution and no edge effects, the leading edge undergoes 

a series of collapses that cause a collapse of the pulse as it evolves in time [19]. The 

combination of transient edge effects and the growth of temporal and spatial instabilities 

lead to the collapse of the pulse over a much shorter distance than is desired. In addition, 

Niday found that the pulses are unstable for all values of Ω  and k  [19]. Chapter 3 

concentrates on possible initial conditions or pulse characteristics that mitigate or stall the 

transient edge collapse events in long pulses. A study was also conducted to determine if 

the collapse events or pulse structure could be characterized to determine a pattern in the 

pulse collapse, possibly leading to a way to predict how far the pulse will propagate 

before it collapses, or in what manner the pulse will collapse based on initial conditions. 

⊥

Optical Solitons 
 

An optical soliton is a type of wave packet that can propagate over long distances 

without distorting. Like light filaments, solitons are created because the Kerr 

nonlinearities balance with dispersive effects that would defocus the pulse, such as group 

velocity dispersion [21]. Solitons have been useful in the telecommunications industry 

because of their ability to propagate over long distances in fiber-optic communication 

applications without changing their shape. The distortion-free propagation is possible due 

to the balance between self-phase modulation and group velocity dispersion, which 

preserves both the pulse shape as well as the pulse spectrum [21]. In the case of the long 

pulses being studied here, it has been shown that the pulse can break up into a series of 

much narrower pulses with even spacing between them [19]. If each of these collapse 
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elements could behave as a soliton, these smaller pulses would still be able to propagate 

long distances despite the longer pulse breaking up.  However, solitons do not exhibit 

certain properties of light filaments such as the generation of a supercontinuum of light, 

and the mathematical expressions governing them can be solved analytically rather than 

numerically, as is the case with light filaments.  

Because the focus of this study is on what occurs when a long UV pulse collapses 

on its leading edge as it propagates, the behavior of solitons is important because if the 

pulse collapsed into a series of soliton-like pulses, this would allow the energy of the 

initial long pulse to continue propagating even after it has collapsed, just in a different 

form. Rather than propagating as one long pulse, the energy would propagate as a train of 

many small, evenly spaced solitons. Therefore, a short pulse model also becomes 

important as the numerical methods used in the modeling program need to be capable of 

resolving and accurately modeling pulses much shorter than the initial pulses if the 

collapse events do exhibit soliton-like behavior. This behavior would effectively 

circumvent the collapse of the long pulse and still allow energy to be transferred over 

long distances, albeit in a different form.  

The fundamental soliton or first-order soliton corresponds to the case of a single 

eigenvalue determined by solving the nonlinear Schrödinger equation given as 

 i∂A
∂z

=
β2

2
∂ 2A
∂T 2 − γ A 2 A  (2.18) 

where A is the amplitude of the pulse envelope, T is the width of the pulse,β2 is the group 

velocity dispersion parameter, and γ  is the nonlinear self-phase modulation parameter 

[21]. A pulse is designated as a fundamental soliton because the shape of the pulse does 
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not change as it propagates [21]. By solving Equation 2.18, an expression for the 

fundamental soliton can be derived and is given by 

 u(ξ,τ ) = sech(τ)exp(iξ/2)  (2.19) 

where ξ  is an eigenvalue resulting from solving Equation 2.18, and τ  is a ratio of the 

pulse width to the initial pulse width [21]. The benefit of this solution is that it can be 

obtained directly from the nonlinear Schrödinger equation and is an analytic solution, 

rather than one that needs to be determined numerically. Another way in which solitons 

differ from the pulses used to create light filaments in the current numerical model can be 

seen in Equation 2.19, where the shape of the soliton is a hyperbolic secant function, 

rather than a Gaussian curve. This could have an effect on the ability of the current code 

to represent solitons accurately, as it uses a Gaussian to model the pulse shape. 

Additionally, the shape of the individual collapse events is not known, because they can 

not be fully resolved, so they too could not match the requirements of pulse shape and 

power to form a soliton.  

If an initial pulse does not match the peak power of shape requirements to form a 

soliton, the pulse may evolve as it propagates to eventually form a soliton [21, 27]. The 

effect of the initial pulse shape can be studied numerically by solving the standard form 

of the nonlinear Schrödinger equation given by 

 i ∂u
∂ξ

+
1
2
∂ 2u
∂τ 2 + u 2 u = 0 .  (2.20) 

Some energy may be shed in this evolution process, and the pulse may broaden or narrow 

to reach the desired shape required to form a soliton [21]. This could allow a Gaussian or 
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super-Gaussian pulse to evolve into a soliton by evolving into a pulse with a hyperbolic 

secant shape.  

Summary 
 

The propagation equation used to describe the behavior of the light filament can 

be numerically modeled in both two and three dimensions to study characteristics of 

pulse propagation. The split operator method is used to accomplish this propagation 

modeling. Specific factors in the propagation such as the critical power required to create 

a filament and issues regarding the stability of the pulse are of particular interest because 

of the effects they have in how the pulse behaves as it propagates. Finally, despite the 

propagation equation being simplified because of the relatively long pulses being 

investigated, short pulse behavior is also important due to the nature and size of the 

collapse events that occur on the leading edge of the pulse. The behavior of optical 

solitons is relevant because the collapse events may be able to continue propagation once 

the longer pulse has dissipated into a series of short peaks.  

 

 

 

 

 

 

 

 

    29 
 



III. Methodology 

Chapter Overview 
 

This chapter discusses the various methods that were used to attempt to understand 

the collapse that a pulse undergoes during propagation due to the transient properties of 

its leading edge. The methods can be separated into two parts: varying the numerical 

parameters of the model, and varying the physical parameters of the model. Numerical 

parameter variations include altering the spatial and temporal grid sizes used to model the 

pulse, and the size of the propagation step used while propagating the pulse. The physical 

parameters include the initial peak power used to generate the pulse, the plasma decay 

rate and including physical characteristics in the propagation equation such as group 

velocity dispersion.  

Numerical Parameters  
 

The propagation model has many parameters that can affect the propagation of the 

pulse as well as the instabilities leading to the collapse of the pulse. It was first necessary 

to duplicate the results of Niday [19] to verify that the model was working correctly. 

Once correct operation of the code was established, runs with variations on these 

numerical parameters were conducted to determine what effect the parameters had on the 

propagation of the pulse. Figure 3.1 shows the field profile to which these varying 

numerical parameter runs were compared, which is a replication of results from Niday 

[19]. In addition, these numerical parameters had a direct relationship to the speed at 

which the code ran, so if fewer elements in the spatial grid or a larger step size could be 

used and return the same results, the model would complete more quickly and testing 
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would be more efficient. While straightforward, the grid characteristics were important 

because they were the only means of capturing the information of the field as it 

propagated. Because the collapse events tended to reduce to a size and spacing on the 

order of the grid size, efforts to capture as much information about these collapse peaks 

were important, and by varying the grid parameters it was hoped to be able to fully 

resolve the structure of the collapses.  

 

Figure 3.1. Finite pulse after 0.25 meters of propagation, with an initial peak power of 500 MW. This pulse 
profile duplicates results from Niday [19] and will be used as the basis of comparison for future runs using 
varying parameters to determine what effect the changes had. The parameters used in this run were 128 
elements in the spatial dimension, 512 elements in the temporal dimension, and a 500μm step size.  
 
 
 

First, the grid size used to establish the spatial dimensions of the field was varied 

between 64 and 128 elements to determine what effect this had on the propagation of the 

pulse. For each case, a finite pulse with no losses and no noise was created and 
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propagated in propagation steps of 45 10−×  m in the 3D code. Apart from the grid size, 

the initial conditions were chosen to duplicate results from Niday [19].  

The propagation step size was also varied. Because Niday used m as his 

step size, this was modeled first, resulting in a duplication of his results when combined 

with a grid size of 128 elements [19]. Step sizes of 0.005 m and 0.05 m were then 

compared to these results. These step sizes were combined with grid sizes of 64 and 128 

elements to determine what effects these parameters and their combinations had on the 

pulse propagation. It is important to note, however, that in the 3D model the size of the 

temporal grid remained at 512 elements with a time step of one picosecond throughout all 

of these variations. This was due to the duration of the pulse remaining constant at 400 ps 

to ensure that a long UV pulse model was captured fully in the temporal grid.  

45 10−×

Finally, the time step size was adjusted in order to test for convergence of results. 

Because the peaks collapsed to dimensions that were comparable to the time grid spacing, 

the collapse events were not considered to be fully resolved and the finite grid was 

artificially limiting the collapse of the pulse. If the results converged as the time step was 

made smaller, then the peaks would not be able to be fully resolved. In these runs, the 

initial power was held constant at 500 MW and the propagation step size remained at 

m with a 128 element spatial grid. The pulse was 10 ps in duration. Additional 

time convergence tests used a 10 ps duration, 250 MW pulse and the MPI coefficient 

45 10−×

β  

was increased by a factor of 10 to increase losses.  
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Physical Parameters 
 

Once an optimal combination of grid, propagation and time step size was 

determined, physical initial conditions describing the type of initial pulse used to start the 

3D propagation were examined. The desired outcome was a way to predict the collapse 

rate of the pulse based on the initial beam power that was used. Niday concluded that the 

collapse rate of the pulse was linear [19]. The question remained whether this linear rate 

would increase or decrease with initial peak power. By starting with varying peak powers 

in finite pulses with no noise seed or losses, the rate of collapse of the pulse could be 

measured as a function of the amount of the pulse that had been consumed at a given 

propagation distance. While the output from the code using OpenGL was sufficient to 

roughly estimate collapse rates, MATLAB plots were generated to more accurately 

predict the rates using on-axis 2D plots as shown in Figure 3.2. Here, a pulse of length 

200 ps has traveled 0.25 meters along the z-axis. Because the collapse events have 

consumed 75 ps on the x-axis (time axis) of the plot, it can be concluded that the collapse 

is consuming the pulse at roughly 300 ps/meter of propagation. This collapse rate is 

simply the amount of pulse consumed in seconds divided by the propagation distance of 

the pulse in meters. 
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Figure 3.2. Two-dimensional representation of pulse collapse used to measure collapse rates. Here, the 
initial peak power was 500 MW and the pulse has propagated for 0.25 m.  The pulse is being consumed at a 
rate of roughly 300 ps/m.  
 
 
Starting with lower initial powers, the power was slowly increased for each run and the 

collapse rates compared at equal propagation distances. In a second series of runs, the 

initial conditions were held constant but loss effects were included in the propagation 

models. Again, the pulses were compared after a fixed propagation distance to determine 

what effect the initial power had on the collapse events. 

 Next, the electron-positive ion recombination rate was adjusted to determine if the 

absorption rates were connected to how the pulse collapsed. Because this term affected 

the amount of loss present in the model, varying the plasma absorption term effectively 

increased or decreased the loss that was controlling the pulse propagation by changing 

the rate of decay of the generated plasma. It also had an effect on the balance required for 

filament formation and propagation.  
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Group Velocity Dispersion 
 

Group velocity dispersion causes a wave to spread into separate spectral 

components with different frequencies, due to the dependence of a wave’s velocity on its 

frequency. This spreads the pulse out temporally in the same manner that diffraction 

spreads a pulse out spatially. In fact, the propagation equations for spatial and temporal 

propagation are very similar [24]. The propagation of a one-dimensional Gaussian beam 

is described as  

 
∂ 2ψ
∂y 2 − 2ik ∂ψ

∂z
= 0   ,        (3.1) 

 
while the group velocity dispersion propagation term is represented by 
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With some simple algebra, Equation 3.2 can be rearranged to match the GVD 

term in Equation 2.1. The GVD term in the original propagation equation was restored to 

the code as an additional linear operator in the form of 
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where is a normal GVD quantity equal to 200 in the UV range [19]. Because 

the long pulses being modeled are many picoseconds in duration, group velocity 

dispersion (GVD) can generally be neglected because of the relatively large time scale of 

the pulse length. However, in the case of short pulses of 100 femtoseconds (fs) or less in 

duration, GVD can play a role in the way the pulse behaves as it propagates. This is due 

to the relationship between the GVD parameter and dispersion length, given by 

''k 2fs / cm
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 LD =
T0

2

β2

 (3.4) 

where LD  is the dispersion length, T0  is the pulse half-width, and β2 is the GVD 

parameter [21]. The dispersion length controls the amount that the pulse broadens. Short 

pulses broaden more because their dispersion length is smaller.  

Long pulses have been demonstrated to be unstable and collapse on the leading edge, 

causing them to break down into a series of smaller events. Because these collapse events 

are much shorter in length than the overall pulse, possibly on the order of femtoseconds 

in duration, GVD could determine how the pulse continues to propagate after it collapses 

by affecting the individual collapse peaks once they form, balancing the self-phase 

modulation of each peak to create solitons. Figure 3.3 illustrates a one-dimensional 

Gaussian pulse slowly dispersing temporally as it propagates along the z-axis due to the 

effects of GVD. Note that the broadening and flattening of the pulse is very similar to 

spatial diffraction, just over a much longer propagation distance.  

 

Figure 3.3. 100 fs 1D Gaussian pulse dispersing temporally as it propagates in the z direction. In this case, 
the pulse has propagated 45 meters. The effects of GVD are much more subtle than the normal spatial 
dispersion of a Gaussian beam. Each step along the z axis represents the distance that the 1D pulse has 
traveled, making this figure a history plot showing the evolution of the 1D Gaussian shape as a function of 
propagation distance.  
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In telecommunications and other applications involving solitons, GVD is 

undesirable because it interferes with the long distance propagation of the pulse and any 

information that it may be carrying [21]. To correct this problem, a technique known as 

chirping causes the different frequency components of a wave to leave at different times 

from the same origin [1, 21]. By chirping the wave initially, it is possible to alter the 

speed of the higher or lower frequency components so that they reach a certain point in 

phase and at the same time once the wave has propagated some distance. For example, in 

a negatively chirped pulse, the shorter, or blue wavelengths leave before the longer, or 

red wavelengths from the laser compressor [1, 21]. The negatively chirped pulse shortens 

temporally as it propagates, and once its intensity satisfies the conditions for filament 

formation, the supercontinuum is formed [1].  

The ability to model short pulses is important for two reasons. First, very intense 

pulses have not been experimentally demonstrated for pulse durations of more than a few 

picoseconds in the UV range [6, 28]. A frequency doubled or tripled laser is required to 

reach the UV wavelengths used, and the level of power output required is generally not 

possible for such a long pulse. By shortening the duration of the pulse, experimental 

verification becomes possible.  

The second reason that a short pulse model is desirable is that the collapse events 

are much shorter in duration than the overall pulse length. Initially, the long pulse runs 

were made without including GVD, because its effects could be neglected. However, as 

the time scale of the collapse events was studied, GVD was included in the code partly to 

see if this had any effect on the propagation of the pulse or its collapse events. Including 
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GVD was also important to determine if the code was able to accurately model short 

pulses on the scale of less than 100 fs. Therefore, if the code was able to accurately 

model pulses a few femtoseconds in duration, the short collapse events could be observed 

continuing to propagate, or several very short pulses could be looked at separately from 

the long pulse. With the addition of GVD to the code, and appropriate time step sizes, 

pulses of 100 fs or less were modeled to see if they exhibited any sort of soliton-like 

qualities as they collapsed.  

Summary 
 

Finite pulses that had not been initially seeded with noise frequencies were 

examined to study their behavior under a variety of conditions. The size of the 

propagation step and spatial grid were varied to determine what effects, if any, these 

numerical parameters had on the pulse and its eventual collapse. The temporal grid was 

studied to test for convergence of results and full resolution of the collapse events. 

Physical initial conditions, such as initial peak power, electron-positive ion 

recombination rate, and group velocity dispersion were also considered in an attempt to 

understand the source and behavior of the collapse on the leading edge of the pulse. 

Initial conditions such as the initial power used to create the pulse were varied to study 

the effect of these conditions on the rate of collapse of the pulse. Finally, the ability to 

model short pulses less than 100 fs in duration was added to the model to further 

investigate individual collapse events and the effect of GVD on individual pulses.  
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IV. Analysis and Results 

Chapter Overview 
 
This chapter covers the results of the various experimental runs outlined in Chapter 

3. The effects of varying numerical parameters to determine the optimum setup for the 

model are discussed. Also, the effects of varying initial pulse power to determine the 

collapse rates of the pulses are shown. As an extension of varying the initial pulse power, 

the effect of peak power on plasma generation and the structure of the collapse events 

were investigated more closely. Finally, the inclusion of GVD in the model is covered 

and the results of the short pulse experiments discussed.  

Results of Varying Numerical Parameters in Propagation Model 
 
The results in Niday [19] were created with a spatial grid size of 128x128 elements 

and a temporal grid size of 512 elements. The first parameter to be tested was the spatial 

grid size. With each individual grid element representing 8 microns, the number of 

elements was decreased to 64 elements in both the x and y directions. The result of this 

grid variance was an inability to duplicate previous runs using a grid size of 128 

elements. The collapse events seemed to take place at roughly the same propagation 

distance and evolved in the same manner at first. A comparison may be seen in Figure 

4.1. However, as the collapse of the pulse grew more pronounced, the sides of the pulse 

appeared to go off the edge of the grid, which impeded the collapse of the leading edge 

from consuming the entire pulse. The smaller grid size led to an artificial increase in the 

pulse propagation length solely because elements of the pulse were going off the grid and 
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no longer contributing to the pulse collapse. Therefore, it was concluded that the grid size 

needed to be at least 128 elements in both spatial directions to get an accurate 

representation of pulse propagation, though a 64 element grid could be used for initial 

approximation runs to evaluate significant changes made to the code to save calculation 

time. This result illustrated the importance of capturing as much information as possible 

in the propagation of the pulse by increasing resolution in the grid used to define the 

field.  

The propagation step size was also altered to determine how the propagation and 

collapse of the pulse were affected. For a step size of 35 10−× m, the results closely 

mirrored runs using a step size of 45 10−×  m, though the collapse events on the leading 

edge were not quite as defined. Reducing the propagation step size to  m did not 

change the results, so convergence had been reached. Increasing the step size to order of 

magnitude to  m did not allow the model to sufficiently resolve the collapse 

events, and artificially increased the propagation length of the pulse. Again, to capture as 

much information about the pulse as it propagated as possible, a smaller propagation step 

size was required. However, because the results did not vary for step sizes smaller than 

m, the step size did not need to be reduced further. The numerical parameters 

chosen by Niday [19] were confirmed to be the best combination of computational 

efficiency and resolution of pulse characteristics. The results of varying the propagation 

step size can be seen in Figure 4.2.  

5 ×10−5

25 10−×

45 10−×
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(a) 

 

(b) 

 

Figure 4.1. Results of a (a) 500 MW pulse propagated 25 cm using a 64 element grid to a (b) 128 element 
grid. Note that the pulse collapse is less evolved when compared to the 128 element grid, illustrating the 
lack of resolution available when using a smaller grid.  
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 (a) 

 

(b) 

 

Figure 4.2. Comparison of  (a) vs. 35 10−× 45 10−×  (b) propagation step size. The finer step size results in 
slightly more defined collapse events though the differences are not obvious, so it was used in all future 
runs.  
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The time step size  was altered to determine if the results of the pulse collapse 

converged at a certain value. Once the first collapse event appeared on the leading edge 

of the pulse, the rest of the pulse evolution could be considered physically invalid due to 

the pulse exhibiting collapses of durations on the order of the grid spacing, or one time 

step size. As the pulse collapses, the collapse is being constrained by the grid size of the 

model which directly affects the physical validity of the results, rather than physical 

processes dictating what the model shows. An example of this problem is grid overflow 

in frequency space, which is covered in more depth in the section on trailing edge pulse 

collapse. This overflow causes numerical errors or artifacts to develop in the model and 

allows non-physical results to affect pulse propagation. Showing convergence of results 

in the time domain would strengthen the argument that the results the model returns are 

not invalid, but rather that conditions used to model the pulses need to be adjusted in 

order to give more realistic results and remedy the issue of the model interfering with the 

physical processes controlling pulse propagation. By demonstrating convergence of 

results in the time domain, strength is given to the argument that the model is no longer 

constraining the collapse of the pulse and conclusions may be drawn from the output of 

the model in various tests.  

tΔ

Figure 4.3 shows the initial results of decreasing the time step size for a 10 ps 

duration pulse to check for convergence. The collapsed peaks were generally very sharp 

and only had one grid element underneath the peak, so that nothing could be discerned 

regarding their shape or structure. Because the time step was directly related to the 

overall pulse duration, the specific step sizes used in the study could only be used in 

cases where a 10 ps duration pulse would be propagated with the model. Moving to 
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shorter duration pulses such as 10 or 100 fs would require smaller step sizes to be used to 

keep the full pulse profile on the grid used to model the pulse with an acceptable amount 

of resolution. Likewise, a longer duration pulse would require a larger step size for the 

pulse to fit onto the temporal grid. Therefore, it was more practical to consider a ratio of 

temporal step size to pulse duration. If the ratio between step size and pulse duration met 

the criteria, then the model was deemed to be resolving the pulse as accurately as it could 

while still using a reasonably sized time grid.  The ratio determined to work the best was 

for the time step size to be 1/100th of the pulse duration if using a supergaussian pulse 

profile, and 1/20th of the pulse duration when using a Gaussian pulse profile. The ratio 

was defined as the total pulse duration as set by the initial conditions divided into the 

time step, , which was also defined in the initial conditions used to create the pulse. 

This created a time grid that was manageable in terms of computing time but captured as 

much detail of the pulse as it propagated as possible. 

tΔ

No convergence could be seen when varying the time step initially, though the 

results were very close as the time step size was decreased. In all cases, reducing the size 

of the time step actually increased and narrowed the collapse peaks, which pushed the 

model further away from discerning any type of shape for each peak. Therefore, the 

temporal grid remained at 512 elements and the ratios determined above were used to 

model the pulse duration depending on the shape of the pulse used initially. These 

parameters were kept consistent when producing the results of the other studies 

investigated.  
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(a)

 

 

(b) 

 

 

Figure 4.3. Time step convergence plots of the collapse of a 500 MW, 10 ps pulse after .25 m of 
propagation for two different values of Δt . Plot (b) represents a zoomed in area of (a), and the scaling of 
the plot has cut off the top of the first peak.  
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Because some of the loss terms associated with the plasma generation and other 

physical effects are not well understood, and may vary by an order of magnitude or more 

depending on the reference they are taken from [19], the MPI coefficient β  was 

increased by a factor of 10 to determine what effect this had on the collapse of the pulse 

and convergence of results. This decreased the intensity of the collapse peaks created on 

the leading edge of the pulse because the loss was better able to control the rapid growth 

in intensity. The pulse power was also reduced from 500 to 250 MW. The combination of 

a lower pulse power and increased loss allowed a careful study of the leading edge of the 

pulse and the collapse that it underwent. The collapse events that were generated were 

examined and the results for runs made with steadily decreasing time steps were 

compared to check for convergence. The pulse used was 10 ps in duration with 250 MW 

initial peak power, and the time step was varied from 0.1 ps to 0.025 ps to check for 

convergence. The results can be seen in Figure 4.4. Making these changes led to the 

pulses converging as the time step was reduced.  

Based on the variations in grid and propagation step size that were studied, it was 

determined that a 128x128 element spatial grid, a time step size according to the ratio 

determined above, and step size of 45 10−× m were optimal for showing convergence of 

results in the pulse propagation and allowing the code to complete a specified number of 

propagation steps in a reasonable amount of time. In addition, the MPI coefficient needed 

to be increased by a factor of 10 to allow this convergence to occur. The parameters other 

than the new MPI coefficient value were used for all future runs of the model, so all of 

these results need to be revisited to determine what effect the new MPI value has on how 

the pulse propagates.  
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(a) 

 

 

(b) 
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(c) 

 

(d) 

 

 

 

Figure 4.4. Plots showing the convergence of a 250 MW, 10 ps duration pulse using varying time steps to 
model pulse propagation. The plots show (a) the pulse after propagating 55 cm, (b)  a close up view of the 
collapses at 55cm, (c) the pulse after propagating 1 m, and (d) a close up of the collapses at 1 m.  
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This convergence study resulted in a temporal grid size of 512 elements to achieve 

maximum resolution while allowing the code to complete each run within a reasonable 

amount of time, which was generally 6-8 hours for 0.50 m of propagation distance. 

However, the results of the additional time convergence studies point to adjustments that 

need to be made within the physical parameters used to model these pulses, including the 

MPI coefficient β , and future work is required to apply these changes to the other 

studies conducted using this model and determine what impact these adjusted parameters 

have on the results presented here.  

Dependence of Collapse Rates on Initial Beam Power 
 

When the numerical parameters of the model were initially tested, the hypothesis 

was that a higher initial pulse power would cause a linear, yet more rapid collapse of the 

pulse. This expectation was a result of initial tests that showed an increase in the number 

of collapse peaks generated with an increase in initial peak power. Using the numerical 

parameters determined in the previous section, tests were run in an attempt to extract an 

expression for the rate of collapse of the pulse as it propagated. The desired outcome was 

to use this expression to predict the distance a pulse could travel without collapsing, or to 

predict the rate at which a pulse would collapse based on its initial power.  Figures 4.5 

and 4.6 illustrate the result of these runs. The initial runs were made with no losses due to 

plasma or linear effects included in the model. Later runs included these losses to see if 

they mitigated the collapses. Inclusion of the losses did not eliminate the collapse events, 

though it did damp them slightly. While losses did reduce the intensity of the collapse 

peaks somewhat, they had no effect on the rate of collapse of the pulses due to the peaks 
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forming on the leading and trailing edges of the pulse. The collapse would occur 

regardless of whether losses were present in the model.  

 

Figure 4.5. Increasing initial peak powers have little effect on the rate that a pulse collapses. After 0.50 
meters of propagation, each pulse has collapsed roughly the same amount. However, note that the number 
of collapse events increases with peak power.  
 
 
 

Increasing the initial power did not cause the pulse to collapse any more rapidly. 

Niday had previously determined that the pulse would collapse at a linear rate [19], but it 

became apparent that this rate was not affected by input power. The pulse would always 

collapse the same amount after a given distance of propagation. However, the number of 

collapse events did increase with initial power. For a higher initial peak power, collapse 

events would grow more rapidly and seed the next collapse on the leading edge of the 

pulse sooner, allowing more events to occur in a shorter distance of propagation. Lower 

powers would still collapse at the same overall rate by pushing the top of the pulse higher 

in intensity over a greater amount of the pulse, but it would take longer for the collapses 
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to fully form into sharp peaks and the collapse events tended to be smoother as the pulse 

propagated.  

 

Figure 4.6. Field profile for a 500 MW field after 0.25 meters of propagation. The collapse event growing 
out of the leading edge of the pulse is wider (along the time axis) and is effecting a larger portion of the 
pulse than the collapse event in Figure 4.6.  
 

 
 
Figure 4.7. Field profile for a 1000 MW field after 0.25 meters of propagation. Note that there are more 
resolved collapse events after the same propagation distance than in the case of 500 MW. The total collapse 
distances are the same. 
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 Relationship of Plasma Generation to Collapse Structures 
 
 

The increased number of collapse events and their spacing can be attributed to the 

generation of plasma during the focusing of the pulse and its decay rate. A pulse with 

higher initial power will ionize the air sooner, resulting in more rapid plasma generation. 

Once the plasma reaches a certain intensity, it starts to defocus the pulse and the pulse 

intensity drops, which is consistent with the self-guiding theory describing the 

propagation of filaments. After the pulse intensity has fallen to a point where it is no 

longer able to maintain the plasma, the pulse can grow in intensity once more. This 

increase in intensity is once again caused by the self-focusing  effects that are generated 

by the main body of the pulse. In a balanced, propagating pulse with no collapse events, 

this process would allow the defocusing effects to balance the nonlinear refractive index 

and long distance propagation could be possible. However, in the case where the leading 

edge of the pulse collapses into very intense, sharp peaks, the plasma is generated 

extremely rapidly and at very high levels. The drop in the intensity of the front edge of 

the pulse due to the plasma is almost immediate, and the collapse event becomes 

separated from the body of the pulse. Once the plasma has dropped back down to a lower 

intensity, the process repeats again. This violent cycle is caused by the manner in which 

the leading edge of the pulse collapses into a series of very intense spikes. Pulses with a 

higher initial power are more able to rapidly generate collapse events so the number of 

collapses increases with initial peak power. Figure 4.8 shows an example comparing a 

400 MW power to a 1000 MW power to illustrate the fact that higher initial powers lead 

to more peaks being generated.   
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(a) 

 

(b) 

    

 
Figure 4.8. Comparison of 400 MW to 1000 MW pulse after 0.25 meters of propagation showing how 
lower powers lead to longer (measured as a fraction of total pulse duration), less distinguished collapse 
events. Higher initial powers result in more resolved collapses. In (a), while the next collapse event has 
been seeded it is very hard to identify from the main body of the pulse, so the collapse rate of (b) looks 
slightly higher. The actual collapse rates are the same.  
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The rate at which the plasma decays is not immediate, as there is a time scale associated 

with how long it takes the plasma to fall below the amount required to allow the pulse to 

intensify again. Figures 4.9 and 4.10 show the plasma intensity superimposed on the 

pulse intensity to illustrate the relationship between the two. It is evident that as the 

plasma decays down, the pulse begins to experience another collapse event on its leading 

edge and the process begins over again. The spacing between collapse events can be 

directly attributed to the rate at which the plasma decays after the intensity of the pulse 

falls off and is no longer able to support such a high intensity of plasma. Again, a higher 

initial beam power leads to a higher intensity, seeding the collapse events more rapidly, 

but also generating plasma at a greater rate. Therefore, even though there is no difference 

in the overall rate of consumption of the pulses due to initial beam power, the power does 

influence the rate and amount of plasma generated and leads to an increased number of 

collapse events on the leading edge of the pulse. The plasma, in turn, dictates the spacing 

of the collapse events. 

The trailing edge of the long pulses also exhibited collapse events, though in a 

different manner than those on the leading edge. Instead of the leading edge continuing to 

collapse until the entire pulse was consumed, the trailing edge also began to collapse and 

the entire pulse broke down rapidly. The trailing edge only collapsed after the leading 

edge had consumed a significant amount of the pulse, and then the peaks grew rapidly. In 

addition, numerical errors due to the modulational instability of the pulse began to grow 

on the remaining flat portion of the pulse, and this noise grew exponentially, furthering 

the breakdown of the model’s ability to accurately model the pulse. 
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Figure 4.9. Comparison of time scale of collapse events with the plasma level for a pulse with 1000 MW 
initial peak power. The plasma level (solid plot) decays after the pulse intensity (line plot) drops down. 
Once the plasma has decayed, the next collapse event becomes evident. The plasma level has been 
normalized to allow comparison on the same scale as the pulse intensity. 
 
 
 
 
 

 
 
Figure 4.10. Close up view of the plasma level versus pulse intensity. Here it is more obvious how the 
plasma decays down to a lower level and allows the pulse to intensify once more in a new collapse event. 
Again, this figure is illustrating a zoomed-in portion of Figure 4.9, so several peaks have been cut off due 
to the new scaling.  
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Figure 4.11 depicts a 1000 MW pulse after it has propagated for 0.50 m. The collapse 

peaks on both edges and the numerical errors have caused the pulse to break down. The 

plasma intensity plot has been overlaid on the pulse profile so that the plasma generation 

can be compared to the collapse events taking place on the edges of the pulse.  

Initial analysis showed that the plasma level on the trailing edge of the pulse 

behaved in the same manner as on the leading edge of the pulse.  The collapse peaks 

forming on the trailing edge were separated by the plasma decay rate and their amplitude 

was also controlled by the presence of the plasma, though the intensities were lower than 

those on the leading edge of the pulse. In addition, the formation of the collapses was 

much more rapid than the collapses on the leading edge. The trailing edge collapses did 

not form and break off of the main pulse body one at a time. Instead, they grew 

concurrently out of the pulse. As both edges of the pulse collapsed, small peaks started to 

grow in the uncollapsed portion of the pulse due to modulational instability, and the 

model was no longer modeling the pulse shortly thereafter.  
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(a) 

 

 

(b) 

 

 

Figure 4.11. The collapse of the trailing edge of the 1000 MW pulse can be seen in (a). As previously 
shown in Figure 4.10, the plasma generation and decay rates dictate the spacing of the collapse peaks. 
Similarly, the peaks on the trailing edge of the pulse generate plasma in the same manner. Note the effects 
of modulational instability beginning to emerge from the flat portion of the pulse to the left of the trailing 
edge.  
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(a) 

 

(b) 
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(c) 

 

(d) 

 

Figure 4.12. Collapse of 1000 MW pulse due to the leading and trailing edge effects. Note that once the 
trailing edge collapse peaks become prominent, failure of the code to model the pulse quickly follows. 
Also, the collapse events on the trailing edge grew at the same time, instead of one peak at a time like on 
the leading edge. The peak is shown at propagation distances of (a) 40 cm, (b) 45 cm, (c) 50 cm, and (d) 55 
cm.  
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Another characteristic of the collapsing trailing edge was the way in which the 

edge of the pulse would begin to exhibit instabilities more rapidly as the initial power of 

the pulse increased. The distance that a pulse could propagate before the collapses on 

both ends of the pulse created instabilities that annihilated the pulse decreased as the 

power increased. This was not because of the rate of collapse increasing, but rather 

because the model was breaking down more rapidly once the collapse events on the 

trailing edge became evident.  The earlier appearance of the trailing edge collapse was 

due to the greater intensity of the initial pulse, which allowed larger collapse events to 

occur on both edges as the pulse propagated. A pulse with lower initial peak power would 

propagate farther before the model no longer became valid (i.e., the pulse had completely 

collapsed into a series of smaller collapse events). Figure 4.13 illustrates the collapse of 

the pulse.  
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(a) 

 

b) 
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(c) 

 

(d) 

 

 
Figure 4.13.  Collapse of 500 MW pulse at (a) 50 cm, (b) 70 cm, (c) 75 cm, and (d) 80 cm. The pulse has 
propagated over a longer distance before the model fails because the initial intensity resulted in smaller 
collapse peaks on the trailing edge, which delays the collapse of the pulse.  
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The reasoning behind the formation of these collapse events on the trailing edge 

of the pulse is not known. Because they emerge only after the pulse has collapsed 

significantly on the leading edge, and because they grow concurrently from the trailing 

edge instead of breaking off of the main body of the pulse one at a time, they could be the 

result of the code no longer modeling the pulse accurately due to the field moving off of 

the boundaries of the frequency grid used to store the field. This means that there are 

non-zero values of the field that have moved past the boundaries of the grid and have 

wrapped around to the other side of the grid, which invalidates the model.  

The large number of very intense collapse events on the leading edge of the pulse 

could lead to the field moving off of the grid, which would no longer allow the model to 

continue to correctly propagate the pulse. This overflow occurs because the collapse 

events are so intense and closely spaced that the code begins to generate artifacts, or 

noise on the empty portions of the grid. Because the collapse events form solely along the 

leading edge of the pulse, the noise is restricted to one end of the pulse at first, but as 

more and more collapse events form, this noise begins to appear in all the empty portions 

of the grid, and the larger artifacts on the leading edge begin to appear near the trailing 

edge as well. This could lead to additional numerical errors on the opposite end of the 

pulse as the non-zero values wrap around the grid and affect the portion of the grid where 

the remaining uncollapsed edge exists. The errors also accumulate on the flat, 

uncollapsed portion of the pulse but are less evident initially because the uncollapsed 

portion is not changing in amplitude rapidly like the trailing edge. Eventually the errors 

on the flat portion act as noise and contribute to the inherent modulational instability of 

the pulse, causing a rapid collapse of the entire pulse. As more and more collapse peaks 
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grow on the trailing edge, the model breaks down more with every iteration of the code 

and eventually the pulse breaks down into a series of collapse events after only a short 

period of time, as shown above in Figure 4.13. This is not a collapse due to physical 

means; it is a collapse due to numerical issues with the representation of the field on the 

grid in the frequency domain. The errors begin to accumulate, and then begin to seed the 

modulational instability of the pulse, so it is as if the pulse had been seeded with noise 

initially and the pulse is not only collapsing on its leading edge, but also all along the 

remaining pulse profile due to this new noise.  

If the model is failing in this manner, the plasma generated at the rear of the pulse 

is not dictating the spacing of the collapse events; rather the collapse events due to 

accumulating errors in the code are dictating the plasma generation to coincide with the 

collapse peaks on the trailing edge of the pulse. The collapse event spacing is still 

controlled by the plasma decay rate.  

By studying the representation of the pulse in frequency space, it is possible to see 

the pulse begin to move off of the edges of the grid, causing the model to no longer 

accurately portray the pulse in real space. Figure 4.14 shows the progression of a 500 

MW pulse off the edges of a 256 element grid in frequency space. The more collapse 

peaks that are present, the more rapidly the pulse overflows the grid boundaries because 

errors are generated more rapidly as well. This could explain why the trailing edge 

collapses are evident sooner on a pulse with higher initial power, because a higher power 

pulse generates collapse events more rapidly. The higher power pulse, while collapsing at 

the same rate on its leading edge as a pulse with lower initial power, generates more 

collapse events within the same amount of pulse consumption. This leads to the model 
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breaking down more rapidly than the lower power pulse, which requires more time to 

generate the number of collapse events required to overflow the grid.  

Additional experiments were conducted to determine the effect of grid size on the 

trailing edge collapse. A 500 MW pulse was propagated using both 256 and 512 temporal 

element grids, while retaining the same time step size. This caused the 512 element grid 

to be only half as full of pulse information as the 256 element scenario. By introducing 

this empty grid space, the pulse had more room in the frequency domain before it began 

to overflow the area taken up by the initial pulse. Therefore, the errors would not begin to 

wrap around until after the pulse had propagated further. Figure 4.15 shows this delayed 

progression off of the grid with a pulse with an initial power of 500 MW and a 512 

temporal element grid when compared to the 256 element grid used in Figure 4.14. The 

results suggest that by utilizing a smaller percentage of the available temporal grid space 

to describe the profile of the initial pulse, the pulse can propagate farther before the errors 

in the code manifest themselves on the trailing edge of the pulse.  

The exact mechanic causing the errors to be generated is still unknown. Possible 

sources include ringing in the FFT, which would generate additional information on the 

edges of the pulse in the frequency domain, and lead to inconsistencies in the spatial 

representation as well. There may also be an inherent inability of the code to deal with 

the multiple intense, closely spaced collapse peaks that form on the leading edge of the 

pulse, which could also lead to artifacts or errors in the pulse propagation. As discussed 

earlier in the section on time convergence, adjusting the loss terms within the model 

allow convergence to occur, which could also alleviate the overflow of the grid. This area 

is an issue that should be covered more in future work.  
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(c) 

 

(d) 

 

Figure 4.14. Progression of a 500 MW pulse off of a 256 element grid in the frequency domain at (a) 5 cm, 
(b) 15 cm, (c) 25 cm, and (d) 50 cm.  
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(c) 

 
 
 
 
 
(d) 

 
 
 
 
Figure 4.15. Progression of 500 MW pulse off of a 512 element grid in the frequency domain at (a) 5 cm, 
(b) 15 cm, (c) 25 cm, and (d) 50 cm. 
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The spacing of the collapse peaks on the leading edge of the pulse was due to the 

decay rate of the plasma, so the electron-positive ion recombination coefficient α  was 

varied to determine what effect this had on the spacing or formation of the collapse 

peaks. The pulse was very sensitive to changes ofα , so only slight adjustments were 

made. Changing the value of α  to 1.5×10−12 m3 /s and 0.7×10-12 m3 /s resulted in very 

different propagation profiles when compared to the nominal value of 1.1×10−12m3 /s. 

Figure 4.16 illustrates the changes due to varying α . 

Higher values for α  resulted in more peaks being generated as the plasma 

decayed faster, allowing the front of the pulse to begin a new collapse sooner. A lower 

decay rate led to fewer collapses on the leading edge of the pulse and also an overall 

higher amount of plasma existing in general, which caused the main body of the pulse to 

be reduced in amplitude. Varying α  produced results very similar to that of changing the 

initial peak power of the pulse. A lower α  was similar to a lower initial peak power, and 

a higherα  produced a result much like that of a pulse with a higher initial peak power. 

An additional observation was that the pulse propagation was very sensitive to changes 

inα . It was not possible to alter it more than 0.5 – 0.7 without causing the model to 

fail. If 

3m / s

α  was changed beyond this range, the pulse was able to grow without bounds very 

rapidly, or was completely damped out within a few propagation steps, which returned 

invalid results in both cases. This illustrated the delicate balance between the pulse 

intensity and the defocusing effect of the plasma in pulse propagation. 
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(a) 

 

(b) 

 

(c) 

 

Figure 4.16. Comparison of 1000 MW pulse after 25 cm of propagation with varying alpha values equal to 
(a) , (b) 0.7 , and (c) 1.5 .  31.1 m / s 3m / s 3m / s
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Group Velocity Dispersion and Short Pulses 
 

Once the time step convergence had been tested and GVD had been included into 

the propagation model, short pulses of less than one picosecond in duration were modeled 

to see how they behaved. This was useful because it is easier to experimentally replicate 

pulses of these lengths at the intensities required to form filaments. It is hoped that the 

results of these modeling runs can be experimentally verified or compared to 

experimental data with the appropriate laser source.  

As expected, there were no differences in the longer duration pulses due to the 

addition of GVD. Initial runs using a GVD value of 2×10−28s/m [20] clearly made no 

difference in the propagation of long pulses with durations of more than one picosecond. 

Figure 4.17 shows the pulse propagation of a 100 ps pulse with GVD compared a 100 ps 

pulse with no GVD term, and a 10 ps pulse with GVD compared to a 10 ps pulse with 

GVD. As the pulse duration became shorter, GVD did play a role. Figure 4.18 illustrates 

the effect GVD had on the propagation of a 10 fs duration pulse.  
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 (a) 

 

 

 

(b) 

 

 

Figure 4.17. Comparison of (a) 100 ps and (b) 10 ps duration pulse propagated over 0.25 m with no loss or 
GVD to the same pulse with loss and GVD included. There are no differences in pulse profiles.  
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Figure 4.18. Comparison of a 10 fs pulse without GVD to a 10 fs pulse with GVD included. While the 
overall shape is roughly the same, there are additional collapse characteristics present when GVD is 
included. The two pulses have propagated a distance of 6 cm.  
 
 

The first issue was to determine if short pulses on the order of 10 fs would still 

exhibit collapse events like the ones observed on longer pulses of several picoseconds or 

more. Using an initial peak power of 500 MW, the pulse would still collapse as it 

propagated. The shorter pulses collapsed even more quickly than the long pulses because 

there was less pulse length for the collapse events to act on, so after the first collapse 

occurred the pulse would quickly die out.  The majority of the power was lost to the 

collapse events, and the rest of the pulse was not intense enough to sustain itself and 

continue to propagate. With a shorter pulse, only one collapse event was required to 

consume over half of the pulse, and the same series of events observed in the longer 

pulses took place to completely destroy what remained of the short pulse. This can be 

seen in Figure 4.19. 
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(a) 

 

(b) 

 

(c) 

            

Figure 4.19. 10 fs pulse at various stages of collapse after (a) 0.5 cm, (b) 5 cm, and (c) 7.5 cm of 
propagation.  
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Because the 10 fs pulse still collapsed, the initial peak power was reduced to one 

critical power. The longer pulses would still collapse at lower powers, but the total 

collapse was delayed because the collapse of the trailing edge occurred after the pulse 

had propagated a longer distance. The question remained whether this was also the case 

in the short pulse regime. Reducing the initial power to 125 MW, another run was made 

to see if the pulse would still collapse. As in the case with the 500 MW pulse, the 

collapse still occurred but over a longer time period as the collapse event took longer to 

resolve itself from the main body of the pulse. Instead of breaking into separate peaks, 

the pulse slowly intensified until it reached peak intensity, and then dropped in amplitude 

before the multiple peaks became apparent. Therefore, even when reducing the power to 

one critical power, the shorter pulses could not find the balance needed to propagate 

without collapsing and breaking down totally. Several additional initial powers were 

tested to observe the manner in which the pulse would collapse in each case. The results 

were consistent with both the way in which the short pulse would eventually collapse and 

the behavior exhibited by long pulses collapsing at varying initial peak powers.  

The behavior and collapse of short pulses did not demonstrate the possibility of 

short pulses in the model forming solitons and propagating over long distances. In 

addition, the individual collapse events on the leading edge of the longer pulses did not 

exhibit any ability to continue propagation once the longer pulse had been consumed by 

the collapse of its leading edge. However, this could be partially due to the fact that the 

model may break down once the leading edge has a substantial number of collapse events 

present, so any results past this point of propagation would be invalid. In addition, the use 
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of Gaussian shaped pulses rather than hyperbolic secant initial pulse shapes could 

contribute to the collapse of the short pulses, and merits further investigation.  

(a) 

 

 

           (b) 
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(c) 

 

(d) 

       

 

Figure 4.20. 10 fs pulse with 125 MW initial peak power at (a) 10 cm, (b) 25 cm, (c) 35 cm, and (d) 1 m of 
propagation.  
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Summary 
 

The effects of varying numerical parameters illustrated the importance of 

capturing as much detail as possible in the modeling of the filament and its propagation. 

Finer grid and propagation step sizes resulted in more sharply defined collapse events and 

did not allow for artificially lengthened propagation distances. The optimum combination 

of 128 spatial elements and 5 ×10−4  m propagation step size resulted in the best results 

that still allowed for a reasonable computation time.  

In the temporal grid, a ratio was determined between the shape of the initial pulse 

and its duration and the temporal grid size that defined the pulse in the numerical model. 

The grid size was 1/100th of the pulse duration for a supergaussian pulse profile, and 

1/20th for a Gaussian profile. This was assuming a 512 element temporal grid, which was 

again the maximum number of elements that still would produce results in a reasonable 

amount of time. Convergence in the temporal grid was not evident until additional tests 

were conducted. By altering the loss term β  by an order of magnitude (which is within 

the accuracy that the term is currently known), and using a 250 MW pulse it was possible 

to show convergence. This suggests that the loss terms in the model need to be carefully 

studied and adjusted to determine what effect they have on the overall propagation of the 

pulse, and the other results should be studied again with the adjusted parameters present. 

The linear rate of collapse was not dependent on initial peak power. The initial 

power had no effect on how fast the pulse would collapse overall. However, while 

studying this issue a number of other behaviors became apparent. First, the number of 

collapse events that take place within the collapsed portion of the pulse after a certain 

distance of propagation is dependent on the initial power. Secondly, the peak spacing is 
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due to the rate at which plasma is generated by the pulse, and the decay rate of the 

plasma.  

The trailing edge of the pulse was also observed to collapse, and the collapse 

events and plasma related in the same way as they did on the leading edge. However, 

these collapse events grew at the same rate instead of forming one at a time, and once 

they formed the pulse would collapse rapidly. The propagation distance at which the 

trailing edge collapsed decreased with increasing initial power. Additional collapse 

events could also be distinguished on the remaining flat portion of the pulse, but this was 

attributed to numerical errors that would grow exponentially once both ends of the pulse 

collapsed. A possible explanation for why the trailing edge began to collapse is the 

accumulation of errors due to field overflowing the model’s grid in the frequency domain 

and resulting in the breakdown of the code. The primary reason this occurred was 

because of the large number of collapse events present in pulses with higher initial peak 

powers or in lower power pulses that had propagated a further distance, resulting in a 

larger number of collapse events on the leading edge of the pulse. In addition, by 

changing the percentage of total grid space used to define the actual pulse, it was possible 

to delay or lessen the effects of the grid overflow on the trailing edge of the pulse, which 

would affect the collapse events on the trailing edge as well.  

The electron-positive ion recombination coefficient was also adjusted once the 

relationship between the collapse events and the plasma was determined. Because this 

coefficient dictated the plasma decay rate, altering it changed the way that the pulse 

would collapse as it propagated. The results were similar to those obtained by changing 

the initial peak power of the pulse.  
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As shorter pulses were investigated, the addition of group velocity dispersion to 

the propagation model became a necessity. While not affecting the longer pulses, pulses 

less than 100 fs in duration illustrated effects of GVD when compared to pulses 

propagated without it. However, the short pulses would still collapse in the same manner 

as the longer duration pulses, which made the continued propagation of the collapse 

events seem unlikely. Runs with 100 ps pulses showed no indication that the collapse 

events would continue to propagate and did not differ from the tests conducted with no 

GVD present. This could be attributed to the breakdown of the current model in the long 

pulse tests. Reducing the initial peak power of the short pulses did not significantly 

lengthen the propagation distance the pulse could travel before collapsing. Possible 

causes could include the initial pulse shape used differing from that of a fundamental 

soliton, which is a hyperbolic secant pulse rather than a Gaussian.  
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V. Conclusion and Recommendations 

Chapter Overview 

This chapter deals with the overall conclusions that can be drawn from the 

modeling runs conducted in this work. The previous state of the model and its limitations 

are reviewed, and the improvements and additional questions resulting from the work 

accomplished here are summarized. In addition, recommendations for future work 

building on these results are introduced.  

Conclusions of Research 
 

Niday concluded that time independent modeling of long pulse filament 

propagation in the UV was hindered by two factors: the modulational instability of the 

pulse due to spatial and temporal perturbations present in the initial field and the transient 

edge effects of a finite pulse which resulted in the complete collapse of the pulse as it 

propagated through space [19]. The collapse due to edge effects was further studied in 

this work in an attempt to prevent or mitigate these destructive effects from occurring. In 

doing so, several areas were investigated.  

First, the numerical parameters of the model were studied to determine if the 

numerical parameters were not fully capturing the information of the field and causing 

the pulse to collapse as it propagated. The spatial elements used to define the pulse and 

the propagation step sizes were adjusted to determine an optimal combination of 

parameters. The goal was to minimize the time required for the model to propagate a 

pulse over a set distance but still provide adequate resolution of collapse events as the 

leading edge of the pulse collapsed. While it was possible to reduce the collapse of the 
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leading edge of the pulse, this was determined to be caused by a lack of resolution in the 

numerical spatial grid, and was remedied by using more elements to define the grid along 

with a smaller propagation step size to capture all the events during propagation. The 

results of varying propagation step sizes converged at 5 ×10−4 m. The number of spatial 

elements used throughout the study was 128 and showed a convergence of results when 

the grid size was increased. The resolution of pulse structure and running the code within 

the processing and memory constraints of the computer used for the tests were sufficient 

to duplicate the results of Niday [19].   

In addition, convergence of results was studied by varying the temporal step size 

that defined the time grid. Because the collapse events seemed to condense to a size 

defined by the temporal grid, a smaller step size was desired to fully resolve the structure 

of these individual collapses. In the case of the time step size, there were limitations 

regarding how large the temporal grid could be made due to the processing power and 

memory of the computer used to run the model. Given any pulse duration, the temporal 

step size could only be made so small before the field went off of the grid and returned 

invalid results. Moving to a larger number of elements to define the temporal grid would 

alleviate this until the step size was again made too small for the grid. However, using a 

larger grid slowed the model down significantly, and it was not possible to infinitely 

increase the temporal grid size, so a compromise again had to be made between the 

resolution gained by utilizing a smaller time step and the loss of efficiency of the model 

due to using a larger number of time elements. It was determined that depending on the 

shape of the pulse profile, a ratio of pulse duration to step size would be used in all runs. 

Additional studies in this area concluded that the MPI coefficient had an impact on how 
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the pulse propagated. Because the coefficient is not well known to a high degree of 

accuracy, adjusting it by an order of magnitude was a reasonable variance in its value, 

and this adjustment along with using a lower power pulse led to the results beginning to 

converge. Further reducing the time step to an even smaller size would result in complete 

convergence. However, because the results shown from other areas of investigation such 

as the structure of the collapse peaks and plasma generation were obtained without this 

adjusted loss term, future work could include attempting to duplicate these other results 

with the adjusted loss parameter.  

The effect of the initial peak power was studied in an attempt to determine the 

nature of the collapse events. While Niday [19] calculated that the collapse rate of the 

pulse was linear, it was found that the initial power had no effect on this linear rate, as all 

pulses collapsed at the same rate despite varying the initial peak power. However, the 

initial power did have an effect on the number of collapse events that took place over a 

given propagation distance. Deeper investigation attributed this to higher initial powers 

leading to a more rapid formation of peaks on the leading edge of the pulse, and the 

spacing between these peaks was due to the decay rate of the plasma being created by the 

collapse events. As the very intense collapse peaks formed, plasma was generated at high 

levels, damping the peak immediately. The collapse peak would break off from the main 

body, and a new one would begin to form as soon as the plasma decayed to a level low 

enough to allow the pulse to intensify once more.  

Another area where the initial peak power had an effect was in the formation of 

collapse events on the trailing edge of the pulse. Once the leading edge had collapsed 

enough to consume the majority of the pulse, the trailing edge would begin to experience 
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a rapid and concurrent collapse. Numerical errors would seed the modulational instability 

of the model and cause collapse structures to exponentially grow out of the remaining flat 

portion of the pulse. The collapse of the two ends and the modulational instability all 

contributed to a complete and rapid collapse of the pulse to the point where the model 

was no longer valid. At this point, the results were invalid as the only information was a 

series of peaks on the order of the grid spacing. The reasoning behind why the trailing 

edge would suddenly start to collapse was unknown. A possible explanation is that the 

field overflows the grid in the frequency domain once a significant number of collapse 

events are present on the leading edge. This leads to non-zero elements wrapping around 

to the other side of the grid and causing the model to break down. It also suggests that the 

larger number of collapse events generated by higher power pulses contribute to the grid 

overflow and that the model will become invalid more rapidly as the pulse power 

increases. Lower power pulses are still susceptible to this behavior, but after a longer 

propagation distance because the pulses must propagate further to generate the required 

number of collapse events to cause the pulses to break down. Also, by changing the 

percentage of the temporal grid used to define the pulse – either by increasing the grid 

size and holding the time step constant used to define the pulse or by increasing the time 

step size – the collapse of the trailing edge can be delayed or minimized. This points to a 

relationship between the trailing edge collapse and the grid overflow issue as with a 

larger temporal grid, the errors have longer to travel before they begin to wrap around the 

grid and affect the trailing edge of the pulse.  

Because the electron-positive ion recombination coefficient was one of the factors 

that controlled the rate of plasma decay, it was varied and its effect on the collapse of the 
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pulses was again studied. The collapse events on the leading edge of the long pulses were 

spaced out according to the plasma decay rate. Changing α  led to fewer or more collapse 

events as the plasma decayed more slowly or more rapidly. Also, the more slowly the 

plasma decayed, the longer it could act on the entire pulse and would cause the pulse to 

behave as if it was initially created with a lower peak power.  

Finally, short pulses were studied to determine if the individual collapse events of 

the long pulse could continue to propagate with soliton-like behavior. Studies of 10 and 

100 fs pulses at varying power levels indicated that these pulses were subject to the same 

edge effects as the long pulses of hundreds of picoseconds, and were not capable of 

propagating long distances or exhibiting soliton-like behavior. Additional runs with 100 

ps pulses showed no change in the formation or evolution of the leading edge collapse 

peaks. These peaks did not show any signs of propagating once they had broken apart 

from the main pulse, which suggested that the individual collapse peaks would not 

exhibit soliton-like behavior. The initial shape of these short pulses and the collapse 

events could contribute to the lack of continued propagation, as they deviated from the 

hyperbolic secant shape required to form a fundamental soliton. 

Significance of Research 
 

The benefits of utilizing light filaments in the areas of remote sensing and 

spectroscopy are of value to the Air Force. Understanding the way that these filaments 

propagate and the limitations involved in their use is the first step from moving from 

theoretical simulations to physical recreations of the predicted behaviors, or, 

alternatively, in providing explanations for experimental results. Robust and detailed 
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models are required to investigate the usefulness of this region of the spectrum in creating 

and propagating filaments. Because of the instabilities in the propagation of these long 

UV pulses detailed by Niday [19], the more that is known about how and why these 

pulses collapse helps create a deeper understanding about the pulses and a greater 

possibility of realizing practical uses of UV filaments in Air Force applications.  

The fact that the consumption rate of the pulse by the collapse of the leading edge 

is not linked to the initial peak power of the pulse is promising in that more powerful 

pulses could be used without fear of an even more premature collapse, leading to more 

power available on the target of interest. . However, the inability to mitigate the collapse 

events on the leading edge of the pulse still hinders the distances that these filaments can 

propagate in the model, which could limit their use in long distance sensing given that the 

same behavior occurs in an experimental environment. The determination that the 

spacing of the collapse events is dependent on the initial peak power of the pulse and the 

plasma decay rate illustrates that the pulse collapse is not an arbitrary phenomenon. There 

is some structure that can be associated with how the pulse is consumed by the collapse 

events, and there may be some way to take advantage of this collapse structure to 

lengthen the distance of filament propagation.  

The evidence of a trailing edge collapse is important because it brings to light 

another possible source of instability in the pulse. Until more is known about the cause of 

this collapse, however, nothing can be definitively said about its effect on propagation. 

The possibility that it is a numerical error in the model needs to be investigated to prove 

that the model is accurately modeling filament propagation, and not contributing to a 

premature collapse of the long pulse. Additionally, if the collapse of the pulse is 
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contributing to the breakdown of the model, a numerical solution needs to be found that 

allows the model to continue to propagate the pulse as the leading edge is consumed by 

collapse events. Finding flaws in the way that the model propagates the pulse is 

significant because it allows improvements to be made to the model from which 

additional information may arise, and may alter previous results in a way beneficial to the 

long-distance propagation of UV light filaments.  

Finally, the addition of GVD to the model adds another layer of capability to the 

program. The ability to model short pulse propagation is important in studying individual 

collapse events, the continued possibilities of propagation once the long pulse has 

collapsed, and the further verification of the code in the IR spectrum by comparing 

results to published work. Each verification of the numerical model lends strength to the 

validity of the results obtained in the UV, and the more complex the model is, the more 

ways exist to study UV filament propagation in a variety of situations.  

Recommendations for Future Research 
 

There are still many areas to be investigated regarding long pulse filament 

formation and propagation in the UV, as well as many ways of expanding the capabilities 

of the current model. This section covers the known issues that remain unaddressed by 

the current model, discusses new questions raised by the work done here, and mentions 

experimental verification that could be of use in future iterations of the model. All topics 

would be suitable for future work not only to create a more robust and versatile numerical 

propagation model, but also to continue to study long pulses in the UV accurately. 
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First, simplifications to the propagation equation still remain. For example, the 

Raman effect has been neglected here, and could be included in the propagation model to 

study the results of non-instantaneous self-focusing. Restoring the last term in Equation 

2.1 to the model will include Raman scattering in the propagation scheme [29]. This 

includes the time dependence of the nonlinear refractive index and changes the term to n2
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In Equation 5.1, f is the fraction of the nonlinear response contributed by the time-

dependent component. The time-dependent component in this case is stimulated 

rotational Raman scattering. Plasma diffusion is another physical characteristic that is not 

taken into account by the current model, and can be included by letting D be nonzero in 

the plasma equation given by Equation 2.2. For an even more complex and realistic 

model, adding more refractive index variation terms to the propagation equation such as 

turbulence or a change in the index of refraction due to altitude may be of interest.  

 Changing the MPI coefficient β  also led to a convergence of results which 

answered a number of questions about the validity of the model. Because the numerical 

parameters of the model were no longer dictating how the pulse propagated, there 

remains a considerable amount of work in reviewing the results obtained without the 

adjusted loss parameter and how changing β  affects these results. Figure 5.1 illustrates 

two such changes in the results. First, the plasma profile has changed – the separation of 

the peaks does not appear to be dictated by the plasma decay rate. Also, the grid overflow 
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issue in the frequency domain has been lessened substantially and possibly eliminated, 

which would stop the trailing edge of the pulse from collapsing due to numerical errors.  

(a)  

 

(b) 

 

Figure 5.1. Figures showing the (a) plasma profile of a 10 ps, 250 MW pulse after 1 meter of propagation 
with the increased MPI coefficient, and (b) the same pulse in the frequency domain showing that the grid 
overflow issue has been greatly reduced or possibly eliminated. Note that in (a) the plasma is not evident in 
substantial levels between the smaller collapse events, and that the decay time is larger than the pulses 
looked at previously. The overall effect of changing the value of β  needs to be investigated in all of the 
results in this study.  

    90 
 



Specific questions raised from this work are also worth deeper investigation. First, 

as the pulse is consumed by collapse events on the leading edge, the trailing edge also 

begins to exhibit features that seem to contribute to the overall collapse of the pulse. 

What causes this separate set of collapses and why they only form after the pulse has 

been consumed over much of its length are still unknown. Numerical errors do form on 

the flat portion of the pulse once both edges undergo collapse. The trailing edge may also 

be subject to these numerical errors, and those collapse events could simply be another 

numerical artifact with no real physical meaning. The results shown in Chapter 4 showing 

the grid overflow in the frequency domain strengthens the argument that the pulse is 

breaking down due to the large number of very intense, narrow collapse events on the 

front of the pulse. Alternatively, the pulse could become so unstable from the leading 

edge collapsing that the trailing edge simply collapses as well, due to uneven areas of the 

atmosphere or plasma generated by the leading edge. Both physical and numerical 

reasons behind the collapse of the trailing edge could be an area of study. Also, refining 

the code to create a more robust numerical model to eliminate any grid overflow issue is 

also a possibility.  

Despite varying numerical and physical parameters in the model, the edge effects 

continued to collapse and consume the pulse. More work can be done to mitigate or 

negate these collapse events in an attempt to find a stable, time-dependent long pulse 

solution. Numerically, one issue that could be investigated is the relationship between the 

number of elements that define the time grid and the size of the time step. If a way to 

create a high-resolution time step without having to create a larger time grid could be 

developed, then greater resolution could be achieved without slowing down the model 
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with excessive grid size. In addition, one could propagate a long pulse (100 ps) but have 

enough resolution to closely study the individual collapse events as they emerge from the 

pulse. Currently, these events collapse down to a size comparable to the grid spacing in 

the temporal grid with no way of looking at them more closely.  

Alternatively, the pulse could be allowed to collapse and the individual collapse 

events could be studied. The separate pulses that form once the leading edge of the pulse 

collapses could be remnants of the longer pulse that will continue to fade, or they may be 

solitons that are capable of propagating long distances after the longer pulse has been 

completely consumed. This has still not been determined. Modeling runs with multiple 

short pulses present initially could be conducted to determine this, and also to understand 

whether these pulses interact with each other as they propagate. The results presented 

here do not show any evidence of the pulse continuing to propagate once it has collapsed. 

By altering the propagation model in the ways described above, this may change and is 

worth pursuing.  

The shape of the short pulses and individual collapse events are also important in 

the formation of solitons. While pulses with peak powers and shapes that do not exactly 

match the conditions required to form a fundamental soliton are theoretically able to 

evolve during propagation to match the required parameters, substantial deviations from 

the ideal parameters could result in a soliton not forming at all [21]. Future studies could 

include introducing capabilities to the current model to propagate solitons starting with a 

hyperbolic secant-shaped pulse. Once solitons were modeled correctly, the initial pulse 

could slowly deviate away from the ideal conditions required for soliton formation and 

the results studied. This would not only provide a starting point for studying how solitons 
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propagate, but also hopefully provide information on how far the initial pulse conditions 

can deviate from the required quantities before a soliton does not form. This would help 

to bridge the gap between an ideal soliton and the types of short pulses and collapse 

events the model can currently produce, and shed more light on if the collapse events are 

capable of propagating once the long pulse has broken down into a series of smaller 

peaks.   

The idea of multiple pulses brings up other possibilities. If a long pulse collapses 

into multiple solitons, forming a pulse train, are these pulses capable of moving through 

or around obscurants that may be present in the atmosphere, and if so, what effects do 

these obscurants have on short pulse propagation? The pulses may be able to interact with 

objects in the atmosphere such as water droplets and reform with little loss in power or 

even reform into a larger pulse once more. Some studies have already been conducted in 

the IR testing these theories. Moving these ideas to the UV or continuing the research in 

the IR is feasible.  

If the short pulse model from this work is extended, the model could also become 

useful for studying pulses in the IR, which require the capabilities added to the model in 

this work, such as GVD and the ability to model pulses of short durations (10-100 fs). 

Because a great deal of both theoretical and experimental work has been done in the IR 

regime, it will be straightforward to compare the results of this model to those achieved 

by others.  

Experimental verification of the collapse of the leading edge of the pulse or 

consumption of the pulse by modulational instabilities would be useful to evaluate the 

results predicted by the model. Additionally, experiments involving short pulses in the 
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UV would be useful to test some of the questions raised above – namely the way in 

which short UV pulses propagate, or the ability of these pulses to propagate through 

obscurants or in pulse trains.  

Finally, the application of these pulses to areas of interest to the Air Force could 

also be considered in a survey of current Air Force remote sensing capabilities. 

Determining the length and wavelength of a filament to be used in activities such as 

active remote sensing, delivering energy to a target for offensive purposes, or guiding 

electrical discharges are all topics that could be investigated more closely. The needs of 

each application as well as the guidelines for wavelength, power and safety are all 

important when considering possible applications of filament propagation in active Air 

Force systems.  
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