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1.0 Executive Summary 
The Joint Experimentation on Scalable Parallel Processors (JESPP) project exemplified the 
accessibility and the utility of High Performance Computing for large-scale simulations.  In order 
to simulate the future battlespace, the US Joint Forces Command’s (USJFCOM) 
Experimentation Directorate (J9) required expansion of its joint semi-automated forces (JSAF) 
code capabilities; including number of entities, behavior complexity, terrain resolution, 
infrastructure features, environmental realism, and analytical potential.  The USJFCOM J9 was 
charged with developing a very large-scale simulation capability of future combat environments, 
particularly urban areas, with more than one million civilian simulated entities.  Synthetic forces 
have long run in parallel on networked computers.  The JESPP strategy exploited the scalable 
parallel processors (SPPs) of the High Performance Computing Modernization Program 
(HPCMP).  SPPs provide a large number of processors, interconnected with a high performance 
switch and a collective job management framework.  To achieve the goal of simulating one 
million entities, software routers were developed that replaced multicast with point-to-point 
transmission of interest-managed packets.  This final report lays out that design and 
development.  It also details several experimentation events that have simulated up to one 
million clutter entities, which were “fought” from Suffolk, VA.  These entities were typically 
executed on remote SPP systems, one in Maui, Hawaii and one in Dayton, Ohio.  This report 
further sets forth the experience in scoping the high performance computing hardware needs to 
support SPPs, developing the project with the HPCMP, and implementing the system. 

2.0 Methods, Assumptions and Procedures 
The long-term objective of the USJFCOM has been to lead the transformation of the United 
States Armed Forces to achieve full-spectrum dominance, as described in Joint Vision 2010 and 
2020.  The research arm of the USJFCOM is J9, which integrates experimentation efforts of the 
services and unified commands.  It has been and is America's military transformation laboratory.  
To meet the DoD transformation goals, USJFCOM conducts exercises of increasing size, 
capability and resolution.  These increases needed to be orders of magnitude larger than those 
previously possible. 

To accomplish an exercise of this unprecedented scale, the first and most obvious task was the 
implementation of the core of the JSAF program on a platform capable of supporting terascale 
computing: the SPP environment.  This was the foundation for this effort.  This implementation 
could only be effective with the best parallel architecture possible, using the best practices of 
parallel programming and system engineering.  Some of this work had commenced under a 
previously conducted effort, funded by the Defense Advanced Research Projects Agency 
(DARPA).  This was the well-founded basis on which to build a program for this effort.  In 
addition, several tasks had to be completed and tools provided to enable the exercises of 
increasing size, capability and resolution.  These tasks include: 
 

• Clutter definition and SPP adaptation  
• Terrain server implementation on SPP nodes  
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• Terrain data base definition and SPP adaptation  
• Exercise initiation utility creation (to lay down entities) 

To exploit and verify SPP capabilities in this field, the initial focus was on an evaluation in 
which one million clutter entities were to be exercised on a large-scale, high resolution terrain 
database (TDB). 

In order to simulate the future battlespace, the USJFCOM J9 had to expand the capabilities of its 
JSAF code along several critical axes; including continuous experimentation, number of entities, 
behavior complexity, terrain databases, dynamic infrastructure representations, environmental 
models, and analytical capabilities.  Increasing the size and complexity of exercises supported by 
JSAF, in turn, required increasing the computing resources available to the USJFCOM.  The 
approach pursued in this effort was to exploit SPPs deployed by the DoD’s HPCMP.  Synthetic 
forces had long run in parallel on networked computers.  SPPs were a natural extension of this, 
providing a large number of processors, interconnected with a high performance switch, and a 
collective job management framework.  To effectively use an SPP, software routers that replace 
multicast messaging with point-to-point transmission of interest-managed packets were 
developed.  This in turn required development of a new simulation preparation utility to define 
the communication topology and initialize the exercise.  Tools were developed to monitor 
processor and network loading, as well as loggers capable of absorbing all of the exercise data. 

Current and future operational imperatives are driving experimental designs which require 
further expansions of JSAF capabilities.  As noted before, some of the requirements justifying 
these extensions were the need for: 
 

• More entities  
• More complex behaviors  
• Larger geographic area  
• Multiple resolution terrain  
• More complex environments 

The most readily available source of one or more orders of magnitude of increased compute 
power was the capability presented by SPPs.  In this project, the JSAF code was ported to run on 
multiple Linux clusters, using hundreds of processors on each cluster.  Future runs will require 
thousands of processors on multiple clusters.  The primary difficulty in using these resources was 
the scaling of internode communication. 

The User Datagram Protocol (UDP) multicast was limited to approximately three thousand 
different channels.  Based on geography alone, worldwide simulations using JSAF require many 
more interest states.  To enable this, the UDP multicast had to be replaced by software routers. 

Software routers were implemented on individual nodes in a network that included all of the 
client simulators.  Each simulator was connected to only one router.  Routers were connected to 
multiple clients and multiple routers.  Each connection was a two-way connection.  Two types of 
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information were present in the network.  One was data from the simulation engines along with 
interest descriptions.  The other was the current interest state of each client.  The interest state 
changes as each node subscribes and unsubscribes to specific interest sets, as was appropriate 
depending on the simulation progress. 

Each router had to maintain the interest set of each node to which it was connected, including 
other routers.  A router’s interest set was the union of all the connected nodes.  A router then 
used the interest state associated with the data it receives to determine how to forward the data.  
For a given topology, communication was minimized such that each client node received exactly 
the data in which it was interested. 

The initial router implementation was a tree router.  Each router had multiple clients but only one 
parent.  There was one router that was at the top of the tree.  A second topology was 
subsequently implemented.  This is referred to as a mesh router.  Instead of a single router at the 
top of a tree, there was a mesh of routers with all-to-all communication.  Each simulator was a 
client of one of the mesh routers.  Like the tree router, the primary task of the mesh router was to 
maintain the interest state of all clients so as to forward only data that was of interest to each 
client and router.  Further hybrid topologies were made possible with little or no code 
modification, such as a mesh of meshes or a mesh of trees.  Conceptually, the mesh provides 
better scalability, and in practice this has been demonstrated. 

Another use of routers was the implementation of gateways providing an interface between 
different runtime infrastructure (RTI) and communication implementations.  Both transmission 
control protocol (TCP) and UDP were used for communication.  Routers could use a different 
protocol on different connections and perform required data bundling, unbundling, etc.  Different 
RTI implementations, required by simulators developed by different groups, could communicate 
via router-based gateways.  A router design diagram is shown in Figure 1. 

The ultimate goal was for the capacity of a simulator network to scale easily as the numbers of 
processors were increased by several orders of magnitude.  Comprehensive testing and 
measurement was required to document the performance of various topologies and router 
implementations.  This testing identified performance bottlenecks and suggests alternative 
implementations to be tested.  Multiple simulation scenarios are required to be tested to construct 
guidelines for assigning simulators, routers and topologies to multiple SPPs. 
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Figure 1 - Router Design Diagram 

To demonstrate SPP capabilities, as well as to support future use and development of joint 
experimentation, clutter entities were identified and defined.  Further, this allowed for the 
identification, investigation, modification, creation and validation of a scalable parallelized 
terrain server for use in SPP simulations using JSAF.  To enable this server development and 
test, a terrain database was selected, analyzed and modified, as required, for parallel use on SPPs 
and prepared for use in the test.  In addition, to enable rapid testing without significant operator 
involvement, a utility to lay down the entities in a realistic and efficient manner was developed 
and incorporated into early and subsequent tests. 

3.0 Project Goals 
The following specific tasks were identified as necessary in pursuit of the project goals: 
 

• Parallelize critical JESPP functions 
• Operationalize the JESPP capability 
• Implement JESPP on two HPCMP SPPs via the Defense Research and Engineering 

Network (DREN) 
• Improve control, performance and behaviors 
• Emphasize urban environments 
• Participate in spiral events, experiments and tests 
• Implement and verify urban capabilities 
• Implement a system to log and analyze appropriate data 
• Continue to develop fault tolerant operations 
• Assist Toyon Corporation in implementing the Simulation of the Locations and Attack of 

Mobile Enemy Missiles (SLAMEMTM) capability on the cluster 
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• Install and coordinate the new J9 HPCMP Distributed Center (DC) Cluster 
• Support communications, security and encryption 

3.1 Results and Discussion 
The initial task for this project focused on successfully implementing a scalable computational 
environment for JSAF.  This was followed by efforts related to fault tolerance, experiment 
initialization/entity control, multi-platform portability, and data logging.  All of these issues were 
driven by the implementation of the SPP technology.  Appropriate centers of expertise were 
identified to resolve each of these critical areas in a way that allowed early utilization of the SPP 
technology in Joint Experimentation and produced durable and robust solutions that withstood 
the rigor imposed by the ever-changing needs of USJFCOM. 

Throughout this work, the following fundamental design goals were pursued: 
 

• Interest management and communication must be scalable. 
• There could be no artificial barriers to the number of entities allowed. 
• There must be minimal imposition on the JSAF source code. 
• A capability to introduce new modules containing undefined sensors and other novel 

entities must be enabled. 
• J9’s computational power must continue to be increased to enable it to represent new 

features; such as communication systems, dynamic terrain and advanced weather models. 

Details of the principle tasks that were identified by the USJFCOM J9 follow.  Numerous 
technical papers were written during the course of this project and are included in the Appendix 
and should be referenced in support of the results that follow. 

3.1.1 Parallelize critical JESPP functions 
The enabling of the preliminary use of the computing power that was provided by parallel 
computers was accomplished in three phases.  They were: 
 

• Implement parallel routers in MPI 
• Design and code a socket programmed version 
• Test, operate, evaluate and update code 

The first phase was accomplished early in the effort, just after the commencement of this project.  
Two versions of the routers were implemented: the tree routers and the mesh routers.  A notional 
diagram appears in Figures 2 & 3 and the papers by Dr. Gottschalk in the Appendix provide 
more explicit descriptions of the differences and relative advantages of the two designs. 
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Figure 2 - Notional Diagram of Tree Router Implementation 

 

 
Figure 3 - Notional Diagram of Mesh Router Implementation 

As there are many instantiations of modules on each node, ranging from several hundred to 
several thousand, the most critical function to parallelize was the internode communications.  
These communications were required when one entity needed to send its location, orientation 
and state to another entity.  To avoid the “n squared” scaling typical of all-to-all 
communications, filtering at the router level restricts traffic flow to the lowest acceptable levels.  
Interest management enables a scalability that permits entities within relevant proximity to 
communicate, while obviating useless communication between entities so geographically 
separated that the data is superfluous, e.g. a tank in Baghdad has no great need for real-time 
updates on a tank in Basrah.  The difficulties come, obviously, when you have a high-altitude 
sensor that can see all of the entities in both cities. 
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Initial testing established that the tree routers provided acceptable scalability and performance 
for the level of simulations being run as part of the JFCOM experiments.  As the tree was more 
intuitive, it was used by the operations personnel.  As noted in the papers in the Appendix, the 
tree routers are less scalable than the mesh routers.  That suggests a future adoption of the mesh 
routers as the more scalable standard, but that move was not implemented in this period of 
performance.   

Another important function that was amenable to parallelization was the data logging 
requirement.  As the computation, data and the users are trans-continentally distributed, a new 
method of data logging was required.  Working with scientists from the Institute for Defense 
Analyses, a data logger was designed that was easily inserted into the JSAF code.  This logger 
was based around the intercept of data when it was originally communicated.  This process is 
more fully outlined in the papers by Dr. Yao, all of which can be found in the Appendix.  Figure 
4 is a flow-chart representation of this design. 

 
Figure 4 - Flow Chart Diagram of Data Management 

Operations conducted using this system showed adequate performance and the system proved 
effective at collecting and managing up to two terabytes of data per week.  It should be noted 
that this amount of data is as much as three orders of magnitude less than the final data flow 
anticipated if the program were to log all data, increase the sophistication of the behaviors and 
increase the number of entities.  All of these increases are ardently sought by the Joint Forces 
Command.  The data management system shows no natural scalability constraints and the 
principal reason for not logging all of this data is that the physical devices for storage, i.e. a disk 
array, is limited to two terabytes. 
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Testing continued for the rest of the period of performance, with significant gains in stability and 
performance being indicated.  The tree routers exhibited a natural constriction at the root node, 
which led to higher latency than necessary; redundant circuit paths e.g. routing messages from 
Maui to Norfolk and then back to San Diego; and an obvious “single point of failure.”  
Continued testing of mesh router performance demonstrated the desirability of implementing that 
design. 

Figure 5 below gives an indication of some of the performance results obtained during the 
research on this project.  This chart was generated using a test code that fired off successions of 
messages of varying sizes.  The vertical axis represents the result of dividing the tree router times 
by the mesh router times for comparable conditions.  While scalability rather than throughput 
was the goal, a performance gain shows a good foundation for future scalability.  Number of 
“hops” refers to how many routers intervene between nodes used in this test. 

 
Figure 5 - Semi-log Chart of Ratio of Performance Advantage of Mesh over Tree 
Routers using Test Message Inter-node Communications 

3.1.2 Operationalize the JESPP capability 
The goal of this task was operationalizing the JESPP JSAF code.  This required enabling it to 
tolerate failure in any individual processor in the SPP.  There could be no single point of failure.  
Among other things, this would allow the user to stop and restart any arbitrary node on the SPP, 
including the routers.  Several concepts for fault tolerance were evaluated: 
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• Redundant, stand-by nodes 
• Mirrored router nodes 
• Dynamic, adjustable mesh to optimize entity densities 
• Use of new fault tolerant communication fabric for the mesh router  
• Utilization of Globus techniques to switch tasks between pre-configured partitions of 

SPPs 

The principle task under this segment was the provision of providing an operationally stable and 
usable system.  This single effort was of the greatest concern to the Joint Forces Command and 
was the most importane advance required by the Joint Experimentation group.   

A reprioritization of this task was necessitated by emerging issues not well-recognized or defined 
prior to the execution of the contract, e.g. fault tolerance was not nearly the concern that was 
anticipated, while security issues became more of a driver for the system development.  There 
was a constant pressure and continuous effort to further refine the newly parallelized, scalable 
code.  The operational/development paradigm for JSAF in the USJFCOM implementation is to 
have a real-time, interactive development during the experiments.  For instance, during any 
experiment, changes to the code could be anticipated several times a day for two weeks.  These 
changes required a rapid analysis by JESPP computational scientist and an assiduous attendance 
to detail and attendance at code development meetings and experiment planning sessions.  This 
illuminated the need for a deep understanding of the subject code and a close and collegial 
working relationship with programmers and simulation operators.  This allowed for many 
unheralded and rapid responses to changes being implemented.  In general, fault tolerance at the 
node or partition level was not a major issue. 

Operational issues that were faced were far more significant than fault tolerance.  As an example, 
during this effort, SPP assets were not available for two principle reasons, center downtime for 
major upgrades or security operations or center off-line status due to power or communications 
failures.  There were three major outages, maintenance took Aeronautical Systems Center Major 
Shared Resource Center (ASC MSRC) off-line, a storm disrupted communications at JFCOM, 
and a power outage on the island of Maui took down the Maui High Performance Computing 
Center (MHPCC).  In none of these cases, would a mesh redundancy or fault tolerance been of 
any significant use.   

One of the major contributions of this effort was the path-finding nature of establishing real 
interactive operations at the HPC level.  The research community is largely operating in the 
batch mode, but several individuals are leading efforts to enable and advocate for interactive 
HPC.  As the JESPP project progressed, it became obvious that it was not only the 
groundbreaking project, but, due to its high visibility, it was used as an example of the need for 
such a computational environment. 

A significant amount of time was expended developing close coordination with the other 
members of the JSAF team, especially Lockheed Martin Information Systems (LMIS).  The 
experimentation environment provided a continuous testing and evaluation setting for exercising 
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the SPP environment.  All modifications were carefully coordinated with JSAF team, with an eye 
toward not making changes that would hamper their use in ongoing exercises.  The JESPP team 
also designed their code submissions to avoid mandating modifications that would have imposed 
onerous re-coding of existing modules. 

3.1.3 Implement JESPP on two HPCMP SPPs via DREN 
This task focused on implementing the current and future capabilities on high performance 
hardware owned and controlled by the DoD.  Close attention was paid to utilizing HPCMP 
computers, if possible.  Suitable SPPs were identified and selected, which were comparable to 
the Linux clusters used in the initial development of JESPP.  An investigation into the 
accessibility and range of SPP computers available to J9 experimenters at the HPCMP sites was 
accomplished.  Our personnel were familiar with current trends in SPP computing and 
computational science initiatives and used that as background as they assiduously identified and 
documented the planned future platforms at the HPCMP sites.  Having established the likely 
range of SPPs to be available in the future, the team carefully assessed the needed modifications 
to the JESPP system to ensure easy portability, hardware and software compatibility, and 
incorporation of enhancements enabled by the projected future advances.  Having done so, the 
team picked a few representative SPPs, and conducted a series of portability tests and 
performance evaluations.  Two computers were arranged to support a prototype event utilizing 
the J9 experimental test bays.  These machines had DREN connectivity which was sufficient to 
provide bandwidth on the order of 50 Mb/s to the JESPP.  Our personnel assisted J9 in 
designing, selecting, installing and initializing a “Beowulf” Linux cluster at J9, which was 
initially comprised of 16 dual-processor nodes. 

3.1.4 Improve control, performance and behaviors 
This task focused on making the conceptualization, definition, and initialization of each 
experiment more accessible to experimenters.  This was one of the major goals set forth in two 
workshops on Joint Experimentation on SPPs in 2002.  The process was both intuitive to the new 
experimenter and familiar to the experienced J9 personnel.  The JESPP team had to learn the 
JFCOM culture of code improvement and modification.  As this is a rather unusual process, a 
few words might help explicate the issue. 

While literally volumes have been written on the standard code development paradigm, the 
JFCOM system responds of necessity to a different operational tempo.  The standard 
environment envisions a batch operation with fixed deadlines, clearly delineated ahead of time, 
as follows: “we must double the capacity of our buffers by this day, all organizational rules for 
development, test and documentation are in force.”  The JFCOM scenario is much more likely to 
be, “the experiment director (not infrequently a flag officer) liked the run this morning, but after 
lunch he wants the entities to display emotional characteristics and the terrain to show impact 
results from weapons.”  As there are up to one hundred participants in a typical experiment, 
taking the time to carefully follow coding conventions, including adequate documentation, 
would cost not an hour per programmer hour, but 100 staff hours per each hour the experiment 
waited on coding changes.  
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This incredibly interactive programming style had two major impacts on the JESPP team. 
 

• The C++ code with which they had to interface was very dynamic and bore constant 
monitoring to keep the routers and high performance computing from being the failure 
point for the experiment 

• The body of the code itself, some two and half million lines of it, was largely un-
documented as far as avoiding pitfalls 

As an example of how this impacted the crew, there was an occasion where the JFCOM 
developers had inserted a piece of code to explicitly identify a “hard-wired” circuit for inter-node 
communications.  This change, as was the tradition, was known only to those working the 
problem at that time.  When the mesh routers were applied to this code, performance dropped 
dramatically.  The mesh routers were automatically establishing links that were not only 
redundant to, but were actually stimulating the new code to spawn several links for each 
communications path.  This, naturally, adversely impacted performance.  Our team was able to 
overcome these issues and become productive in the demanding short time periods available to 
implement on-the-fly fixes. 

The approach built on previous tools and procedures, including Multisystem Automation Remote 
Control and Instrumentation (MARCI).  The goal of this task was to approach the optimal 
distribution of the various computational and visualization tasks to the most efficient assets 
available.  It was conceivable that all computation and visualization could be done on the mesh 
of the high performance computers, with only the X Windows screen data being passed over the 
network 

3.1.5 Emphasize urban environments 
This task entailed the on-going analysis and support for the continuing improvement of the 
JESPP’s ability to support experimentation in urban environments.  This was manifest both in 
the high-fidelity urban terrain databases and in the inter-visibility issues raised when combatants 
are active in a congested area.  This task was integral with all of the other tasks enumerated 
herein, in that each activity was oriented toward improving the fidelity, utility, and validity of 
JSAF models in an urban setting.  Inclusions of other federates, improved terrain mapping of 
man-made infrastructures, better representations of buildings, and increased entity densities were 
all necessary to support urban environments.  Figure 6 shows a screen capture of a typical urban 
terrain environment. 
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Figure 6 - Screen Capture of Typical Urban Terrain Environment 

3.1.6 Participate in spiral events, experiments and tests 
An event was designed, planned, organized, and conducted in order to demonstrate code 
improvements and to incorporate as many of the capabilities listed above into the JSAF code 
base.  Specific goals, dates, locations, hardware, network and participants were suggested by our 
team and approved by the leadership. 

The schedule was typically a spiral development event every month, usually two weeks in 
duration, to prepare for the main experiment.  This required the involvement of both 
development activities and preparation for on-line consulting and trouble-shooting during the 
“record runs” that were the ultimate goal and final punctuation of the spiral events.  During this 
preparation, new code was developed, tested and submitted to the concurrent versions system 
(CVS) tree maintained by Lockheed Martin.  On the weeks of the runs themselves, JESPP 
personnel were present at numerous locations to see first-hand how the test was going as well as 
to perform consulting, trouble-shooting and support activities. 



 13

3.1.7 Implement and verify urban capabilities 
This task focused on implementing and verifying the urban environment capabilities developed 
in the previous tasks.  Those capabilities that were ready to be utilized as part of the USJFCOM 
Distributed Continuous Experimentation Environment (DCEE) base capability were used to 
support a J9 human-in-the-loop project.  

This implementation involved the following three characteristics: 
 

• A global-scale, low resolution terrain upon which to set the local action 
• A high resolution inset of a data set representing an urban area 
• A believable set of civilian clutter distributed in that environment 

 
Figure 7 - Global, Area of Interest Specific, and Buildings in Variable Resolution Terrain 
Databases 

The JESPP team provided scalable computing support for these three objectives.  This would 
entail simulating the previously fielded civilian entity group several times.  It also mandated that 
the terrain and the simulated entities would be distributed effectively across the nodes and would 
scale appropriately.  This was accomplished and the requisite runs were supported.  This was 
successfully accomplished and utilized in the experiments.  Calls by individual nodes on the 
terrain database did not overtax inter-node communications and performance as was expected.  
In this, as well as other cases, the most critical performance measure was the perceived 
acceptability by the users, operators, analysts, and managers of the experiment. 

Having successfully implemented and tested a scalable computational environment for JSAF, we 
contributed to the joint urban operation human-in-the-loop (JUO-HITL) spiral development.  We 
identified the appropriate centers of expertise to resolve each of the critical areas in a way that 
allowed early implementation of SPP technology in Joint Experimentation.  The continuing 
challenge was to produce durable and robust solutions that stood the rigor imposed by the ever 
changing needs of the USJFCOM.  New capabilities in experiment initiation, entity control, data 
logging and after action analysis were identified and were pursued, as described below.  

3.1.8 Implement a system to log and analyze appropriate data 
This task focused on implementing distributed and collated data logging and storage of 
experimental results.  The best technical description of this work can be found in the papers 
authored by Dr. Yao in the Appendix.  Developing collaborative planning and decision support 
systems designed to establish user situational awareness present an additional challenge because 
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of the reliance on human subjects as integral components of the command and control system.  
Immersion of humans within virtual simulations, such as JSAF, requires an integrated data 
generation and collection approach to achieve quantifiable results. 

One of the initial decisions made by the JFCOM data management staff was to select Microsoft 
Access2000® as the intermediate data store since it was already designed as the hlaResults 
primary database.  The team’s ability to rapidly prototype the Future After-Action Report System 
(FAARS) during early development was facilitated by this decision.  However, as the spiral 
development process moved forward, new requirements surfaced for increasing the size of the 
data storage capability for reasons explained below.  The emerging result was a continued 
improvement to the capabilities of the FAARS as it is adaptable to a variety of new Commercial 
Off-The-Shelf (COTS) database products. 

While Microsoft® has produced an easily mastered product for home and small office use, the 
created databases within Access2000® are limited to two gigabytes.  Experience showed that a 
typical HLA federation with 35,000 entities will quickly overload an Access2000® database, 
created using the utility hlaResults.  It will reach this threshold within two to two and a half 
hours of event runtime.  A typical simulation day consists of 6 to 8 hours of continuous runtime, 
requiring three or more databases to be created.  A technique for selecting and processing 
relevant data from each database (and taking into account overlaps within the data) was 
developed by inserting the data into a much more richly capable database, MySQL, for a “roll-
up” into one total event period, to preclude retrieving data separately from each Access2000® 
database.  Subsequently, two hlaResults collectors were used during experiments in overlapping 
periods so that continuous coverage of simulation data would be recorded. 

Two major benefits accrued from the use of MySQL and sqlite.  First, as they are obtainable as 
open source, they can be obtained and distributed without cost or significant administrative 
burden.  Secondly, as open source, the code itself can be examined for performance enhancement 
opportunities, customized code insertions and security robustness.  While user interfaces may be 
marginally more austere, they are invariably accessible by technically trained personnel likely to 
use them. 

The distributed logger made use of local embedded relational databases, implemented using 
sqlite on each node of an SPP to execute queries and return results via an ad hoc protocol 
implemented by a tree of aggregators.  This work improved performance and provided additional 
functionality.  Performance was improved by using MySQL and PostgreSQL databases in lieu of 
sqlite and through the use of data compression in the aggregators.  Functionality was enhanced 
by defining a higher-level portable protocol in the aggregators, by providing standard interfaces 
for combining query results returned by multiple SPP nodes, and by providing methods to easily 
redistribute data to a different topology of nodes.  Tools were developed and implemented to 
assist the experimenter in identifying, recovering and understanding the data that was stored.  

A notional flow chart of the developed system shows important features and the complexity of 
the code developed to serve the needs of the users and analysts at JFCOM. 
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Figure 7 - Flow Chart of Data Logger System 

Using this system, the Data Logger consistently logged one terabyte of exercise data each week 
of an experiment.  While this still required discarding most of the location, orientation and state 
data for the clutter entities, it still represented a scalable approach, more limited by hardware 
costs than design constraints.  This terabyte reflected approximately a two order of magnitude 
increase from the limits imposed by the previous system. 

3.1.9 Continue to develop fault tolerant operations 
The SPP implementation of JSAF was increasingly made fault tolerant and confirmed by 
additional study and testing.  One of the most glaring of the fault susceptible features was the 
continued use of the tree routers.  This resulted in all of the experimental data being run through 
a single computer.  The implementation of the mesh routers in the future should dramatically 
reduce that risk.  Critical aspects of the final implementation, based on the mesh router system, 
included: 
 

• A scalable interest management system 
• No artificial barriers to the number of entities allowed 
• Fault tolerance: 

o No single point of failure 
o Dynamic addition/deletion of nodes 
o Early investigation of migration of entities across nodes 

3.1.10 Implement SLAMEM on a cluster 
The SLAMEM code was previously being operated on any number of single processor 
platforms.  Some initial studies on the appropriate parallelization of the SLAMEM code were 
conducted and assistance was provided to the Toyon Corporation in efforts to make use of the 
scalable capabilities of the Linux clusters.  The JESPP team did an external review of the 
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SLAMEM characteristics and identified several areas where the needs of the user seemed to 
suggest a new program that would more accurately and dynamically model the sensors.  
Specifically, the use of partial differential equation generated physics rather than subjectively 
generated “look-up tables” would significantly improve both the responsiveness and validity of 
the simulation.  This work would be beneficial to the JSAF simulation and is suggested as a 
potential follow-on effort. 

3.1.11 Install and coordinate the new J9 HPCMP Distributed Center (DC) Cluster 
Our team led the effort, which resulted in the award of a DC cluster to the USJFCOM by the 
High Performance Computing Modernization Program (HPCMP).  This important new 
USJFCOM asset required significant coordination to maximize its utility to the Joint 
Experimentation group.  Initially, there was a need to expend significant amounts of time in 
acceptance testing and coordination to satisfy HPCMP that the cluster was being well-used.  
Subsequent to the installation process, there was a continuous need to coordinate with the 
HPCMP and the remote sites where the clusters were located.  Reports and presentations were 
required to communicate the appropriate use of this asset.  

The decision to split the cluster between two locations; Maui, HI and Dayton, OH; while some-
what cumbersome in use, proved time and again as most propitious, as if one center was down 
for one reason or the other, the remaining cluster could effectively be used.   

Based on the design selected by HPCMP, the JESPP team was able to effectively employ both 
nodes by using one as a home of the simulation engine and the other as the resident processor for 
logging and communications.  The design decision to provide one site with a 60 gigabyte disk on 
each node, but leave all of the disks on the other machine in a more easily configured cluster was 
precipitated by the desire to make the one cluster a “swing machine,” allowing easy conversion 
from UCLASSIFIED to SECRET operations.  We determined that this was possible, but prob-
lematic.  Stability and performance was impacted due to heavy “paging” onto the disk drives on 
the mesh.  Several workarounds were conceived and tested.  The desire of JFCOM to have the 
most stable platform would subsequently lead to the installation of disks on each node of the 
second cluster. 

Major achievements in this area would have to revolve around the successful implementation 
and operation of meta-computed assets in a real-time, interactive simulation setting.  Papers and 
other exposition to the community seem to suggest the JESPP program is one of the very few 
projects to consistently and effectively use interactive high-end computing. 

3.1.12 Support communications, security and encryption 
Not only is the simulation run by JFCOM distributed, but all of the processing and data 
management is trans-continentally situated.  Clearly, sites from throughout the country must 
communicate effectively, securely and within organizational rules.  JESPP personnel became 
intimately familiar with many of the communications protocols supported by the HPCMP and 
were instrumental in obtaining necessary changes when those were vital.   
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The major new paradigm requiring some modification of the rules was the concept of interactive 
high-end computing.  Virtually all of the communications and security rules promulgated and 
enforced by the HPCMP on its Defense Research and Engineering Network (DREN) assumed 
and were designed to support batch computing.  Interactive computing featuring tens of users 
and hundreds of independently spawned code processes did not fit well into this milieu.    
 
Supporting on-going communications and encryption efforts as they relate to high performance 
computing required careful attention.  These aspects became more critical as the use of 
distributed high performance computers was coupled with USJFCOM’s desire to include remote 
sites in the experiments being conducted.  Trained and experienced personnel were provided to 
ensure that this aspect enhanced, rather than inhibited, the achievement of USJFCOM goals. 

Most dramatically, the JESPP personnel sought relief from the requirement that all users and 
processes had to have secure log-in and Kerberized communications.  This clearly would have 
rendered operation impossible and the very restricted nature of the communications, i.e. all sites 
were government facilities that were operated as if the were classified, even if operating at an 
unclassified level.  After significant review and consideration by HPCMP and the subject matter 
experts, a modified procedure was established and operations were initiated.  A notional diagram 
shows the supported connectivity of virtually all of the runs. 
 

 
Figure 9 - The Trans-Continental Connectivity, in the Original Tree Configuration 

During the effort, the two centers effectively supported a number of events at JFCOM and were 
able to demonstrate the utility of distributed, interactive, high-end computing. 

4.0 Conclusions 
The overall results of this project have met or exceeded the results sought by the Joint Forces 
Command, Joint Experimentation Directorate.  The capabilities of the JSAF code to represent 
more than one million non-military SAF entities has been shown, the operational stability of the 
system has allowed confident use by USJFCOM operators, performance is acceptable, security 
issues have been dealt with and all of the assigned tasks have been accomplished. 
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The code has been effectively operationalized and the ensuing operations have been successfully 
supported.  SPP computing was implemented, a new Distributed Center was stood up, the project 
successfully was demonstrated to several government leaders and the science generated was 
published in numerous conference articles. 

It was consistently clear that USJFCOM could achieve their success in representing hundreds of 
thousands of civilian and military entities only with the scalability afforded by the HPCMP 
hardware and our expertise. This effort gave both proof of that assertion and gave reassurance to 
those who feared instability.  

Members of the USJFCOM J9 team reported to independent inquisitors that “…the SPPs were 
the most stable part of this project…” in March of 2004 and that continued to be the fact for the 
rest of the effort.  The experience of the sites and of our personnel worked together to avoid 
problems and produce results. 

While providing the day-to-day operational reliability, our team also made several unique and 
noteworthy advances in SPP operations; including scalable programming, security, data 
management, data analysis, and visualization.  Evidence of this noteworthiness was the fact that 
several technical papers were presented at conferences and JESPP personnel were invited to 
speak at three other professional conferences.  The papers are included in the Appendix. 

Further indicia of the value of this effort were the recognition by both the USJFCOM J9 
Directorate, Maj Gen Woods, and the Joint Forces Commander, ADM Giambastiani.  The latter 
has now indicated a desire to advance the time schedule for providing this capability to the 
warfighter. 

Future work is needed and planned in the areas of full implementation of mesh routers, better 
communications routing, fault tolerance, upgrade to the clusters, support for classified opera-
tions, distribution of simulation processes across several nodes where necessary, and the optimi-
zation of the initiation and control software package. 

Test runs on the mesh router continued to show superiority in internode communications, but 
complete acceptance into the CVS tree and day-to-day utilization is left for future efforts.  The 
current operation makes, and accepts, limitations in scalability that may not prove acceptable in 
the future.   Plans are made and commitments accepted that will allow full implementation in the 
future. 

Communications, as set forth above, is still running in a star configuration, with the incumbent 
fault tolerance limitations.  In the future, it is planned to implement and test the mesh router as a 
meta-computing, Wide Area Network (WAN) architecture.  This is anticipated to provide both 
fault tolerance and performance gains. 

Fault tolerance can further be advanced by distributing the simulation across several compute 
platforms and, even, several states.  Further, fault tolerance on one Linux cluster mesh will be 
enhanced if individual simulation processes are “dealt” out and allowed to migrate.  In general, 
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the JSAF program is very amenable to simulation processes dropping out and being inserted 
without a detrimental impact on stability. 

Classified operations will present many new problems that will directly impact the JESPP team. 
Experience has shown that any perturbation of the platform will impact the rest of the system in 
ways that were not anticipated.  On the other hand, SECRET operations may reduce the neces-
sity of Virtual Network communications and obviate the need for Kerberos. 

Several of the simulation packages are sufficiently large to require a single node on their own as 
opposed to the tens of thousands that may run under different circumstances.  These single node 
programs may benefit from being decomposed over several nodes. 
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ABSTRACT 
 
Joint Forces Command has made great strides formulating the roadmap for conducting joint experiments.  However, 
success for the Command will be measured by its ability to present quantifiable results to support transformational 
findings. The Services have considerable experience documenting requirements and articulating needs based on 
quantifiable results. Weapons systems, sensors and related procurement developments lend themselves to statistical 
testing (primarily through repetitive constructive simulation runs and live tests). The nature of joint experimentation 
relies on a discovery-type of approach when dealing with 2015 (or later) weapons, decision support systems and 
identifying the best methods for their utilization. The strengths in using human in the loop (HITL) immersion within 
distributed virtual simulations (e.g., Joint Semi-Automated Forces (JSAF)), requires innovative approaches to data 
collection and analysis. The correct approach will provide creditable and quantifiable results to strengthen the 
Commander, Joint Forces Command’s rationale for transformation within DOD. This paper addresses methods for 
achieving more creditable and quantifiable data support. The first section provides a short description of the spiral 
development and data integration processes. The second section describes the flexible data collection toolkit used in 
the initial verification of entity behaviors and performance and then used to extract and display the data generated 
from the simulations. Finally, the third section describes a distributed framework for scaling the logger and analysis 
tools to handle very large data sets--in the terabyte range--for meeting the Joint Forces Command, Joint 
Experimentation Directorate’s need for a Distributed Continuous Experimentation Environment capable of 
providing quantifiable results. 
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Joint Forces Command (USJFCOM) has made great 
strides over the past few years in formulating the 
roadmap and processes necessary to conduct joint 
experiments. The roadmap covers initial concept 
design through presentation of results to the Office of 
the Secretary of Defense. The Joint Requirement 
Oversight Council (JROC) is the responsible agent for 
determining which recommendations are taken for 
action, and more importantly, which are funded. The 
Commander, USJFCOM’s objective is to “provide 
actionable recommendations from experimentation 
results to senior leaders to inform options for future 
force investments” (USJFCOM, 2003 p.3). 
USJFCOM's effectiveness in this environment will be 
measured by its continuing ability to present 
quantifiable results to support joint transformational 
findings.  
 
Today the modeling and simulation (M&S) and 
operations research communities are faced with ever 
increasing challenges to meet the demand for creditable 
and quantifiable results. An initiative, currently 
underway at USJFCOM, is attempting to leap ahead of 
the demand by the creative integration of processes, 
commercial off the shelf (COTS) products and scalable 
parallel processors (SPP). This paper will address a 
method for providing more quantifiable and accurate 
data generated within large supercomputers running 
human in the loop (HITL) virtual simulations and 
federations of simulations used in support of future 
joint experimentation.1,2

 
 

BACKGROUND 
 
Leveraging simulation to support joint experimentation 
has been the centerpiece strategy for USJFCOM 
                                                 

                                                

1 The authors caution the reader not to assume that 
there is only one solution to this challenge. Frequently 
a number of tools are required to bring distinct, 
quantifiable results to the senior decision maker. 
2 Federation. A named set of interacting federates, a 
common federation object model (FOM), and 
supporting Runtime Infrastructure (RTI), that are used 
as a whole to achieve some specific objective 
(Department of Defense, 1998). 

because it provides a capability to rapidly prototype 
futuristic concepts. The M&S toolkit includes 
constructive as well as virtual simulations and, as the 
recently concluded Millennium Challenge 2002 joint 
experiment has demonstrated, live simulations will be 
integrated when needed (USJFCOM, 2002). 
Constructive simulations normally provide faster-than-
real-time capabilities and are excellent when one 
requires statistical results to prove or disprove 
experimental hypotheses. Virtual simulations offer an 
environment that allows real people to be immersed 
within the futuristic environment, an excellent medium 
for evaluating decision-making processes.  
 
Providing Immersive Synthetic Environments 
 
Developing collaborative planning and decision 
support systems designed to establish user situational 
awareness present an additional challenge because of 
the reliance on human subjects as integral components 
of the command and control system. Immersion of 
humans within virtual simulations, such as Joint Semi-
Automated Forces (JSAF), requires an integrated data 
generation and collection approach to achieve 
quantifiable results. Although HITL experiments offer 
a great potential for exploring complex issues they are 
a greater challenge to the data collection and analysis 
team and analysts charged with providing quantifiable 
results that will survive JROC scrutiny. Being able to 
provide usable results is also challenged when “setting 
the initial conditions” requires millions of entities to 
generate realistic levels of civilian traffic, before one 
even begins to assess future sensor or weapons systems 
operating in the urban environment. Federating 
simulations compounds the challenge, as interactions 
between simulations have to be checked for accuracy.3 
When sensor systems and radar systems are added to 
the mix, one can imagine the large quantity of 
generated data that must be logged, mined and 
provided to the analyst as quickly and accurately as 
possible. The enormity of this task was not lost on 

 
3 Federate. A member of a High Level Architecture 
(HLA) Federation. All applications participating in a 
Federation are called Federates (Department of 
Defense, 1998). 
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USJFCOM as decisions made in 2002 and executed in 
2003 will be realized when the Joint Urban Operations 
HITL series of experiments in USJFCOM’s Distributed 
Continuous Experimentation Environment gets 
underway in 2004.  
  
Analysis vs. Discovery 
 
Before describing the joint experimentation data 
collection strategy, a short description of the difference 
between analysis and discovery experimentation is 
warranted. Analytical data is largely derived from 
statistical testing, applying controls over independent 
and dependent variables so as to isolate the cause/effect 
relationships. Constructive modeling has been a major 
“toolset” in the analysis arena, primarily through its 
ability to run faster-than-real-time (therefore providing 
multiple runs to support statistical inquiries).  Analysis 
techniques have been very effective when the problem 
can be framed with an expected outcome.    
 
Discovery-type events, more often than not, rely on a 
progressive understanding of what is unfolding, thus 
requiring flexibility in tool design to explore new 
avenues as they present themselves.  Although 
hypotheses exist, the number of dependent variables, 
human interactions, and complexities preclude 
adherence to rigorous statistical methods of analysis.  
 
 

THE FUTURE AFTER ACTION REVIEW 
SYSTEM (FAARS) 

 
The key ingredients to the FAARS are the process, 
tools and design of logger protocols that operate on 
scalable parallel processors. The remainder of the 
paper addresses these three areas. The first section 
provides a description of the spiral development and 
data selection and collection processes. The second 
section describes the flexible data collection toolkit 
used in the initial verification of entity behaviors and 
performance and then used to extract and display the 
data generated from the simulations. Finally, the third 
section describes a distributed framework for scaling 
the logger and analysis tools to handle very large data 
sets--in the terabyte range. 
 
 

THE PROCESS 
 
Once the concept designers and operations researchers 
have settled on the experimental concept, collaboration 
with the M&S community should closely follow. A 
process for successfully designing the simulation to 
support specific measures of performance (MOPs) is a 
recipe for success. Data collection development, when 

dealing with multiple simulations federated across a 
wide area network requires a commitment from all 
functional areas, not just the data collection team. 
Dependencies are created since the need for specific 
interactions related to the MOPs must be generated by 
the entities within the federation or simulation to 
answer the operations research questions. Figure 1 
provides a pictorial of what is involved in the spiral 
development process (in this case for software). 
.   

Figure 1. Spiral Development Process (Boehm, 1988) 

Identification of 
what data to collect 
begins here. 

Data collection 
testing begins here. 

 
The following checklist will bring value to the process 
and establish user confidence in the data and 
simulations generating the data. The steps described 
below were designed for a joint experiment supported 
by the HITL virtual simulation, JSAF (Graebener & 
Kasputis, 2000).  
 
1.  What question(s) does the experiment address? 

-What hypothesis is being explored? 
-Steps include “drilling down” or decomposing the 
question into sub-elements. 

 
2. What Data will answer the question? 

-Sub-elements are further decomposed into metrics 
that will support the answer in a manner favorable 
to quantification.  

-This process begins a spiral crosswalk between the 
data analyst and the data collection developer to 
ensure what is being asked for is provided. 

 
3. How is the Data Generated? 

-Further detail generated during the spiral crosswalk 
identifies how the data is created and by what 
means the data will be collected. 

-In most cases there will be several methods used to 
collect the necessary data, while automated data 
generated from the simulation might be the goal, 
observers monitoring the test participants could 
also generate (and collect) data.        
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4. How is the Data Transmitted/Received? 
Table 1 shows the three tests used to explore the 
question above.4 Each test has a set of conditions 
on the first line and then a solution or range of 
solutions. 

 
Table 1. Data Transmission/Reception Matrix 

Test
# 

Does Entity 
Transmit? 

Does Entity 
Receive? 

If answer is: Yes & if answer is: Yes  
1 Then: Test to ensure enumerations are 

accurately sent/received. 
If answer is: No & if answer is: No  

 
 

2 

1: Then: Determine if data element can 
be derived indirectly from other 

interactions, or: 
2: Create a new (experimental) 

interaction, or: 
3: Determine if data element can be 
generated by non-simulation means? 

If answer is: Yes & if answer is: No 
or 

If answer is: No & if answer is: Yes 

3 
1:  Then: check to see if the interaction 

field is empty, and; 
2: Fill in the field with appropriate entry, 

and; 
3: Ensure enumerations are accurately 

sent/received. 
 
5. When do you need the data and in what format do 
you need the data products (see Table 2)? 

-Identify the data display interval or timings (left-
most column). 

-The periodicity is negotiable between the data 
analyst and the data collection developers. In some 
cases performance issues could impact on how 
often/how quickly one receives the generated data. 

-The format (top row) relates to the following 
headings:  
(1) Raw data. 
(2) Grouped. 
(3) Combined. 
(4) Disparate. 
(5) Automatic Visual (Graphs). 
(6) Manual Display. 
(7) COTS Readable (e.g., SPSS). 
(8) Final Form/Report Ready. 
(9) Other. 

                                                 
4 If a gateway is required (e.g., HLA to/from DIS 
(Distributed Interactive Simulation) further work must 
be done to ensure an accurate mapping across the 
gateway is established and tested.  
 

Table 2. Data Format and Timing Checklist 
Format 1 2 3 4 5 6 7 8 9 
Timing          

Immediate/near-
real-time          

Overnight          
End-of-Trial          
End-of-Exp’t          
Other          

 
6. What types of data integration are envisioned for 
post-experiment processing? 

-By Time Segment. 
-By Mission/Task. 
-By Force Level. 
-By Geographic Region/Area. 
-Other. 

 
7. What is the cost associated to achieve steps 4 thru 6? 

-In processing time? 
-In developer time and availability? 
-In bandwidth size? 
-In relation to other competing interactions? 

  
 

THE TOOLS 
 

This section describes a framework for using COTS 
and modified commercial software for logging 
simulation events and creating analysis tools. The 
rationale for moving to a new approach in toolkit 
design is discussed as well as a description of one of 
the tools currently in use. 
 
New/Innovative Approaches to Data Collection 

 
In previous joint experiment events, the data collection 
and analysis tools have been custom written 
applications that collected, processed and performed 
general analysis activities on a very specific and 
limited set of data. Previous solutions did not include a 
level of robustness and reusability necessary to meet 
future requirements.  Because of this, a new approach 
was created to meet these anticipated demands. 
 
The FAARS toolkit has been designed around a 
flexible, COTS-based solution minimizing the amount 
of specific software to be written.  The philosophy 
behind using COTS software over proprietary custom 
software systems has been to allow concentration of 
most of the development efforts into providing highly 
flexible and responsive data extraction methods to 
support the analysis tools and data displays for the end-
users.  The FAARS toolkit provides near-real-time 
event information and a post-event data analysis.  The 
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near-real-time tools supports the verification and 
validation processes used for quality control of the 
simulation or federation generated data along with 
specific, predefined statistical reports and summaries.  
The post-event tools have been designed to perform 
analyses in support of the MOPs and measures of 
effectiveness (MOEs). 
 
FAARS Toolkit Composition 
 
The FAARS toolkit currently is comprised of the 
following commercial software applications:5

 
Data Collection: 

1. hlaResults v2.0.2 (2002) 
2. Microsoft Access2000 (1999) 

Data Presentation: 
1. Near-Real-Time 

a. Apache v1.3.27 (2003) 
b. PHP v4.3.2 (2003) 
c. ChartDirector v3.0 (2003) 

2. Post-Event 
a. Microsoft Excel2000 (1999) 
b. Microsoft Visual C++ v6.0 (2002) 
c. MySQL v4.0.11 (2003) 
d. ChartDirector v3.0 (2003) 

 
The core of the data collection is the hlaResults tool.  
This package provides for the logging of both HLA and 
DIS-based simulation data.  The tool works by 
intercepting RTI-transmitted information amongst a 
given federation and storing the collected information 
in a Microsoft Access2000 database.   Figure 2 
indicates the flow of data within the FAARS toolkit 
environment. 
 

 

 
Figure 2.  Data Flow and Capture 

 
The near-real-time solution is based on the industry-
proven Apache web server, the PHP (Preprocessor 
Hypertext Preprocessor) scripting language and the 

                                                 
5 COTS application providers are listed in Reference 
Section. 

Chart Director graphing package.  The web 
server/scripting language combination was primarily 
chosen to facilitate an independent, cross-browser, 
operating system solution for providing information in 
as-close-to-real-time as possible.   The web server 
scripts connect to the hlaResults-generated database 
using industry standard ODBC (Open Database 
Connectivity) and SQL (Structured Query Language) 
commands.  The returned information is then processed 
within the script and presented to an end user via a 
standard web browser.   
 
The post-event solution is based on a custom-built C++ 
client interface to access/view data being stored in a 
relational database (MySQL) using industry standard 
ODBC and SQL commands.  The C++ client interface 
then processes the returned data and presents the 
resulting information via a series of either Microsoft 
Excel2000 spreadsheets, natively or via ChartDirector 
graphics.   
 
Data Relationships 
 
Storing HLA-generated data in a relational database 
requires an appreciation for the differences in the way 
these two technologies handle information. A database, 
being an information storage and retrieval system, is 
geared towards eliminating data redundancy. An HLA 
federation is optimized for data exchange, and 
therefore is not subject to the limitations of a database. 
These two goals, though not completely in 
contradiction, need to be reconciled. Inasmuch as the 
data is being generated in an HLA-oriented format, it 
becomes necessary for the database to accommodate 
the federation (and not the other way around).  This 
“accommodation” essentially amounts to a recognition 
of the relationships between data attributes in different 
objects. Such relationships, though not enforced by the 
HLA federation, must be respected. The FAARS tool 
development team needed to become highly conversant 
with the FOM, the Object Model Template (OMT), 
Federation Execution Document (FED) (a federation 
agreement between various simulations and the current 
RTI).  From an understanding of how the various parts 
work together in forming the federation the team 
determined how the various fields were related and 
how to “force” relationships between collected data. 
 
To force relationships within data where none are 
previously defined requires knowledge of the data and 
the data format.  FOM-related data is transmitted as 
either an interaction between class objects or as a class 
object status update.  Also, there are various linkages 
used to convey information about a simulation 
transaction that occurs within the simulation.   
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Understanding hlaResults Collected Data 
 
The hlaResults data collection software package 
utilizes the OMT, FED and RTI components to 
generate a “collector.”  As part of the collector creation 
process, a pseudo-schema for an Access2000 database 
is created.  This database contains tables representing 
each interaction or object class as defined by the three 
components.  Each table contains fields representing 
the “payload” for a specific update of the interaction or 
class object.   When the database is created, the 
hlaResults-generated schema does not introduce nor 
define any specific relationships between the various 
interactions and class objects.  Therefore, relationships 
have to be imposed for the data to be truly relational.  It 
is necessary to decide which fields within the 
interaction and class object table share common 
information.  Once this is done, a database schema is 
dynamically generated within the FAARS toolkit and 
applied to both the Access2000 database (used as the 
immediate store) and the MySQL database (used as the 
final “rollup” data store). 
 
Lessons Learned: Evolving Methods and Tools 
 
Flexibility was a going-in design objective for this 
program. One of the initial decisions was to select 
Access2000 as the intermediate data store since it was 
already designed as HLA Results primary database. 
The team’s ability to rapidly prototype the FAARS 
during early development was facilitated by this 
decision. However, as the spiral development process 
matured, new requirements surfaced for increasing the 
size of collect data storage capability for reasons 
explained below. The emerging result is a continued 
improvement to the capabilities of FAARS as it is 
adaptable to a variety of new COTS database products.  
 
A technical limitation in Access2000 is a 2 GB limit 
for database sizes.  Based on previous usage during test 
events, a typical HLA federation with 35,000 entities 
will cause an hlaResults-created Access2000 database 
to reach this threshold within 2 to 2.5 hrs of event 
runtime.  A typical simulation day, designated by the 
experiment technical lead, consists of 6 to 8 hrs of 
continuous runtime, requiring three or more databases 
to be created.  A technique for selecting and processing 
relevant data from each database (and taking into 
account overlaps within the data) has been developed 
by inserting the data into a MySQL database for a 
“roll-up” into one total event period, to preclude 
retrieving data separately from each Access2000 
database.  Currently, two hlaResults collectors are used 
during experiments in overlapping periods so that there 
is continuous coverage of simulation data being 

recorded.  Figure 3 shows the method for employing 
collectors. 
 

 
Figure 3.   Collector Sequencing over Time 

 
Processing Collected Data 
 
After a simulation run is completed, the collected 
database segments are processed into the single 
MySQL database in the following sequence:  First, a 
database schema is applied to the MySQL database that 
will represent the “rollup” of all of the data collected.  
Second, the Access2000 database segments are put into 
sequential order by their unique file names and internal 
file creation timestamps.  Third, each segment is 
filtered to build a list of relevant tables from which 
data is to be extracted.  Fourth, the first Access2000 
database is inserted directly into the MySQL database.  
Fifth, subsequent Access2000 databases are processed 
to ignore overlapping data by examining the difference 
in timestamps between where the previous segment 
ends and the next segment begins.  Also, internal 
record timestamps are adjusted with an offset so that 
individual record timestamps represent time since 
beginning of simulation run and not just for the 
individual database segment.  Finally, summarization 
information is extracted and stored into new tables to 
facilitate speed in reviewing common information. 
Those reports that are processing intensive will be 
generated and saved for post-event review. 
 
Post-Event Data Processing 
 
Once the simulation data has been processed and 
inserted into the MySQL database, the MOP/MOE 
tools are applied to the completed database to provide 
predefined statistics for the event period.  In 
conjunction with these predefined reports, additional 
reports and queries can be rapidly created based on 
additional feedback and desires of the analyst.  A 
sample of predefined reports available for the end user 
includes: Killer/Victim scoreboard, Entity Lifecycle 
and Lifecycle Details, and “String” analysis charts.  
Other MOP/MOE components are developed and 
included with the toolkit based on input from the data 
collection and analysis plan designed by the joint 
experimentation users and analysts. 
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Figure 4. Sensor/Target Scoreboard Example 

 
A Near-Real-Time Tool:  Sensor/Target Scoreboard 
 
An example of one of the tools used for near-real-time 
analysis is the Sensor/Target Scoreboard.  The 
scoreboard is designed to provide insight into the 
category of class object types being detected, the 
specific sensor platforms and sensor modes.  One 
possible use of the Sensor/Target scoreboard is to 
provide summary reports of sensor activity for use 
during typical daily event briefings.   
 
The scoreboard is divided into four layers of detail, 
with aggregated sensor platforms versus class object 
types summaries at the upper-most level.  Figure 4 
shows a sample Sensor/Target Scoreboard at the 
aggregate level. The next level of detail (accessed by 
clicking on a value in the table) displays the total count 
of individual class objects of a specific type detected 
by individual platforms and by specific sensor modes. 
Subsequently, the next level of detail (by clicking on a 
value in the displayed table) provides a list of specific 
detected class objects as indicated by the selected 
sensor platform and sensor mode combination from the 
previous table.  The final level shows the finite 
information concerning a specific detected class object.  
The information contained in this report includes 
details of the sensing platform, the time of the 
detection(s), the class object detected, location of the 
detected class object, velocity of the class object (if 
moving), and detected appearance bit mask value.   

 
 

SPP & LOGGING DATA 
 

Harnessing SPP for Logging and Analysis  
 
This section describes a distributed framework for 
scaling the logging and analysis tools to handle very 
large data sets--in the terabyte range--for meeting J9 
needs for the Distributed Continuous Experimentation 
Environment. This tool is part of USC ISI’s Joint 
Experimentation on Scalable Parallel Processors  

(JESPP) project. One of the goals of JESPP is to enable 
modeling of futuristic sensor capabilities, weapon 
systems and complex battlefield environments by 
providing the underlying computational and network 
infrastructure.  
 
Logging and analysis desired properties 
 
Listed below are some of the desired properties for the 
logger and analyzer framework. Several are inherently 
contradictory, so design decisions have to be made to 
balance them. 
 
Scalability 
The framework must be able to log and to process very 
large volumes of data. Based on past experiences from 
a Future Combat Systems (FCS) experiment, a partial 
logging of simulation events for selective data analysis 
requires about 5 kB/hr of data for each entity. Scaling 
up to the desired million entity SPP runs would require 
handling ~5 GB/hr.  Logging all the simulation events 
for full playback or comprehensive data analysis would 
require over 200 kB/hr of data for each entity. For 1 
million entities, the data rate is ~200 GB/hr. Five 
terabytes of data would be collected over the course of 
a 36 hr experiment. 
 
Minimize resource contention 
The simulation and the logger are running 
simultaneously, both requiring computing resources in 
terms of CPU, memory, disk access and network 
bandwidth. The logger should avoid competing against 
the simulations for resources. 
 
Extensibility 
The framework must facilitate the adding of new 
functional capabilities to handle novel types of 
analysis. As previously stated, goals and evaluation 
criteria should be defined well in advance of the event. 
However, it is not always the case and unanticipated 
questions do frequently arise. The framework must be 
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flexible enough to incorporate additional functionality 
without extensive modification. 
 
Responsiveness 
The framework must be able to respond to analysis 
queries of interest within a prescribed time frame.  
 
Reusability 
The framework must be able to work with different 
simulations and possibly with different HLA runtime 
infrastructure implementations. Initially, this work 
focuses on using JSAF and RTI-s (Calvin, et al., 1997). 
 
Partitioning the data 
 
One major design decision for a logger implementation 
is to determine where to store the logged data. Previous 
logger implementations for HLA simulations have 
utilized centralized data storage schemes (e.g., 
hlaResults) to store events on a centralized relational 
database.  Typically, a centralized logger would self-
register as an active listener interested in all federation 
events. The HLA runtime interface will then forward 
all events generated by each simulation federate to the 
logger. However, such centralized storage schemes are 
difficult to scale up as the number of simulation 
federates and number of entities increase. 
 
Distributed storage schemes can overcome storage 
bottlenecks. Instead of funneling all the data to a single 
computer node, the data is partitioned and saved on 
multiple nodes. Then the question becomes how to 
partition the data. Possible partitioning schemes 
include partitioning by event type, by geography, by 
time, and by communication connection topology.  
 
There are advantages and disadvantages for accessing 
data from each partitioning scheme depending on the 
type of analysis being conducted. For example, in order 
to compute a Killer/Victim scoreboard, the analyzer 
needs to access all the Damage Assessment Events. If 
the data were partitioned by event type, then all the 
Damage Assessment Events would be on the same 
node. The analyzer only needs to perform local queries 
to compute the Killer/Victim scoreboard. However, if 
analysis involves examining interactions among 
multiple types of entities, then the analyzer may need 
to join multiple remote data stores. In this latter 
scenario partition by geography may be a better choice.  
 
If the desired analysis type is known, the logger should 
choose the data-partitioning scheme that minimizes 
remote data access. These partitioning schemes can be 
viewed as ways of pre-fetching data to support faster 
computation during analysis. Extra network bandwidth 
is utilized to aggregate data during collection, in order 

to improve responsiveness by minimizing 
communication during analysis. See Figure 5 for three 
representative types of data aggregation schemes. 
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Figure 5. Data partitioning schemes based on 
communication connection topology.6  

Frequently the analysis type is not known beforehand 
and arbitrarily choosing a partitioning scheme wastes 
valuable bandwidth during the actual simulation run. 
Also, sometimes multiple analysis types are desired 
and implementing multiple partitioning schemes wastes 
even more bandwidth. Resource contention between 
logger and simulation is unavoidable, when possible 
the logger should delay resource intensive operations 
until after the simulation runs. In addition overly 
aggressive data aggregation may result in 
underutilization of SPP computing resources. In the 
extreme centralized scheme only the CPU resource 
from one node is available for processing. 
 
One way to minimize imposing additional 
communication load during collection is to partition the 
data according to the communication connection 
topology. For example, one type of connection 
topology used for the SPP is the three-level tree. The 
simulation federates sit on the leaves of the tree, while 
the RTI router nodes sit on the internal nodes of the 
tree. The simulation federates can only communicate 
with each other through the routers. The logger can be 
deployed on the routers to passively watch and 

                                                 
6 Ovals are simulations and squares are the loggers. 
The centralized scheme expends network resources 
during collection, but it requires no network 
communication during processing. The fully 
distributed scheme is exactly the opposite, which 
requires no network resource during collection, but 
expends network resources during processing. Of the 
three schemes, the fully distributed scheme has the best 
potential for utilizing the distributed computing 
resources of the SPP. 
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collection events as they move through the router. The 
advantage of passive loggers is that they impose no 
additional load on the network, since they do not 
subscribe to interest channels (which forces additional 
events to be sent). However, the passive loggers 
attached to routers will fail to capture all the events on 
RTI implementations (e.g., RTI-s) that perform source-
side squelching. If no simulation federate declares an 
interest to the events then source-side squelching RTI 
will drop the simulation events before they are sent to 
the router. To capture all possible events passive 
loggers attach themselves to the simulation federates 
themselves before the RTI has a chance to drop the 
events. Otherwise, the loggers have to become active 
and explicitly register interest to the squelched events. 
 
Implementation 
 
Based on discussions with potential users and 
simulation developers, the team came up with three 
implementation requirements: 
 

• The logger must capture all simulation events. 
HITL events are very difficult to repeat and 
the users were concerned that passive data 
collection would leave gaps. 

• The analyzer must be extensible. The user is 
sometime vague about final analysis 
products/results, so the analyzer must be 
flexible enough to handle a variety of analysis 
types. 

• The logger/analyzer must minimize resource 
contention with the simulation. The simulation 
developers expressed a strong reluctance to 
give up simulation performance.  

 
For the initial iteration the team plans to use a fully 
distributed data storage implementation. Also, to 
further minimize resource contention the plan is to 
insert very lightweight probes into the simulations to 
gather the needed events. Under an HLA simulation 
environment, federates communicate with each other 
using the RTI. Conceptually one can place a wrapper 
around the RTI to intercept all events sent through the 
RTI. Before forwarding these events to the RTI layer, 
the wrapper uses non-blocking interprocess 
communication (IPC) to send the contents of these to 
separate local logger processors. Since the local logger 
processor resides on the same node, no network 
bandwidth is consumed (see Figure 6).  
 
The existence of the wrapper is hidden from the 
federates, so no modification to simulation federates is 
needed. Many current RTI implementations, such as 
RTI-s, RTI-NG and MÄK, provide Interceptors that 

facilitate wrapper implementation. In addition RTI-s 
provide dynamic Interceptor loading capabilities, so 
even recompilations are not needed. 
 

 
Figure 6. Node level view of logger 

 
The local logger process provides a framework for 
multiple components to register and receive the 
intercepted events. For example, note the Archiver and 
Filter components in Figure 6. The Archiver 
component faithfully stores all intercepted events to 
disk. The Filter can be programmed to gather event 
subsets. Both the Archiver and Filter data stores are 
accessed through the Query Processor, which exposes 
an SQL-like API. The actual format of the data stores 
is exposed. However, for the initial implementation the 
plan is to store the data in text format. Based on past 
experiences with logging for network packet analysis, 
the team has found text format to provide a good first 
order implementation. The logged data is easy to 
perform a sanity check on through visual inspection, 
and easily manipulated with regular Unix tools. The 
query performance in most cases is acceptable. 
 
For the local data stores the team has also considered 
using full-fledged relational databases, which provide 
the flexibility to handle general SQL queries. However, 
for the initial prototype the decision was not to use 
relational databases due to concerns that they may not 
be able to keep up with the volume of data during 
insertion. Also, logistically it is difficult to set up 
hundreds of databases (one for each node for each 
simulation run). In most cases nodes on cluster 
machines are reserved for fixed time periods. After the 
time periods expire the local disks are typically wiped 
clean. 
 
Each Query Processor only provides a partial view of 
the simulation, since it can only access the data from 
the local data store. The SPP analyzer provides a 
framework for integrating multiple local stores to offer 
the appearance of a centralized data store to application 
analysis programs (e.g., Killer/Victim scoreboard, etc.). 
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The scoreboard application sends a SQL query to the 
root Aggregator (See Figure 7). This query is replicated 
and forwarded to lower level Aggregators until it 
reaches the Query Processors at the leaf nodes. Then, 
the Aggregators merge the results of the query, and 
send the tables back up the tree. For the initial 
implementation, the plan is to implement query 
replication and simple result table merging/sorting 
operations within the Aggregators. In the future, there 
are plans to add metadata descriptions to local data 
stores to enable more advanced processing within the 
Aggregators. 
 

Figure 7. System level view of the logger across 
the nodes. 

 
 

CONCLUSIONS 
 
Being able to support senior decision makers with 
quantitative results does not have to be an 
insurmountable obstacle when using HITL simulations 
such as JSAF. Experience being gained at USJFCOM 
in harnessing scalable parallel processors to do data 
logging across the M&S federation will provide the 
technological base to better support the future needs of 
joint experimentation. Spiral processes and data 
collection tools round out the knowledge set that will 
enable quantitative data to be verified, validated and 
employed in the Department of Defense’s quest to 
transform the military. This exciting area of simulation 
work is just a segment of the overall support found in 
joint experimentation, but a critical player, as the 
prudent application of public funds needs to be as 
effective as possible. 
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ABSTRACT 
 
The Distributed Continuous Experimentation Environment (DCEE) is a permanent simulation system and facility 
that is being designed and assembled by the US Joint Forces Command (USJFCOM) to provide a capability to do 
simulation-backed experimentation without incurring heavy integration and ramp-up costs.  Among the several 
thrusts of the DCEE system is the capability to do large-scale human-in-the-loop experiments in the spirit of the 
Millennium Challenge 2002 experiment, as well as very detailed representations of joint urban operations scenarios.  
Additionally, the DCEE system will be used in support of a number of smaller-scale experiments and training 
events, such as Limited Objective and Multinational Experiments.  
 
In order to provide a system that can scale to a richer and more expansive world, we need to increase the 
computational power available to produce the environment.  However, this leads to a classical problem of parallel 
computation, where the communications requirements of the system become the bottleneck, and additional 
computation adds no additional capacity to the system. 
 
This paper describes the architecture that we have prototyped to address some of the problems of data 
communications scalability.  It discusses the interest management techniques that have been used in the past, and 
how those experiences influenced the prototype design. It talks about the technology that provides finer resolution 
interest management than simulations have had in the past while allowing better scalability.  It explains the 
limitations of the prototype system and discusses some possible approaches to addressing them.  Finally, it describes 
some likely future requirements of the DCEE system, and talks about how the architecture would have to change in 
response.  
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THE DCEE 
 
The Distributed Continuous Experimentation 
Environment (DCEE) is a facility and a capability 
being designed and assembled by the US Joint Forces 
Command (USJFCOM) for exploration of concepts in 
joint warfighting.  (Ceranowicz et al 2003) One major 
component of the DCEE is a permanent simulation 
installation to provide the capability to do simulation-
backed experimentation without incurring the major 
integration and ramp-up costs that previous 
experiments have incurred. 
 
The simulation capability that will be provided by the 
DCEE is based on the Joint Experimentation 
Federation (JEF) that was assembled for the 
Millennium Challenge 2002 (MC02) experiment.  
(Ceranowicz et al 2002) This federation provides a 
framework for the individual services to bring 
simulation capabilities to a joint virtual world.  It 
provides concept developers the ability to experiment 
with large-scale battles and situations in a platform-
level human-in-the-loop style. 
 
However, the DCEE is not simply designed to be a 
snapshot of the MC02 version of the JEF; it is designed 
to evolve and expand to encompass new capabilities 
and fulfill new requirements as they arise.  Therefore, 
we must keep pushing the technology in advance of the 
requirements, or the DCEE won’t be used.  The whole 
point of the DCEE simulation system is to make it easy 
and quick to set up a situation and simulate it, in a 
brainstorming style, in order to bring Joint 
Experimentation to its full potential. 
 
The simulation component of the DCEE is 
implemented as a High Level Architecture (HLA) 
federation.  (Dahmann et al 1997) It is an aggregation 
of a number of simulation systems, each of which has a 
particular focus on a different facet of the battlefield.  
However, since many of the simulations that make up 
the DCEE were originally designed to interoperate 
using the DIS protocols, (IEEE 1998) they were 
designed to support scenarios that are in the size range 
that is supported by DIS—which typically has an upper 

bound on the number of simulated platforms in the low 
thousands.  This leads to another issue for the DCEE, 
that of providing a simulation capability that can 
handle the progressively larger scenarios that the 
DCEE is designed to handle. 
 
 

SCALABILITY 
 
One major thrust in the world of Joint Experimentation 
is that of scalability.  The simulated world of MC02, 
while larger than any others created previously, is not 
big enough or detailed enough to play out the 
situations that JFCOM wants to examine.  The DCEE 
must be able to provide a larger, more detailed 
environment, both in terms of numbers of simulated 
actors, and the simulated natural environment they 
interact within. 
 

Table 1. Scalability Achievements Over Time 
 

Event Object 
Count 

Max Objs 
Produced 

PerFederate 

Max Objs 
Consumed 

PerFederate 
STOW97 7000 400 500 
J9901 40,000 5000 5000 
AO00 160,000 20,000 50,000 
MC02 50,000 30,000 30,000 
SPP 1,500,000 15,000 70,000 
 
As is shown in Table 1, the number of simulated 
objects that make up large federations has been 
steadily increasing, with the exception of MC02, in 
which it was more important to integrate a large 
number of new models.  The trend towards larger 
numbers of objects will continue as we move forward, 
simply because the simulations are not yet capable of 
portraying a full-scale situation at full accuracy.  With 
the increasing capabilities of computers and networks, 
we believe that we will be able to produce such a full-
scale scenario, but there are still a large number of 
open issues remaining, both in how to properly control 
such a simulation, and in how to usefully use and 
observe such a simulation. 
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There are a number of factors that limit the size of the 
simulation that we are able to produce in a system like 
the DCEE.  The computation cost of simulating the 
objects that make up the world and the interactions 
between them is the most straightforward of these 
factors.  The communications overhead of sharing 
these objects between the various simulators introduces 
another major cost.  The final and most complex factor 
is the effect of the objects simulated by other systems 
on the local simulated objects. 
 
The computational factor is a straightforward problem 
to solve, simply by adding additional hardware to the 
system.  However, this solution is constrained due to 
space restrictions and financial restrictions, and 
therefore the system is limited in how large and how 
quickly it can grow.   
 
The communications factor is also constrained by the 
amount of funding available to support the networking 
hardware and services to run an exercise.  
Additionally, there is a significant lead time 
requirement in order to get networks provisioned and 
security requirements fulfilled.   
 
The cost of incoming data is still a major subject of 
research.  Each remote vehicle that is received by a 
simulator adds load to that system.  One technology 
that is often used to reduce the load on a system is 
interest management.  This lets each simulator describe 
what data might affect its simulation, and the 
networking infrastructure filters the data that the 
system needs to consider.  While interest management 
helps an enormous amount, there are cases where it 
fails simply due to the amount of data requested.  
(Brunett & Gottschalk 1997) 
 
 

SCALABLE PARALLEL PROCESSORS 
 
In searching for a possible solution to the first two 
pieces of the scalability dilemma, we turned to another 
area of research that has been exploring the areas of 
scalability and parallelism.  The scientific 
supercomputing community has been exploring the 
limits of scalability for many years.  Furthermore, this 
community has led to the creation of government-
owned and operated High Performance Computing 
(HPC) centers, many of which are available for use 
with little lead time. 
 
The HPC centers provide a variety of types of systems, 
most of which fall into the general category known as 
Scalable Parallel Processors (SPPs).  These systems are 

defined by their large number of individual CPUs that 
are connected by a high speed network. 
 
One of the major types of systems run by the HPC 
centers is the Beowulf cluster.  (Sterling et al 1995) 
Beowulf clusters have become popular systems in the 
world of HPC systems because of their low cost for the 
amount of power they provide.  A typical configuration 
of a Beowulf cluster is several hundred commodity 
PCs running Linux connected with a multi-gigabit 
network, with custom resource allocation and parallel 
machine software running on them.  Since these 
clusters are similar to the systems the DCEE uses, we 
decided to concentrate on using these systems to 
provide a huge amount of computation and 
communication resources, and thereby address the 
time, money, and space restrictions on scalability in the 
DCEE. 
 
 

INTEREST MANAGEMENT 
 
The third piece of the scalability question is how to 
handle the large quantities of data that we can now 
generate using the capabilities of the SPP systems.  We 
have spent quite a bit of time optimizing the simulation 
systems to reduce the load imposed by incoming data, 
but there is an inherent polynomial factor in all 
simulation systems, simply because vehicles interact 
with nearby other vehicles, and therefore as vehicle 
density increases, processing per vehicle increases as 
well.   
 
In particular, sensor processing is typically an O(n2) 
operation on vehicles in a local area.  There have been 
several attempts to mitigate this load through 
alternative sensor approaches (McGarry & Torpey 
1999) (Lorenzo et al 2000) (Kwak & Andrew 2002) 
but these approaches require additional simulation 
changes to support them.  Due to the legacy nature of 
many of the DCEE simulation models, these 
approaches are difficult to implement, since they 
require modifications to all the different models that 
are used.  This also limits the flexibility of the system, 
since new simulations have additional requirements 
over their existing capabilities in order to interoperate 
with the rest of DCEE. 
 
So, it is still necessary to reduce the quantity of data 
coming into each simulation to the minimum that they 
need in order to operate correctly.  In general, only the 
individual simulator can determine what data is 
interesting, and only at runtime, since the information 
needed is based on the situation that the simulator is 
modeling.  Therefore, interest management is a 
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dynamic problem, and needs to react and adapt to 
changing data requirements by all the components of 
the system. 
 
This dynamic interest specification and handling is 
performed by the Data Distribution Management 
(DDM) functionality of the HLA.  The HLA Run Time 
Infrastructure (RTI) software provides an API to the 
simulations that allows them to specify what data is 
interesting in a dynamic fashion.  The HLA provides a 
generalized, abstract way to specify data and interest, 
by representing data domains as multidimensional 
spaces, and interest and data specifications as regions 
within those spaces.  (Morse & Steinman 1997)   See 
Figure 1 for a two-dimensional example of how DDM 
represents interests and data based on overlap of 
regions. 
 

 
 

Figure 1. Subscription and Publication Overlap 
 
There have been a number of different DDM designs 
in several RTI implementations, each of which 
represents spaces and regions in different ways.  The 
most scalable implementation we have found so far is a 
statically-assigned grid representation that represents 
spaces as multidimensional grids, and regions into 
subsets of the grid.  This leads to a fast mapping of 
interest to grids without any communications and with 
a simple algorithm.  (Helfinstine et al 2001)  See 
Figure 2 for an example of how Figure 1 would be 
represented in a fixed-gridded implementation. 
 

 
Subscription Region Publication Region 

 
Figure 2. Regions Snapped to a Grid 

 
 

Subscription Region Publication Region 

MULTICASTING 
 
The main communications capability that is provided 
by the HLA is a publish/subscribe capability that 
delivers each message to multiple receivers.  This 
capability is often implemented using Internet Protocol 
(IP) multicast, (Deering 1989) which provides support 
for point-to-multipoint communications with dynamic 
subscription changes, over a range of different 
networking technologies. 
 
However, this presents a problem when trying to run 
on SPPs, which typically do not support IP multicast.  
Depending on the type of SPP, it may not support IP at 
all, since there are many ways to interconnect 
processors that do not look like a traditional network.   
 
However, SPPs do support message-passing 
communications, either using IP, as Beowulf systems 
do, or with some other technology.  In order to provide 
a standardized means of doing message-based 
communications, the HPC community has standardized 
on the Message Passing Interface (MPI) as a common 
API for building parallel programs that express their 
parallelism in terms of messages.  (MPI Forum 1995)  
 
So, it became clear that we would need to build a 
mechanism that would provide the many-to-many 
semantics of multicasting while using a 
communications technology that only supports point-
to-point.  Furthermore, we also need to maintain our 
existing capability to run the simulation in a Local 
Area Network (LAN) environment, since user 
interfaces and other DCEE federates would not be 
supported by the SPP. 
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This led us to examine the work that was done for the 
Synthetic Forces Express (SF Express) program which 
investigated running the ModSAF simulation on SPP 
systems in the 1997 timeframe.  (Burnett & Gottschalk 
1997-2) This work demonstrated a fairly 
straightforward way to provide an emulation of the 
capabilities of multicast using router processes running 
on SPP nodes to arbitrate the communications and do 
data duplication and forwarding to appropriate 
receivers.  (Burnett & Gottschalk 1997) 
 
Another interesting body of work that uses a similar 
networking architecture is being pursued by the 
DARPA Active Networks program.  (Dorsch et al 
2002) In their system, software router processes 
perform data routing to the appropriate recipients in a 
similar fashion to the SF Express router nodes.  This 
project uses direct region matching to do filtering, 
which is more precise, but less scalable as the number 
of regions increases.   
 
 

RTI-S 
 
In order to construct a system that runs on an SPP and 
supports HLA federations, we needed an RTI 
implementation that would use router processes to 
communicate within the federation.  The particular 
implementation that we used to form the basis of this 
system is the RTI-s subset RTI implementation.  
(Calvin et al 1997)  
 
We chose this implementation for several reasons.  It 
was available to us with source code, and is familiar to 
us from its use in previous experiments, so it was 
easily modifiable to use the new communications 
system we were building.  It has much less code than a 
full RTI implementation, which makes it much easier 
to understand and extend.  It scales well, and has a 
fairly small memory footprint.  Finally, it has a very 
flexible implementation of DDM, providing multiple 
static inset grids that allow detailed tuning of interest 
specifications.  (Rak et al 1997) 
 
 

COMMUNICATIONS ARCHITECTURE 
 
We put together a design for the communications 
architecture based on the concept of stackable protocol 
modules.  We analyzed the existing RTI-s 
communications code and refactored the functionality 
it provided into several pieces.  
 
The original RTI-s network interface is composed of 
the stream manager classes, which provide single-

sender to multiple-receiver message sending, receiving, 
and subscription, and the message buffer class, which 
provides an interface to messages.  Below this 
interface, the infrastructure provides message bundling, 
to reduce the packet count by aggregating multiple 
small messages into each packet, and fragmentation, to 
split large messages into multiple packets and 
reassemble them on receive.  Finally, it sends and 
receives the actual packets using IP multicast. 
 
Then, these main components of the communications 
infrastructure were separated out into chained protocol 
modules, and given a standardized interface to ease 
extension and flexibility.  We then added additional 
modules that send and receive packets using point-to-
point TCP and point-to-point UDP.  Finally, we added 
a module that translated generalized subscription 
requests into a message that states the current list of 
subscriptions, which is sent across the point-to-point 
connection and remembered by the receiver.  Figure 3 
shows three possible configurations for an RTI 
communications structure, with the three columns of 
protocol modules below the stream manager. 
 
In order to operate on SPP systems that use MPI as 
their connectivity basis, we built an MPI send and 
receive module.  However, we were worried about the 
fault-tolerance effects of MPI, and since we were 
running on Beowulf clusters, which support IP 
connectivity, we ended up using TCP for our prototype 
events. 
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Figure 3. Three Example Configurations of the RTI-s 

Communications Infrastructure 
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This general model of protocol modules has allowed us 
to experiment with additional message transformations 
depending on our needs.  In this vein, we built a 
module that compresses the data across a connection, 
when our bandwidth is low and we have available CPU 
time.  For testing purposes, we also built a module that 
simulates a lossy network, and which randomly drops 
incoming or outgoing data with a specified loss rate.  
We see this as a very convenient way of integrating 
future data transformations as they become necessary. 
 
 

ROUTER DESIGN 
 
Once we had a way for the RTI to send and receive 
data in a point-to-point fashion, we needed a router 
implementation that would receive the data from each 
federate and forward it to the clients that subscribed to 
it.  As an initial implementation, we built a simple 
router process that reuses the RTI’s flexible connection 
code, receiving the data and processing it in the same 
fashion as the RTI.  Figure 4 provides a diagram of a 
router that is routing between three connections. 
 

 
 

Figure 4.  Simple Router Design Routing Between 
Connections to Three Federates or Other Routers 

 
In order to send messages to only those receivers that 
want to receive it, each connection tracks what the 
receiver’s subscriptions are.  Therefore, since each 
connection has knowledge of what the receiver wants 
to hear, it can filter outgoing data before it makes it 
through the protocol chain.  Since each side of each 
connection knows this information, if no listeners in 
the system want to hear a particular piece of data, it 
won’t be sent out of the originating machine.  This 
aggressive source-side squelching of data is a very nice 
side-effect of the router design. 
 
However, in order to accomplish this, we need to send 
subscription information across each link in both 

fairly simple-- a router’s interest is the union of all its 
connections’ interests.  Therefore, the two major things 
that a router must do is to forward incoming messages 
to all other connections, and update interest 
information on all other connections when one 
connection changes.   
 

directions.  In the case of the router, it turns out to be 

TOPOLOGY 
 

his simple router architecture is quite functional, but 

Figure 5. Simple Tree-Based Router Topology 
 

ecause of this, we also built a second router 

Figure 6. Triplet-Connected Mesh Topology 
 

e b c of 

 

T
it does have some significant problems.  In particular, 
it does not handle cycles in the graph of routers.  Each 
router expects to be able to forward all incoming 
messages to all receivers.  If one of those receivers is a 
router that forwards a message to a router that has 
already forwarded it once, the routers will send data in 
a loop forever and overload the system.  However, this 
implies that these routers can only be set up in a tree 
structure if we have more load than a single router can 
handle.  This is obviously not a scalable design. 
 

 
 

B
implementation based on the up/down fully-connected 
mesh topology that was explored by the SF Express 
project.  Unfortunately due to schedule pressure, we 
have not yet been able to test this design fully. 
 

 
 

W elieve that we need to investigate the topi
topology more, and look into new ways to organize the 
communications between the various components of 
the federation.  In particular, when Wide Area Network 
(WAN) connections between multiple SPP systems are 
introduced, being constrained to a tree structure can 
result in very heavy data loads to one of the sites, 

… … 
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which is a very expensive solution to a software 
limitation.  Further, WAN connections have a much 
lower bandwidth than SPP interconnects or LAN 
connections, and therefore it makes sense to investigate 
specialized connection methods across WANs, and 
different tradeoffs in the design of the communications 
setup. 

 

INTEREST MANAGEMENT IMPROVEMENTS 

ne of the results of this new messaging architecture 

owever, the existing code began to perform poorly, 

imilar changes were made throughout the RTI code, 

inally, a centralized means of recording statistics 

PROTOTYPE EVENTS 
 

e ran two prototype events, in which we 

 December 2002, we were able to generate over 

 March 2003, we ran an even larger event, generating 

oth of these events were focused on testing the 

FUTURE REQUIREMENTS 
 

 

 
O
was that we began to run into limitations of the RTI-s 
interest management infrastructure.  In particular, we 
wanted to expand the number of interest states from the 
previous maximum of 3000 to 100000 or more.  
Previously we were limited by the capabilities of IP 
multicast routers, which begin to fail after roughly 
3000 multicast groups, but with our own router 
implementation, we no longer are subject to these 
limits.  Since the efficacy of the static grid interest 
management scheme is determined by the number of 
interest states, the more states that are available, the 
smaller the grid cells are.  As the grid cells become 
smaller, less unwanted data will be delivered to the 
federate.   
 
H
due to the use of arrays of integers to represent the list 
of interests of a particular subscription.  In order to 
scale the number of interest states up, we had to refit a 
number of internal data types in RTI-s to be more 
efficient, both in storage usage and in access time.  In 
particular, the list of interest states was changed to be 
represented as a sparse bit vector implementation, with 
a fixed-block-size representation.  This provided a way 
to quickly determine interest overlap as well as a fast 
means of calculating the union of interests in the 
router.  Further, it resulted in a compact representation 
that could easily be sent over connections with a fairly 
small overhead. 
 
S
in many places where the assumption was that an array 
of values with an entry for each interest state would be 
acceptable, we had to change to a tree representation or 
a hash table in order to not consume large amounts of 
memory.  Additional changes were required to provide 
a means of associating objects with their interests in an 
efficient fashion.   
 
F
about data amounts and counts was added, in order to 
be able to pinpoint pieces of the system and what was 
causing slowdowns.  With the existing RTI-s capability 

to examine internal information, this allows a remote, 
distributed debugging capability that was extremely 
useful in monitoring the system as it ran. 
 
 

W
demonstrated that it is possible to generate enormous 
numbers of vehicles in a very large virtual 
environment, using SPP systems.  Both events were 
run using a subset of the DCEE federation, composed 
of the JSAF simulation GUIs, the JSAF simulator 
running aircraft, ships, and ground combatants, and the 
JSAF clutter simulator providing background and 
civilian traffic. 
  
In
1,000,000 vehicles, using a terrain that covered the 
entire Pacific Rim.  The simulation ran on the 
University of Southern California’s Beowulf cluster, 
and operators and observers were located at Joint 
Forces Command in Suffolk, Virginia, as well as at 
Information Sciences Institute in Los Angeles.  We 
were able to use 50,000 interest states to provide a 
fairly precise specification of interests, in several 
geographically disparate simulated locations. 
 
In
over 1,500,000 vehicles on the same terrain database, 
but located in different areas with more terrain detail.  
We ran on the Huinalu Beowulf cluster at the Maui 
High Performance Computing Center and the ASC 
Beowulf cluster at Wright-Patterson AFB, with 
observers in Suffolk and Los Angeles again.  We also 
increased the number of interest states to 100,000 
without adverse effect.  
 
B
functionality of the new system, and showed that we 
can indeed generate a very large simulated 
environment.  They also demonstrated that we have 
quite a bit of additional work that we can do, in order 
to make the system viable for the end users.  In 
particular, WAN latencies and inefficiencies in the 
simulation’s control protocols combine to make the 
user interfaces very sluggish.  The tree nature of the 
routers also became a point of failure when the system 
was under its heaviest loads.  We suffered a number of 
router failures due to data overload, and we are still 
working to address these. 
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We still fac  to resolve 
 order to make the use of SPP systems possible for 

uirement is that we need to make it 
uch easier for non-experts to acquire time on SPPs 

hat we must have a way 
r simulations running on SPP systems to participate 

ssue that we are beginning to investigate 
 how the SPP will help analysts do After Action 

d to 
vestigate is the issue of control.  As we scale up 

CONCLUSIONS 

The use of Scalable Parallel Processor systems has a 
reat deal of promise in building larger and more 

nt routers to 
rovide data distribution gives us a great deal of 

ditional dimensions that are worth 
xploring, both in better integration into DCEE, and 

This material onsored by 
e Air Force Research Laboratory under agreement 

NCES 

Brunett, S. & Gotts An Architecture 
for Large ModSAF Simulations Using Scalable 

 

 
B le 

ModSAF Simulations With More Than 50,000 

 
C ., Evans, J., 

& Hines, J. (2002).  Reflections on Building the 

nd 

 
Ceranowicz, A., Dehncke, R., Cerri, T., & Blank, J.,  

(2003).  Moving toward a Distributed Continuous 

 

e a number of issues that we need
in
DCEE.  The events that we have run so far show major 
promise, but have not yet demonstrated that we are 
able to fulfill the DCEE’s flexibility and ease-of-use 
requirements yet. 
 
The first major req
m
and execute the system on them.  It currently is a fairly 
involved process that takes several people to 
accomplish.  This is a major project that is already 
underway.  (Williams & Tran 2003)  An initial version 
of the MARCI launch and control system was tested at 
the March event, and it is undergoing further 
development and refinement. 
 
Another major requirement is t
fo
in the DCEE federation.  The primary reason we 
cannot simply plug the SPP systems into the DCEE is 
that the DCEE uses the enhanced version of RTI-NG 
developed for Millennium Challenge 2002, (Hyett & 
Wuerfel 2003) and the SPP uses RTI-s with point-to-
point routers.  Since they use different RTI 
implementations, they run in two separate HLA 
federations, and we need to build a federation gateway 
that will allow us to bridge data back and forth 
between the two federations.  This is not an easy task 
(Granowetter 2003) but we believe that we can build 
such a gateway as long as its scope is restricted to the 
DCEE and similar federations.  This is another ongoing 
major project. 
 
An additional i
is
Review of the huge amounts of data that can be 
produced by simulations running on an SPP.  A 
distributed logging and query system is currently being 
designed to attempt to address this requirement.   
 
One of the most important areas that we nee
in
scenarios to the desired sizes, it becomes more and 
more difficult to control the simulation and make sure 
it behaves in a proper fashion.  We need to look into 
schemes that reduce the amount of operator control 
that is required to run a simulation.  This would have 
an additional benefit for DCEE as well, since any 
technique that reduces the number of personnel 
involved will be of incredible utility.  

 
 

 

g
detailed virtual environments,  both for 
experimentation and for many other uses of simulation.  
We are integrating the use of SPP systems into the 
DCEE, and we believe that it will provide an extremely 
valuable asset in the DCEE environment. 
 
The use of software interest manageme
p
flexibility in building a scalable system and providing 
the building blocks to more detailed dataflow control 
and management.  
 
There are many ad
e
additional technical exploration to discover new ways 
to apply the SPP assets to the problems of DCEE and 
similar human-in-the-loop simulation systems. 
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ABSTRACT 

 
The JESPP project exemplifies the ready utility of High Performance computing for large-scale simulations.  J9, the 
Joint Experimentation Program at the US Joint Forces Command, is tasked with ensuring that the United States’ 
armed forces benefit from improvements in doctrine, interoperability, and integration. In order to simulate the future 
battlespace, J9 must expand the capabilities of its JSAF code along several critical axes: continuous 
experimentation, number of entities, behaviors complexity, terrain databases, dynamic infrastructure 
representations, environmental models, and analytical capabilities.  Increasing the size and complexity of JSAF 
exercises in turn requires increasing the computing resources available to JFCOM.  Our strategy exploits the 
scalable parallel processors (SPPs) deployed by DoD’s High Performance Computing Modernization Program 
(HPCMP).  Synthetic forces have long run in parallel on inter-networked computers.  SPPs are a natural extension 
of this, providing a large number of processors, inter-connected with a high performance switch, and a collective 
job management framework.  To effectively use an SPP, we developed software routers that replace multicast 
messaging with point-to-point transmission of interest-managed packets.  This in turn required development of a 
new simulation preparation utility to define the communication topology and initialize the exercise.  We also 
developed tools to monitor processor and network loading and loggers capable of absorbing all of the exercise data.   
We will report on the results of J9’s December 2002 Prototype Event which simulated more than one million clutter 
entities along with a few thousand operational entities using 50,000 interest states on a terrain database 
encompassing the entire Pacific Rim. The exercise was controlled and “fought” from a J9 test bay in Suffolk, VA 
and the clutter entities were executed on a remote SPP in Los Angeles, CA.   We will also present results from the 
Prototype Event in March 2003, as well as our long-term plans.  
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Introduction and Background 
The United States has a vested interest in being able to 
simulate more than one million vehicles, all with 
sophisticated behaviors, operating on a global-scale, 
variable resolution terrain database.  This is driven by 
the government’s needs to accommodate new computer 
and communications technology (Cebrowski, 1998) 
and simulate more complex human functions in 
technically diverse situations (Sanne, 1999).  The U.S. 
Department of Defense (DoD) has begun a series of 
experiments to model and simulate the complexities of 
urban environments. In support of their mission, 
analysts need to conduct interactive experiments with 
entity-level simulations, using programs such as the 
Semi-Automated Forces (SAF) family used by the DoD 
(Ceranowicz, 2002).  This needs to be done at a scale 
and level of resolution adequate for modeling the 
complexities of military operations in urban situations. 
All of this mandates the government analysts’ 
requirement of simulations of at least 1,000,000 
vehicles or entities on a global-scale terrain database 
with high-resolution insets.  Experimenters using large 
numbers of Linux PCs distributed across a LAN found 
that communications limited the analysts to tens of 
thousands of vehicles, about two orders of magnitude 
fewer vehicles than their needs.  This paper addresses 
the benefits of the successful application of 
computational science and parallel computing on SPPs 
to this issue.  By extension, it illuminates the way for 
those with similar simulation needs, but faced with 
similar computational constraints, to make beneficial 
use of the SPP assets of the High Performance 
Modernization Program (HPCMP.) 
 
While there are many approaches that are currently in 
use, simulation and modeling at the entity level 
(modeling each individual person and vehicle) manifest 
some very attractive features, both for training and for 
analysis.  Many who would argue that entity level 
simulations should be employed, maintain that these 
would generate the most timely, most valid, and most 
cost-effective analyses. Making these simulations so 
that the DoD can involve humans, i.e. Human-in-the-
Loop (HITL), additionally augments the DoD’s ability 
to assess true impacts on personnel and procedures. 
(Ben-Ari, 1998) There are several new methods to 
modeling human behavior (Hill, 2000).  While these 
require significant independent research (vanLent, 
1998), they also require significant additional compute 
power.  Current capability does not allow the analyst to 

conduct these experiments at the scale and level of 
resolution necessary.   These constraints have also been 
found in other varieties of simulation. 
 
In the present case, newfound emphasis on civilian, 
“White,” and clutter entities has expanded the horizons 
of entity-count by an order of magnitude.   Take any 
urban setting.  The number of civilian vehicles will 
easily outnumber the combat vehicles by a factor of ten, 
and more likely, by a factor of 100.  Trying to assess 
the utility of sensors in discriminating the former from 
the latter will be ill served by a simulation that is 
limited to a few thousand vehicles total. 
 
In order to make good use of the SPP assets currently 
available to DoD experimenters, the JESPP project 
applied approaches that others should find easily and 
reliably implementable on other, similar, efforts.   The 
discussion of the implementation of the JESPP code 
into the JSAF code base will not only represent a 
record of where we have been, but show the path for 
where we may go in the future.   
 
The current work on Joint Experimentation on Scalable 
Parallel Processor (JESPP) Linux clusters enabled 
successful simulation of 1,000,000 entities. Software 
implementations stressing efficient inter-node 
communications were necessary to achieve the desired 
scalability. One major advance was the design of two 
different software routers to efficiently route 
information to differing hierarchies of simulation 
nodes. Both the “Tree” and the “Mesh” routers were 
implemented and tested. Additionally, implementations 
of both MPI and Socket-Programmed variants were 
intended to make the application more universally 
portable and more organizationally palatable. The 
development of a visual and digital performance tool to 
monitor the distributed computing assets was also a 
goal that has been accomplished, leading to insights 
gained by using the new tool. The design and selection 
of competing program initiation tools for so large a 
simulation platform was problematical and the use of 
existing tools was considered less than optimal. The 
analytical process for resolving initiation issues, as well 
as the design and implementation of the resulting 
initiation tool developed by the group, is both a 
demonstrable result and the foundation of a 
computation science paradigm for approaching such 
problems.  The design constraints faced are analyzed 
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along with a critical look at the relative success at 
meeting those constraints.  
 
The requirements are for a truly interactive simulation 
that is scalable along the dimensions of complexity of 
entity behavior, quantity of total simulated entities, 
sophistication of environmental effects, resolution of 
terrain, and dynamism of features. This is a challenge 
that the authors assert may only be amenable to meta-
computing across widely dispersed and heterogeneous 
parallel computer assets (Foster, 1997).  Just achieving 
scalability in all of these dimensions would be difficult. 
Even more so, fielding a stable, dynamically 
reconfigurable compute platform that may include large 
parallel computers, Linux clusters, PCs on LANs, 
legacy simulators, and other heterogeneous 
configurations produces new obstacles to 
implementation. Several unique and effective 
Computational Science approaches are identified and 
explained, along with the possible synergy with other 
Computational Science areas.   
 
The current work is based on the early work headed by 
Paul Messina at Caltech (Messina, 1997).  The 
Synthetic Forces Express project (SF Express) began in 
1996 to explore the utility of Scalable Parallel 
Processors (SPPs) as a solution to the communications 
bottlenecks then being experienced by one of the 
conventional SAFs, ModSAF. The SF Express charter 
was to demonstrate a scalable communications 
architecture simulating 50K vehicles on multiple SPPs: 
an order-of-magnitude increase over the size of an 
earlier major simulation.  
 
SPPs provided a much better alternative to networked 
workstations for large-scale ModSAF runs. Most of the 
processors on an SPP can be devoted to independent 
executions of SAFSim, the basic ModSAF simulator 
code. The reliable high-speed communications fabric 
between processors on an SPP typically gives better 
performance than standard switching technology 
among networked workstations. A scalable 
communications scheme was conceived, designed and 
implemented in three main steps:  
 

1. Individual data messages were associated with 
specific interest class indices, and procedures 
were developed for evaluating the total interest 
state of an individual simulation processor.  

 
2. WAN Communications: Within an individual 

SPP, certain processors were designated as 
message routers; the number of processors 
used as routers could be selected for each run. 
These processors received and stored interest 
declarations from the simulator nodes and 
moved simulation data packets according to 
the interest declarations.  

 
3. Inter-node Communications: Additional 

interest-restricted data exchange procedures 
were developed to support SF Express 
execution across multiple SPPs. The primary 
technical challenge in porting ModSAF to run 
efficiently on SPPs lay in constructing a 
suitable network of message-passing router 
nodes/processors. SF Express used point-to-
point SPP MPI communications to replace the 
UDP socket calls of standard ModSAF. The 
network of routers managed SPP message 
traffic, effecting reliable interest-restricted 
communications among simulator nodes. This 
strategy allowed considerable freedom in 
constructing the router node network.  

 
As the simulation problem size increased beyond the 
capabilities of any single SPP, additional interest-
restricted communications procedures were needed to 
enable Metacomputed ModSAF runs on multiple SPPs. 
After a number of options were considered, an 
implementation using dedicated Gateway processors to 
manage inter-SPP communications was selected.  
 
In March of 1998, the SF Express project performed a 
simulation run, with more than 100,000 individually 
simulated vehicles. The runs used several different 
types of Scalable Parallel Processors (SPPs) at nine 
separate sites spanning seven time zones. These sites 
were linked by a variety of wide-area networks. 
(Brunett, 1997) 
 
This work depended on the existing DIS standard 
utilized by the SAFs at that time.  That standard was 
replaced by the HLA/RTI standard that was purportedly 
more scalable, but several years of use has shown the 
clear limits of this simulation approach.  This has not 
prevented some experimenters from getting very good 
results while simulating ~ 30,000 entities (Ceranowicz, 
2002).  These new standards and additional 
requirements have driven the development of two new 
router designs, Mesh Routers and Tree Routers. 
 
JSAF 
 
The Joint SemiAutomated Forces (JSAF) is used by the 
US Joint Forces command in its experimentation 
efforts.  JSAF runs on a network of processors, which 
communicate, via a local or wide area network. 
Communication is implemented with High Level 
Architecture (HLA) and a custom version of Runtime 
Infrastructure (RTI) software version RTIS. A run is 
implemented as a federation of simulators or clients. 
Multiple clients in addition to JSAF are typically 
included in a simulation.  
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Figure 1 
Plan View display from a SAF 

 
HLA and RTI use the publish/subscribe model for 
communication between processors. Typically, these 
processors are relatively powerful PCs using the Linux 
operating system. A data item is associated with an 
interest set. Each JSAF instance subscribes to ranges of 
interest. A JSAF may be interested in, for example, a 
geographic area or a range of radio frequencies. When 
a data item is published the RTI must send it to all 
interested clients.  
 
A typical JSAF run simulates a few thousand entities 
using a few workstations on a local area network 
(LAN). A simple broadcast of all data to all nodes is 
sufficient for this size simulation. The RTI on each 
node discards data that is not of interest to each 
receiving node. Broadcast is not sufficient when the 
simulation is extended to tens of thousands of entities 
and scores of workstations. UDP multicast was 
implemented to replace the simple broadcast. Each 
simulator receives only the data to which it has 
subscribed, i.e. in which it has a stated interest.  
 

 

The initial router implementation was a tree router. 
Each router has multiple clients but only one parent. 
There is one router that is the top of the tree. A second 
topology has subsequently been implemented. We have 
referred to it as a mesh router. Instead of a single router 
at the top of a tree, there is a mesh of routers with all to 
all communication. Each simulator is a client of one of 
the mesh routers. Like the tree router, the primary task 
of the mesh router is to maintain the interest state of all 

 
Figure 2 

3D Rendered display from a SAF 
 
Operational imperatives drive experimental designs that 
now required further expansions of JSAF capabilities. 
As noted before, some of the requirements justifying 
these extensions are the need for:   

• More entities   
• More complex entities  
• Larger geographic area  
• Multiple resolution terrain  
• More complex environments 

 
The most readily available source of one or more orders 
of magnitude of increased compute power is the 
capability presented by Scalable Parallel Processors. In 
the JESPP project, JSAF was ported to run on multiple 
Linux clusters, using hundreds of processors on each 
cluster. Future runs will require thousands of 
processors on multiple clusters. The primary difficulty 
in using these resources is the scaling of internode 
communication.  
 
UDP multicast is limited to approximately three 
thousand different channels. Based on geography alone, 
worldwide simulations using JSAF require many more 
interest states. UDP multicast has been replaced by 
software routers.  
 
Software routers were implemented on individual 
nodes in a network that includes all of the client 
simulators. Each simulator is connected to only one 
router. Routers are connected to multiple clients and 
multiple routers. Each connection is a two-way 
connection. Two types of information are present in the 
network. One is data along with interest description. 
The other is the current interest state of each client. The 
interest state changes as each node subscribes and 
unsubscribes to specific interest sets, as is appropriate 
depending on the simulation progress.  
 
Each router must maintain the interest set of each node 
to which it is connected, including other routers. A 
router’s interest set is the union of all connected nodes. 
A router then uses the interest state associated with data 
it receives to determine how to forward the data. For a 
given topology communication is minimized such that 
each client node receives exactly the data in which it is 
interested.  
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clients so as to forward only data that is of interest to 
each client and router. Further hybrid topologies are 
possible with little or no code modification, such as a 
mesh of meshes or a mesh of trees.   Conceptually, the 
mesh should provide better scalability. 
 
Another use of routers is the implementation of 
gateways providing an interface between different RTI 
and communication implementations. Both TCP and 
UDP are used for communication. Routers can use a 
different protocol on different connections and perform 
required data bundling, unbundling, etc. Different RTI 
implementations, required by simulators developed by 
different groups, can communicate via router-based 
gateways.  
 
The ultimate goal is for the capacity of a simulator 
network to scale easily as the number of processors is 
increased by several orders of magnitude. 
Comprehensive testing and measurement is required to 
document the performance of various topologies and 
router implementations. This testing will identify 
performance bottlenecks and suggest alternative 
implementations to be tested. Multiple simulation 
scenarios must be tested to construct guidelines for 
assigning simulators, routers and topologies to multiple 
SPPs.  
 
Fault tolerance is another area being studied. JSAF 
simulators are not affected by the loss of other 
simulators. The use of routers creates a single point 
whose failure eliminates multiple simulators. The use 
of dynamic topology will be studied and implemented 
to minimize the consequences of single node failures.  
Several different concepts of providing redundancy or 
instantaneous recovery are being considered and will be 
implemented and evaluated. 
 
Tree Routers 
The first router implementation is a tree router.  
 
 

 
Figure 3 

Tree Router Architecture 
Each simulator is connected to a router. All 
communication to and from a simulator goes thru the 
router. Routers have multiple child clients. All routers, 
except the single router that is the root of the tree, have 
one parent router. The root router has no parent. Each 
simulator has exactly one parent router. 

 
The function of a router is to receive data from clients 
and parent, and forward (send) the data to any clients or 
parent that have interest. Implementation requires that 
simulators and routers communicate interest as well as 
data. A simulator or router maintains the interest set of 
its parent router. A router maintains the interest set of 
all of its clients. When a simulator changes its 
subscription, it sends a modified interest set to its 
router. If this modifies the interest set of the router, the 
router sends the modification to its other clients, and its 
parent. Interest modifications propagate across the 
router network until all nodes possess the interest set of 
clients and parent. 
 
When a simulator publishes data, the associated interest 
set is intersected with the interest set of its router. If the 
intersection is not empty, the published data is sent to 
the router. When a router receives data from a client, 
the interest set is intersected with the interest set of the 
router's other clients. For each other client, if the 
intersection is not empty, the data is sent to the client. 
The same is performed for the router's parent. Given 
the connectivity, or topology, of a tree, this set of 
operations tends to minimize communication while 
ensuring that all simulators receive all data of interest 
to them in a timely manner.  
 
Mesh Routers 
Next we will describe the design of the new mesh 
router 
 

 
Figure 4 

Mesh Router Architecture 
The basic communications architecture expands on the 
original SF Express work, as illustrated in Fig.(2). For 
purposes of the present discussion, the relevant features 
of this architecture are as follows: 
 

1. Simulation processors (squares) are grouped 
with each group associated with a specific 
router node (“Primary Router”). 

2. Message flow from a simulator to its 
Primary Router had three main components: 
a. Interest Subscriptions: Simulators 

specify data type of (local) interest. 
b. Data messages up: All messages 

generated within the Simulator are sent 
up for possible transmission to other 
simulators. 
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c. Data messages down: Messages from 
elsewhere that match the relevant 
interest declaration are sent from the 
router to the simulator. 

3. Two additional interconnected layers of 
router nodes (Pop-Up and Pull-Down) 
manage all of the interest-screened data 
communications among the {Primary, 
Simulators} sets. 

 
4. Strict flow control among the layers 

prevents communications deadlock, with an 
additional “token protocol” used to eliminate 
ineffective data reading attempts. 
 
This architecture was central within the SF Express 
large-scale simulations, with another class of router-
like processors (“Gateways”) used to manage interest-
screened communications among participating SPPs. 
 
The present effort involves a number of significant 
extensions from the original SF Express code: 
 

1. Interest enumeration and interest state 
declarations are now done using tools 
within RTI-s. 

2. Interest declarations are now “two way”, 
involving both interest declarations and 
publications. 

3. Limitations on message size have been 
eliminated, thus supporting occasional 
very large “environmental” messages 
within typical JSAF applications. 

4. The entire code base has been 
reformulated in a rather rigorous object-
oriented (C++) form. 

5. Communications (along any link in the 
figure) are now cleanly factored into a 
number of objects and supported by 
extensions now incorporated into the RTI-
s libraries. 

6. The system fully supports mixed 
communications protocols. Some of the 
links in the Figure might represent MPI 
communications while others could be 
TCP. 

7. The Gateway models from SF Express 
have been reformulated (now essentially 
clients rather than “special” routers). 
Taken together with item 6, this greatly 
facilitates linking of “meta-systems” 
incorporating LANs and SPP assets. 

 
Performance and resource usage monitoring 
 

Abstraction mechanisms found in many distributed 
programming systems enhance software reusability and 
interoperability by hiding the physical location of 
remote software processes. These abstraction 
mechanisms, which include HLA's concept of federates 
(Lightner, 1998) and CORBA's concept of components 
(Keahey, 1997), greatly reduce the complexity of 
accessing remote components. But, they come at the 
cost of reduced visibility, which hinders discovery of 
faults and impedes understanding of performance 
characteristics of the distributed system. This section 
describes a performance and resource usage monitoring 
tool Monitoring Remote Imaging (MRI) that aids 
developers in understanding the behavior of HLA 
simulations by displaying the monitoring data within 
the context of the execution of the distributed system.  
Similar specialized tools could easily be envisioned, 
designed and encoded for other simulations. 
 
MRI displays monitoring data in the context of the 
federation connection topology. Figure 5 shows the 
screen dump of a MRI client's resource usage gauges 
displayed in the context of a three-level tree topology. 
The large oval pie chart at the top represents the root 
tree router. The set of rectangles underneath the root 
tree router represents sub-trees or router subgroups. 
Each subgroup has a tree router (medium-sized pie 
chart) connected to a set of federates (smaller pie 
charts). The first subgroup on the left as only one 
federate, and the other subgroups have eight federates.  
 

 
 

Figure 5 
Resource usage data of a JSAF federation 

displayed within the context of a tree 
connection topology. 

 
In Figure 5 each CPU pie chart depicts the CPU usage 
breakdown for one compute node:  

• Red for user-level CPU usage 
• Blue for system-level CPU usage,  
• Green for idle.  

 
Each compute node has two CPUs, but the node is 
currently only running one process, so typically at most 
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50% of the CPU is used for non-thread applications 
like JSAF. At the snapshot when Figure 5 was taken 
the router nodes within the tree show substantial 
system-level CPU usage, which indicates the routers 
are busy accessing kernel-level instructions to 
send/receive data. The federates in Figure 5 are only 
lightly loaded. Figure 6 shows alternative XY-plots for 
displaying time series data.  We are currently 
evaluating the efficacy of the various displays. 

 
 

Figure 6 
Plotting router network I/O as a function of time 

 
MRI provides a framework for monitoring the 
performance and resource usage of federations at both 
at the OS-level and at the application federate level. 
Performance metric from both levels allows developers 
to correlate resource usage with JSAF simulation 
behavior. MRI display clients subscribe to monitoring 
relay gateways, which periodically push out the 
monitoring data. This monitoring data is represented in 
XML for extensibility and flexibility. At the OS-level it 
monitors the CPU load (user, system, idle), memory 
usage (user, share, cached, free) and network traffic 
(packets in/out, bytes in/out). Currently, for such OS-
level information MRI uses Ganglia, a cluster 
monitoring tool from Berkeley's Millennium Cluster 
Project. At the application level it currently monitors 
JSAF's internal load, heartbeats, and various types of 
entity counts (remote, local, ground vehicle). See 
Figure 7. 
 
 

 

Figure 7. 
Custom gauge display for JSAF federates 
and routers. Green/yellow/red status lights 

indicate internal JSAF health status. 
Yellow background 

 
 MRI maintains a representation of the federation 
connection topology in order to generate the gauge 
displays. This does not violate HLA's information 
hiding principles of reusability and interoperability, 
since this topology information is still hidden from 
JSAF federates, and the federates still have to 
communicate with each other using HLA RTI's 
communication infrastructure. The difference is that the 
connection topology, which is always a vital part of the 
HLA RTI, is now explicitly represented. Software 
researchers have argued that explicit representation of 
software architectures and topologies facilitates better 
reasoning and understanding [Garlan and Shaw, 1993]. 
For example, in our case within the context of a 
topology we can determine the relative importance of 
node failures/bottlenecks. In Figure 7, node hn068 is 
highlighted with a yellow background indicating that it 
failed to emit monitoring data in a timely manner. The 
failure of node hn068 would bring down the 361 local 
entities that it is simulating. However, if instead the 
router node hn084 had failed, then it would have 
disconnected an entire subtree affecting 6040 entities. 
If the head router hn207 had failed, then it would result 
in a forest of disconnect subtrees.  Current development 
is directed at preventing such losses. 

 
 

Initiation Issues and the “SimPrep Tool” 
 
A major issue when using multiple and geographically 
distributed SPPs is the effective coordination of 
intitiation, operation, and termination.  There is a large 
body of research and development literature on various 
approaches to this issue.  (Foster, 1997) While using 
these existing utilities and tool-kits may perhaps be the 
smoothest path to an effective implementation, we 
believe that this is one of the cases where a new tool 
may be desirable.  To illustrate the definition of a need 
and the implementation of a new tool to serve that 
need, we will discuss the JESPP “Simulation 
Preparation” (SimPrep) tool.  We do not suggest that it 
has the broad functionality of a tool-kit like Globus, nor 
is it suggested that other groups will need or want to 
develop individual tool-kits in every circumstance.   
 
The preliminary objective of the JESPP exercise is to 
enable scalable multi-user simulations of synthetic 
semi-automated battles across multiple SPPs. 
Accompanying our mission are challenging problems 
that we must address:  
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1. Overcoming geographical separation that is 
inherently problematic in terms of latency, 
and this experiment is particularly 
interesting due to the requirements of 
transporting a large amount of data between 
the clusters. 

2. Accommodating the variation of SPP 
operational policy, e.g. security policy, 
software and configuration, and network 
constraints. 

3. Implementing interactive computation in a 
meta-computing environment.  This is a new 
challenge, and requires a new way of doing 
business. We need to operate the SPPs in 
interactive mode, as oppose to their 
traditional batch-mode model. 

 
Solving the challenges above was accomplished against 
a backdrop of constraints, which included but were not 
limited to: 
 

1. Trying to juxtapose between ease of use and 
flexibility. Our GUI application had to be 
flexible as scripting language scripts. While 
this challenge is not new to software 
implementers, they were nonetheless 
challenges. 

2. Having to deal with continuous and large 
dataset – this along with the need to conduct 
precise metric. Traditional batch operation 
on a single or multiple SPPs, while 
collecting data concurrent to simulations, 
postpone processing to the post simulation 
stage.  

3. Data collection had to behave as observers 
and intrude into the collection process, thus 
be observed. 

 
The experiment process can be decomposed down to 
four, disjointed processes; along with accompanying 
software tools we’ve developed to facilitate each of the 
stages: 

 
Stage Applications 

Abstraction stage 
Designing the network and communication 
topology, and do simulation preparation. 

SimPrep and MARCI collector and MARCI GUI 

Implementation stage 
Deploying our software tools and applications to 
the SPP compute nodes 

MARCI application suite deployed and launched 
applications 

Execution stage 
Conducting the actual experiment by game 
players 

JSAF applications, including tree router, JSAF 
and ClutterSim. 

Analysis stage 
Studying and analyzing the exercise and 
performance and effectiveness analysis 

MRI and post processing and logger tools 

 
Table 1 

 
During the abstraction stage, we planed and designed 
the network topology. We were primarily interested in 
how each of the SPPs would be configured and 
connected (internally) as well as the network 
connections (externally) between them. To facilitate 
this process, which was extremely tedious and error-
prone, we developed a software program called 
SimPrep that read in as an extensible configuration 
(network topology specification) file that utilized PERL 
programming syntax. 
 
During the implementation stage, we used the MARCI 
applications to query the clusters for resources. Using 
the resource information and the configuration file 
defined (designed) in the abstraction stage, SimPrep 
performed resource allocation and map concrete actual 
compute nodes to abstract network layout.  
There were two output files:  

(1) the RID, a flattened connectivity file 
(2) a mass launch file.  

 
The RID file was in a LISP dialect and required to be 
manually stitched into a larger RID file and is 
understood by the JSAF, clutter, and router 
applications. The mass launch file was a MARCI 
specific instruction file on how to launch applications 
for a specific SPP. Note that the rules for different 
SPP are specified in the SimPrep configuration file. 
 
Once the implementation stage was done, the exercise 
began. At this point the MARCI application took over. 
MARCI was responsible for starting and stopping 
applications – and specifically MARCI along with 
SimPrep served as the tool with which operators can 
interface and managed applications on an SPP 
interactively. This fact contrasted our way of using the 
SPP with the traditional batch-processing model. The 
communications between the MARCI GUI and the 
MARCI collector is a socket-based communication on 
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top of the SSL Layer and it used public/private key for 
message encryption. 
 
Our option to use Globus is limited to resource 
scheduling and resource discovery. We feel that at this 
stage, as the experiment policy is still be shaped and 
defined, Globus would be better used when our way of 
doing business is solidified. We also feel that Globus 
does not address the conduct of experiment, instead it 
serves to facilitate the experiment once the rules of 
engagement have been defined. For future experiments, 
we feel the Globus will play an important role – 
especially in the resource scheduling and discovery 
stage. 
 
 
Accomplishments and Future Directions 
 
In December of 2002, the JESPP team ran a successful 
prototype event using a partition of the USC IBM 
Linux cluster, consisting of some 240 IBM 335 servers, 
with 2 GHz Xeons, 1 GByte of RAM and both GigE 
and Myrinet mesh communications. Both the scientists 
at ISI in California and the operators at JFCOM in 
Virginia jointly shared control. More than 1,000,000 
civilian entities were successfully simulated.  They 
showed appropriate behavior and were stable, even 
when scanned by the SLAMEM program, emulating 
two GlobalHawk platforms. To ensure usability and 
operational validity, about 1,100 warfighting entities 
were also simulated and controlled in a manner 
consistent with normal J9 experimentation. Stability 
and appropriate response to control commands were 
evident throughout. Several runs were conducted over 
the course of a week and performance was 
characterized. 
 

 
 

Figure 7 
Conceptual diagram of December Prototype Event. 
 
Following the December event, it was decided to show 
the utility of the DoD’s SPP assets by using two Linux 
clusters, at two High Performance Computing 
Modernization Program sites. Two centers agreed to 
support this activity, the Aeronautical Systems Center 
(ASC) in Ohio and the Maui High Performance 
Computing Center (MHPCC) in Hawai’i. Maui had 
the larger resource in this case, a several hundred node 
IBM Linux cluster with Pentium III processors 
running at 933 MHz and with 1 GByte RAM per 
node. ASC’s cluster was smaller, but exhibited similar 
processing parameters. With assistance from the 
HPCMP PET program, the Defense Research and 
Engineering Network (DREN) was used to 
interconnect MHPCC, ASC, and the Joint Forces 
Command in Virginia. Scalability and stability were 
recorded. Initiation and system configuration issues 
were studied and addressed. 
 
The group contributing to the JESPP project has made 
several noteworthy advances in high performance 
computing.  We note the two-router designs, both of 
which merit further testing and use.  Also, a fresh look 
at performance monitoring on heterogeneous and 
geographically dispersed SPPs has yielded a robust 
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and useful tool that both generates data and presents 
status information in a visual manner that is useful for 
both parallel processing experts and simulation 
professionals. Some unique initiation problems have 
resulted in a new approach to complex synchronization 
issues not adequately addressed by either the SAF 
family software or by more general meta-computing 
tools. 
 
 
Open issues for future work: 
 
There is much to be done, of course, in terms of 
instrumenting and analyzing the existing system, 
contrasting performance with that from 
communications options within the current RTI-s 
baseline. The more interesting studies here will involve 
comparisons of new qualitative features of the 
underlying simulations. An example here is the 
difference between “reduced capability” and “self-
aware” clutter (i.e., do clutter objects interact).  
 
Many of the more interesting near-term development 
paths can be characterized in terms of “special purpose 
gateways” (now supportable in view of the 
reformulated Gateway models). Examples include: 
 

• Translation Gateways: Processors to 
interpret and convert interest declarations 
among simulations (federates) that do not 
use a common interest-enumeration 
protocol. 

• Visualization Gateways: Processors (quite 
possibly multi-processor collections) to 
request, collect, process and simplify (e.g., 
iconify) visualization data within very large 
simulations. (Current model does most of 
this work within the visualization 
workstations, giving rise to ample 
opportunity for death by communications 
overload.) 

• Input Gateways: The “Collect, Preprocess, 
Summarize” objectives of the Visualization 
Gateway could be extended to other 
processes interested in large subsets of the 
simulation entities. An important example 
here is SLAMEM. 

 
That is:  
 

This is not “merely” a translation of existing 
(i.e., RTI-s) communications procedures. This 
is the first of a number of steps to qualitatively 
new capabilities that follow from: 

1. The scalable communications 
capabilities of the basic architecture. 

2. The additional capabilities of the 
“intelligent gateways” supportable 
within this architecture. 
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ABSTRACT 
 
The Distributed Continuous Experimentation Environment (DCEE) is a permanent simulation infrastructure being 
set up by U.S. Joint Forces Command (JFCOM) to support Joint experimentation.  DCEE will combine simulations 
running on both local JFCOM networks and Scalable Parallel Processor (SPP) networks.  JFCOM has been working 
to develop tools to manage a large number of simulation computers with a minimal number of technical support 
personnel.  These tools allow an operator to start and stop various applications, monitor and graph machine 
resources, generate simulation routing topologies, check network connectivity, and perform these functions in a 
secure environment. 
 
As DCEE planning continues, the requirement for centralized federation control becomes obvious.  The challenge 
of remotely coordinating the operation of hundreds or possibly thousands of simulation applications looms ever 
larger.  The fact that numerous machines may exist on remote networks further complicates this issue.  As an 
integral element of DCEE, centralized control will need to be expanded to manage and monitor SPP networks along 
with existing systems. 
 
This paper will address the complex challenges of controlling and monitoring an extensive simulation environment.  
The paper will introduce the environment, describing the simulations and the SPP.  The paper shall also discuss the 
operational and technical advantages using a centralized set of tools.  The paper will not only examine the 
challenges encountered by attempting to run simulations on SPP networks, but also how these challenges are met. 
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Supporting Distributed Simulation on Scalable Parallel Processor Systems 
 

Richard Williams John J. Tran 
BMH Associates, Inc. Information Sciences Institute, USC 

Norfolk, VA Marina del Rey, CA 
williams@bmh.com jtran@isi.edu

INTRODUCTION 
 
The Distributed Continuous Execution Environment 
(DCEE) is a permanent infrastructure being set up by 
the Joint Force Command (JFCOM) to support Joint 
Experimentation.  The DCEE will merge distributed 
simulation systems running at JFCOM with 
simulations running on Scalable Parallel Processor 
(SPP) Networks.  The reason for merging these 
systems is to add flexibility in the allocation of 
resources for use in very large scale simulations.   
 
The government owns a number of SPP systems.  
These systems represent a very large resource that 
has yet to be regularly tapped into an interactive 
computing environment.  The SPP systems typically 
have a number of strengths, such as high speed 
networks and high quality machines, which make 
them very desirable for the simulation community.  
However, they are sufficiently different from the 
typical simulation environment to present new and 
difficult challenges.   
 
The Synthetic Forces (SF) Express (Burnett 1997) 
project recognized that increasing the size and 
complexity of distributed simulation greatly increases 
the importance of resource scheduling and allocation.  
The problem of preparing distributed systems to 
support simulation is simple to understand and 
tedious to resolve.  Very large simulations can easily 
become impeded by details.  Setup, configuration, 
installation and execution can easily become difficult 
tasks if a well designed system is not in place.  This 
paper describes the system we have created to 
address these issues.  

 
SPP Background and Motivations 

 
The use of the Joint Semi-Automated Forces (JSAF) 
application on SPPs has its roots in the SF Express 
project (Burnett, et al, 1998) that achieved major 
milestones in terms of escalating simulation entities 
counts to an unprecedented level.  At the same time 
SF Express laid down a foundational proof-of-
concept that simulation experiments can be 

conducted over a wide area network (WAN).  
Operationally, the earlier SF Express experiments 
spanned across multiple SPPs and were semi-
automated; in particular, the resources for each of the 
experiments were dedicated (reserved) for each 
scheduled simulation event. 
 
A natural progression that builds on the earlier 
successes of the SF Express project includes: (1) 
further increasing the entity counts to match realistic 
synthetic operational theaters and urban environment, 
(2) further automate the process and management of 
simulation events, and (3) further optimize and 
enhance communication and dataflow by increasing 
flexibility and network connectivity abstractions.   
 
The modernization of SPP resources, such as the 
increase in readily available bandwidth between SPP 
sites (DREN 2003) and the proliferation of freely 
available OpenSource operating system software 
(Linux) running on commodity hardware (Intel-based 
x86 architecture), have helped us increase high 
performance computing capabilities.  The Joint 
Experimentation Scalable Parallel Processor (JESPP) 
team set new entity record counts, exceeding the 
million clutter entity count, with our experiments at 
the USC cluster in December 2002. 
 
As previously mentioned, the increase in resources 
(especially those spanning multiple sites) necessitates 
that the event organizers automate the setup and 
simulation event as much as possible. 
 
In the earlier implementations of JSAF applications, 
the communication layer is based on a broadcast 
model which for inter-SPP communications is not at 
all possible.  Thus, design and implementation 
network topology abstraction serves as a means to 
further optimize intra-SPP and inter-SPP 
communication flow.   
 
Participating Sites and Configuration 
 
The SPP configuration for the Maui High 
Performance Computing Center (MHPCC) and 
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Advanced Simulation Center (ASC) are both Linux 
clusters with dual processor P3’s with one to two 
gigabytes of memory and approximately ten 
gigabytes of local scratch disk.  Both operational 
sites at the Information Sciences Institute (ISI) and 
JFCOM run JSAF applications and our 
controlling/monitoring tools on Linux workstations.  
The connection between ASC and MHPCC is a high-
speed DREN network with sustaining bandwidth of 
40 megabits/second (see Figure 1). 
 

 
Figure 1 - SPP and operations centers 

As noted, the multiple SPPs integrate to form a large 
simulation system with each SPP being a self-
contained cluster of compute nodes.  We strive to 
keep the framework of operation within each 
individual cluster consistent, despite varying policies 
amongst clusters.   
 

The SPP Federation 
 
The federation we are trying to support for the SPP 
testing is comprised of a number of federate 
applications bound together by a communication 
protocol called the Runtime Infrastructure (RTI) 
(Kuhl 1999). 
 
The Federates 
 
Currently there are a small number of applications 
being tested in the SPP configuration.  These include 
JSAF, Clutter, and Simulation of the Location and 
Attack of Mobile Enemy Missiles (SLAMEM).   
These simulations are used to produce entity-level 
platforms which interact to produce a high quality 
synthetic environment.  
 
JSAF is a high-fidelity entity level simulation, that 
can be used in a front-end/back-end configuration 
where the front-end (or GUI) will be on a local 
machine, while the back-end will be on the SPP.  
Entities can be instantiated on the front-end, by either 

an operator or from a file, but the actual simulation 
will be on the back-end within the confines of the 
SPP.  This s done to limit the application-to-
application communications within the confines of 
the SPP and to minimize Wide Area Network 
(WAN) traffic.  JSAF also can be used in a “Pocket” 
configuration where both the instantiation and 
simulation of entities will be within the confines of a 
single local machine.   
 
Clutter is a simulation used to add very large 
amounts of low-fidelity civilian and military traffic to 
a simulation to confuse sensors and create a more 
realistic simulation.  Clutter will publish a large 
number of entities but only subscribe to a few 
interactions. 
 
SLAMEM is used to simulate various operational 
sensors and provide a proper perception of reality.  
SLAMEM uses ground truth entities to produce a 
realistic view of what could be captured by sensors 
within the simulation.  This “view” is fed back into 
the simulation in the form of target tracks.  
 
The Runtime Infrastructure and Communication 
 
The RTI is the common component which the 
simulations use to communicate across the network.  
The RTI uses subscription spaces to divide 
simulation traffic so that federates only receive 
objects and interactions in which they are interested.  
For the DCEE, JFCOM is using RTI-s.  By using 
RTI-s, we have been able to modify the methods of 
Data Distribution Management (DDM) (Helfinstine 
2001) to allow for a much larger number of 
subscription spaces.  For example, in a test completed 
in March, the city of Los Angeles alone was 
subdivided into 8,000 subscription spaces and the 
terrain was divided into over 100,000 spaces.  In 
contrast, the Millennium Challenge 2002 federation 
was limited to approximately 1000 spaces 
(Ceranowicz 2002).  This change was possible only 
by changing the communication protocol and using a 
routing application to perform management controls.  
All applications in the simulation learn about their 
routing by reading the Runtime Initialization Data 
(RID) file and communicating accordingly.   
 
Building Software, Distribution and NFS 
 
To maximize simulation time and minimize time 
needed for setup and configuration, we have found 
that having a single source for file distributions and 
builds is best.  Troubleshooting applications started 
on an SPP is difficult.  We do not have the option of 
redirecting output of possibly thousands of 
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applications across the WAN.  Therefore, we 
attempted to limit the number of variables as much as 
possible.  We have a single administrator build and 
package the distribution and then distribute software 
tunneled through a secure shell (SSH). 
  
Currently, we are configured to use a Network File 
System (NFS) for all applications and RTI files, but 
terrain information is stored on each node locally, 
because the network load of loading binaries is 
minimal and only occurs at startup.  In contrast, the 
paging in of terrain can create a heavy load during 
execution. 
 

 
 
 

Application Execution 
 

Executing applications for a distributed simulation in 
an SPP environment is not simply a matter of 
submitting a batch job and having everything work.  
Prior to runtime there must be a process of gathering 
resources, creating a topology, distributing the 
Runtime Initialization Data, and preparing command 
lines.  To aid in performing these functions, we 
developed a set of programs which consists of a 
daemon to run on each node, a collector daemon to 
run on the head node of each cluster, and a 
controlling GUI to run at JFCOM.  This system was 
designed to work in conjunction with a system that 
was already controlling local machines at JFCOM 
(See Figure 2). 
 

 
Figure 2 – GUI/Collector/Node Daemon Framework

Starting the Daemons 
 
Generally speaking, each cluster has a job queue that 
manages resources and schedules job requests [and 
for the most part, SPP policy disallows interactive 
login shells.]  Our approach is to start the collector on 
the head node and then submit the node daemons to 
the job queue (see Figure 3).   
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Figure 3 - Comparison of work flow between the 
traditional batch model and modified batch 
model. 

Once the job is running, using the front-end, we can 
interactively start and stop applications.  If a 
topology or configuration requires modification, the 
front-end can automate the workflow so the entire 
group of cluster applications start and stop with a 
single click. 
 
New Way of Doing Business 
 
Our methodology adheres to the cluster-job 
submission policy and provides a flexible interactive 
(and automated) interaction between the operator and 
the SPPs.  This new approach warrants a brief 
discussion on this new way of doing business.   
Figure 3 compares the traditional method of 
interacting with clusters to the new approach.  This 
approach provides real-time control interface that can 
often optimize resource utilization and provides 
(retains) a semi-automated model for rapid start/stop 
of applications.    
 
Furthermore, this model is relatively fault tolerant.  
Despite previous efforts to make SPPs more fault 
tolerant (Squyres, 2000), the traditional model has 
some drawbacks.  For example, if a node or an 
application dies, that node is lost.  To restart 
applications on that node, users must submit new job 
submission requests.  Using the interactive SPP 
model, operators can restart dead applications in real 
time, or even reconfigure the cluster topology, 
without having to start over from scratch. 
 
Gathering Resources 
 
Discovering resources on multiple SPP systems 
presented some problems.   The first problem was 
trying to interact with machines on a disparate 
network.    We opted to run a collector daemon on 
the head node that could be contacted by both 
applications on external networks and daemons that 
run on the internal nodes.  All commands to nodes on 

a cluster would then be tunneled through the 
collector.  This collector maintains a list of all nodes, 
and when requested by an approved external 
application, it provides a status of the nodes.   
 
A second challenge that the SPP environment 
presented was the absence of a broadcast/multicast 
capability.  This meant that to recognize existing 
machines on the cluster, the nodes would have to be 
configured with the IP address of the collector prior 
to execution.    When the node daemons start up they 
attempt to connect to the collector to pass it their 
address information.  Thereafter, the daemons send a 
heartbeat signal once per minute, while the collector 
gathers information on the node resources and waits 
for tasking from the external controlling application.   
 
Within the heartbeat is information regarding free 
memory, CPU type, and load.  This information is 
used to give the resources a rating that represents the 
expected simulation capabilities of the given node. 
 
Abstracting Network Connectivity with Topology 
 
Because broadcast messaging does not scale well as 
resources increase, RTI communication with the SPP 
is restricted to point-to-point (or a subset of 
broadcast, instead of global broadcast).  Formal 
organization of the communication topology maps 
applications to resources.  Two connectivity maps are 
currently being implemented and studied: (1) tree-
based topology (Hellfinstine, 2001), and (2) mesh-
based topology (Brunett, 1998).  We have 
successfully tested the tree-based topology in current 
and past experiments, and we intend to pursue in a 
near future the implementation of the mesh-based 
topology. 
 
Based on network load observation and metrics 
collected during test trials, we designed each 
topology instance.  A topology is always conceived 
before simulation and is represented by a suite of perl 
scripts that generate RID files containing the 
connectivity maps.  
 
Creating a Mass Launch File 
 
Following the topology generation process, we know 
which application will be running on a given 
resource.  The next step is to create a file to store the 
parameters specific to each application instance.   
This file generation is an automated process which 
produces a text output that can be read by the cluster 
controlling application. 
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Operators can then cut, copy, paste, and modify 
entries in the mass launch files as necessary.  
Multiple files can be generated to support multiple 
launch configurations.   
 
JSAF back-ends require a special procedure.  Each 
JSAF back-end is assigned a Persistent Object (PO) 
database number, which enables control from a front-
end with the same database number.  This number is 
usually shared between multiple back-ends to allow 
the entity load to be distributed among multiple 
machines.  Grouping PO databases with topology 
groupings lessens traffic across the routing 
applications and keeps objects and interactions to a 
local set of machines.  
 
Executing a Mass Launch 
 
Once the Mass Launch File is completed, the system 
should be ready for launch.  The operator of the 
controlling application then selects the tasks to be 
performed, enters the exercise name, selects the 
proper terrain and hits the launch button.  The 
collection of tasks is then sent to the corresponding 
collector, which in turn delegates to the proper nodes. 
 
To handle the large number of tasks potentially given 
to the collector, a task queue was created for 
prioritization, future scheduling of tasks, and for the 
limiting of simultaneous connection threads to ten to 
prevent overwhelming the system.  During a test in 
March, we were able to launch 240 applications on as 
many nodes within 60 seconds. 
 
After receiving the application execution task from 
the collector, the node starts up the application and 
sends out a heartbeat.  The collector receives the 
heartbeat which should indicate the application has 
started.  At this point, the controlling GUI’s operator 
can update the status to ensure all applications started 
up properly.  As the applications start, they can be 
observed joining the federation by executing RTI 
print commands within the parser of any local 
federates.   
 
Problems with Running on a Cluster 
 
Typically when running simulations in a Local Area 
Network (LAN) environment, we run an application 
in the GNU Project Debugger (GDB) and direct the 
output to either a local monitor or a central 
monitoring station.   This allows us to obtain stack 
traces and interact with any applications as necessary.  
Because SPP machines have no displays and 
redirecting a display across the WAN is not an option 
we are unable to easily monitor output.  This adds 

difficulty to troubleshooting and difficulty in 
resolving configuration issues.  We do log output to a 
file, but this is much less useful than an interactive 
debugging session. 
 
Killing Apps / Restarting the Simulation 
 
Once set up, the federate and routing applications can 
be started and stopped as necessary to support the 
needs of the federation.  Stopping the simulations is 
accomplished in a similar manner to launching the 
simulations.  The operator selects the tasks that were 
launched and simply presses a button to bring down 
the selected applications.  As in the launch, tasking 
from the collector to the nodes is controlled to 
prevent overloading the systems.  Operators can also 
select individual nodes to restart if desired.  This 
option might be necessary if a specific application or 
group of applications become unresponsive.   
 

SPP Resource Monitoring 
 

The monitoring of SPP resources was recognized 
early on to be a necessity in any simulation support 
system.  Specifically, we wanted to graph memory 
usage, load average, and network statistics on 
individual nodes.  We needed to monitor these 
parameters in real time to analyze how changing 
parameters, code, topologies, and the many other 
variables associated with the simulation were 
affecting the individual machines.   
 
We also wanted to ensure that any monitoring design 
did not create an unnecessary load.   We decided to 
put monitoring capabilities into the same node 
daemon, collector, and application GUI framework 
that had been designed for the application execution 
system.  This allowed the operator to query the 
resources for information by going through the 
collector 
 
Analyzing Memory/CPU Utilization 
 
We decided to embed the load average and memory 
usage information in the heartbeat from the node 
daemon to the collector.  For these parameters, the 
once a minute sampling rate seemed sufficient and 
gave a good snapshot of the status of the nodes.  We 
found that graphing the information in relation to 
time provided the most useful information by 
providing insight into trends.  
 
We also wanted to ensure that any additional factors 
we wanted to graph or analyze could be added 
without much work.  Efforts were made to generalize 
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the graphing and data gathering capabilities so that 
additions could be made easily. 
 
Analyzing Network Statistics 
 
Network information was not embedded in the 
heartbeat because the once-a-minute reporting did 
not always suit our needs.  Quite often, a five-second 
polling interval could catch spiking data that a sixty-
second interval would not.   
 
To accomplish this, we had the application query the 
collector with a list of nodes to be analyzed.  The 
collector then queried the node daemons for network 
information which could then be used to create or 
update an existing graph.  Using this method the 
operator can select any update rate he or she desires.  
Since this process generates much heavier load than 
obtaining memory or load information, we would 
typically limit the nodes we would graph to a small 
set.   
 
Expected Problems and Bottlenecks 
 
Each simulation we support has unique limitations.  
In benchmark testing, we observed that a JSAF using 
RTIs consumed about 20 KB of memory per entity 
subscribed or published.  This meant that a JSAF 
application on a machine with 1 GB of RAM could 
be aware of about 40,000 entities before memory 
swapping occurred.  This number is not definitive 
due to a variety of other factors, including terrain 
paged in and other applications loaded.    
 
Clutter only subscribes to some of the interactions 
and does not subscribe to remote objects at all.  This 
means that memory becomes less of an issue and that 
the CPU becomes the primary limiting factor on 
number of entities the application can simulate.  
Figures 5 and 6 show CPU and memory information 
graphed from a machine on a mega-sim cluster node 
running a clutter application.  
 

 
Figure 5 - Clutter CPU Load (Y axis) over time (X 
axis) 

 
Figure 6 - Clutter Free Memory (Y axis) over time 
(X axis) 

Routing applications on the head nodes of the 
clusters were the first location where network 
bottlenecks were expected to appear.   When an 
application, or group of applications, over-subscribes 
to data that is then requested to go across the WAN, 
available network bandwidth can easily be exceeded.  
Figure 7 shows the network statistics on the head 
router on mega-sim. For the test, a JSAF at a remote 
site subscribed and unsubscribed to clutter on a 
cluster node.  Graphs such as this can identify 
problems in DDM, machines, and networks.    
 

 
Figure 7 - Head router network statistics (Y axis) 
over time (X axis) 

 
Although subscription spaces may be divided into 
very small areas, individual entities or groups of 
entities can still have subscription regions that 
overlap a large number of spaces, creating a large 
amount of traffic.  For example, during a test in May 
2003, we simulated approximately 100,000 clutter 
vehicles in the Los Angeles area on the Maui SPP.  
We then flew an F-16 (simulated at JFCOM) into the 
area. The F-16 had a subscription radius of 
approximately 30 nautical miles and subscribed to a 
large portion of the 8000 spaces in the area. This 
quickly overwhelmed both the local JSAF and 
pushed the network limits as well.  While this type of 
effect was expected in this test, it demonstrated that a 
simulation operator can easily perform a seemingly 
insignificant action which will have catastrophic 
consequences on the federation.  By adding 
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monitoring capabilities to the routers we will better 
be able to catch these issues before they become a 
problem and help developers create better 
mechanisms for interest management. 
 
Running a simulation with a very large number of 
entities and using dynamic subscription regions 
increases the risks.  The potential to “blow out” any 
element of the federation exists and requires the 
support team to recognize and try to predict potential 
problems.  Monitoring must inform the development 
team how changes in software, topologies, or 
network infrastructure, all machines throughout the 
simulation.  Through diligent monitoring, methods to 
ensure the simulation delivers the most information 
possible while operating reliably can be discovered.  

 
Security 

 
To ensure that only individuals with proper authority 
are able to execute applications on the cluster from 
remote sites, we have examined two possible 
solutions.  
 
SSL 
 
Currently, all commands to the collector from the 
GUI application are executed through a Remote 
Method Invocation (RMI) connection via a Secure 
Socket Layer (SSL) (JSSE 2003).  The collector is 
configured so that only clients with a private key 
(also known as the keystore) and the proper 
passphrase can connect.   The keystore and 
passphrase are verified by a public key or truststore 
kept on each of the collectors.   The use of SSL 
serves two functions: data encryption and 
authentication.  SSL uses public key cryptography to 
provide authentication, while secret key 
cryptography and digital signatures ensure privacy 
and data integrity.  The private/public key pair is 
generated prior to file distribution.  The public key is 
then placed in the distribution, allowing the collector 
to authenticate connecting clients.  The distribution 
of the private key must be controlled and only placed 
on machines which are designated to control the 
cluster.   
 
Kerberos 
 
The High Performance Computing (HPC) officer 
requires that SPP users have a Kerberos (Tung 1999) 
access card and that applications running on their 
clusters adhere to their security policy.  We are 
currently studying options to ensure the experiments 
follow the strict HPC security guidelines, including: 
 

1. Use of Kerberos tunnels between SPPs and 
operational centers which would 
authenticate and encrypt all 
communications. 

 
2. Re-design the communication layer with the 

explicit use of the Kerberos library for 
point-to-point communications. 

 
Future efforts include experiments to analyze the 
performance impact and validate both approaches.  
 

Conclusion 
 
We have attempted to design a system that gives a 
single administrator the capability to set up, execute, 
and monitor multiple simulation applications, on 
possibly thousands of machines, on disparate 
networks.  We have also stressed simplicity and 
minimized the number of steps required to run the 
simulation.  We believe that we have succeeded to a 
great degree.   
 
The application execution system alone should save 
countless hours by simplifying a process that had 
been extremely obtrusive.   By getting away from the 
traditional SPP batch model we have added the 
ability to bring applications up and down at will.  
Further, the monitoring capabilities we have added to 
the system should allow us to predict and recognize 
problems that may degrade the simulation.  All the 
tools we have created are not simply nice to have, 
they are a necessity if we wish to run interactive 
simulations in an SPP environment. 
 
Difficulties will continue to arise when dealing with 
systems that we do not own.  These difficulties that 
must be addressed include: adhering to other 
organization’s security rules, resource scheduling 
restrictions, and system management procedures. In 
addition, future simulation efforts, though dealing 
with systems that are complex in nature, should be 
simple as possible to use. 
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ABSTRACT 
 
This paper identifies, defines, and analyzes the limitations imposed on Modeling and Simulation by outmoded 
paradigms in computer utilization and data analysis.  The authors then discuss two emerging capabilities to 
overcome these limitations: High Performance Parallel Computing and Advanced Data Analysis.  First, parallel 
computing, in supercomputers and Linux clusters, has proven effective by providing users an advantage in 
computing power. This has been characterized as a ten-year lead over the use of single-processor computers.  
Second, advanced data analysis techniques are both necessitated and enabled by this leap in computing power.  
JFCOM’s JESPP project is one of the few simulation initiatives to effectively embrace these concepts.  The 
challenges facing the defense analyst today have grown to include the need to consider operations among non-
combatant populations, to focus on impacts to civilian infrastructure, to differentiate combatants from non-
combatants, and to understand non-linear, asymmetric warfare.  These requirements stretch both current 
computational techniques and data analysis methodologies. In this paper, documented examples and potential 
solutions will be advanced. The authors discuss the paths to successful implementation based on their experience.  
Reviewed technologies include parallel computing, cluster computing, grid computing, data logging, OpsResearch, 
database advances, data mining, evolutionary computing, genetic algorithms, and Monte Carlo sensitivity analyses.  
The modeling and simulation community has significant potential to provide more opportunities for training and 
analysis. Simulations must include increasingly sophisticated environments, better emulations of foes, and more 
realistic civilian populations. Overcoming the implementation challenges will produce dramatically better insights, 
for trainees and analysts. High Performance Parallel Computing and Advanced Data Analysis promise increased 
understanding of future vulnerabilities to help avoid unneeded mission failures and unacceptable personnel losses.  
The authors set forth road maps for rapid prototyping and adoption of advanced capabilities. They discuss the 
beneficial impact of embracing these technologies, as well as risk mitigation required to ensure success.  
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BACKGROUND AND INTRODUCTION 
 
This paper will discuss the need to augment 
simulations, offer enhancements, and show how these 
enhancements can be implemented, using the authors’ 
JFCOM/Urban Resolve experience as examples. 
 
The Need to Improve Simulations 
 
For thousands of years, leaders have used various 
representational methods to prepare for the defense of 
their societies.  These have ranged from the venerable 
game of chess to complex electronic emulations of 
combat.  When threatened, there is an understandable 
pressure to use what has proven reliable in the past and 
there is a countervailing desire to make use of effective 
new techniques. Two of the promising technologies 
available to defense leaders today are high 
performance parallel computing and advanced data 
analysis.   
 
Contemporary analysts are faced with increasing 
pressure to provide more opportunities to both analyze 
the present dangers and train for the future operations.  
The vacant battlefield of yesterday is being replaced by 
the crowded urban warfare environment of today, 
populated with non-combatants for whom there is an 
increased sense of responsibility.  Weapons of 
increased destructive power and refined targeting 
capabilities make it both possible and necessary to 
honor this sensitivity.  Planners and trainers must have 
access to simulations of unfettered scale that are built 
on increasingly sophisticated environments, with better 
emulations of foes and more realistic civilian 
populations. The coordination and synergy of these 
simulation and analytical capabilities are necessary to 
deliver insights for the analyst and trainee. 
 
There are well-recognized limitations that restrict the 
full exploitation of what the DoD calls Forces 
Modeling and Simulation (FMS), (HPCMP, 2004).  
This paper focuses on two:  
• The inherent constraints of current 

computer-use paradigms  

• The restrictions found in traditional 
techniques of data analysis  

In order to meet the two-fold test of reliability and 
efficacy, new capabilities designed to overcome these 
limitations must provide sufficient improved utility to 
warrant the risk and effort expended in adopting them.   
 
The nature of the adoption process is critical.  The 
correct approach will lead to early productivity, low 
risk and continued utility. A well-thought-out plan, 
following the proven paths of analogous analytical 
disciplines, will reduce cost and accelerate benefits. 
Disciplines of interest include academic research fields 
investigating physical and biological phenomena. After 
several decades of using high performance parallel 
computing and advanced data analysis techniques in 
these areas, the pitfalls to avoid and the productive 
paths to follow have been clearly established. 
 
Limitations Imposed on Modeling and Simulation 
by Current Computing Paradigms 
 
The FMS community has become accustomed to 
waiting for the additional power represented by the 
doubling of circuit devices on a computer chip every 
18 months.   Being able to move from the floor of the 
gym at the Naval War College (see Figure 1) onto the 
vastly larger canvas of a digital computer terrain 
database was a momentous leap. 
   

   
Figure 1.  1930’s - U.S. Naval War College personnel 
conducting simulated campaigns on a gym-sized floor. 

The more distant horizons, such as global-scale, high-
resolution terrain environments, seem out of reach. The 
FMS community has an opportunity to overcome this 
unnecessarily limited vision.  

  
61

cameras
Text Box



 
 
 

Intervice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2004 

 
Terrain databases are now available in multiple 
resolutions and for nearly every area of the globe.  
Using workstation and PC technology hosted on LAN 
configurations, truly incredible advances have been 
made in our ability to provide a realistic and 
geographically appropriate environment for conducting 
large operations (Ceranowicz, 2002). Even these 
capabilities, however, are often limited in two 
important dimensions: resolution and total area.  As the 
areas of interest broaden for both the analysts and 
policy makers, the need to have access to 
representations of any terrain becomes more 
imperative.   
 
An example of an important feature of current 
computer practice to which the community has become 
accustomed is the constraint imposed by the limits of 
individual processing speed.  The desire to represent 
sophisticated behaviors requires ever-increasing 
processor power, and this is magnified by the desire to 
run multiple instances of non-deterministic simulations 
to evaluate the range of outcomes (Horne, 1999).  The 
need to represent tens of thousands of entities that are 
“aware” of each other also impacts performance.  In 
one class of this “awareness,” entities are within a 
range where they can see each other.  A much more 
extreme case is now of concern: the high altitude 
intelligence platform with sensors that can “see” 
virtually every entity in an entire theater of war.  
Current programming, as exemplified in the 
SemiAutomated Forces (SAF) programs, handles this 
location and awareness issue by running an inter-
visibility calculation every few milliseconds.  
Obviously, with a huge number of entities, this 
represents a huge compute burden.  Current practice 
shows this type of situation can be simulated on a 
typical single processor of present-day (2004) 
capacities at only a few hundred vehicles.  In 
Millennium Challenge 02, a network of similar PCs on 
a LAN, experience seems to indicate that the total 
vehicle count is limited to a few tens of thousands - not 
enough for military vehicles (Ceranowicz, Dehncke 
&Cerri, 2002). 
 
Moreover, modern battlefields are rarely located on 
remote plains, and the battles in urban areas are not 
fought with the destructive abandon of World War II, 
as in Stalingrad.  Instead, the modern analyst is looking 
for ways to achieve national goals while operating in 
populated urban areas with no loss of non-combatant 
life, minimal destruction of civil infrastructure, and 
reduced losses to friendly forces.  For that reason, the 
simulations-enabled analyst is faced with the challenge 
of trying to understand how modern intelligence 

platforms can view a city full of vehicles and other 
entities.  Clearly, something on the order of a million 
civilian entities approaches realism; a few thousand 
does not.   
 
Limitations Imposed by Traditional Data Analysis 
 
Similar constraints are observed when using only the 
traditional methods of data analysis.  Historically, the 
validation of the insights gained from simulation are 
not infrequently lost by virtue of the imposition of 
accepted views.  
 
Analytical approaches have not changed much over the 
intervening decades. With all of our increased 
sophistication in electronically produced simulations, 
one very common method of strategic deliberation 
remains the observation, logging and analysis of 
simulation outcomes by subject matter experts (SMEs). 
The authors maintain that adopting and implementing 
analytical techniques used in the behavioral sciences 
and operations research should enable these experts to 
be even more valuable.  
 
In trying to understand the output of simulations 
similar to Project Albert, one is faced with a virtual 
flood of information (Brandstein, 1998).  This flood 
presents problems in collection, collation, and 
consideration. Many programs are driven by the 
application of a series of pre-established probability 
tables for many of their activities, e.g. accuracy of fire, 
damage occasioned by weapons strike, mechanical 
failures.  Against these tables, a random number is 
applied and the resultant action is implemented.  This 
results in a non-deterministic simulation.  Analysis can 
be much enhanced, if the simulation is run multiple 
times, with the resultant outcomes appropriately 
analyzed.   
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Figure 2 .  Three-dimensional representations of the 
effects (fitness) of two parameters (fire range and 

possibility of kills) with maneuver (Brandstein, 1998). 

 
As the analysts consider the outcomes, they are faced 
with assessing the impact of several parameters 
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simultaneously.  These multi-dimensional solution 
spaces become difficult to visualize, as n exceeds 3. 
(see Figure 2)  Tabular representations of “killer-victim 
scoreboards” are not uncommonly seen as insufficient 
to produce all of the insights that are necessary. 
 
In addition to the data that is collected from running 
analytical simulations, there is also a huge amount of 
data that is or could be collected from simulations run 
for training purposes.  This issue of the appropriate and 
improved use of the data collected for purposes other 
than its analytical content is treated in more detail later. 
 
Future Needs of Analysts 
 
It could be argued from these few examples that the 
analysts of today are faced with problems for which 
current technology implementations are not adequate.  
While analysts have done heroic duty in developing 
work-arounds for these limitations, the degree to which 
they are missing important insights remains 
unquantified, and disturbing.  By analogy, the physical 
sciences found themselves in a very similar position 
early in the days of simulations on computers and the 
subsequent analysis of physical phenomena. Their 
experience suggests that the current practice of 
reducing resolution and geographical scope of FMS 
scenarios is leading in the wrong direction.  It may be 
robbing the analysts of insights that could be extracted 
from more sophisticated and detailed models running 
on larger terrain databases.   
 
The FMS community is also increasingly experiencing 
pressure to simulate some of the more complex forms 
of human behavior.  One area of great interest in 
military science is the actual role of the individual 
soldier and commander (Ben-Ari, 1998). More 
computing power will be required to be able to deliver 
analytical and training platforms that can model 
emotion in a useful way (Garlan, 1993). 
 
While FMS analysts now have access to much more 
computing power than they did a few decades ago, 
there is evidence that significant additional capacity 
could be implemented, with a high degree of 
confidence in its expanded utility, reliability, and 
stability.  It is neither necessary nor desirable to move 
into the future using untested technology nor is it wise 
to duplicate already available, useful programs.  Others 
have broken the ground that the FMS community can 
now till.  
 

HIGH PERFORMANCE COMPUTING 
 

Originally, computer scientists considered that the only 
way to speed up the process was to accelerate the CPU. 
At a certain point, however, it seemed obvious that the 
technology would not be able to keep improving 
processors to do calculations faster by increasing clock 
speed. They would similarly not be able to continue to 
make each clock cycle more effective by adding 
functions to the processor (Moore, 1965).    
 
That led to theorizing about parallel computation and 
harnessing more than one computer to work on the 
same task.  A generalized theory of parallel processing 
effectiveness was advanced by Amdahl, in which he 
carefully described the speed-up that one would expect 
(Amdahl, 1967). Starting with work at Caltech on the 
Intel Delta, with 512 64-bit processors, increasing 
numbers of simulations have been effectively 
parallelized for the big machines, with high-speed 
inter-node communications fabrics.  As this size was 
orders of magnitude greater than the early limits 
theorized, this class was often referred to a Massive 
Parallel Processors (MPPs). 

Table 1. World’s fastest supercomputers. 

Rank Site 
Country/Year 

Computer / Processors 
Manufacturer 

Rmax 
Rpeak 

1 Earth Simulator  
Japan/2002 

Earth-Simulator / 5120 
NEC 

35860 
40960 

2 Los Alamos 
National Lab 
U.S./2002 

ASCI Q - AlphaServer, 1.25 
GHz / 8192 
HP 

13880 
20480 

3 Virginia Tech 
U.S./2003 

1100 Dual 2.0 GHz G5/ 
Infiniband/GigE/ 2200 
Self-made 

10280 
17600 

4 NCSA 
U.S./2003 

P4 Xeon 3.06 GHz, Myrinet / 
2500 
Dell 

9819 
15300 

5 Pacific NW 
National Lab  
U.S./2003 

Integrity Itanium2 1.5 GHz, 
Quadrics / 1936 
HP 

8633 
11616 

6 Los Alamos 
National Lab 
U.S./2003 

Opteron 2 GHz,  
Myrinet / 2816 
Linux Networx 

8051 
11264 

7 Lr. Livermore 
National Lab 
U.S./2002 

MCR Linux Cluster Xeon 
2.4GHz, Quadrics / 2304 
Linux Networx/Quadrics 

7634 
11060 

8 Lr.  Livermore 
National Lab 
U.S./2000 

ASCI White, SP Power3 375 
MHz / 8192 
IBM 

7304 
12288 

9 NERSC/LBNL 
U.S./2002 

SP Power3 375 MHz  
16 way/ 6656 
IBM 

7304 
9984 

10 Lr. Livermore 
National Lab 
U.S./2003 

xSeries Cluster,  Xeon 
2.4GHz, Quadrics/ 1920 
IBM/Quadrics 

6586 
9216 

 
The Top 500 Supercomputers list presents rankings in 
order of performance using LINPAC, a common 
benchmark. The top ten of the list for 2003 is 
reproduced above in Table 1. The number of 
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processors follows the name (van der Steen, 2003). 
Note that the least amongst these has 1,920 processors 
and that the biggest, but not most powerful, has 8,192.  
This list covers only the supercomputers that are 
engaged in work that can be publicly acknowledged.  
 
Linux Clusters: The Beowulf Concept 
 
This last cost-based definition brings us to the next 
important concept: commodity clusters, or Beowulfs. 
Dr. Thomas Sterling propounded and popularized 
large-scale parallel computing through the use of cheap 
commodity components: CPUs, power supplies, RAM, 
internode communications, operating systems and 
software (Sterling, 1999).  By taking best advantage of 
the cost benefits of mass production, he collected and 
organized mass numbers of commodity processors.  
These are usually Intel architecture PCs, with 
communications between them using gangs of low-cost 
Ethernet switches (or the more expensive but more 
powerful cluster communications switches).  
 

 
 

Figure 3  The IBM Linux cluster at the Maui High 
Performance Computing Center. 

Beowulfs typically use the largely free operating 
systems like Linux and the GNU series of compilers 
(see Figure 3).  For internode communications 
programming, there are a number of languages 
following the Message Passing Interface (MPI) 
standard.  These may be obtained without paying the 
expensive license fees that are typical with some of the 
proprietary supercomputers.   
 
The Beowulf technology is not the most effective one 
for computing that requires exceptionally high-speed 
serial computation, exceptional floating-point power, 
or exceptionally low latencies for their internode 
communications. Clusters are fortunately very useful 

for most programs.  Unlike the Cray series that were 
very high-speed vector machines and required liquid 
cooling, the Beowulf series are now universally air 
cooled, requiring only sufficient machine room cooling 
to remove the heat from the amassed processors.  The 
avoidance of the efficient, but expensive, CPU/liquid-
coolant interface is an incredible cost savings.  A 
typical price for a significantly sized cluster is on the 
order of a few thousand dollars per node.   
 
Grid Computing 
 
If processors can be amalgamated to produce more 
power locally, then there could be even more power 
made available if remote computers could be similarly 
connected to provide additional processors.  The 
previously mentioned concept of scalability clearly 
comes into play and one new concept must be 
considered.  Most of the clusters and supercomputers 
discussed so far have been homogeneous, i.e. all of the 
processors are the same.  If grid computing entails 
using clusters and processors from different sites, then 
the likelihood of homogeneity falls rapidly. 
Fortunately, Beowulfs have been remarkably tolerant 
of heterogeneity and data will be later adduced to show 
the capabilities of grids made up of the Beowulf Linux 
clusters and the proprietary supercomputers. 
 
Grid computing usually conveys the concept of using a 
Wide Area Network (WAN), frequently the Internet 
itself, to connect remotely located SPPs, both 
supercomputers and Linux clusters.  The landmark 
work on this innovation was done by Ian Foster and 
Carl Kesselman (Foster, 1997).  In order for all of 
these diverse and dispersed assets to be useful, there 
must be methods of coordinating, initiating, and 
controlling them.  The tool developed by Foster and 
Kesselman is called Globus and is generally 
recognized as a very effective way to approach this 
type of distributed high performance computing.   
 
Another, more localized version of this concept, is that 
of using all of the idle PCs on an organization’s LAN.  
This involves running processes on the various PCs 
making those processors available to the central user 
when they are not in use by the PCs “owner.”  When 
the owner interfaces with his computer in any way, it 
immediately suspends the remote process and 
redelivers control to the owner.  One popular program 
providing this service is Condor (Litzkow, 1998.) This 
technique is a natural choice for a type of computing 
that does not need cycles on demand.  One nationally 
distributed use of this concept is doing signals 
processing as part of the search for extraterrestrial 
intelligence.   
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Parallel Data Handling 
 
The two foci of this paper are parallel computing and 
advanced data handling techniques in FMS.  While 
much of the issue of data handling is appropriate for 
the section on data analysis, some portion of it is more 
closely tied to parallel processing.  Parallel distributed 
processing both enhances and encumbers data 
collection, storage and retrieval.  One of the major 
daily uses of high performance computing is the rapid 
processing of huge masses of transactional data by 
retailers and financial institutions, an indication of its 
value in this arena.   
 
Like parallel processing, there is an extensive 
experience base in parallel data handling.  At the 
Information Sciences Institute, a distributed data 
system has been developed to support the SAF 
simulations. Client applications communicate using 
RTI routines and data that is identified is stored on 
local disks at each node.  A central aggregator acts to 
query the tasks, when desirable, and collects all 
information at the end of the simulation.  The data 
content is then analyzed and archived. As it is new 
technology, the techniques for maximizing the utility 
of the parallel capabilities are not universally practiced, 
but the expertise is easily accessed. 
 

 
 

Figure 4. Tertiary storage tape silos at USC. 

 
ADVANCED DATA ANALYSIS 

 
As simulations have moved from the gym floor to the 
computer, a similar change has taken place in the 
means of assessing the results of the exercises.  When 
the SAFs were first used to train tank crews, the most 
important factor was face validity.  As long as the 
tanker trainee perceived the representations as realistic, 

the simulation was considered to be a success. Now 
that the community has moved from a few vehicles to 
more than one million vehicles, the need for a more 
elaborate approach has become clear.  Policymakers 
and leaders of the simulation community now seek new 
ways to exploit the data being collected.  (Dubik, 
2003). 
 
Additionally, this country no longer has the luxury 
enjoyed in past wars of taking months to mobilize 
technology for defense efforts, and learning from early 
combat experience to hone later tactics.  Today’s 
battlefield is much more technologically loaded, 
complex and fast-paced (Cebrowski, 2000).  It follows 
that there is a need for more complex, faithful and 
illuminating simulations of future battlespaces.  The 
insights needed must be more timely and of greater 
specificity, in order to defend against new foes who are 
less identifiable, less predictable and more capable of 
attacking asymmetrically.   
 
One of the first issues of concern is defining just what 
the simulation community and government leaders 
should and can extract from the simulations.  Rather 
than considering this issue de novo, much can be 
learned from the Operations Research approach 
(Kleijnen, 2001).  Many of their techniques have 
already been implemented on SPPs and their rigorous 
analysis of critical parameters is very useful. 
 
Advances in Database Technology 
 
As data sets have grown exponentially larger and more 
complex, so also has the technology grown to query 
that data and return useful and timely result sets. While 
the expenditures of the DoD are not insignificant in 
this field, much of the productive innovation is being 
delivered out of the commercial database market and 
much of the intellectual leadership resides on the 
campuses of the U.S.’s top research universities. 
Search engines such as the currently pre-eminent 
“Google” respond rapidly and accurately in non-
rigorous, but demanding, civilian situations. The 
military analyst, while retaining the same needs for 
excellent interface, speed, accuracy, relevancy and 
scope, also requires a greater assurance that data 
ascertained represents sufficient, and accurate results 
of relevant materials.  The high performance 
computing centers provide a common ground where 
these diverse database professionals meet.  
Synthesizing the advances from all of these disparate 
fields arguably provides the synergy necessary to meet 
the rapidly expanding needs of the FMS community. 
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Data Mining 
 
Data mining techniques are defined here as the 
extraction of useful patterns and modes from data sets  
that are often large.  More particularly we, and others, 
use the term to specially imply the extraction of 
insights from databases for which that data structure 
was not originally designed. 
 
Some authors have described data mining as lying at 
the intersection of statistics, machine learning, data 
management, pattern recognition, artificial intelligence 
and other related disciplines.  The authors see it as the 
application of myriad techniques to accomplish its 
goals, but not subsuming all of these techniques into 
itself.  Its focus on “…unsuspected relationships ...” 
and summarizing data in “… novel ways that are both 
understandable and useful …” (Hand, 2002) is the 
capability that is seen as most promising for FMS data 
analysis.   
 
Data mining can be more generally said to require 
some significant effort in each of the following tasks: 

1. initial data analysis to gain understanding of 
organization and visualization possibilities 

2. an attempt at describing a loose-fitting, but 
acceptable model of the data under analysis 

3. the creation of a model capable of predicting 
the results and the relationship of those 
results to certain input parameters 

4. the final analysis of the data sets with the 
final product being not only the discovered 
relationships, but also the real-world insights 
that such relationships support 

 
Simulations of the order discussed in this paper may 
generate as many as 1,600,000,000 data points (1,600 
data elements per entity for 1M entities.) With such 
vast amounts of data, not all useful analysis can be 
done real-time, nor is it optimally productive to do so. 
The common result is that reams of recorded data sets 
are discarded as too cumbersome to be of analytical 
use. Data mining tools offer promise in that they allow 
the analyst to find useful information and patterns 
amidst the mass of data points even after the simulation 
is completed 
 
With the power of scalable parallel processor 
supercomputers, once simulation results have been 
characterized and values ascribed to various outcomes, 
the recursive analysis of the data will undoubtedly find 
useful new views of that which critical to the outcome.  
For example, using data from numerous iterations of a 
flight simulation designed solely for training, one 

might find a pattern of inexperienced pilots tending to 
overshoot their targets. Without making the effort to 
analyze such data or to create effective tools for sifting 
through the vast amount of noise to find useful 
information, the opportunity to discover such useful 
patterns is lost. Data mining tools help to isolate not 
just the story from the activity, but the wisdom to be 
gained there from.  
 
The data mining process does require efforts beyond 
traditional simulation analysis. Normally data mining 
requires all or some of the following: 

1. Achieving a thorough understanding of the 
representations’ inherent characteristics and 
organization (e.g., parameters of the entities, 
descriptions of their activities). 

2. Selecting methods of defining and comparing 
the data in such a way that it will yield 
quantifiable results that can be compared  
(e.g., losses, mission success, time). 

3. Discovering, defining and applying an 
algorithm to compare results with input 
parameters (multi-variate studies of data sets). 

4. Analyzing and implementing those data 
management techniques that will enable and 
facilitate steps one through three. 

The tasks above need not make demands on the 
structure of the data nor the means for attaining it. By 
its very nature, data mining presents low cost 
opportunities for gains in insight and understanding 
from simulations of almost any sort with little to no 
impact on or cost to the simulation itself.   
 
Data mining has historically proven to be an effective 
tool in numerous fields. Trigon Blue Cross Blue 
Shield uses data mining techniques to identify early 
indicators of serious disease, thus allowing them to 
effectively treat patient before they become seriously 
ill. Data mining methods helped retailer Williams-
Sonoma save millions in advertising costs without 
losses in sales by creating a targeted system for 
catalog distribution. Using data mining technologies, 
banks have developed better credit scoring models that 
more accurately predict applicants that may default on 
loans. In science, data mining techniques have been 
used to identify new binary stars by using radio 
telescope data collected for mapping, but which 
serendipitously contain the characteristic oscillation 
frequencies of such stars yet undiscovered (Moore, 
1998).  Similarly, the authors believe that unsuspected 
insights that will save lives, money and missions lie 
deeply imbedded in the data being generated today by 
FMS.   
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As increasingly complex simulations produce larger 
and larger datasets, data mining techniques will help 
the analyst sift through that mountain of data in order 
to find and quantify useful relationships and patterns. 
Increased computing power and faster computational 
capabilities only increase the opportunity to find 
useful patterns. While the authors do not represent that 
data mining will solve all problems nor discover all 
relationships of interest, they do accept the notion that 
it has the potential of discovering many new 
relationships, some of which may enable significant 
new capabilities or prevent monumental losses.   
 
Evolutionary Computing 
 
Another area of significant opportunity lies in the 
application of the techniques described by the Fogels 
in their work on Evolutionary Computation. (Fogel, 
2000)  Many of the new battlefield challenges 
represented by the relationships of the data described 
above are far removed from the current understanding 
of defense strategies.  They will not be observed, 
presumed or described by even the most rigorous 
analysis of the data.  Novel and asymmetric threats are 
continually and rapidly evolving.  These new threats 
are being driven by groups whose one remaining 
effective weapon may be their tactical innovation and 
the resultant element of surprise.  In this they are aided 
and abetted by their remoteness from the defense 
analysts in topics such as their value system, goals, 
training, and zeitgeist.  
 
The family Fogel presents a way to examine a virtually 
unlimited horizon of possibilities by using techniques 
that perturb the physically accurate simulations of the 
world without regard to the constraints of the 
expectation or creativity.  They replace the rule-based 
foundation of the Monte Carlo simulations with the 
concept of an entity that is able to freely roam the 
range of possibilities, with an appropriate feedback 
loop to help in optimizing the path to the goal.  Basing 
their work on the areas of artificial intelligence, expert 
systems and neural net training, the evolutionary 
computer scientists further look to the biological 
paradigms popularized by Charles Darwin in his work 
on the evolution of animals.  This group eschews 
slavish imposition of genetic rules and prefers to let 
electronic intelligence finds its own path in parallel 
with biologic evolution.   
 
Applying the concepts laid out by these evolutionary 
computational scientists has the promise of establishing 
unimagined methods and threats. Should the 
evolutionary computing process result in the 
identification of an unnoticed vulnerability or the 

determination of a new threat, the defenses could be 
altered, steps could be taken to ameliorate the losses, or 
contravening punitive actions aimed at the attackers 
could be imposed.  
 
Genetic Algorithms 
 
In a variant of the work by the Fogels, David Goldberg 
reports significant success in applying more stringently 
biologic rules to his analysis (Goldberg, 2002).  He 
sees the genetic evolutionary driver as having been 
tested over the millennia and therefore not likely to be 
deficient.  His application of genetic rules is similarly 
successful in the test phases of his work. He feels the 
insights he gains are more likely to be in accord with 
the behaviors observed in actual life. Dr. Goldberg has 
used his techniques to model both organizational 
entities such as small populations and physical 
phenomena such as gas pipelines.  His approach does 
suggest a very supportable relationship between his 
data and the observed data in the population under 
study and the pipeline under observation.  
 
The selection between evolutionary computing and 
genetic algorithms can be left to the user as an 
exercise.  In each case, the identification of a novel 
concept would have to sustain the challenge of reason 
and the governmental vetting process prior to funding a 
new defense or the acceptance of a new approach.  The 
caveat to be remembered is not to disregard novel 
approaches and valid insights.   
 
Monte Carlo Analyses  
 
 Many of the simulations in use by the services today 
rely heavily upon Monte Carlo techniques.  These 
simulations have a pre-established rule set and 
distribution or likelihood for each major activity as was 
described above.  As noted earlier, these simulations 
are not deterministic and often the same basic initial 
definition is executed several times (hundreds of runs 
are not uncommon) to examine the distribution of the 
final outcomes, (Horne, 1999).  This work is often 
analyzed by plotting out a series of two dimensional 
solution spaces on a three dimensional graph, as in 
Figure 2, and visually identifying the optima and their 
relation to one another for each pair and then 
estimating the interrelation of the multivariate group.   
 
Based on the work of a physicist at Caltech, the OTCI 
company has developed a tool that can quantify the 
degree to which the input parameters affect the final 
outcome.  This can be done in n dimensions, which 
would be an improvement on the visual analytical 
procedure outlined above.  Further, this procedure 

 
67

cameras
Text Box



 
 
 

Interservice/Industry Training,imulation, and Education Conference (I/ITSEC) 2004 

yields very interesting results in fewer runs, sometimes 
orders of magnitude fewer (Johnson, 1999).   The 
technology is currently implemented for financial 
analyses, but could be “ported” over to battlefield 
simulation analyses with a high expectation of efficacy 
and a reasonable hope for better analytical products. 
 
. 

IMPLEMENTATION EXAMPLES 
 
There are both examples of successes and of well-
documented plans for how the techniques reviewed 
above can be implemented in the future, including 
three easily envisioned ways to approach the scalable 
parallelization of a simulation.  First, design the code 
as a well-parallelized program from the beginning.  
Second, after reviewing existing code, completely 
rewrite an existing code base in a scalable parallel 
manner.  Third, take the code as it is and implement a 
new “wrapper” around the code that makes it scalable.  
Two of the noted implementations have been seen in 
the intelligent agent, non-deterministic variety of 
simulations: SF Express/JESPP (Joint Experimentation 
on Scalable Parallel Processors) and Project Albert.   
 
In SF Express, the ModSAF code was enhanced with 
communications routers written in Message Passing 
Interface (MPI). The routers enabled scalability both 
within the SPP mesh and across the nation.  This was a 
successful example of distributed, heterogeneous 
supercomputing.  Scalability was measured in 
comparing the times experienced in communications 
activity as the size of the sample increased.   
 
In JESPP, the team was asked to make the JFCOM’s 
JSAF simulation much more scalable (see Figure 5) 
and portable to Linux clusters of the 256 node class. 
JFCOM needed to “field” more than a million vehicles 
in an urban setting.   
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Figure 5. Notional Scalability using Mesh Routers 

 
This was necessary to test many concepts, including 
the need to assess various simulated sensor platforms 

and associated systems in their ability to discriminate 
combatants from non-combatants. 
 
Previous implementations on LANs did not simulate 
more than 30K vehicles.  In making the code more 
scalable and running it on a series of Linux clusters, 
the JESPP team was able to achieve more than 
1,000,000 vehicles (Lucas, 2003 and Helfinstine, 
2003).  The approach they used is worth future 
consideration.  It entailed the careful study of the 
simulation code in use, JSAF, and then constructing a 
system of very scalable software routers to make the 
code capable of effectively using the hundreds of 
processors in large Linux clusters.  The code base itself 
was not significantly impacted and the software routers 
were designed to accommodate as best they could the 
almost daily changes in JFCOM’s growing and 
dynamic needs, which caused frequent modifications to 
the underlying JSAF code.  To achieve scalability, the 
effort engaged computational scientists with extensive 
backgrounds in physical science simulations who had 
the intellectual and creative skills to rapidly understand 
and to effectively enhance the code.   
 
Project Albert has taken a different track.  From the 
beginning, the code was constructed with a kind of 
built-in scalability. The basic idea of Brandstein and 
Horne was that Albert would not have a fully fleshed 
out simulation, but would be convey the “essence” of 
the activity running in a very small module that can be 
run over and over.  The Project Albert crew has 
worked very closely with the parallel-computing 
experts at the Maui High Performance Computing 
Center.  The code base is kept quite small by design.  It 
has less than ten per cent of the lines of the JSAF code.   
 
While this de novo approach has the benefits of 
elegance and simplicity, it is, by definition, only open 
to the developers who are producing entirely new 
programs.  The authors find that the FMS community 
frequently adapts and expands existing code and one 
recent major new, “bottoms-up” FMS program was 
recently terminated (Tiron, 2003).  Nonetheless, 
developers of new systems should resist being seduced 
by the ease of single-processor designs, as experience 
has now shown that there will be pressure to expand 
along the dimensions of complexity, resolution, and 
magnitude, hence requiring or benefiting from parallel 
processing.   
 
In looking at appropriate data analysis techniques to 
implement, one issue that must be settled is that of the 
users’ goals in this analytical process.  As this seems 
rather intuitive, there is an inclination to skip, or at 
least slight, this step. Previous scholarship bears 
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careful attention.  Going outside the narrow confines of 
FMS, it is clear that Operations Researchers (OR) have 
studied comparable issues for a century.  Some 
members of the OR community have been active in 
helping simulation groups understand their goals and 
analyze their results (Sanchez, 2002). 
 
Ongoing Work 
 
Many of these programs are ongoing.  JFCOM has 
committed to the JESPP project for the foreseeable 
future.  The award of the Distributed Center cluster to 
JFCOM will provide a natural home for the technical 
life of the cluster.  Additional clusters can be enlisted 
to provide more processing power, and the expandable 
capabilities of the JESPP scalable routers produce the 
ability for the JSAF code to utilize all of the processors 
that can be gathered for an exercise.  An extension of 
this work into the analysis of homeland security issues 
for air traffic control has been advanced and the 
authors consider this  a well-founded application of the 
concept of taking code as is and enhancing it with 
augmenting wrappers. 
 
The Albert project continues to be a vital part of the 
study of maneuver warfare.  In addition to studying 
new ways of utilizing large parallel computers, Albert 
seeks out new ways to analyze the huge amounts of 
data presented by the multiple run method.  As the 
project increases the number of important variables, 
the difficulty in visualizing multi-dimensional solution 
spaces may find resolution in the work of Monte Carlo 
simulators in the financial community.   
 
This generates an analytically valuable data surfeit that 
may be found in the vast quantities of data that could 
be collected from training simulations.  As pilots, 
sailors and tankers train in their simulators, their 
activities’ data make a fertile field for other analyses. 
 
Adopting either of the two methods discussed above, 
designing for scalability or augmenting with scalable 
wrappers, should produce several benefits.  First, both 
should create not only early scalability but imbue the 
code with an ability to scale further and make early use 
of new processor technologies.  Second, experience 
has shown that the parallelization process itself 
frequently improves the serial code and, not 
infrequently, leads to insights into the subject 
phenomena.  Third, careful application of these 
techniques should not disturb the development or use 
of the delivered code.  Fourth, cost, schedule and 
performance can be kept in balance. 
 

There are actions that will reduce potential disruptions 
and produce the best results.  The most important of 
these may seem obvious, but it is not infrequently 
overlooked - the reliance on experienced parallel 
computational scientists. Parallel programming is a 
unique skill-set.  Attempts to automate the process of 
parallelizing code have not been particularly fruitful, 
especially in programs where coarse-grained 
parallelism is appropriate.  A research and 
development group seeking to make their code scalable 
would be well advised to identify a successful effort 
implementing comparable code on an SPP and then 
engage the parallel programmers who were responsible 
and who have exhibited a transferable aptitude. 
 

TECHNOLOGY IMPACT 
 
It is the firm conviction of the authors that the 
technology detailed above will prove to be a vital asset 
for the FMS community and then have an essential 
impact on the defense of the nation.  The necessity of 
dealing with the commingling of combatants and non-
combatants, the current mandates to conduct operations 
with minimal disruption of civilian infrastructure, and 
the ability to wage effective warfare against an 
asynchronous enemy all will be addressed more 
completely using the advanced techniques discussed.   
 
However, the FMS community has not shown as much 
acceptance of these technologies as might have been 
expected.  At the 2003 IITSEC meetings, only the 
JFCOM papers on the use of Linux Clusters evidenced 
implementations in everyday use (Lucas, 2003; 
Helfinstine, 2003; and Williams, 2003).  The three 
other papers mentioning these topics (Pratt, 2003; 
Schiavone, 2003; and Mielke, 2003) took valid, but 
much more theoretical, perspectives.  This year may 
not show much of an increase.  A review of the 
submitted titles for IITSEC 2004 reveals the lack of a 
single mention of the terms Beowulf, supercomputer, 
parallel processing, data mining, evolutionary 
computing, sensitivity analysis or high performance, 
although these issues are discussed in other papers by 
our JESPP team members who were instrumental in the 
effort to enable larger-scale entity counts in the Urban 
Resolve experiments at JFCOM. 
 
The ability of the analyst to distinguish between non-
combatants and enemy forces hiding among them 
relies on increasingly effective sensors, well-designed 
analytical systems, and advanced training in realistic 
environments.  Current limitations in resolution, entity 
count and sophistication of behavior interfere with all 
of these.  Simulation experimenters report that analysts 
engaged in early exercises had so few civilian entities 
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in their environment that they were inclined to opt for 
destruction of all vehicles under observation, when 
there was doubt as to their identity.  Reasonable 
choices were also restricted when the number of 
civilians was smaller than the number of enemy 
combatants, a condition driven by the lack of compute 
capacity on platforms consisting of PCs on LANs.   
 
The lack of sophistication also can render an exercise 
less meaningful.  Human operators are very sensitive to 
behavior differences.  If computer constraints enforce 
very simplistic behaviors on modeled civilian vehicles, 
the operators quickly can distinguish them from the 
more complex behavior capabilities of the combatant 
vehicles, e.g. if the simulation controllers turn off 
collision avoidance to save on inter-visibility 
calculations, the operators will quickly perceive that 
any vehicle that passes right through another is not a 
combatant.  Neither good training nor good analytical 
input can result from similarly constrained conditions. 
 
Additionally, the not uncommon reliance on SME 
reviews of simulations, while effective and useful, may 
be missing valuable insights. These insights might 
otherwise lead to new strategic concepts or prevent 
overlooking significant vulnerabilities.  Not yet having 
faced the unknown enemy of the future, not knowing 
its mind-set, and not having the luxury of learning at a 
leisurely pace, the simulation community would be 
well-advised to take advantage of the expanded 
capabilities presented above in the section on advanced 
data analysis techniques.   
 
Orderly retrieval of information using the latest 
database techniques will assist human analysts in 
pursuing intuitive leads.  The innovative techniques 
representing data mining can be invoked to extract 
even more esoteric concepts and bring these to the 
attention of the analysts for confirmation and analysis.  
This gives real hope for identifying asymmetric tactics 
that might not be foretold by traditional military 
analysis.  The concepts of evolutionary computation, 
genetic algorithms, and Monte Carlo sensitivity 
analyses also show promise in making sure nothing is 
missed in the search for security.   
 
A Development Path: Successful Rapid Prototyping 
 
Transitions from current simulation methods to full 
exploitation of present and near-term computational 
capabilities and practices take effort and significant 
experimentation. It is perhaps best to illustrate the 
process with a particular example: a suite of large 
field-of-view sensors attempting to detect isolated 
“suspicious” behaviors within a large population of 

normal (i.e., “civilian”) entities. This has been, in fact, 
a major thrust of ongoing JSAF developments, with the 
Simulation of the Locations and Attack of Mobile 
Enemy Missiles (SLAMEM™) surveillance/tracking 
software system fed by detections from simulated 
civilian vehicles (euphemistically called “clutter”) 
within the JSAF simulation 
.  
The JSAF/SLAMEM combination has so far been 
rather fruitful. For present purposes, it is sufficient to 
consider three particular items: 
  

1. In order to support large numbers of clutter 
entities, the clutter models within JSAF had 
to be quite simplistic, with, e.g., very little 
“self-awareness” among clutter entities.  

2. While the SLAMEM-JSAF system exploits a 
number of clever procedures to distribute 
much of the computational burden (in 
particular, some of the simulated signal 
processing), the tracking and situation-
assessment procedures within SLAMEM 
were originally done on a single processor, 
thus providing a significant constraint on the 
size of the underlying simulated scenario.  

3. The very large numbers of simulated 
detections within a typical SLAMEM-JSAF 
were largely “unexploited”, beyond the 
immediate task of driving track formation 
and feeding operator displays.  

 
There are a number of straightforward technology 
“patches” for many of these problems, including 
parallelized tracking algorithms, and a much richer, 
distributed database system supporting data mining and 
“discovery” activities. Incremental developments along 
these paths are inevitable. The problem, of course, 
comes with the word “incremental.” The standard 
practice of inserting pieces of computational 
technology, as though one were simply using higher 
clock rate processors, drives the system along a path 
dictated by “ease of insertion” rather than ultimate end-
user needs. In the authors’ opinion, it is definitely 
progress, but it is unlikely to be progress that will ever 
catch up to available capabilities.  
 
Consider, again, the conceptual SLAMEM problem. At 
a high-enough level, the outcome of present 
experimentation must point to the desired or idealized 
product: Operators are watching displays of highly 
processed tracking results, looking for indications of 
both “suspicious behavior” and reactions to 
interdiction activities. Human interpretation of these 
data will always be subjective. The details that could 
be provided by scaled computational power alone are 
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overwhelming, if not overwhelmingly useless. 
Operators needed dynamic access to the available data 
at several scales of both “resolution” and “historicity” 
in order to assign likelihoods to the important bottom-
line issues of asymmetrical combat.  
 
It can be argued that the ongoing FMS development 
path would not reach this goal (or rather, if it does, it 
will do so very, very slowly). This is not to say that 
standard practices should be abandoned! The authors 
maintain that incremental development and 
implementation is the only sane way of improving the 
state of the art while maintaining capabilities.  
 
The authors suggest a parallel development track is 
needed, emphasizing the “top-down” approach with 
the goals of identifying: 1) inherent limitations in 
standard practices and 2) technology needed to resolve 
the identified problems. The intent of the second point 
must be clarified/emphasized. Rather than ask the 
implicit “standard practices” question (“What 
incremental capabilities can be added through readily 
available technology?”), a very different question must 
be asked for optimal implementation: “What 
technology is needed to achieve required capabilities?”  
Viewed from the perspective of the idealized ultimate 
user, the system to which JSAF/SLAMEM activities 
are pointing must be database driven and must address 
the following questions: “What information will best 
aid the decision maker?” and  “What automated 
discovering and mining procedures are needed to make 
this data perceivable to the decision maker?” 
 

CONCLUSION 
 
There are several new technologies that are available 
and are of demonstrated utility to the simulation 
community.  There also exists a body of practice that 
makes adoption of these capabilities more productive 
and less disruptive.   
 
September 11, 2001, gave a new immediacy to the task 
of adequately preparing for unexpected threats.  While 
the techniques proposed in this paper may not have 
helped avert that tragedy, the authors maintain those 
techniques may well increase the opportunity for the 
analysts to discover future threats and assist in working 
out the best way to defend against such destruction.  
Considering the huge losses that the nation incurred 
from that one attack, the efforts required in 
implementing the described techniques pale in 
comparison.   
 
Data interpretation is a critical task in any war, 
including the war on terrorism. Simulation systems 

may well benefit from enhanced data interpretation and 
that should do much to provide a real-time laboratory 
for refining and exploiting advances in data analysis 
that have been made over the last decade. 
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ABSTRACT  

 

 
The Joint Forces Command (JFCOM) Experimentation Directorate (J9)'s recent Joint Urban Operations 
(JUO) experiments have demonstrated the viability of Forces Modeling and Simulation in a distributed 
environment. The JSAF application suite, combined with the RTI-s communications system, provides the 
ability to run distributed simulations with sites located across the United States, from Norfolk, Virginia to 
Maui, Hawaii. Interest-aware routers are essential for communications in the large, distributed 
environments, and the current RTI-s framework provides such routers connected in a straightforward tree 
topology. This approach is successful for small to medium sized simulations, but faces a number of 
significant limitations for very large simulations over high-latency, wide area networks. In particular, 
traffic is forced through a single site, drastically increasing distances messages must travel to sites not near 
the top of the tree.  Aggregate bandwidth is limited to the bandwidth of the site hosting the top router, and 
failures in the upper levels of the router tree can result in widespread communications losses throughout the 
system.  

To resolve these issues, this work extends the RTI-s software router infrastructure to accommodate more 
sophisticated, general router topologies, including both the existing tree framework and a new 
generalization of the fully connected mesh topologies used in the SF Express ModSAF simulations of 100K 
fully interacting vehicles. The new software router objects incorporate the scalable features of the SF 
Express design, while optionally using low-level RTI-s objects to perform actual site-to-site 
communications. The (substantial) limitations of the original mesh router formalism have been eliminated, 
allowing fully dynamic operations. The mesh topology capabilities allow aggregate bandwidth and site-to-
site latencies to match actual network performance. The heavy resource load at the root node can now be 
distributed across routers at the participating sites.  

ABOUT THE AUTHORS  

Brian Barrett is a programmer analyst on the JESPP project, Information Sciences Institute, University of 
Southern California. Brian's research has focused on communication issues for large-scale high 
performance computing systems.  While at Indiana University, Brian was a lead developer of the 
LAM/MPI implementation of the Message Passing Interface (MPI) standard.  He received a B.S. from the 
University of Notre Dame and an M.S. from Indiana University, both in Computer Science.  

Thomas D. Gottschalk is a Member of the Professional Staff, Center for Advanced Computing Research 
(CACR) and Lecturer in Physics at the California Institute of Technology. He has been with CACR for 
nearly a decade. Much of his research has been on the use of parallel computers to simulate various 
physical phenomena. His instructional duties include his upper division course on Statistics for Physics 
Graduate students. He received a B.S. in Physics from Michigan State University and a Ph.D. in 
Theoretical Physics from the University of Wisconsin.  

74

cameras
Text Box
Appendix G

cameras
Text Box



Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2004 

 
Advanced Message Routing for Scalable Distributed Simulations 

 

Brian Barrett   Thomas Gottschalk  
University of Southern California  California Institute of Technology 

Marina del Rey, CA   Pasadena, CA  
bbarrett@isi.edu   tdg@cacr.caltech.edu  

 

Large Scale Forces Modeling and Simulation  

Recent experiments within the Joint Forces 
Command (JFCOM) Experimentation 
Directorate (J9) demonstrate the feasibility of 
forces modeling and simulation applications in a 
large field of play with fine-grained resolution. 
Simulating such battle spaces requires large 
computational resources, often distributed across 
multiple sites. The ongoing Joint Urban 
Operations (JUO) experiment utilize the JSAF 
application suite and the RTI-s Run Time 
Infrastructure to scale to over 300 federates 
distributed across the continental United States 
and Hawaii (Ceranowicz, 2002). The JUO 
exercise has shown the scalability of the 
JSAF/RTI-s infrastructure and of interest-based, 
router-managed communication. At the same 
time, the simulation has highlighted a need for 
improvements in the communication 
architecture.  
 

 
Figure 1: Software routing topology for the 

JUO exercise. 
 
The current JUO network topology is a tree of 
software routers (see Figure 1 for wide area 
network diagram). The hub and spoke network 
model introduced by this tree infrastructure 
increases latency between distributed sites and 
exposes the entire network to a single point of 
failure. The tree topology also poses a scalability 

limitation within the distributed sites. It is our 
belief that an improved routing infrastructure is 
required for the continued success of large-scale 
entity level simulations, particularly as entity 
counts and complexity/fidelity increase. 
 
This paper presents an improved routing 
architecture for large-scale HLA environments, 
using fully connected meshes as the basic 
topology. These mesh routers provide a scalable 
solution for interest-managed communication, as 
well as a more accurate mapping of software 
routing to available network topologies. 
 
Scalable Parallel Processors  

The JUO exercise requires a computational 
ability unavailable using traditional groups of 
workstations. Scalable Parallel Processors 
(SPPs) provide the required computational 
power, with modest increase in development and 
execution effort (Lucas, 2003). A SPP is a large 
collection of processing elements (nodes) 
connected by a fast communication network. 
Common SPPs include the IBM SP, SGI Origin, 
Cray X1, and Linux clusters. Traditionally, SPPs 
provide services not available in a group of 
workstations: high speed networks, massive disk 
arrays shared across the entire resource, and 
large per-CPU physical memory. In addition, 
SPPs generally have uniform environments 
across the entire machine and tools for scalable 
interactive control (starting processes across 100 
nodes takes the same amount of time as it does 
across 10).  

Linux clusters have recently become a suitable 
platform for the high performance computing 
community and are therefore readily available at 
Department of Defense Major Shared Resource 
Centers. These clusters are ideal platforms for 
use in the JUO exercise because of their close 
heritage to the Linux workstations used in the 
interactive test bays. Although there is additional 
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software to tie the cluster into one SPP, the basic 
libraries, compiler, and kernel are often the same 

on a cluster as on a workstation.  

 
RTI-s  

RTI-s provides the HLA Run Time Infrastructure 
(RTI) for the JUO federation. RTI-s was 
originally developed for the STOW exercises, to 
overcome the scalability and performance 
limitations found in RTI implementations at the 
time. It should be noted that RTI-s is not a fully 
compliant HLA/RTI implementation. 
Specifically, it does not implement timestamp 
ordered receives, ownership transfer, and MOM 
interactions.  In addition, federates discover new 
objects at first update, rather than at creation 
time.  The JSAF applications are receive-ordered 
by design and are optimized to respond best to 
delayed object discovery, so these limitations are 
not constraining in the existing environment.  

RTI-s utilizes a flexible data path framework (an 
example of which is shown in Figure 2), which 
allows for use over a number of communication 
infrastructures. Currently, there is support for 
multicast UDP, point-to-point UDP, point-to-
point TCP, and MPI (using a send/receive 
architecture). Bundling and fragmenting of 
messages is provided by components that can be 
reused for TCP and UDP communication. 
Kerberos authentication for data packets has 
been implemented for TCP communication.  

 
Figure 2: RTI-s data path architecture for 

TCP communication.  

Point-to-point modes in RTI-s uses separate 
routing processes for communication. The 
routers provide data distribution and interest 
management for the federation, which would be 
too heavy for a simulator to handle. Presently, a 
tree topology (Figure 3) is used for connecting 
routers. A tree presents a simple structure for 
preventing message loops, as there are no 
potential loops in the system.  

 
Figure 3: Tree topology used by RTI-s for 

point-to-point message traffic.  

Synthetic Forces Express  

The Synthetic Forces Express (SF Express) 
(Brunett & Gottschalk, 1998) project first 
demonstrated the suitability of both the SPP and 
mesh router concepts for discrete entity 
modeling. The SF Express project extended the 
ModSAF simulation engine (Calder, 1993), 
focusing on the communication protocols to 
extend scalability.  

In December 1996, the SF Express team 
achieved a 10,000 vehicle simulation using a 
single 1,024-node Intel Paragon machine. 
Message routing within the SPP used the 
Message Passing Interface (MPI) (MPI Forum, 
1993).  Later work allowed the code to run on 
multiple SPP installations across a variety of 
networks by introducing gateways between 
SPPs. The gateway routers were connected using 
UDP. With these improvements, the project 
achieved a simulation of 50,000 vehicles using 
1,904 processors over six SPPs.  

The structure of the SF Express router network is 
shown in Figure 4. The basic building block for 
this architecture is the triad shown on the left, 
with a "Primary” router servicing some numbers 
of client simulators. Two additional routers 
(known as the “PopUp” and “PullDown” routers) 
complete the basic triad. These routers distribute 
(PopUp) and collect (PullDown) messages from 
client simulators outside the Primary’s client set. 
The SF Express architecture scales to increased 
problem size by replicating the basic triad and 
adding full up � down communication links 
among the triads, as shown in the right hand side 
of Figure 4.  
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Figure 4: Basic building block of the SF 
Express routing network (left) and an 

example mesh topology (right).  

While the SF Express project was quite 
successful, it had no life beyond a number of 
50K-100K entity simulation demonstrations. 
This was expected, for a number of reasons. For 
example, the algorithms and software developed 
for that project were not compatible with 
ongoing SAF developments (e.g., the move to 
RTI). Finally, the MPI-based communications 
used within the SPPs did not tolerate the restarts 
and process failures found during a long running 
exercise 

Designing for Scalability  

As previously mentioned, the JSAF/RTI-s 
application suite currently scales to over 300 
federates and over a million entities (including 
simple clutter). However, current routing 
topologies limit the scalability of the overall 
system. In order for an interest-based 
communication infrastructure to scale, three 
conditions must hold over an arbitrary interval of 
simulation time:  

• A given client must generate a bounded 
number of messages  

• A given client must receive a bounded 
number of messages.  

• Given the previous two points, the 
communication through any given router 
must also be bounded 

 
An interest management system and careful 

federate design achieve bounded client 
communication. Bounded router communication 
is a function of network design and can be 
achieved using a mesh topology. 

Interest Management  

The aggregate amount of data produced by the 
JUO federation is greater than any one federate 
is capable of processing. An interest 
management system is used to limit the amount 
of data a federate must process (Rak, 1997). The 
federate declares which information it is 

interested in (“e.g., red force tanks in position 
cell X”) and the RTI is responsible for ensuring 
only this subscribed information is received by 
the federate.  

When used in a multicast environment, RTI-s 
utilizes the concept of multicast channels for 
filtering, with interest states having associated 
channels. The message is multicast to the 
federation’s network and filtered on the 
receiving side. The receiver filters the message at 
the kernel level, so the application never sees 
messages for interest states it is not interested in. 
Overhead when no interest states are set is 
relatively small, but non-zero. Due to the limited 
number of available multicast channels, the 
number of interest states is limited (increasing 
the amount of traffic associated with each 
interest state).  

When running in point-to-point mode (using 
either TCP or UDP), interest management is 
send-side squelched. Software routers maintain 
interest state vectors for each connection and 
only send messages to clients that have 
expressed interest in a message type. The 
overhead for a federate to exist in the federation 
without any expressed interest is almost zero. 
Because interest states are not tied to hardware 
and operating system limitations, the number of 
available interest states is bounded only by how 
much memory can be allocated to interest 
vectors. This is an enormous improvement over 
multicast IP.  It was also one of the innovations 
of SF Express.  

An interest management system provides only 
the infrastructure for bounding the data flowing 
out of and into a particular simulator. The 
simulator must show care in declared interest 
states to prevent subscribing to more data than it 
is capable of processing. For the purposes of 
analyzing the scalability of routing 
infrastructures, we assume that the simulator 
limits interest declarations to guarantee bounded 
communication. In both the earlier SF Express 
and current JUO experiments, this assumption 
appears valid.  

 
Routing Scalability  

The scalability of the basic Mesh Router network 
is easily argued as follows. It is first necessary to 
assume that the underlying simulation problem 
itself has a scalable solution.  This means a 
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bounded message rate on the Primary � PopUp 
and PullDown � Primary links within a basic 
triad, and bounded Up � Down message rates 
within the interconnection links of the full 
network. The impediments to complete 
scalability of the mesh architecture have to do 
with interest declarations among the upper router 
layers. Each PullDown must announce its 
interest to every PopUp. In principle, these 
interest broadcasts could be made scalable 
through an additional network of communication 
nodes (at the associated cost of increased 
latencies for interest updates). In practice, 
however, these interest updates were not frequent 
enough to cause any difficulties in SF Express 
simulations with as many as thirty triads in the 
full mesh. An experiment with a similar setup 
using the current infrastructure shows similar 
results. This formally non-scaling component is, 
in fact, a sufficiently tiny component of the 
overall communications load that 
implementation of the “formal” scalability cure 
is not warranted for present or near-term 
simulation scenarios.  

 
Routing Flexibility  

The scalability issues with the tree router 
topology of RTI-s have been discussed 
previously.  Tree topologies also map poorly 
onto physical wide-area networks. Figure 1 
shows the route taken for any message crossing 
multiple sites in the JUO exercise. The path 
taken for a message to go from Maui to San 
Diego is sub-optimal: the data must first travel to 
Norfolk, then back to the west coast. This extra 
transmission time increases the latency of the 
system, which lowers overall performance. Since 
wide-area links often have less bandwidth 
available than local area networks, such routing 
also places a burden on the Virginia network 
infrastructure, which must have bandwidth 
available for both the incoming and outgoing 
message in our Maui to San Diego example.  

 
Figure 5: Advanced routing topology for JUO 

exercises.  

The mesh routing infrastructure provides a better 
utilization of physical networks by sending 
directly from one source to destination router. 
The network infrastructure is free to route 
messages in the most efficient way available. 
Figure 5 shows one possible routing topology for 
the JUO exercises, using mesh routers to 
minimize the distance messages must travel.  
 
In an ideal world, the entire federation would use 
one fully connected mesh for message routing. 
The actual routing of messages would be left to 
the physical network infrastructure, which has 
over 30 years experience in optimizing data. 
However, such a configuration is often not 
feasible due to performance or protocol 
availability. Local area communication is usually 
over TCP, pushing error detection from RTI-s to 
the network stack. Over wide area networks, 
however, TCP suffers bandwidth degradation 
proportional to latency, so UDP is used for these 
connections. Some SPPs provide neither TCP 
nor UDP on computer nodes, instead providing 
MPI over a high-speed network) or provide 
public access only on a small subset of the 
machine. Given these restrictions, a fully 
connected mesh is often not a feasible design.  

 
Figure 6: The basic building blocks for a 

Mesh Router topology: tree (left) and mesh 
(right).  

The mesh router provides the ability to design a 
flexible network topology that meets the 
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constraints of the network infrastructure while 
providing the ability to design a scalable system. 
The mesh router’s topology is constructed by 
combining two building blocks: a tree (Figure 6, 
left) and a fully connected mesh (Figure 6, right). 
The two building blocks can be combined to 
form meshes of meshes, trees of meshes, meshes 
of trees, etc. (Figure 7). The process can be 
repeated as often as required to build a suitable 
topology. The topology, however, cannot have 
any loops, as the routers are not currently 
capable of detecting this condition.  

 
Figure 7: Combinations of the basic building 

blocks used to generate advanced routing 
topologies.  

Mesh Router Architecture  

The mesh routers developed for RTI-s adopted 
many of the design decisions made in the SF 
Express project. The router triad concept is 
perhaps the most obvious of the design decisions 
from SF Express, providing an elegant method of 
avoiding “message looping” in the mesh, while 
allowing an arbitrary number of routing 
decisions to be made when transferring 
messages. However, significant design changes 
have produced a radically more advanced and 
flexible infrastructure.  

 
Flow Control  

A tight flow control with Request to Send / Clear 
to Send (RTS/CTS) behavior was used in the SF 
Express design. SF Express used the mesh 
routers only within a single SPP, where latency 
was extremely low and available bandwidth 
greatly exceeded expected message transfer 
rates. The overhead of sending the RTS and CTS 
messages would not negatively impact the 
performance or scalability of the system. The 
communication medium of choice (MPI) 
requires pre-posted receive buffers of a known 
size, requiring a RTS/CTS protocol for sending 
large messages. However, recent trends have 
shown CPU power improvements far outpacing 
network latency and bandwidth improvements. 
On modern networks, a RTS/CTS protocol poses 

a significant performance burden. Therefore, the 
Mesh Router architecture has an eager send 
protocol with messages dropped by priority 
when queues overflow.  

 
Application-Independent 
"Message" and "Interest" Objects  

The Mesh Router software is object-oriented 
(C++), with a limited number of standard 
interfaces to "user message" and "interest" base 
classes. For present purposes, the implications of 
this factorization are:  

 The Mesh Router system is designed to be 
compatible with ongoing changes and 
evolution within the RTI-s system, 
requiring little more that "re-compile and 
re-link".  

 The Mesh Router system can support 
applications other than SAF/RTI, given 
appropriate different instances of the 
message and interest objects.  

 
Simplified, General-Purpose Router Objects  

The many distinct router varieties ("Primary", 
"PopUp", "PullDown", "Gateway") of the SF 
Express router network have been replaced by a 
single router object, as indicated by the 
schematic in Figure 8. Routers simply manage 
interest-limited message exchange among a 
collection of associated clients. The distinctions 
that had been hardwired into the various router 
types of SF Express are now summarized by sets 
of flags associated with the clients. The flags 
(simple boolean variables) specify whether:  

 Client is a source of data messages.  
 Client is a sink of data messages.  
 Client is persistent (non-persistent 

clients are destroyed if the 
communications link fails). 

 Client is "upper" or "lower" (this 
simple hierarchy provides the 
mechanism to prevent message 
cycles).  

 
Figure 8: High level schematic of a router 
process (left) and dataflow of router/client 

connection (right).  

These four flags are sufficient to reproduce the 
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specific communications model of Figure 4 and 
a number of other networks, such as the tree 
router model available in the JSAF/RTI-s library, 
and the schematic Tree/Mesh mixture of Figure 
7.  

Factorized Communications Primitives  

The Mesh Router object design relies on a very 
careful isolation/factorization of the underlying 
message exchange protocol from the rest of the 
software. The essential object design is indicated 
in Figure 9 and has three layers:  

 
Figure 9: Schematic design of the Mesh 

Router application.  

Router Objects: These are little more that smart 
lists of objects associated with the clients in 
Figure 9. In normal operations, routers simply 
execute the fundamental message and interest 
manipulation methods for the associated clients. 
Routers are also responsible for management of 
the overall client list, including:  

 Removal of clients that have stopped 
communicating.  

 Initiation of communications links, as 
needed, to specified (persistent) clients.  

 Client additions, in response to requests 
from external processes. 

 
Client Objects: Managers of the interest 
declarations and pending message queues for 
each (external) client process.  

Pipe Objects: The interface between the 
Message / MessageList formalism of the Mesh 
Router software and the real world "bits on the 
wire" communications to the actual external 
processes. The Pipe object base class provides 
the last essential factorization of application 
specific details from the overall, general Mesh 
Router framework. 
 
The communication factorization within the Pipe 
class is essential to the general applicability and 
ease of use of the Mesh Router system. A 

number of specific Pipe classes have been 
implemented to date, with the most important 
being:  

 RtisPipe: Message exchange using the RTI-s 
framework. (Indeed, this object has been 
built entirely from objects and methods in 
the RTI-s library).  

 MemoryPipe: Message "exchange" within a 
single process on a single CPU. This is 
used when two or more router processes 
in the sense of Figure 8 and Figure 9 are 
instanced as distinct objects within a 
single management process on a single 
CPU.  

 
The factorization of application-specific 
communications mechanisms is, in fact, slightly 
more complicated than just indicated. The Pipe 
object has sufficient virtual interfaces for data 
exchange between a router and a general client. 
An additional virtual object/interface (the 
“ConnectionManager”) is needed to support 
dynamic addition and deletion of clients during 
router operations.  

 Router Configurations/Specifics, This Work  

The numerical experiments described in this 
work explore two different overall 
communications topologies built from basic 
Mesh Router objects: the "Tree" and "Mesh" 
topologies shown in Figure 10.  

 
 

Figure 10:Basic Topologies Available using 
the Mesh Routers.  

In the Tree topology, there is an entire CPU 
allocated to each router. All connections 
(simulator to Router or Router to Router) use the 
full RtisPipe instance. The persistent router 
clients in the sense of Section II are the upper 
router clients (if any) for each component router. 
All other communications links are generated 
dynamically.  

 
For the Mesh Topology simulations, all three 
routers within the basic triad of Figure 4 are 
instanced as distinct Router objects on a single 
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CPU, with MemoryPipe connections are used for 
the Primary � PopUp and Primary � PullDown 
links within a single triad. All other links in 
Figure 10 use the RtisPipe, with the cross-triad 
PullDown � Primary links persistent.  

As noted, the current RtisPipe implementation is 
based entirely on objects and method calls within 
the current RTI-s library. This is important for 
demonstrating "ease of insertion" of the Mesh 
Router formalism into the RTI-s libraries, but it 
does result in a few minor inefficiencies. These 
include one extra memory copy per message and 
duplicate "interpretations" of incoming interest 
declaration messages. These inefficiencies can 
be removed in future, more finely tuned Pipe 
instances. Indeed, the careful communications 
factorization within the Mesh Router package 
supports mixed Pipe instances tailored to 
communications specifics for any of the 
individual links in Figure 10. In particular, the 
optimal Pipe instances for WAN and LAN links 
may be quite different. Though supported by the 
overall design, these refinements are beyond the 
scope of this particular paper.  

 
Results  

The Koa cluster at the Maui High Performance 
Computing Center was utilized for testing the 
Mesh Routers. Koa is a 128 node Linux cluster 
with two 3.06 GHz Intel Xeon processors and 4 
gigabytes of memory per node. Nodes are 
interconnected via gigabit Ethernet. All routing 
topologies were generated using the standards 
for the JUO experiment: 5 federates per router 
and 4 routers per router (the second only 
applicable to tree routers). The default 
configuration parameters were used for both 
RTI-s and the Mesh Router. Since the Mesh 
Router utilizes the RTI-s communication 
infrastructure, we believe that any parameter 
tuning done to one system would apply equally 
well to the other system. To highlight the 
importance of topology in routing infrastructure, 
we show the Mesh Routers running in a tree 
configuration in addition to the standard RTI-s 
tree.  
A number of tests ensured the Mesh Routers 
performed as required for JSAF experiments. 
The mesh infrastructure was used for an 
extended simulation using the JSAF suite. As 
expected for a small-scale simulation, the Mesh 
Router and RTI-s tree router were 
indistinguishable to the JSAF operator.  

Latency measurements were taken on the Koa 
cluster. The Mesh Router performed slightly 
better in mesh configuration than in either tree 
configuration, but were within the measured 
error. Koa’s low latency network combined with 
a short tree (only 3 levels deep) account for this 
measurement.  

System Throughput  

For testing the maximum throughput of the 
routing infrastructures, pair-wise communication 
was used. Attribute updates were sent between 
process pairs as fast as possible, with loose 
synchronization to ensure multiple pairs were 
always communicating. The average per-pair 
throughput, specified in number of 
reflectAttributeValues()calls per second for a 
given message size, is shown in Figure 11. For 
the test, 50 pairs were utilized, with 28 tree 
routers or 20 mesh routers creating the router 
infrastructure.

 
1  10  100  1000  10000  100000  1000000  10000000  

Message size (Bytes) 
 

Figure 11: Realizable point-to-point 
bandwidth full communications load 

 
As expected, Figure 11 shows that the maximum 
number of updates per second goes down as 
message size increases. The mesh router in a 
mesh configuration is able to move more traffic, 
and thereby cause more updates than either the 
RTI-s tree infrastructure or the Mesh Routers 
mapped into a tree topology. The RTI-s and 
Mesh Router tree configurations both would 
slow down at the root node of the tree, causing 
both lower realized aggregate bandwidth and an 
increase in dropped messages as message queues 
increased in length.  

The RTI-s tree router performed much better 
than the Mesh Router in a tree configuration. 
This is not unexpected, as RTI-s has been finely 
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tuned to reduce memory copying and contention. 
The Mesh Router lower level has only started to 
be tuned for optimal performance on a Linux 
system. We see no implementation detail that 

would prevent the Mesh Router from matching 
the performance of the RTI-s routers and believe 
that further tuning will increase the performance 
of the Mesh Router in any configuration. 

 
Future Work  

The mesh routers currently provide a scalable 
solution for message routing in an RTI-s based 
federation. Future work will focus on fault 
tolerance, performance tuning, and investigation 
of supporting a fully compliant RTI 
implementation.  

We have taken care to design a system that 
should allow plug-in adaptation to any RTI with 
a point-to-point communication infrastructure. 
Provided the client bounding assumptions are 
followed, the scalability shown for RTI-s should 
also apply to other RTI implementations. It is 
important to note, however, that a federation 
relying on timestamp message ordering will not 
see increased scalability with the Mesh Router 
architecture. . Timestamp ordering requires all-
to-all communication, placing enormous stress 
on the communication fabric. Previous 
experiments have shown abysmal scalability 
(Fujimoto, 1998) and the authors see no reason 
to expect any improvement using a mesh 
topology.  

As the size of a simulation increases, the chance 
of failure in the network or hardware increases. 
With the ever-increasing size of simulations, the 
ability of the routing infrastructure to handle 
failures is becoming critical. The routers handle 
very little state, so the data loss when a router 
fails is not critical. However, until the router is 
restored, messages will not be delivered 
properly. If the lost router is the connection point 
for a site, a large portion of the simulation is 
suddenly not available. One potential solution is 
to allow loops in the mesh topology. This 
provides N + 1 redundancy for the connections, 
as there can be multiple paths between sites.  If 
one path fails, the system will adjust and use the 
other available paths. The long-term solution is 
to provide an adaptive, dynamically configuring 
topology that adjusts to failures and new 
resources. The basic Mesh Router objects could 
accommodate these generalizations.  

There are some not-uncommon communication 
patterns for which the fully connected mesh is 
not well suited. One such pattern is a broadcast, 
which requires the router triad for the sending 

federate to contact every other router in its mesh. 
The solution is to use a hypercube or similar 
topology, which provides scalable broadcast 
capabilities while maintaining bisectional 
bandwidth. The work required to develop such a 
topology should be minimal, with most of the 
effort spent on reducing the work required to 
specify the topology.  

 
Conclusion  

The mesh router infrastructure presents a 
scalable routing infrastructure for both local and 
wide area communication. The routers are 
capable of being organized into a number of 
topologies, and should be easily extensible into 
new routing topologies. For wide area networks, 
the flexible routing topologies allow 
communication over all available network links, 
without the hub and spoke problem of the 
treerouters. Within a local area network, the 
mesh routers provide a scalable communication 
architecture capable of supporting hundreds of 
federates. 
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ABSTRACT 
 
Last year Joint Forces Command’s, Joint Experimentation Directorate (J9) initiated planning and development in 
technical support of the most complex experiment (URBAN RESOLVE) undertaken to date. The experiment trials 
(Summer 2004) will explore future concepts and technologies for achieving situational awareness and understanding 
when operating in a robust large-city urban environment.  In addition, the need for generating quantifiable results 
took on a renewed level of interest. The Commander, Joint Forces Command directed that future experiments 
provide findings that can survive critical scrutiny, particularly if those transformational products and solutions are to 
be promulgated across the Department. The authors’ add another chapter to last year’s paper, as they craft a system 
for providing more creditable and quantifiable data to support experiment findings. This paper will cover:  changes 
made in the initial plan for data collection and analysis as new challenges arose along the way; the technical issues 
related to the architectural choices; as well as the challenges awaiting the group of individuals charged with 
maintaining a nationwide, distributed federation and network whose ultimate goal is to provide cogent, traceable 
data generated from the federation and human-in-the-loop player inputs. In preparing for the experiment trials, initial 
data storage assumptions gave way to the realities of finding more robust methods of collection as bandwidth traffic 
increased as federation architectures were modified to support emerging user requirements. Innovative approaches 
on how near-real-time data would be collected were instantiated as attention turned towards the post-processing 
needs that would sustain the experiment analysis team in the months following the trials. Integrating scalable 
parallel processors and addressing issues dealing with the means for storing and retrieving extremely large quantities 
of data added to the challenges. Finally, major lessons learned will be addressed from a transformational 
perspective. 
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PRELUDE 
 

The reader should be aware that the title of this paper 
ends with “—Part II”. Those familiar with human-in-
the-loop simulations like JSAF (Joint Semi-Automated 
Forces) and joint experiments set in the year 2018, 
such as URBAN RESOLVE, realize that when one 
pushes the boundaries of simulation-support-to-
experimentation a discovery process, in its own right, 
is created as the bounds of “what can be done in 
simulation” is continually challenged and superseded. 
Over the course of the past year, what started as a 
concept for developing “a best approach for collecting 
and analyzing data” gave way to the practical 
experience gained through the number of integration 
events necessary to prepare for the formal trials. The 
authors’ felt it necessary to add another chapter to last 
year’s journey (Graebener, et. al., 2003).1  
 
 

INTRODUCTION 
 

The initial concept of how to approach data collection 
and analysis when faced with a simulation federation 
that could generate data records in the terabyte range 
has evolved over the past year. Whereas PART I laid 
out the challenges associated with extremely large data 
generation conditions and the initial approach for 
meeting the experiment data collection requirements, 
and significant detail of the major changes will 
follow.2

 
This paper will cover:   
 
• Changes made in the initial plan for data collection 

and analysis as new challenges arose along the 
way, as well as technical issues related to the 
architectural choices;  

• Subsequent modifications in the data analysis tools 
to meet the changing user requirements, 

                                                 
1 Last year’s paper will be referred to as PART I for the 
remainder of this paper. 
2 The authors recommend a review of last year’s paper 
to serve as a point of departure. Go to: 
http://www.alionscience.com/pdf/Data_Collection.pdf
  

• Challenges awaiting the group of individuals 
charged with maintaining a nationwide distributed 
federation and network whose ultimate goal is to 
provide cogent, traceable data generated from the 
federation and human-in-the-loop player inputs.  

• Finally, lessons learned will be addressed from a 
transformational perspective. 

 
In preparing for this year’s experiment trials, initial 
data storage assumptions gave way to the realities of 
finding more robust methods of collection when 
network traffic increased as federation architectures 
were modified to support changing/emerging user 
requirements. Innovative approaches on how near-real-
time data would be collected were instantiated as 
attention turned towards the post-processing needs that 
would sustain the experiment analysis team in the 
months following the trials. Integrating scalable 
parallel processors and addressing issues dealing with 
the means for storing and retrieving extremely large 
quantities of data added to the challenges. (Table 1) 
 
Table 1. Data Collected During Dress Rehearsal Week. 
 

# of Data Records 
of Interest (stored 

in 576 tables) 

Percent of Total 
Data Logged 

Size of 
Database 

264 million 15-20 45 GB 
Average size of each record: 180 bytes  

 
BACKGROUND 

 
The original concept behind the FAARS (Future After 
Action Review System) toolkit was based on utilizing 
commercial-off-the-shelf (COTS) products for 
collecting simulation data.  The original design 
specifications for the FAARS toolkit comprises three 
separate modules; a Data Collection Module utilizing 
hlaResults as the federation data interceptor and 
storage transport, a Near Real Time Module utilizing 
MySQL as the data storage medium along with a 
Apache web server with PHP scripts as the data 
presentation and analysis medium, and  a Post Event 
Analysis Module  using  MySQL as the data storage 
medium and a custom written C++ user interface for 
accessing stored data for processing and analyses.  
Although this design works well and is being used in 
several joint experiments, it was not robust enough to 
support the URBAN RESOLVE series. Initial testing 
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results using the complex urban terrain and tens of 
thousands of entities being detected by a large 
constellation of sensors were adequately handled using 
Scalable Parallel Processor clusters, however the 
methodology of using hlaResults as the data collector 
no longer met the requirements.  The reasons for 
replacing hlaResults were:   
 
1) hlaResults only works with an NG-style RTI.  For 
the UR effort, we are using an s-style RTI, which is a 
different implementation loosely based on DMSOs 
RTI-NG v1.3 standard.  
 
2) When hlaResults subscribes to ALL entity traffic 
this overwhelms the physical network interface and 
causes packets to be dropped at the physical interface, 
effectively “missing” information. 
 
3) Due to the nature of how cluster computers function, 
a significant amount of the simulation event 
information could not be effectively be logged.3  Based 
on these factors, a different data logging architecture 
was needed. 
 

INTERCEPTOR/LOGGER 
 
The Interceptor/Logger application, an early version 
described in PART I, is an application process that 
resides on individual simulation nodes within the 
federation.4  The determining factor on where to utilize 
the mechanism is determined by which federates are 
publishing information needed for data collection.  The 
interceptor/logger, utilizing functionality in the RTI 
Application Programming Interface, inserts “hooks” 
into the published data streams by the RTI and then 
splits off two child processes; one process that writes 
and compresses the intercepted data into binary “log” 
files and a second process that decodes the data stream 
and inserts the decoded data into an embedded 
database application called SQLite.  A separate 
daemon process called “sqlited” handles incoming 
socket-based connection attempts to query information 
that has been stored in the local database.  Figure 1 is a 
diagram of the process. 
 

                                                 
3 The data could not be intercepted and logged by the 
hlaResults product because a significant amount of 
simulation traffic would be exchanged between SPP 
cluster nodes running the simulation and not 
transmitted outside of the cluster, a necessary 
prerequisite for hlaResults. 
 
4 Developed by the Information Sciences Institute (ISI) 
at the University of Southern California, 

 
Figure 1. Interceptor/Logger Process 

 
Because of the methodology of running 
interceptor/loggers on each simulator with data of 
interest, a separate mechanism was needed to retrieve 
information stored at each simulator location.  A 
separate application process called “Aggregator” was 
developed that would handle the intercommunication 
between simulators logging data.  The Aggregator is 
configured in a tree-like fashion, with a “Root 
Aggregator” at the head of the tree and “Child 
Aggregators” in branches from the root.  The various 
branches reach out to the individual leaf instances of 
“sqlited” on each simulator.  The interface to the Root 
Aggregator takes a Structured Query Language-
formatted query and passes the query on to each branch 
Child Aggregators until the query finally reaches the 
individual instances of “sqlited”.  As each instance of 
“sqlited” responds with the requested data for the 
query, the Child Aggregators assemble the returned 
information in order of response and forwards the data 
on to the Root Aggregator which then assembles the 
complete returned information and forward it on to the 
original requestor.  The Aggregator model works on 
Transmission Control Protocol (TCP) socket-based 
connections between the Root Aggregator and 
subsequent Children Aggregators. 
 
Near Real Time Retrieval Of Data 
 
With the utilization of the ISI interceptor/logger, the 
possibility of retrieving simulation information in a 
“near real time” manner became a reality.  Typically, 
data collection efforts have had to wait until after 
collected logger files have been processed before any 
specific event information could be derived.  This is a 
vast improvement in functionality and provides a wide 
range of uses that are still being realized as we move 
forward in the software development effort. 
 
The Near Real Time data retrieval effort is based 
around the ability to query the ISI interceptor/logger 
application, retrieve the logged information from each 
node and store the retrieved information into a local 
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Relational Database Management System (RDBMS).  
The retrieved information is then used by the FAARS 
Near Real Time web server interface to allow users of 
the system to view various reports, charts and graphs 
based on the available information. 
 
The process of retrieving intercepted information from 
each of the active ISI interceptor/loggers is handled by 
a series of BASH shell scripts on the FAARS web 
server.  Each BASH shell script is targeted towards 
retrieving specific information, such as entity object 
states, and is used to process the retrieved information 
into the local RDBMS (aka cache).  The data retrieval 
process is based on three steps.  The first step is to send 
the request for information to the Root Aggregator. The 
methodology used by the retrieval process is based on 
making a TCP socket-based connection to the Root 
Aggregator and sending an SQL-formatted query.   The 
second step is to wait for a response and 
process/validate the retrieved data and write this data to 
a temporary file.  The expected response back from the 
Root Aggregator is a stream of plain ASCII text, which 
is tab-delimited for fields and is carriage return 
delimited for individual records.  This information is 
then written to a temporary file in this same tab-
delimited/carriage return delimited format.  The third 
and final step is to then load the temporary file's data 
into the local cache. 
 
The FAARS web server RDBMS cache uses MySQL 
v4.1.1. as the database engine.  The database schema 
for the cache is based primarily on the schema used by 
the ISI interceptor/logger. This helps in facilitating 
compatibility with the information that is being utilized 
in near real time and data being reviewed post event.  
The main difference between near real time and post 
event processing is the different indexing schemas 
utilized on the local cache.  The indices applied to the 
local cache database have been specifically tuned to 
support the types of queries that the FAARS web 
server uses for data displays. 
 
Storage Space Requirements 
 
When the overall design of the FAARS toolkit began to 
change to utilize the ISI interceptor/logger, physical 
storage space for collected data files and consolidated 
database became an issue.  With the switch to using a 
larger-scale database engine than previously used and 
the need to analyze larger amounts of data than 
previously anticipated, the need for more physical 
media space became apparent.  Where it was once 
thought that ten's of Gigabytes (GB) of storage space 
would be sufficient, it soon became apparent that this 
was not going to be acceptable.  The central 
importance of disk space is its centrality to all three 

aspects of the process:  storage of compressed logger 
files, storage space for staging uncompressed logger 
files while loading into consolidated database, and 
space needed for the final database tables and indices.  
What was finally settled on was a RAID 5 disk array 
totaling 1.7 Terabytes (TB) of disk space with a stand 
by disk array of 1.3 TB in size. 
 
Because of the distributed nature of logging data that 
has begun to be utilized, it has become necessary to 
develop means to: retrieve all of the saved binary data 
logs on each simulator where the ISI interceptor/logger 
was instantiated; prepare and decode the binary data 
files, and then; insert the decoded data into a 
consolidated database representing the complete 
accumulation of data for a particular event.  A process 
called “Data Staging” has been developed that 
accomplishes these tasks in an organized, efficient 
manner, making the best usage of available bandwidth, 
processing cycles and disk space. (See Figure 2)  The 
Data Staging process begins with retrieving the binary 
log files at the end of each day’s simulation run from 
each simulator logging data.  The data is moved and 
stored on the local storage point in a hierarchical 
format based on the event name, day of the event and 
the simulator where the log file was retrieved.  Once 
the data has been moved, Perl-based scripts are run 
against the individual binary log file to decode and 
format the binary data into plain-text, comma-separated 
value (CSV) flat files.  The translation of the data and 
the creation of the storage database schema are based 
on utilizing definitions found in the Federation Object 
Model (FOM) and Federation Execution Document 
(FED) for the federation in use.  Each CSV-formatted 
file represents a section of data to be inserted into the 
consolidated database for the event.  A final Perl-based 
script takes the CSV-format files and inserts the 
decoded data into the appropriate table within the 
consolidated database. 
 

 
 

Figure 2. Data Staging Process 
 
Database Engine Configuration Issues 
 
Previously, the MySQL v4.0.18 RDBMS was selected 
for storing the decoded logger data for Post Event 
analysis operations.  As a database engine, MySQL is 
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both an open-source and a commercial product line 
with a significant amount of engine performance tuning 
available for the end user to adjust based on specific 
needs. Through trial and observation, several 
adjustments to the database engine were decided on 
that would afford us the best performance for both the 
loading and the retrieval of data. 
 
Database Table Configuration Issues 
The MySQL database server engine supports several 
different table types, the default being MyISAM but 
provides support for BerkeleyDB, InnoDB, MERGE 
and MEMORY table types.  It was decided to stick 
with the default type of MyISAM mainly for the fact 
that once data is loaded into a table, the data in the 
table becomes static and read only.  Both BerkeleyDB 
and InnoDB table types are transaction safe, which for 
our purposes are not necessary. 
 
One of the primary concerns for the table definitions 
revolved around the number of rows the tables will 
contain.  During initial testing, it was discovered that 
the default number of rows that a MyISAM table could 
hold was less than the number of rows to be loaded.  
The overall data size for the table is determined by the 
types of fields used for the table and the data size for 
each type.  Examples of this would be an INTEGER 
field type, which can have a data size up to 4 bytes and 
VARCHAR field type, which can have a data size up 
to the length of the text value + 1 byte.  For the 
purposes of this experiment, there are three table 
settings that had to be set in order for the tables to scale 
to the number of rows anticipated.  By adjusting the 
AVG_ROW_LENGTH, MAX_ROWS and 
ROW_FORMAT variables for MyISAM tables, it was 
possible to adjust the number of rows of data that the 
table can have.  The ROW_FORMAT variable defines 
how the table rows should be stored.  The option value 
can be FIXED or DYNAMIC for static or variable 
length row formats.  When a table is defined that does 
not have BLOB or TEXT type columns, you can force 
the table format to FIXED or DYNAMIC with the 
ROW_FORMAT table option. This causes CHAR and 
VARCHAR columns to become CHAR for FIXED 
format or VARCHAR for DYNAMIC format.  The 
AVG_ROW_LENGTH variable defines an 
approximation of the average row length for a table. 
This should be set only for large tables with variable 
size records. With a MyISAM table type, MySQL uses 
the product of MAX_ROWS times AVG_ROW_ 
LENGTH to decide how big the resulting table will be.  
If neither of these variables is specified, the default 
maximum size for a table will be 4GB.  Overall, 
adjusting these variables are an absolute must to 
support the number of rows of data that have been 

observed for both the Near Real Time cache database 
and the Post Event consolidated database. 
 
Because of the number of rows of data being stored 
into tables, it is imperative that efficient indexing be 
applied based on a thorough analysis of how data is 
extracted from the databases. 
 
All columns used are not necessarily indexed, but only 
the columns that would enhance a typical query.  As an 
example, within most tables there are VARCHAR 
fields that hold RTI-determined object name values.  
The object name in question, for the most part, 
uniquely identifies a specific entity within the 
simulation.  Any column in a table that contains this 
type of data has an index applied to it because most of 
the queries posed utilize this column type as part of the 
qualifier of an SQL statement.  Other indices are 
applied on a table-by-table basis within both the Near 
Real Time cache and Post Event databases geared 
towards their unique needs, but painstaking research 
went into selecting the most efficient usage of indices 
as part of each database schema creation effort. 
 
 

NEAR REAL TIME PROCESSING 
 
An example of one of the tools used for near-real-time 
analysis is the Track Matrix. The track matrix table 
provides a tabular snapshot of the current (based on the 
last 30-35 minutes of simulation time before the query 
is submitted) number of tracks associated with each 
type of entity.  The row labels of this table are the 
actual truth types of entities being tracked at the current 
time.  The column labels represent the perception of 
the entities being tracked.  The column headings are 
exactly the same as the row headings because the set of 
possible perceptions is the same as the set of possible 
track types; Perceptions are determined by the 
SLAMEM simulation federate's sensor fusion center 
utilizing algorithms based on Bayes Rule. The resulting 
target type with the highest probability is the type 
associated with the track. The table entry in a given 
row and column is the number of tracks belonging to 
the corresponding row type that are perceived to be the 
given column type.  A column labeled 'Ambiguous' 
indicates that those tracks are not resolvable. This 
means that the sensor fusion process determined that 
two or more target types were equally probable as the 
type of target being tracked. 
 
Subsequent details associated with the Track Matrix 
are a series of additional tables and graphs segregating 
tracks into their ages, which is defined as the length of 
time between when the track was created and the last 
time it was updated.  By segregating tracks by their 
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age, it is possible to get a sense on how well sensors 
and, in some cases players, are aware of the entities 
being played within the simulation.   Older tracks can 
be perceived as having a higher probability of positive 
identification as opposed to tracks that persist for a 
shorter amount of time. 
 
 

POST EVENT PROCESSING 
 
In accordance with numerous authorities, the highest-
level decomposition of the Post Event Processing 
system was into a single control class, entity classes, 
and an interface class (inasmuch as the interface class 
was a straightforward application of Microsoft 
Foundation Class (MFC), it will not be discussed).  
There are three general entity classes, called Database, 
Processor, and Final_Results.  These roughly 
correspond to a traditional functional breakdown into 
input, transformation, and output.  To promote the 
greatest possible generality, interactions between the 
Database class and the other classes were performed 
using Open DataBase Connectivity (ODBC).  The 
Final_Results class encapsulates Microsoft Excel or a 
commercial graphical package called ChartDirector.  
Communications to and from that class uses either 
Microsoft’s OLE Automation or ChartDirector’s API.  
The Processor class, as well as most of the 
infrastructure of the system, was written using C++. 
 
The post processing system comprises eight overall 
functional areas, all invoked by the user. These 
functions are as follows: 
 

1. A Killer/Victim (K/V) Scoreboard, 
2. A Killer/Victim details display, 
3. An Entity Life Cycle summary screen, 
4. An Entity Details Display, 
5. A Sensor/Target (S/T) Scoreboard, 
6. A Sensor/Target details display,  
7. A Track Perception Matrix, and 
8. A timeline (String) depiction that displays, 

graphically, the events in the lifecycle of any 
specific entity. 

 
K/V Scoreboard 
As currently coded, the K/V Scoreboard is produced by 
querying for the number and enumerations of all killers 
and victims are obtained via simple SQL queries. For 
each possible combination of killer and victim, the 
Damage Assessment interaction is queried to obtain the 
relevant victim’s state. This is recorded, along with the 
entity causing the damage. Summations are performed 
by type (as indicated by enumeration values). The final 
results are presented in the form of an Excel 
spreadsheet or comma-separated value flat file. 

K/V Details Display 
To obtain the details of any Killer/Victim interaction, 
the user is first presented with a screen enabling him to 
choose a particular killer and victim.  Queries are 
performed against a lookup table to transform these 
English names into enumerations.  An SQL statement 
is then constructed and executed that extracts the 
relevant fields from the Damage Assessment 
interaction. 
 
Entity Life Cycle 
The Entity life cycle summary output is derived largely 
from the entity state objects.  All the entities used in 
the execution are gathered together into a vector.  For 
each entity thus obtained, its entity state object is 
queried to obtain the fields necessary to compute its 
final state.  This state is then determined and added to a 
running total. 
 
Entity Details Display 
Entity life cycle details are obtained from numerous 
objects.  The user first chooses an entity via a series of 
drop-downs.  To obtain the entity’s state changes, its 
entity state objects are scanned for all records 
indicating a change of state, whose details are then 
recorded.  The appropriate objects are then queried to 
ascertain the entity’s creation and deletion details; data 
on sensor hits and weapon fire events, and detonations 
occurring on or near the entity. 
 
S/T Scoreboard 
The Sensor/Target Scoreboard summary output is 
similar in structure and layout to the Killer/Victim 
Scoreboard with the exception of the data obtained for 
the matrix display.  For each possible combination of 
sensor platform and detected target, the Contact Report 
interaction is queried to obtain the relevant information 
concerning the detected target and the functional mode 
the sensor used to interrogate the target.  Summations 
are performed by sensor platform and by sensor mode 
(as indicated by enumeration values) with the final 
results being presented in the form of an Excel 
spreadsheet or comma-separated value flat file. 
 
S/T Details Display 
To obtain the details of any Sensor/Target interaction, 
the user is first presented with a screen enabling him to 
choose a particular sensor platform and detected target.  
Queries are performed against a lookup table to 
transform these English names into enumerations.  An 
SQL statement is then constructed and executed that 
extracts the relevant fields from the Contact Report 
interaction. 
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Figure 3. Track Perception Matrix 

          
 
Track Perception Matrix 
The Track Perception Matrix summary output is 
designed to show information concerning simulation 
Tracks and how they are being perceived by the sensor 
model being used by the federation.  For each possible 
combination of true entity types (truth guise) and 
perceived entity types (perceived guise), the Track and 
Track_probabilities interactions are queried to obtain 
the relevant information used to generate the display.  
The display consists of column headings representing 
the perceived guise possibilities, row headings 
representing the truth guise possibilities, and a diagonal 
across the table which represents where the truth guise 
and perceived guise intersect.  See Figure 3 for an 
example section from a Track Matrix.  The row and 
column heading extents are determined in advance by 
aggregating entity types together via a lookup table.  
The information displayed is then available for export 
to either an Excel spreadsheet or comma-separated 
value flat file.  
 
String Chart 
The String chart requires much of the same data as 
contained in the Entity Life Cycle details screen, and 
therefore uses the similar algorithms to gather data.  
However, instead of sending the results to an Excel 
spreadsheet, the data is fed to a commercial graphing 
product (ChartDirector).  This product produces a 
timeline whereby events are depicted as color-coded 
icons.  Placement of the icons at different y-axis values 
depicts the different events.  These are placed in proper 
time order, with the x-axis showing wall clock time. 

 
The String chart allows the user the choice of 
displaying the requested information in three possible 
ways with the data segregated into four sections: 
 

• Entity Event, 
• Blue Activities, 
• Track Events, and 
• Sensor/Target Events. 

 
The Track Events and Sensor/Target Events sections 
are also segregated to show all instances of individual 
track numbers and sensor name/mode combinations or 
actual target type and bumper number. Each section or 
subsection is then sorted by time. 
 
The Entity event section graphically depicts all changes 
that are derivable from an examination of objects 
received via the High Level Architecture (HLA) 
federation.  These include entity creation, entry into 
damage states (firepower, mobility, firepower and 
mobility, or total destruction), moves and stops, and 
entry into or exit from camouflage.  This section also 
records instances of the entity firing its weapon, 
receiving incoming fire, being deleted, or being 
recreated after a deletion. 
 
The Sensor/Target section can depict two types of 
information.  If the entity in question is being sensed, it 
will contain a comprehensive display of all the sensors 
that “saw” the entity, the sensor’s mode, the highest 
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acquisition, the highest correct perception, the 
perceived type, and the time of detection.  If the entity 
was within the footprint of the sensor but was not 
detected, a brief explanation of why is given. 
 
If the entity in question is itself a sensor, the chart 
displays a listing of all entities that were detected, their 
actual type and bumper number, the highest 
acquisition, the highest correct perception, the 
perceived type, the sensor mode employed, and the 
time of detection.  As before, if the entity was within 
the footprint of the sensor but was not detected, a brief 
explanation of why is given. 
 
The track events sections show all tracks associated 
with the entity.  For each track, a listing of the top three 
most probable entity types is given, along with the 
computed probability of the entity being of that type 
and the number of sensor hits used to determine it. 
 
The blue activities section is reserved for human 
actions, such as planning a mission, assigning it a 
priority, initiating an attack or mission abort, 
requesting a bomb damage assessment, etc.  All such 
user actions are sorted by time. 
 
In addition to the pictorial generated by ChartDirector, 
a file containing the corresponding raw data (in either 
CSV flat file form or as an Access database) is also 
generated to allow the analyst to examine the 
information used to generate the picture directly. 
 
 

CHALLENGES 
 
General Gordon Sullivan (Chief of Staff of the United 
States Army, 1991-95) once said, “You don’t know 
what you don’t know,” a statement that accurately 
describes today’s challenges in mining extremely large 
databases.  
 
Some of the challenges under initial assessment by the 
FAARS team: 
 
• Policies and procedures for allowing interested 

government agencies access to the data generated 
by the URBAN RESOLVE experiment. 

 
o The data storage server is connected to the 

DREN. What is the best approach for 
allowing others on-line access while 
minimizing the impact on the UR data 
collection and analysis effort? 

o Will the answer be purely policy driven or 
can software and hardware solutions enable 

the simultaneous utilization of the 
database? 

 
• Less than twenty percent of the collected data is of 

primary importance to the data analysts, at present.  
 

o What impact will occur when the remaining 
eighty percent of the data is transformed 
through the data staging process and 
available on the terabyte storage device?  

o Will new techniques be required?  
 

 
CONCLUSION 

 
The discovery process is not solely a characteristic of 
the joint experiment, but touches many aspects 
associated with the experimentation effort. As Joint 
Forces Command and the Joint Advanced Warfighting 
Program at IDA demand more from the simulation 
community the ripple affect moves throughout the 
various federates providing support. 
 
In this specific case, the data collection and analysis 
effort has met the near term challenges brought about 
by an experiment scenario that requires over one-
hundred-thousand entities; 1.8 million buildings and 
man-made urban structures to set the stage for 
achieving situational awareness in the 2018 timeframe. 
Use of hundreds of scalable parallel processors each 
logging the data generated during run-time was the 
impetus for the FAARS effort.  
 
New challenges that have arisen since PART I was 
published will pale as we contemplate the challenges 
that we face for the upcoming year’s trials. The good 
news story is the FAARS team, in fact the whole M&S 
team in J9, will continue to meet and overcome 
whatever challenges arise, and who knows, there might 
be another chapter awaiting. 
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ABSTRACT 

 
There are numerous advantages for conducting computer simulations that model wartime operations, which belie 
the popularity in implementing them.  Among them are: the ability to easily model the variables the researcher is 
interested in, the ability to control the experimental scenario, and the ability to add or change variables as the need 
arises.  A simulation environment's success may be enhanced by considering questions not normally at the center of 
simulation research.  These include, but are not limited to, the following: to what extent does performance in the 
simulation reflect performance during real life situations, to what extent does the learning that occurs during the 
simulation transfer to real time situations, and is the cognitive processes that operate during simulations similar to 
the ones that operate in real time situations?  In considering the first question, experimental procedures may be used 
to identify whether simulation performance reflects real life performance.  In considering the second question, one 
may note that research has shown that performance has been influenced by the learning context, which may or may 
not influence the transfer of learning that occurs from the simulation to the real time situation.  In considering the 
third question, one must include attention, language processing, and memory, as well as problem solving strategies. 
 
This paper will propose an interdisciplinary approach to the study of the wide spectrum of battlefield simulation 
systems such as JSAF, STOW, and JESPP.  It will show that the approaches and implementation of these systems 
up until now have been grounded in the computer science discipline. We will explore what cognitive science has to 
say about the simulation driven approaches.  Integrating the viewpoint of fields such as cognitive science can 
provide valuable insights as to the effectiveness of these approaches by substantiating the validity of the system and 
increase the fidelity of the synthetic to real life experience. 
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INTRODUCTION 

 
Problem description 
 
JSAF is a modern system for conducting synthetic 
battlefield experiments.  JSAF has adequately modeled 
organic and inorganic entity behavior, (the physical 
model) [Ceranowicz] but lacks adequate techniques for 
measuring players’ internal behavior.  However, taking 
into consideration the player’s state of mind during the 
analysis stage would increase the fidelity of the system. 
 
JSAF uses a network of computers to model forces and 
conflicts.  JSAF includes entities, environmental 
behavior, such as weather, and terrain.  In its current 
state, we have the tools and experience to model 
physical behavior which answers the question: what is 
going on with the system?  One example of the tools is 
the ability to conduct extensive logging of all 
simulation states.  We do not have the adequate tools to 
answer what is the state of mind of the players.  How 
do they relate to their environment? 
 
Meeting the above goals will help us understand and 
validate the effectiveness of: (1) Doctrine and policy, 
(2) Simulation tools and environment, and (3) Sensor 
technology.  In the next section we consider how the 
methods of cognitive science may provide potential 
tools to meet our goals with the specific focus on 
situation awareness (SA). 
 
Motivation 
 
Cognitive science and applied cognitive science refer to 
the umbrella disciplines that seek to understand both 
how the mind works (cognitive science and applied 
cognitive science), and how such knowledge can 
provide useful applications (applied cognitive science).  
These disciplines include, but are not limited to, 
cognitive psychology, artificial intelligence, and 
cognitive ergonomics.  By taking into consideration the 
capacities of what the mind can process, we hope to 
develop methods and models that more accurately 
assess and represent players’ performance. 
 
To do so, we will rely primarily on cognitive 
psychology and applied cognitive psychology because 

they are pioneers among these disciplines in subject 
matter and in the use of objective measures to infer 
behavior, they provide experimental frameworks that 
may be useful for testing theories, and they have 
existing cognitive models that may be used for 
comparison. 
 
We are interested in the case of situation awareness 
because SA researchers address the same issues we are 
trying to address, namely what is the participant’s state 
of mind and their relationship to the environment and 
how is this relationship quantified?  In addition, the 
abstract definition of situation awareness does not favor 
any particular field, although in practice much research 
effort has been devoted to aviation, pilot, and 
emergency crew SA.  We are proposing to extend this 
study to synthetic battlefield simulations in the context 
of cognitive psychology by providing a: 
 

1. Background for situation awareness and JSAF 
simulation, 

2. Taxonomy of situation awareness, 
3. Draw upon cognitive methods to increase the 

accuracy of situation awareness measurement 
4. Accurate measurement of situation awareness 

increases the ability to evaluate sensor 
effectiveness 

 
BACKGROUND 

 
Background on JSAF 
 
JSAF, a joint semi-automated force simulation system 
that models battlefield environment, is federated [cite 
Williams2003] and has many components working 
together to create a synthetic battlefield and conflict 
simulation environment.  These components, together, 
operate to model the JSAF system’s physical and 
behavioral realism.  The JSAF software serves as 
modeling and simulation tool for training and doctrine 
development purposes. 
 
The most recent JSAF mission is the Joint Urban 
Operation (JUO) exercise, and amongst its many 
objectives are to (1) provide training and development 
urban warfare tactics, and doctrine, and (2) unify data 

 94

mailto:jtran@isi.edu
mailto:jcuriel@behavorialcognition.org
mailto:kyao@isi.edu
cameras
Text Box



 
 
 

 
logging, (3) perform sensor platform validation, and (4) 
model and evaluate players’ internal state of mind. 
 
 

Needs driven 
impact 

Development 
Efforts 

Logging 
capability 

Tactics and 
doctrine 
development & 
needs for training 

Earlier 
development of 
sims 

Early stage with 
minimal logging 
facility 

Add realism 
Improvement to 
the system 

Model Behavior & 
Sensors 
Technology 

Disjointed logging 
facility 

Higher fidelity Scalable system 
(JESPP) 

Unify Logging 
more than needed 

Situation 
awareness 

Analysis tools 
Mental Models 

Analysis of log 

Table 1: Evolution of behavior modeling and 
analysis in JSAF 

 
 
Table 1 outlines a perspective on the progression of 
JSAF development driven by the needs to have data 
logging, complex tool development, and functional 
requirements.  The Joint Experiment Scalable Parallel 
Processor (JESPP) and the Future After Action Result 
System’s (FAARS) effort, leaded by a group at ISI and 
TEC, focuses on the ability to collect for the first time 
all simulation event data, and with this capability, the 
JSAF team approach the ability to measure situation 
awareness.  Moving forward, understanding and 
measuring situation awareness in JSAF requires a 
cognitive perspective. 
 
Background on Situation Awareness 
 
Specifically area of intense research interest and 
although several definitions for the term exists one that 
is commonly accepted refers to SA as the perception 
and comprehension of surrounding environment that 
allows for a projection of the future states of affairs 
[Endsley].  The term situation model, which is distinct 
from mental model of how a system operates, has also 
been used to refer to SA. 
 
In military terms, SA is a static spatial awareness of 
friendly and enemy troop positions [MHOB].  With 
regards to JSAF, it is not to clear to researcher whether 
or not JSAF has SA properties that correlate poor SA to 
poor planning, and therefore deprive players of 
comprehension and perception of simulation 
environment. 
 
In JSAF, any relevant discussion of SA must be framed 
in the context of the concept of “cells” of which there 
are three: red (hostile), blue (friendly), and white 
(neutral omnipotent observer).  Each cell is made up of 

a group of players on the same side (with the same 
military mission), and for red and blue cell, each of 
which has some level of collective situation awareness 
of the opposing force.  In particular, the game-play 
objectives of the JUO exercise are: (1) for the red force 
to evade the blue force, and (2) for the blue force to 
capture the red force. 
 

[include picture of blue & red cells pvd] 
 
The geographical dimension of the area of interest 
(AOI) is enormous, and the blue players have access to 
sensor information that tracks the red force’s activity.  
The white players have the views of both the red and 
the blue team, but serve as neutral observers and 
evaluators.  In light of the above information 
machinery, the direct relationship between SA 
assessment and sensor effectiveness is yet to be 
determined. 
 

THE CHALLENGE 
 
Taxonomy of situation awareness 
 
Domain Behavior Depth 
 
There has been much work devoted to classifying SA 
and the various segments of military and aviation 
simulation.  To this end, we focus on how an 
alternative taxonomy of SA affects the use of cognitive 
psychology methods for a better quantitative evaluation 
of players’ internal state.  Pew et al suggests the need 
to have in depth domain of behavior classifications, and 
breaks down as followed: (1) the organizational level 
SA, which is guided by doctrine and policy, and (2) the 
individual level SA, which is guided by tasks.  He 
added that common to both, the process for obtaining 
information is based on psychology (Pew1997). 
 
 

 Individual Group 
Micro model F15 fighter pilot C130 Crew 
Macro model JSAF red player JSAF red cell 

Table 2: Taxonomy of the Domains of SA 
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Figure XYZ: Example of Micro Model SA; 
analogous to first person shoot ‘em gaming. 

 

 
 

Figure XYZ: Example of Macro Model SA; this is a 
screen capture of how the red players place their 

Situational Objects on a PVD (game console). 
 
We further expand on Pew’s classification with a two 
dimensions: (1) along the first dimension, a distinction 
is made between “micro” and “macro” model of SA, 
and (2) along the second dimension, we retain Pew’s 
distinction between individual and group SA levels.  
Together, they form the four quadrants of SA 
taxonomy.  Table 2 illustrates some examples of the 
quadrants of SA taxonomy. 
 
Table 3 highlights a comparison of characteristics 
between the micro and macro model.  The intimacy 
between the players and their environment sets the 
distinction between the micro and macro model.  
Additionally, the locality of awareness also points out 
to another difference between the two models.  The 
following examples speak more to the specifics of this 
classification. 
 

 
Micro Model Macro Model 

Fine grain relationship 
between subject and 
environment 

Coarse grain relationship 
between subject and 
environment 

Higher local awareness Lower local awareness 
Lower global awareness Higher global awareness 
Greater psycho-
physiological impact 

Less psycho-physiological 
impact 

 
Table 3: Comparison of Characteristics of the 

Domains of SA 
 
 
Micro Model 
 
The individual level SA of the micro model is defined 
as task oriented SA of participant with minimal 
communication flow, and the focus is on individual 
cognitive processes.  For example, a pilot in a cockpit 
of an F15 fighter jet has an SA level that is only 
relevant to his or her environment, namely, the 
instruments, the weather, the altitude and enemy 
positions and possibly tactics.  In a similar sample 
space, a group level SA of the micro model would be 
the crew of a C130 airplane; and the active participants 
communicate their collective SA.  
 
In the above examples, the micro model SA at both the 
individual and group level demonstrates the close 
relationship between the participants and the entity (air 
plane). 
 
Macro model 
 
For the macro model of SA, we note that both 
individual and group level the participants exercise 
control over more than one entity or scenario.   
 
In JSAF, at the individual level, a player can control a 
range of tasks.  For example, a blue player can engage 
in a mano-a-mano confrontation with a red player; and 
in a different setting, a different player can 
commandeer a battalion of tanks engaging in full-scale 
combat. 
 
At the group level (within a cell), the players can 
collaborate their SA through the exchange of 
information and together meeting a common mission 
objective.  This objective can be for example, a red 
force eluding the blue force, and vice versa for the blue 
force to capture the red force. 
 
The proposed taxonomy is consistent with Endsley’s 
view of situation awareness.  It further organizes SA 
roughly in terms of how many entities are controlled by 
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the player(s). Much research has been focused on the 
micro model, e.g. aviation and flight simulators.  The 
above example places JSAF in a macro model SA 
category, and calls on researchers to explore SA and its 
impact on the meeting mission objectives. 
 
Use of SA to evaluate the effectiveness of sensor 
technology 
 
Computer generated force simulations represent the real 
world at the entity level. For example, entities can be 
humans and vehicles, like aircrafts, ground vehicles and 
surface vessels; Or, they can be embedded systems, like 
IFF, radio transmitters and sensors. Or, they can even 
represent the environment, like fog, precipitation and 
cloud layers. These simulated entities interact with each 
other by sending messages. They periodically emit state 
messages reporting their internal state attributes, such 
as their location, movement, damage state, camouflage 
state, and so on. Also, they emit interaction messages 
indicating what they did, for example, an aircraft can 
send a weapon fire message, and a radio transmitter can 
send a radio signal message. The entities are always 
truthful in the messages, so the entire set of the state 
and interaction messages during a simulation defines 
the simulation ground truth. 
 

Typically human simulation players do not directly see 
the state and interaction messages of the opposing 
forces, or even all the messages from their own force. 
The players rely on simulated observer entities, such as 

sensors and human intelligence, to provide them with a 
perspective on the contents of the simulation. Using 
this perspective the players develop their situation 
awareness, see Figure 1. With respect to the simulation 
ground truth, the players' perspective is partial, 
approximate and delayed. The players do not have 
enough wherewithals to deploy observers everywhere 
and all the time. Even if observers were deployed, their 
observations are not exact. For example, due to the 
inaccuracies of the sensor technology (as simulated by 
the observer sensor entity), an observer may misclassify 
a heavy truck as a tank. Also, their observation message 
sends to the players maybe delayed. This delay 
sometimes is an artifact of the underlying computing 
infrastructure, or sometimes it is inserted on purpose to 
emulate actual time delays that are consistent with the 
real world.  
 
Currently, we are participating in the Joint Urban 
Operations (JUO) Urban Resolve exercises. One of the 
key objectives of the exercises is to determine in 
complex urban battle environments the potential 
effectiveness of proposed 2015 sensor technologies 
[cite Dehncke's paper]. From the point of view of the 
Blue force against the Red force, Figure 1 illustrates 
three potential methods of evaluating the contribution 
of sensors. One is to compare the Blue force 

perspectives against the simulation ground truth; two is 
to compare Blue SA against simulation ground truth; 
and three is to compare the Blue players' situation 
awareness against the White cell's situation awareness. 
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Figure XYZ: Evaluating sensor effectiveness using multiple situation awareness viewpoints. 
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In this case we define that the White cell forms its 
situation awareness without using the proposed new 
sensor technologies. 
 
Evaluate Sensor Technology 
 
Method one, perspective versus ground truth, provides 
an absolute measure of usefulness of the sensor 
technology. This method utilizes all available data 
using all the messages from the underlying simulation 
and all of the sensor data output. Comparing these two 
types of data, we can determine exactly which entities 
were detected, and which were not. Of the detected 
entities we can determine which sensors did the 
detection, for how long, and if the entities were 
classified correctly. Of the undetected entities, we can 
determine if the failure to detect was due to sensor 
technology, or because no sensors were deployed near 
the undetected entities. These types of measurements 
are very useful in determining the usefulness of the 
sensors and the sensor deployment patterns. Indeed 
within JFCOM J9 we are developing a range of tools 
using this method [cite Grabener paper]. Tools we are 
developed include sensor-target and truth-perception 
scoreboards. Sensor-target scoreboards indicate which 
sensor types are more adept at recognizing which entity 
types. Truth-perception scoreboards indicate the 
frequency that tracked targets are classified correctly 
and incorrectly. If targets are classified incorrectly, they 
indicate the distribution of category types in which the 
targets are misclassified. 
 
Using SA to evaluate Sensor Effectiveness 
 
Method two, Blue's SA versus ground truth, provides 
measurements based on how effectively the sensor 
information is being used. During the exercise the 
players are typically overloaded with data and with 
operational tasks that they must perform, such as 
controlling the entities. In realtime they need to sift 
through the data, understand it and act upon it. Method 
one assumes unlimited computing resource and 
unlimited processing time. For example, generating the 
scoreboards requires examining Gigabytes of data. The 
ability of the players to analyze the data is necessarily 
constrained by the cognitive limits of human memory, 
attention focus, multi-tasking under workload, and 
pattern/schema matching ability[and other limits???...]. 
So, in terms of information content Blue's SA is 
necessarily a subset of the information content of Blue 
perspective. Blue's SA is not a strict set, since the 
players may misinterpret the information within the 
Blue's perspective. By comparing the Blue's SA against 
the ground truth we are able to determine how 
effectively the sensor data is being used. 

 
Use of Control Group in Assessing Sensor Effectiveness 
 
Method three, Blue's SA versus provides a potentially a 
fairer way to judge sensor effectiveness. Here we 
propose a Blue Cell control group, which with the 
exception of not using the new sensor technologies, are 
the same as the Blue players. The Control group still 
receives all the data from traditional observers and 
sensors, and it still must perform the operational tasks 
of the Blue players. This measurement helps to quantify 
the advantages offered by the new sensor technologies, 
and if the advantage is offset by the extra cognitive 
load imposed upon the players. 
 
Use of cognitive methods to increase accuracy of SA 
measurement 
 
Objective Measures 
 
In general, it is much more desirable to obtain objective 
measures but because of the difficulty in doing so 
researchers investigating situation awareness tend to 
rely on subjective measures.  Our goal is to develop 
quantitative measurements of situation awareness for 
the various levels in our domain.  Objective means that 
may be used for this purpose can be direct experimental 
techniques, such as probes, and verbal protocols (cite). 
 
Currently, JSAF records player’s situation awareness 
by having them annotate “Situation Awareness 
Objects” (SAOs) on the computer screen during the 
exercise.  SAOs are pointers that indicate the presence 
and direction of movement of the opposing force.  
When the exercise is complete, overall SA is evaluated 
by comparing the total SAOs recorded against the 
opposing forces activities.  As it stands now, the 
process is manual and subjective, which leaves room 
for improvement.   
 
Use of Cognitive Science and SA 
 
Applying what we know about the limitations and 
biases of cognition can help us increase the validity of 
our measurements of sensor effectiveness.  The analysis 
is beyond the scope of this paper. 
 
The JSAF exercise has some similarities to some of the 
cognitive experimental paradigms so we may be able to 
borrow.  We will show how they are similar. 
 
 
Three Pronged Approach 
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An experimental approach adapted from research 
methods in narrative comprehension is the three-
pronged approach.  The first prong in this approach 
corresponds to a set of theoretical predictions.  The 
second prong corresponds to the use of verbal 
protocols/ and or subjective measures.  The third prong 
corresponds to the collection of online behavioral 
measures.  The purpose of the two types of data will be 
to provide converging evidence for the theoretical 
predictions of the first prong, somewhat of a different 
use than in narrative comprehension. 
 
This approach may be used to study situation 
awareness errors by formulating a set of hypothetical 
predictions based on intuition or experience about 
individual and group situation awareness.  Subjective 
evaluation or measurement based on verbal protocols or 
interviews that are given after the exercise can include: 
(a) an effectiveness form, (b) individual or collective 
group discussion or “hot wash”, and (c) a third party 
observer.  Objective measurements include the 
introduction of experimental probes into the exercise, at 
the group level situation awareness error is the number 
of situation awareness objects placed by each 
individual puckers compared between each SA object 
place and actual Red Force, at the collective/group 
level situation awareness error is meeting mission 
objective (normalize to a certain percentage for each 
player). 
 
Situation Models in Narrative Comprehension 
 
One potential framework that may prove fruitful to 
look at in researching situation awareness in JSAF 
comes from research in situation models in cognitive 
psychology.  By comparing how situations are defined 
within the two paradigms, we can identify general 
commonalities and differences that may increase our 
understanding of situation awareness in JSAF. 
In cognitive psychology, a narrative comprehension 
paradigm has been used to study situation models.  This 
typically consists of reading narratives on a sentence-
by-sentence basis and answering experimental probe 
questions.  Readers have no background knowledge of 
what the story is about until they start reading.  As they 
read, the information they encounter can shift along a 
number of situation defining dimensions.  Research 
using reading time measures has identified 5 
dimensions to which readers are sensitive.  These are 
entity, space, time, goal, and causality.  In other words, 
readers construct a situation model that is updated to 
correspond to changes in the text’s situation.  Finally, 
once the story has ended, readers have encoded a 
“global static summary” of the story, which 
corresponds to the completed situation model. 

 
 

Read Comprehension JSAF Simulation 
Read the story 

- No apriori 
knowledge of 
entities 

- Time can be told 
out of order 

- No spatial 
knowledge 

- Unknown goals 
- Causality is 

“fixed” 

Initially Starts the Vignette 
Some background: 

- apriori menu of 
entities 

- no time shift 
expected 

- spatial boundary 
- 2 sets of goals 
- causality is 

dynamic 

Information acquired 
throughout the reading 
process can cause shift 
along the five dimensions: 

- entity 
- space 
- time 
- goals 
- causality 

Information acquisition = the 
game/experiment: 

- no time shift 
- sensors provide 

space and entity 
shift 

- inferential provide 
goals and 
causality shift 

Completion State 
Global static summary 

- character 
summary 

- plots 
- space and time 

summary 

End of Vignette 
Global static summary 

- effectiveness of 
mission 

- goals evaluated 
- effectiveness of 

sensors 
Table 2: Comparison between reading 

comprehension narrative and JSAF simulation 
along the five cognitive processes dimensions 

 
 
Although quite different experimentally, the JSAF 
paradigm can be compared to the narrative 
comprehension paradigm.  Reading is naturally a more 
passive activity than game playing.  Players are 
provided with a vignette so there is some background 
knowledge.  The knowledge includes information about 
the situation dimensions, such as an apriori menu of 
entities and spatial boundaries and geographical 
constraints.  As the game progresses, situation 
information comes from various sources: entity and 
spatial information comes from the sensors, whereas 
goal and causal information is inferred the movements 
of the entities.  Note that the game continues 
uninterrupted so there is no time shift.  When the game 
is over, the result is a global static summary, analysis of 
the end result of the game in which the effectiveness of 
the strategy, the goals of the mission, and the 
effectiveness of the information provided by the 
sensors are evaluated. The challenge is to objectively 
measure situation awareness, probes, and causality 
shifts. 
 

CONCLUSIONS AND FUTURE WORK 
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In this paper, we laid the foundation for integrating 
mental models with physical models in the context of 
the JSAF experiment.  Of specific interest is player’s 
situation awareness.  An alternative taxonomy of 
situation awareness is proposed that positions JSAF in 
the proper domain of situation awareness.  It is argues 
that cognitive methods play an important role in the 
measurement of situation awareness and the 
development of quantitative models in JSAF. 
 
Our future work will focus on developing a prescriptive 
and descriptive model of situation awareness within the 
synthetic battlefield arena and incorporating 
quantitative and qualitative measures into our JSAF 
experiments.  We will use the results to validate sensor 
technology, and with this commanding officers can 
train their players and develop doctrine for various 
engagement tactics. 
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