Duration of protection of rabbits after vaccination with
Bacillus anthracis recombinant protective antigen vaccine

S.F. Little a,⁎, B.E. Ivins a, W.M. Webster a, P.F. Fellows a,1, M.L.M. Pitt b, S.L.W. Norris c, G.P. Andrews a,2

a United States Army Medical Research Institute of Infectious Diseases, Bacteriology Division, 1425 Porter Street, Fort Detrick, Frederick, MD 21702-5033, USA
b United States Army Medical Research Institute of Infectious Diseases, Center for Aerobiological Sciences, 1425 Porter Street, Fort Detrick, Frederick, MD 21702-5033, USA
c United States Army Medical Research Institute of Infectious Diseases, Goldbelt Raven, LLC/Research Plans and Programs Office, 1425 Porter Street, Fort Detrick, Frederick, MD 21702-5033, USA

Received 29 July 2005; received in revised form 28 November 2005; accepted 13 December 2005
Available online 27 December 2005

Abstract

Long-term protection of rabbits that had been vaccinated with two doses of a recombinant protective antigen (rPA) vaccine was examined against an aerosol spore challenge with the Ames isolate of *Bacillus anthracis* at 6 and 12 months. At 6 months after the primary injection, survival was 74.1% (20/27) with quantitative ELISA titer of 22.3 μg of anti-rPA IgG per milliliter and toxin neutralizing antibody (TNA) assay titer of 332. At 12 months after the primary injection, only 37.5% (9/24) of the rabbits were protected with quantitative ELISA titer of 19.8 μg of anti-rPA IgG per milliliter and TNA assay titer of 286. There was a significant loss of protection (p = 0.0117) and a significant difference in survival curves (p = 0.0157) between the 6- and 12-month groups. When ELISA or TNA assay titer, gender, and challenge dose were entered into a forward logistic regression model, week 26 ELISA titer (p = 0.0236) and week 13 TNA assay titer (p = 0.0347) for the 6-month group, and week 26 ELISA titer (p = 0.0326) and week 8 TNA assay titer (p = 0.0390) for the 12-month group, were significant predictors of survival. Neither gender nor challenge dose were identified as having a statistically significant effect on survival. Booster vaccinations with rPA may be required for the long-term protection of rabbits against anthrax.

Published by Elsevier Ltd.

Keywords: Anthrax; rPA vaccine; Immunity

1. Introduction

Protection against infection with *Bacillus anthracis* is afforded by a cell-free, FDA-licensed vaccine, Anthrax Vaccine Adsorbed Biothrax (AVA Biothrax; BioPort Corporation, Lansing, MI, USA). AVA Biothrax is prepared by adsorbing filtered culture supernatant fluid from a toxigenic, unencapsulated strain of *B. anthracis*, V770-NP1-R, onto an aluminum hydroxide gel adjuvant. The vaccine contains protective antigen (PA), lethal factor (LF), and various bacterial products which are adsorbed onto the adjuvant [1]. The bipartite anthrax exotoxins, lethal toxin and edema toxin, are formed using the shared constituent PA combined with LF or edema factor (EF), respectively [2]. The major protective component of AVA Biothrax is PA [3–5].
Duration of protection of rabbits after vaccination with Bacillus anthracis recombinant protective antigen vaccine. Vaccine 24:2530 -2536

Long-term protection of rabbits that had been vaccinated with two doses of a recombinant protective antigen (rPA) vaccine was examined against an aerosol spore challenge with the Ames isolate of Bacillus anthracis at 6 and 12 months. At 6 months after the primary injection, survival was 74.1% (20/27) with quantitative ELISA titer of 22.3µg of anti-rPA IgG per millilitre and toxin neutralizing antibody (TNA) assay titer of 332. At 12 months after the primary injection, only 37.5% (9/24) of the rabbits were protected with quantitative ELISA titer of 19.8µg of anti-rPA IgG per millilitre and TNA assay titer of 286. There was a significant loss of protection (p=0.0117) and a significant difference in survival curves (p=0.0157) between the 6- and 12-month groups. When ELISA or TNA assay titer, gender, and challenge dose were entered into a forward logistic regression model, week 26 ELISA titer (p=0.0236) and week 13 TNA assay titer (p=0.0147) for the 6-month group, and week 26 ELISA titer (p=0.0326) and week 8 TNA assay titer (p=0.0190) for the 12-month group, were significant predictors of survival. Neither gender nor challenge dose were identified as having a statistically significant effect on survival. Booster vaccinations with rPA may be required for the long-term protection of rabbits against anthrax.

Subject Terms

Bacillus anthracis, anthrax, recombinant protective antigen, vaccine, immunity
In addition to the non-human primate model for anthrax [6,7], the New Zealand white rabbit is considered to be an appropriate animal model for human inhalation anthrax [8]. In studies evaluating the efficacy of AVA and recombinant protective antigen (rPA) vaccines as well as developing in vitro surrogate markers, both the quantitative anti-rPA IgG ELISA and toxin neutralizing antibody (TNA) assay were determined to support serological correlates of immunity in the rabbit aerosol challenge model [9,10]. Long-term protection studies (1–2 years) have been conducted in non-human primates using vaccine preparations similar to AVA [11]. A question that remains unanswered is the long-term efficacy of the rPA vaccine in the rabbit aerosol model. For these studies, rabbits were vaccinated intramuscularly (i.m.) with rPA vaccine preparations at 0 and 4 weeks (primary and secondary vaccinations, respectively) then challenged by the aerosol route either at 6 or 12 months after the primary vaccination. Antibody titers were measured periodically by a quantitative anti-rPA IgG ELISA and a TNA assay, the latter which measures functional antibody activity against lethal toxin cytotoxicity in vitro.

2. Materials and methods

2.1. Animals

An equal number of male and female New Zealand white (NZW) rabbits (3.0–3.5 kg) (Covance Research Products, Denver, PA, USA) were used in the study. The animals received food and water ad libitum. Research was conducted in compliance with the Animal Welfare Act and other federal statutes and regulations relating to animals and experiments involving animals and adheres to principles stated in the Guide for the Care and Use of Laboratory Animals, National Research Council, 1996. The facility where this research was conducted is fully accredited by the Association for Assessment and Accreditation of Laboratory Animal Care International.

2.2. Vaccination and challenge of rabbits

Recombinant PA (rPA), expressed in a B. anthracis background [5,12] was manufactured as a cGMP lot by the Bio-Pharmaceutical Production Facility at NCI-FCRC (Frederick, MD, USA) using a modification of a reported procedure [13]. The same lot of rPA was used throughout these experiments for vaccinations and serological analysis of antibody response. Lethal factor was prepared as previously described [14]. Recombinant PA was adsorbed to Alhydrogel (2% Al₂O₃; HCL Biosector (formerly Superfos Biosector) Fredriksund, Denmark) for 20–24 h at 4 °C before use. NZW rabbits were vaccinated i.m. with 50 μg of rPA vaccine preparations adsorbed to 0.5 mg of aluminum per injection in 0.5 ml volumes at 0 and 4 weeks. There were 28 rabbits (14 male and 14 female) in the 6-month vaccinated group and 24 rabbits (12 male and 12 female) in the 12-month vaccinated group. In the statistical analysis of the data, one female rabbit from the 6-month vaccinated group was identified as an outlier and was removed from the analysis. A group of unvaccinated rabbits (two male and two female) served as challenge controls at each challenge date. At either 6 or 12 months post primary vaccination, rabbits were exposed (head only) to a small-particle aerosol in a modified Henderson exposure system contained within a class III biological safety cabinet with a lethal dose of spores from the Ames isolate of B. anthracis [9]. Inhaled doses were calculated using the aerosol exposure concentration obtained from plate counts from the all-glass impinger which continuously sampled the test atmosphere during the 10 min exposure time and the respiratory minute volume for each animal [9]. Spores were prepared as previously described [9] and the same lot of spores was used for both challenge dates. Survival was noted for 21 days after challenge. The time-to-death (day) was expressed as the average ± standard deviation (S.D.). The aerosol LD₅₀ of Ames spores in NZW rabbits is 1.1 × 10⁷ spores [9]. The inhaled dose of spores (average LD₅₀ ± S.D.) at the 6-month challenge for the vaccinated rabbits was 374 ± 182.0 LD₅₀ (4.1 × 10⁷ spores) and for the control rabbits it was 502 ± 98.2 LD₅₀ (5.5 × 10⁷ spores). At the 12-month challenge, the inhaled dose of spores (average LD₅₀ ± S.D.) was 669 ± 150.6 LD₅₀ (7.4 × 10⁷ spores) for the vaccinated rabbits and for the control rabbits it was 650 ± 106.4 LD₅₀ (7.2 × 10⁷ spores).

2.3. Serological analysis of antibodies

Blood was collected periodically for analysis of serum antibodies by a quantitative anti-rPA IgG ELISA and TNA assay [10]. ELISA titers were determined by interpolating the average absorbance value for triplicate wells of each sample with the absorbance values of a standard curve generated from seven dilutions of affinity purified rabbit anti-rPA IgG by linear regression analysis and reported as micromolars of anti-rPA IgG per ml (KC4 software, BioTek Instruments, Winooski, VT, USA) [9,10]. Titers were presented as the geometric mean ± standard error of the geometric mean (S.E.M.). For the TNA assay, the average absorbance value of triplicate wells for each test sample dilution, less the average absorbance value of triplicate wells incubated with lethal toxin, was divided by the average absorbance value of control wells that contained only medium, less the average absorbance value of triplicate wells incubated with lethal toxin, and the ratio multiplied by 100 to obtain the percent viability of the test wells compared to the control wells:

\[
\text{Percent Control} = \frac{\text{sample avg} \times \text{lethal toxin avg}}{\text{medium control avg} \times \text{lethal toxin avg}} \times 100
\]

The percent control values were plotted against each respective test dilution using a 4-parameter logistic equation algorithm and TNA assay titers were expressed as the reciprocal of the dilution of antisera that neutralized the cytotoxic
activity of lethal toxin on J774A.1 cells at 50% of control values (ED50) using XLTi software (IDBS, Inc., Emeryville, CA, USA). Titers were presented as the geometric mean ± S.E.M.

2.4. Data analysis

Log50 transformations were applied to all ELISA and TNA assay titers. After transformation, the dependent variable met assumptions of normality and homogeneity of variance. Titers from one female rabbit in the 6-month group were found to be outliers [15] and were excluded from the statistical analysis. Pearson correlation coefficients were calculated between ELISA and TNA assay titers. Mixed model analysis of variance (ANOVA) was used to compare titers between gender, over time, and between challenge groups. The effects of gender and ELISA titer or TNA assay titer on the probability of survival were assessed using a backward-selection logistic regression model. The effects of gender, ELISA or TNA assay titer, and challenge dose on the probability of survival were assessed using a forward-selection logistic regression model. Survival analysis was performed using the Kaplan–Meier method, with log rank tests for comparison of survival curves, which is a plot of the percent survival as a function of time. Fisher exact tests and chi-square tests for proportions were used to compare survival of the 6- and 12-month groups, respectively (Table 1). Peak serological titer were reached at week 6, which was 2 weeks after the booster injection with 50 μg of rPA given at week 4. At week 6, the ELISA titers were 384.2 μg of anti-rPA IgG per millilitre and 294.8 μg of anti-rPA IgG per millilitre for the 6- and 12-month groups, respectively, and the TNA assay ED50 titers were 4641 and 3335 for the 6- and 12-month groups, respectively (Table 1). TNA assay ED50 titers were significantly different between the 6- and 12-month groups at week 6 (p = 0.0068) and week 8 (p = 0.0046). We cannot explain the reason for these significant differences in the TNA assay ED50 titers between the 6-month and 12-month groups at weeks 6 and 8. Some lot of rPA was used to prepare the vaccine for either the primary or secondary vaccination of the rabbits. After week 6, antibody responses gradually declined to week 26 (6 months) and then generally remained at that concentration until week 52 for the 12-month group with an ELISA titer of 19.8 μg of anti-rPA IgG per millilitre and a TNA assay ED50 titer of 266 (Table 1). While the ELISA titers at weeks 26, 39, and 52 were similar with those measured at week 4, the TNA assay titers were about four-fold higher at weeks 26, 39, and 52 than those measured at week 4 prior to the booster injection. Two weeks after the booster vaccination, the TNA assay ED50 titers increased by about 60-fold compared to about a 18-fold increase in the anti-rPA IgG ELISA titers. The fold-increase difference between the TNA assay and ELISA titers might suggest differences between the presentation of the epitopes of rPA available in solution (native conformation) and bound to plastic (denatured epitopes) or it might be the effect of the adjuvant on the antibody response to antigenic determinants on rPA.

Aerosol challenge of the vaccinated rabbits at 6 months (week 26) with 374 ± 182.0 LD50 spores of the Ames isolate of B. anthracis resulted in 74.1% survival (20/27) with an average time-to-death of 4.0 ± 0.82 days. Challenge control rabbits (n = 4) received 502 ± 98.2 LD50 Ames spores and had an average time-to-death of 2.3 ± 0.5 days. ELISA and TNA assay ED50 titers from the 6-month group that survived Table 1 Quantitative anti-rPA IgG ELISA and TNA assay titers

<table>
<thead>
<tr>
<th>Assay</th>
<th>Group</th>
<th>Time post primary injection (week)</th>
<th>0</th>
<th>4</th>
<th>6</th>
<th>13</th>
<th>26</th>
<th>39</th>
<th>52</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELISA</td>
<td>6-month</td>
<td>BLQ2</td>
<td>21.1 (1.221)</td>
<td>384.2 (1.086)</td>
<td>220.9 (1.075)</td>
<td>65.2 (1.098)</td>
<td>22.3 (1.142)</td>
<td>na</td>
<td>na</td>
</tr>
<tr>
<td></td>
<td>12-month</td>
<td>BLQ</td>
<td>17.6 (1.380)</td>
<td>294.8 (1.168)</td>
<td>187.7 (1.163)</td>
<td>58.1 (1.134)</td>
<td>24.3 (1.145)</td>
<td>15.3 (1.190)</td>
<td>19.8 (1.257)</td>
</tr>
<tr>
<td>TNA</td>
<td>6-month</td>
<td>1.0 (na)</td>
<td>86.6 (1.239)</td>
<td>4641 (1.058)</td>
<td>2202 (1.068)</td>
<td>779 (1.105)</td>
<td>332 (1.127)</td>
<td>na</td>
<td>na</td>
</tr>
<tr>
<td></td>
<td>12-month</td>
<td>1.0 (na)</td>
<td>63.6 (1.436)</td>
<td>3335 (1.113)</td>
<td>1516 (1.107)</td>
<td>735 (1.127)</td>
<td>307 (1.183)</td>
<td>268 (1.192)</td>
<td>266 (1.215)</td>
</tr>
</tbody>
</table>

* Rabbits were inoculated with 50 μg of rPA vaccine at 0 and 4 weeks.
* BLQ: below the limit of quantitation.
* Micrograms of anti-rPA IgG per millilitre.
* Number in parentheses is the S.E.M.
* na, not applicable.
* The reciprocal of the dilution of serum that protected half of the cells from lethal toxin cytotoxicity (ED50). If the ED50 titer could not be extrapolated from the 4-parameter logistic regression curve, the value was arbitrarily assigned a value of 1.0. The starting dilution for the TNA assay was 1:50.
* Tier significantly different between 6- and 12-month group (p < 0.0046).
challenge are compared with those that died from the challenge in Table 2. Except for week 4 serological responses, both the quantitative anti-rPA IgG ELISA and TNA assay ED50 titers were higher for rabbits that survived challenge than for rabbits that died from the challenge. Significant differences were measured between survivors and non-survivors quantitative anti-rPA IgG ELISA titer at week 26 (p = 0.0100), and TNA assay ED50 titers at week 8 (p = 0.0048), week 13 (p = 0.0017), and week 26 (p = 0.0128), but not at week 4 (p = 0.5663) or week 6 (p = 0.0655).

There was a significant correlation between ELISA titer and quantitative anti-rPA IgG ELISA titer at week 26 (p = 0.0100) and TNA assay ED50 titers at week 8 (p = 0.0048), week 13 (p = 0.0017), and week 26 (p = 0.0128). There was a significant correlation between ELISA titer and TNA assay ED50 titers at week 4, 13, and 26 (p < 0.0001) and week 8 (p = 0.0031), but not at week 6 (p = 0.4021). Significant differences were not measured between genders in survival rates (p = 0.3845) (Table 3) nor in survival curves (p = 0.3155) for the 6-month challenge group. The mean survival time for males was 15 ± 2.38 days and for females it was 18 ± 2.55 days. Significant differences in ELISA titers between male and female rabbits were observed at week 4 (p = 0.0075), week 6 (p = 0.0232), week 13 (p = 0.0057), and week 26 (p = 0.0001), but not at week 8 (p = 0.2704). Female rabbits had significantly higher TNA assay ED50 titers than male rabbits at week 4 (p = 0.0235), week 8 (p = 0.0350), week 13 (p = 0.0003), and week 26 (p = 0.0061), but not at week 6 (p = 0.3170). When gender and ELISA titer or TNA assay ED50 titer were entered into a backward logistic regression model, the week 26 ELISA titer (p = 0.0236) and week 13 TNA assay ED50 titer (p = 0.0147) were significant predictors of survival.

Aerosol challenge of rabbits at 12 months (week 52) with 669 ± 150.6 LD50 spores of the Ames isolate of B. anthracis resulted in 37.5% survival (9/24) with an average time-to-death of 4.4 ± 0.91 days. Challenge control rabbits (n = 4) received 650 ± 106.4 LD50 spores and had an average time-to-death of 2.8 ± 0.5 days. ELISA and TNA assay titers of the rabbits from the 12-month challenge group that survived challenge are compared with those that died from the challenge in Table 2. Both the quantitative anti-rPA IgG ELISA and TNA assay ED50 titers were higher for rabbits that survived challenge than for rabbits that succumbed to the challenge. Significant differences were measured between survivors and non-survivors quantitative anti-rPA IgG ELISA titer at week 26 (p = 0.0017), week 39 (p = 0.0001), and week 52 (p = 0.0038) and week 8 (p = 0.0025), but not at week 4 (p = 0.5975).
at all weeks ($p < 0.0001$). Although there were no significant differences in survival rates between male and female rabbits ($p = 0.0894$), there was a significant difference in survival curves between the genders ($\chi^2(1) = 4.16, p = 0.0415$) (Table 3). The mean survival time of female rabbits was 14 ± 2.65 days, whereas the mean survival time for males was 7 ± 1.90 days. Significant differences in ELISA titers between male and female rabbits were observed at week 26 ($p = 0.0203$), week 39 ($p < 0.0001$), and week 52 ($p = 0.0013$) and TNA assay ED50 titers between male and female rabbits at week 39 ($p = 0.0003$) and week 52 ($p = 0.0136$) (Table 4). Week 26 ELISA titer ($p = 0.0326$) and week 39 TNA assay ED50 titer ($p = 0.0209$) were identified as significant predictors of survival when gender and titer were entered into a backward logistic regression analysis for the 12-month challenge group.

There was a significant loss of protection ($p = 0.0117$) and a significant difference in survival curves ($p = 0.0157$) between the 6- and 12-month groups. A comparison between the quantitative anti-rPA IgG ELISA titers showed no statistical differences in ELISA titers for each time period tested between the two groups. However, as stated above, statistically significant differences were measured between the 6- and 12-month group TNA assay ED50 titers and female and male rabbits (Table 4) at various weeks were also measured for both the 6- and 12-month groups. Gender differences in survival rates were not observed for the 6- and 12-month groups but gender differences in survival curves were observed only for the 12-month group. At the 12-month timeframe, male rabbits had decreased survival and lower serological responses than female rabbits as measured by ELISA and TNA assay ED50 titers. In a previous study [10], we reported that gender had no influence on survival in rabbits vaccinated with rPA vaccine and challenged 4 weeks later. The difference in survival between the 6- and 12-month groups probably was not influenced by the significant difference between the challenge doses. When gender, ELISA titer, and challenge dose were combined within each group, forward logistic regression analysis showed that for both the 6- and 12-month groups, week 8 ($p = 0.0236$ and 0.0326, respectively) again were significant predictors of survival. Similarly, when gender, TNA assay titer, and challenge dose were combined within the 6-month group, week 13 ($p = 0.0147$) remained as a significant predictor of survival in the forward logistic regression model. However, for the 12-month group, week 8 ($p = 0.0190$) remained in the forward logistic regression model as significant predictors of survival instead of week 39 that was identified by the backward logistic regression analysis. The difference between the two results, week 39 or week 8, is attributed to the backward and forward regression analysis model effect. When tested by logistic regression, challenge dose did not have a statistically significant effect on survival outcome ($p = 0.3427$). When gender, titer from week 4 through week 26, and challenge dose were combined for both the 6- and 12-month groups, challenge dose again was not a significant predictor of survival ($p = 0.2281$), while group remained in the equation ($p = 0.0124$).

Early anthrax vaccines were prepared by adsorbing filtered culture supernatant fluids to aluminum potassium sulfate (alum) [11,16,17] or aluminum hydroxide gel [18]. These vaccines provided excellent short-term protection of rabbits and non-human primates against challenge [11,16–18]. Wright et al. [17] observed complete protection of non-
human primates with two doses of alumin-precipitated vaccine injected at 0 and 2 weeks against an intracutaneous challenge with \(B.\) anthracis spores (between 50,000 and 100,000 spores) after 1 year and against a Volum aerosol spore challenge (8.9 \(\times 10^6 \) to 3 \(\times 10^6 \) spores) after 34 days. Darlow et al. [11] also protected non-human primates with two doses of an alum precipitated vaccine inoculated at 10-day intervals against an aerosol challenge with approximately 10–15 LD\(_{50}\) of \(B.\) anthracis M.36 after 1 year (100%, 12/12) and after 2 years (85%, 6/7). In the current study, we observed limited protection of rabbits inoculated with a single dose of \(B.\) anthracis spores 6 weeks after vaccination with a single dose of \(B.\) anthracis spores, Boor [21] vaccinated rabbits with three 1 ml doses of a cell-free antigen preparation (prepared without an adjuvant) at 6-day intervals and observed a gradual decrease in protection against an intradermal challenge with spores of the CD25 (also referenced as M.36) strain of \(B.\) anthracis from weeks 1 to 8 and no protection at week 10. Challenge times were relative to the third vaccine dose. In the current study, we observed limited protection of rabbits 6 months (74.1%) and 1 year (37.5%) after injection of two doses of 50 \(\mu\)g of rPA adsorbed to alhydrogel against an aerosol challenge with \(B.\) anthracis Ames spores. In our previous study, after the peak antibody titer was measured at 2 weeks after a single dose of rPA vaccine, we observed a steady decrease in the ELISA antibody titer as well as with the TNA assay ED\(_{50}\) titer [10]. Similarly, after two doses of 10 \(\mu\)g of rPA vaccine, peak ELISA titers of 416 \(\mu\)g and TNA assay ED\(_{50}\) titer of 4270 were measured at week 6, after which a decrease in ELISA antibody titer and TNA assay ED\(_{50}\) titer were measured at week 10 [10]. In the present study, we also observed a steady decrease in antibody titers from week 6 until the 6 month time point, after which the measured titers remained relatively unchanged until the 12-month time frame, which was the end of this study. The titers that were measured at 6 and 12 months, however, were not simi-

Table 4

<table>
<thead>
<tr>
<th>Time post initial injection (week)</th>
<th>ELISA titer (mg anti rPA IgG) per milliliter(\text{a}^2)</th>
<th>TNA assay ED(_{50}) titer(\text{a}^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Male</td>
<td>Female</td>
</tr>
<tr>
<td>4</td>
<td>12.9 (1.27)</td>
<td>30.6 (1.50)</td>
</tr>
<tr>
<td>6</td>
<td>321.8 (1.12)</td>
<td>465.0 (1.11)</td>
</tr>
<tr>
<td>8</td>
<td>204.4 (1.10)</td>
<td>240.2 (1.11)</td>
</tr>
<tr>
<td>13</td>
<td>51.5 (1.13)</td>
<td>64.3 (1.11)</td>
</tr>
<tr>
<td>26</td>
<td>14.2 (1.19)</td>
<td>36.0 (1.09)</td>
</tr>
<tr>
<td>39</td>
<td>na</td>
<td>na</td>
</tr>
<tr>
<td>52</td>
<td>10.4 (1.24)</td>
<td>40.1 (1.35)</td>
</tr>
</tbody>
</table>

\(\text{a}^2\) ELISA titer expressed as micrograms of anti-rPA IgG per milliliter. Number in parentheses is the S.E.M.

\(\text{b}^2\) TNA assay titer expressed as the reciprocal of the dilution of serum that protected half of the cells from lethal toxin cytotoxicity (ED\(_{50}\)). Number in parentheses is the S.E.M.

\(\text{c}^2\) Significant differences in quantitative anti-rPA IgG ELISA titers between genders for week 4 \((p=0.0075)\), week 6 \((p=0.0232)\), week 13 \((p=0.0057)\) and week 26 \((p=0.0001)\) but not for week 8 \((p=0.2704)\).

\(\text{d}^2\) Significant differences in quantitative anti-rPA IgG ELISA titers between genders for week 26 \((p=0.0013)\) but not for week 4 \((p=0.1527)\), week 6 \((p=0.3462)\), week 8 \((p=0.8752)\), or week 13 \((p=0.7996)\).

\(\text{e}^2\) Significant differences in TNA assay ED\(_{50}\) titers between genders for week 4 \((p=0.0350)\), week 8 \((p=0.0003)\), and week 52 \((p=0.0016)\) but not for week 6 \((p=0.3178)\).

\(\text{f}^2\) Significant differences in TNA assay ED\(_{50}\) titers between genders for week 39 \((p=0.0003)\) and week 52 \((p=0.0136)\) but not for week 4 \((p=0.1850)\), week 6 \((p=0.2691)\), week 8 \((p=0.2781)\), week 13 \((p=0.5035)\), or week 26 \((p=0.0898)\).
lar in that they were not indicative of comparable protective capacity against a lethal spore challenge. One explanation for the difference in long-term protection between the two animal models may be related to the greater susceptibility of rabbits to infection [8]. The more rapid development of anthrax in the rabbit, compared to the non-human primate [8], may not allow for an adequate amount of time for immunological memory to mount an effective protective response against the infection. Also, the interrelationship between PA-specific memory B cells (humoral immunity) and T cells (cellular immunity) against inhalation anthrax has yet to be determined in the animal models. The role of humoral and cell-mediated immunity in the non-human primate is undergoing extensive research [20]. A recent report by Marcus et al. [22] described immunological memory in guinea pigs vaccinated with rPA and challenged intradermally with V. cholerae. They found that protection was achieved only after protective levels of neutralizing antibodies were measured 8 days after a booster injection [22].

Humans also demonstrate a decreasing serum antibody concentration to PA after vaccination withAVA over time. In a clinical trial, in which the route and dosing schedule ofAVA were evaluated, the peak ELISA titer of human subjects inoculated at 0 and 4 weeks occurred at week 6 and of AVA were evaluated, the peak ELISA titer of human subjects inoculated at 0 and 4 weeks occurred at week 6 and was measured at about 550 μg of anti-PA IgG per millilitre [23]. At 24 weeks, the ELISA titer was approximately 40 μg of anti-PA IgG per millilitre [23]. Darlow et al. [11] argued that the initial two doses of alum-precipitated vaccine given at 0 and 10 days were insufficient to produce an adequate long-term immunological response in humans based upon the non-human primate data and that a yearly booster injection was needed. As already noted above, in spite of an absent immunological response in the non-human primate, full protection against infection was observed. The immunological response, however, resulting from the booster injection also decreased by half within 1 year [11]. The gradual decline in antibody titer over time in rabbits, non-human primates, and humans, which is the parameter that is currently used to determine the immunological status after vaccination, argues for periodic booster inoculations to maintain an appreciable titer. Further studies are necessary in order to understand the immunological responses after vaccination and the role of immunological memory in the rabbit and non-human primate surrogate models.

References