Review

A survey of antiviral drugs for bioweapons

Arthur J. Goff and Jason Paragas*

Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA

*Corresponding author: Tel: +1 301 619 4835; Fax: +1 301 619 2290; E-mail: jason.paragas@det.amedd.army.mil

Smallpox (variola major), and the haemorrhagic fever viruses (filoviruses and arenaviruses) are classified as Category A biowarfare agents by the Centers for Disease Control. Category A agents pose a significant risk to public health and national security because they can be easily disseminated by aerosol, although with the exception of variola, they are not easily transmitted from person to person. An attack with these viruses would result in high morbidity and mortality and cause widespread panic. With the exception of smallpox and Argentine haemorrhagic fever virus, there are no vaccines or approved treatments to protect against these diseases. In this review we focus on promising prophylactic, therapeutic and disease modulating drugs (see Figure 1 for select chemical structures).

Keywords: orthopoxvirus, filovirus, arenavirus, biodefence, bioterrorism, category A

Introduction

Bioweapons are a threat to global health. Unlike nuclear and chemical weapons, virus-based biological weapons (BW) are part of the natural global flora and fauna, with one notable exception, smallpox. In this review we will focus on inhibitors of arenaviruses, poxviruses, and filoviruses. In general there are three types of inhibitors needed for effective biodefence: i) Prophylactic treatments which enable the individual to resist infection and would help limit the spread of a BW agent. Drugs of this type are scarce and of the class A viruses, only members of the Orthopoxvirus genus have promising prophylactic drug candidates. ii) Therapeutic treatments that inhibit viral replication, reduce viral load and consequently limit the degree of mortality and morbidity. iii) Disease modifiers that do not act directly against the virus but rather target aspects of the viral pathogenesis and act to transform the host into an inhospitable environment for viral replication. These different classes of compounds can either be specific to the virus or broad-acting. Broad-acting compounds are attractive because there would be fewer compounds to stockpile as contingencies. In all cases, compounds need to be orally available to facilitate the rapid distribution and dosing of huge numbers of people in case of a large-scale attack.

Infection with BW agents can be significantly different than an infection with their counterparts in nature. These agents may be delivered in ways that the natural virus is not usually transmitted and possibly at infectious doses that are many times what occurs in nature. These nonstandard routes may produce diseases that are distinct from natural forms of the disease. To further complicate the problem, these viruses could be genetically engineered to overcome vaccines, therapeutics and detection. The combination of these alternatives with a few viruses significantly amplifies the issues surrounding drug discovery for BW agents.

Understanding what types of compounds are effective at inhibiting viral replication will aid in developing drugs that address possible genetic modifications. An effective antiviral serves another important role aside from limiting replication during an infection. In its stockpiled form, it may discourage use of a particular BW agent. Furthermore, because some of these viruses are endemic in different parts of the world, the ability to effectively treat the infections they cause will be a significant boon to global public health.

Orthopoxviruses

A wealth of work has been done in a variety of systems to find drugs with antiviral activity against members of the orthopoxvirus genus, and many drugs have been identified that target different parts of the viral life cycle. Orthopoxviruses are the largest known animal viruses and encode some 200 different gene products (Moss, 2001). They replicate in the cytoplasm of infected cells and are not dependent upon the host cell nucleus. Possible targets for these viruses are the DNA polymerase, virus-encoded immune modulators, structural genes and host factors...
Smallpox (Variola major), and the haemorrhagic fever viruses (filoviruses and arenaviruses) are classified as Category A biowarfare agents by the Centers for Disease Control. Category A agents pose a significant risk to public health and national security because they can be easily disseminated by aerosol, although with the exception of variola, they are not easily transmitted from person to person. An attack with these viruses would result in high morbidity and mortality and cause widespread panic. With the exception of smallpox and Argentine haemorrhagic fever virus, there are no vaccines or approved treatments to protect against these diseases. In this review we focus on promising prophylactic, therapeutic and disease modulating drugs (see Figure 1 for select chemical structures).
Figure 1. Chemical structures of selected antiviral drugs

Structures of small molecules that exhibit activity against orthopox viruses\(^1\), filoviruses\(^2\) or arenaviruses\(^3\). Some of these compounds have broad antiviral activity as noted by the superscripts following the name of the compound.
necessary for replication. Most of the drugs that display anti-orthopox activity are therapeutic agents. There are currently no known orthopox-disease modifiers.

Prophylactic treatments

Rifampicin blocks viral assembly by interacting with the product of the D13 gene of poxviruses (Sodeik et al., 1994). Rifampicin inhibited tail lesions in mice with 1 dose of 250 mg/kg 6–24 h before infection, or repeated doses for 5 days starting 5 days before infection. Interferon and polyacrylic (interferon inducer) acid were shown to be effective in the tail lesion model if given 24 h before vaccinia virus (VV) infection (De Clercq & De Somer, 1968). Interferon was also effective in keratins in monkeys if treatment was started 15 h before viral challenge (Neumann-Haefelin et al., 1975).

Cidofovir

The group of drugs known as acyclic nucleoside phosphonates contains the most promising anti-pox drugs investigated to date. (S)-9-(3-hydroxy-2-phosphonylmethoxypropyl)adenine [(S)-HPMPA] is phosphorylated by cellular enzymes to an active di-phosphate form which then acts as an inhibitor of viral DNA synthesis (Votruba et al., 1987). It has a broad range of activity against DNA viruses including adeno-, herpes-, hepadna-, irido-, and poxviruses (De Clercq et al., 1986). (S)-HPMPA is effective against VV replication at an inhibitory concentration 50% (IC50) of 0.3 µg/ml (De Clercq et al., 1986) and it suppressed vaccinia tail lesion formation in mice at a dose of 5–100 mg/kg/day. (S)-HPMPC (cidofovir) has an activity spectrum similar to (S)-HPMPA, however it is less toxic, so it has surpassed its adenine counterpart in development as an antiviral drug (De Clercq, 1987). Using a neutral red uptake assay, Baker et al. (2003) found that cidofovir is effective against over 30 different strains of variola virus with IC50 below 30 µg/ml.

Cidofovir has been licensed (as Vistide) for treating cytomegalovirus (CMV) retinitis in human immunodeficiency virus (HIV)-infected patients but is being investigated for treating other DNA virus infections, namely infections of poxviruses (De Clercq, 1996; De Clercq, 2003). (S)-HPMPC also suppressed tail lesion formation in normal and SCID VV-infected mice. It suppressed viral replication in the liver, lungs, kidneys and brain while preventing death (Neyts & De Clercq, 1993). Death was delayed if given 7 days before infection with VV (Neyts & De Clercq, 1993). Cidofovir (100 mg/kg) given subcutaneously on days 0, 2 and 4 post-infection resulted in 90–100% survival after an intranasal or aerosol infection of mice with cowpox (Bray et al., 2000). Given 16 days before challenge or 4 days after, a single dose of 100 mg/kg protected 50% of infected mice (Bray et al., 2000, Smee et al., 2000). Cidofovir was effective in monkeys exposed by aerosol to monkeypox with a single treatment of 5 mg/kg on the day of infection (Huggins et al., 1998).

Molluscum contagiosum, a skin disease caused by a poxvirus that can be severe in HIV-infected patients, resolved completely after intravenous or topical treatment with cidofovir (Meadows et al., 1997; Davies et al., 1999). Although cidofovir is a promising anti-pox drug, a significant limitation is that it is poorly absorbed when administered orally (Wachsmann et al., 1996), which would limit its utility in a medical emergency. Studies by Hostetler et al. (1997) showed that derivatization of acyclovir with 1-O-hexadecyl-glycero-3-phosphate provided a compound that was 100% orally bioavailable in mice. For this reason, Kern et al. (2002) developed a series of ether lipid analogues of cidofovir and tested their efficacy and oral bioavailability in a lethal aerosol ectromelia (mouse pox) model in mice (Buller et al., 2004). In addition to having in vitro IC50 that were between 11- and 60-fold better than cidofovir, the ether lipids significantly reduced mortality rates in mice. Treatment with a 3 mg/kg oral dose of the most potent analogue, octadecyloxyethyl-cidofovir (ODE-cidofovir) immediately before viral exposure resulted in a 10% mortality rate as compared to 100% in control mice and mice treated with unmodified cidofovir. Treatment with 5 mg/kg on days 0–4 protected 100% (16 of 16) of animals from death.

Therapeutic treatments

Ribavirin. Ribavirin (RBV) is in a class of drugs known as inosine monophosphate (IMP) dehydrogenase inhibitors. It has a relatively broad spectrum of antiviral activity, inhibiting both DNA and RNA viruses (Sidwell et al., 1972). IMP dehydrogenase converts IMP to XMP. This step is crucial in the synthesis of the purine mononucleotides. RBV inhibits IMP dehydrogenase by RBV 5′-monophosphate (Streefer et al., 1973) and depletes GTP and dGTP. Baker et al. (2003) found RBV to inhibit three strains of variola in Vero cells in a neutral red uptake assay at an IC50 of 18.4 µg/ml.

RBV has already been shown to be effective in several animal models such as topical treatment of VV keratitis in rabbits (Sidwell et al., 1973). It is also effective against tail lesion formation in intravenous infections with VV at 4, 20 or 100 mg/kg/day for 4 days immediately after infection (De Clercq et al., 1976). In a case report of a single patient, RBV used in conjunction with immune globulin stopped the spread of VV in an immunocompromised individual (Kesson et al., 1997). This however was not a controlled experiment so a cause-and-effect relationship between RBV treatment and improvement in the patients’ condition could not be established. Several related compounds such as FICAR (De Clercq et al., 1976), EICAR (De Clercq et al., 1991), tiazofurin (Kirsi et al.,...
1983) and selenazole (Karsi et al., 1983) have similar antiviral activities.

Thymidylate synthase inhibitors. Thymidylate synthase inhibitors inhibit the thymidine synthase step that converts dUMP to dTMP. This depletes dTTP pools and therefore inhibits DNA synthesis. This class of drugs has been studied in the treatment of herpes simplex infections and VV infections, but they are more active against VV (De Clercq, 1980). Several 5-substituted 2′-deoxyuridines like 5-fluoro-dUrd and 5-nitro-dUrd are the most potent and have an IC50 of 0.1–0.2 µg/ml. The iodo-, ethyl-, and thiocyanocounterparts prevented tail lesions from VV at 4, 20 or 100 mg/kg/day for 7–9 days beginning 1 day before infection (Dixon et al., 1968). Unfortunately, these drugs were not able to protect host cell DNA synthesis than viral DNA synthesis (De Clercq, 2001).

Other nucleoside analogues. There is another group of nucleoside analogues that do not interact directly with thymidylate synthase, but instead interfere with the viral DNA polymerase. Adenine arabinoside (Ara-A) is one of these nucleoside analogues and is the most promising of this class of drugs. The 5′-triphosphate of Ara-A competes with dATP for incorporation into DNA strands. Ara-A does inhibit cellular DNA synthesis but unlike the thymidylate synthase inhibitors, it does so at a level that is 20-fold higher than the IC50 for VV (De Clercq et al., 1980). Ara-A inhibited rabbit keratitis (Sidwell et al., 1975) and prevented formation of VV lesions in rabbits by topical or systemic administration (Smee & Sidwell, 2003). Ara-A also prevented VV tail lesion formation in mice given 300 mg/kg/day subcutaneously for 7 days. Ara-A prevented death when given intracranially to mice with rabbitpox at 31–1000 mg/kg/day for 7–9 days beginning 1 day before or 1 day after infection (Dixon et al., 1968; Sidwell et al., 1968). Cytosine arabinoside (Ara-C) is another nucleoside analogue that inhibits cellular and viral DNA synthesis at the same concentration and is therefore not a good drug candidate (De Clercq et al., 1980). In addition, Ara-C failed to protect SCID mice in a lethal VV infection (Neyts et al., 2002).

Some branch-chain sugar nucleosides like 3′-C-methyladenosine and 3′-C-methylcytidine have anti-VV activity at a dose of 2 mg but the work was never followed up (Walton et al., 1969). A series of alkylated adenosine analogues were tested and 8-methyladenosine was shown to be a potent and selective inhibitor of VV at an IC50 of 0.2 µg/ml, which is a concentration that is non-toxic to cells in cell culture (Van Aerschot et al., 1993). These compounds, however, had no therapeutic effect on disease progression in cases of uncomplicated smallpox (Dennis et al., 1974; Koplan et al., 1975). One of the analogues, S2242, was active against almost all herpesviruses and inhibited VV at an IC50 of 0.4 µg/ml (Neyts et al., 1994). This compound was fully protective against VV infection when given as an ester prodrug in normal and SCID mice (Neyts & De Clercq, 2001). The mode of action is unknown. Neyts et al. (2002) also showed that 5′-iodo-2′-deoxyuridine, another inhibitor of herpesvirus replication, delayed death in a lethal VV infection of SCID mice, even when treatment was delayed up to 4 days after infection.

SAH hydrolase inhibitors. S-adenosylhomocysteine (SAH) hydrolase inhibitors also exhibit a broad range of activity, inhibiting orthopoxviruses, bunyaviruses, arenaviruses, rhabdoviruses, paramyxoviruses, and reoviruses (De Clercq, 1987). Viruses that are inhibited by these compounds are dependent on methylation where S-adenosyl-methionine (SAM) is the methyl donor. SAH is a product and inhibitor of the SAM-dependent methyltransferase reactions and must be removed by SAH hydrolase for the methylation to proceed correctly. This plays a role in the 5′-cap formation and maturation of VV mRNA (Borchardt, 1980). Those that have marked activity against VV are C-c′Ado (De Clercq and Montgomery, 1983), neplanocin A and C (De Clercq, 1985), 3-deazaneplanocin A (De Clercq et al., 1989; Tseng et al., 1989), DHCeA and c′DHCeA (De Clercq et al., 1989; Hasobe et al., 1987) and its saturated derivatives, F-C-Ado (Cools et al., 1991), 5′-norasteromycin (Patil et al., 1992; Siddiqui et al., 1994; Siddiqui et al., 1995), R-6′-C-methylneplanocin A (Shuto et al., 1996), 6′-homoneplanocin A (Shuto et al., 1996), 2-fluorneplanocin A (Obara et al., 1996), and 6′-ido acetylenic Ado (Robins et al., 1998). These inhibitors all inhibit VV in cell culture at an IC50 of less than 1 µg/ml with little to no cytotoxicity at the active concentrations. The most potent carbocyclic adenosine analogues that inhibit at an IC50 of less than 0.1 µM (~0.03 µg/ml) are 3-deazaneplanocin A, DHCeA, c′DHCeA, -5-norasteromycin, and (R)-6′-C-methylneplanocin A. 3-Deazaneplanocin was effective against VV tail lesion formation at doses of 4–8 mg/kg/day given subcutaneously for 7 days starting 1 day before infection (Tseng et al., 1989).

OMP decarboxylase inhibitors. Orotidine monophosphate (OMP) decarboxylase inhibitors prevent conversion of OMP to uridine monophosphate (UMP) and lead to a depletion of UTP and CTP pools. CTP synthase inhibitors block conversion of UTP to CTP and therefore also deplete CTP pools. Because this group of compounds inhibits RNA synthesis, they would not affect non-dividing cells and would show specific antiviral activity. The OMP inhibitor, pyrazofurin, inhibits several viruses, including VV at an IC50 of 0.1 µg/ml, which is non-toxic to cells (De Clercq, 2001). The CTP inhibitors,
carbovir and cyclopentenyl cytosine, are good candidates for drug development because of a low IC₅₀ (0.02 µg/ml) and no reported cell toxicity. In spite of the apparent potency and lack of toxicity of this class of compounds, relatively little work has been done to evaluate their potential in treatment of pox infections.

Other therapeutic treatments. There are a few other types of drugs that show some promise as anti-pox drugs but there are few data regarding their efficacy. Polyaminonucleic substances such as sulfated polysaccharides inhibit virus binding to cells (Baba *et al.*, 1988a; Mitsuya *et al.*, 1988) and are effective against enveloped viruses like HIV, herpes simplex virus (HSV), CMV, vesicular stomatitis virus (VSV), respiratory syncytial virus (RSV), togaviruses and arenaviruses (Witvrouw & De Clercq, 1997). They also inhibit VV, although not as well with IC₅₀ of 4–20 µg/ml (Baba *et al.*, 1988b; Witvrouw & De Clercq, 1997). Thiosemicarbazones have activity against several families of viruses such as adenov-, herpes-, picorna-, reo-, arbo- and myxoviruses (Bauer, 1971). Studies indicate that they interfere with viral maturation (Woodson & Joklik, 1965). IC₅₀ of thiosemicarbazones range from 1–60 µg/ml (Bauer, 1971; Safrin *et al.*, 1997). In animal models, they are active against tail lesions in mice at 6–400 mg/kg/day for 7 days in mice infected intravenously with VV (Boyle *et al.*, 1966). In several studies under various conditions, thiosemicarbazones were also able to prevent death in mice infected intracerebrally with rabbitpox virus (Thompson *et al.*, 1953; Sidwell *et al.*, 1968; Dixon *et al.*, 1968). Field trials where thiosemicarbazones were administered as prophylactic agents against smallpox have been conducted (Heiner *et al.*, 1971; Bauer *et al.*, 1969; Bauer *et al.*, 1963; do Valle *et al.*, 1965; Rao *et al.*, 1969).

In West Pakistan, Heiner *et al.* (1971) identified individuals that had contact with patients infected with smallpox virus but had not yet developed the disease themselves. These individuals were divided into treatment and placebo groups, and the compound methisazone was administered in doses according to the age of the individual. The subjects were then monitored for incidence of smallpox. In agreement with Rao *et al.* (1969), the authors did not observe a significant difference in incidence of smallpox in treated individuals. In contrast Bauer *et al.* (1963) conducted a similar study in Madras, India and found that out of 2292 treated contact cases, there were 6 cases of smallpox and 2 deaths. Out of the 2710 untreated contacts, there were 113 cases and 21 deaths. These results agreed with a study conducted by do Valle in Sao Paulo, Brazil (do Valle *et al.*, 1965).

Although these studies demonstrated the protective capability of methisazone, it should be noted that the majority of individuals that participated in these studies were vaccinated soon after exposure (Heiner *et al.*, 1971). Thus these trials represent the effect of post-exposure vaccination and methisazone combined. N₁-isonicotinyl-N₁-2-methyl-4-chlorobenzoylhydrazine (IMCBH) inhibits assembly by targeting a 37 kDa protein which is a component of the golgi-derived viral envelope.

A study was done in 2003 (Kern, 2003) that, in addition to testing efficacy of cidofovir and its derivatives and prodrugs, focused on testing drugs that are already available for treating other virus infections. These drugs were tested for their ability to limit replication of VV or cowpox virus in cell culture. Of the already licensed drugs cidofovir, Gemcitabine, Idoxuridine, Trifluridine, and Vidarabine were all active against both viruses, with IC₅₀ under 50 µM. Cidofovir, as mentioned previously, was licensed for use in CMV infections but has problems with toxicity over long-term use. However, long-term toxicity is not likely to be a problem when treating poxvirus infections with cidofovir, as the drug seems to work well with only a few doses. In addition, Probenicid, a drug that decreases toxicity of many different drugs, can be used to combat the toxic side effects of cidofovir. Gemcitabine is licensed for use in cancer therapy and is also very toxic. Idoxuridine and Trifluridine are used for topical treatment of HSV infections but do not have a good toxicology database. Vidarabine is also used in HSV infections but administered parenterally. Although it displayed significant activity in cell culture, it was not active in murine models for VV or cowpox.

In addition to available drugs, Kern (Kern, 2003) also tested drugs with a Phase II/Phase III history for anti-pox activity in cell culture. Of these, only two compounds, adefovir dipivoxil and fialuridine, had good activity with IC₅₀ between 0.24 and 13 µM. Adefovir dipivoxil is a nucleoside phosphonate like cidofovir. It is indicated for treating HIV and has good oral bioavailability and low toxicity. Fialuridine, however, has proven to be significantly toxic in treatment of hepatitis in humans.

Filoviruses

The filoviruses (Ebola and Marburg viruses) are single-stranded, negative-sense RNA viruses. Some of the drugs that were already shown to have antiviral activity against other families of viruses were tested for their ability to inhibit filovirus replication. However, most of the significant work has come from novel approaches. Possible targets for filoviruses are the RNA-dependent RNA polymerase, the interferon antagonist, entry functions of the glycoprotein, structural protein/protein interactions and key virus host factors that affect replication. It is known that infected individuals with lower peak viral titres have improved outcomes (Towner *et al.*, 2004).
Therapeutic treatments
SAH hydrolase inhibitors. Huggins et al. (1999) tested a series of SAH hydrolase inhibitors for anti-Ebola activity in vitro and in a lethal mouse model. Inhibitors of the enzyme, as previously mentioned, indirectly inhibit transmethylation reactions by a feedback mechanism. Transmethylation is required for replication of viruses that cannot initiate mRNA synthesis by the so-called cap-stealing process. It is thought that, in spite of the fact that SAH inhibitors target a cellular enzyme, they selectively inhibit viral methylation events at a lower concentration than that which would be required to inhibit cellular methylation. SAH inhibitors were tested for their ability to inhibit filovirus replication in a monolayer of Vero E6 cells. CaAdo, Ca-c3Ado, Npc A, c3-Npc A, DHCpAdo, DHCpc3Ado and DDFA all had IC50s of less than 65 µM. In addition, these same drugs, except for CaAdo and Npc A, had negligible toxicity at the highest concentrations tested. Ca-c3 Ado was administered to BALB/c mice that were infected intraperitoneally with 30 LD50 of Ebola virus. Treatment begun 1 day before infection with 0.7–20 mg/kg every 8 h for 9 days protected 100% of mice. Additional studies revealed that SAH hydrolase inhibitors cause significantly increased production of IFN-α in infected mice (Bray et al., 2002). This suggests that a second mode of action of SAH hydrolase inhibitors is to boost the immune response by stimulating interferon production.

Because SAH hydrolases may protect mice by inducing interferon, then it follows that direct treatment with interferon should also confer protection. Recombinant IFN-α was able to protect mice against infection with Ebola Zaire when begun up to 2 days after viral challenge and continued for 5–7 days post-infection (Bray & Paragas, 2002). The interferon inducer, polyICLC, was also protective in this model. Exogenous IFN-α, however, did not protect guinea pigs (Sergeev et al., 1997). In these animals, treatment delayed but did not prevent death. In a study of rhesus macaques, treatment with human IFN-α given immediately after infection with Ebola Zaire resulted only in a 2-day delay in the onset of illness and death (Jahrling et al., 1999). There is speculation that the SAH hydrolase inhibitors worked well because they induced production of the innate IFN-α (Bray & Paragas, 2002). It is not clear whether the induction of interferon was a result of the drug or simply a normal response from the host after an abortive infection caused by the drug treatment. Filoviruses appear to be sensitive to the effects of type 1 interferon.

Cyanovirin-N (CV-N) is a protein that is produced by cyanobacteria and it binds to high-mannose oligosaccharides. Barientos et al. (2003) found that the presence of 0.12 µM CV-N in the medium of Ebola-infected Vero cells reduced cytopathic effects and allowed uptake of control amounts of neutral red. In Ebola-infected mice, daily treatment with 0.48–5.6 mg/kg of CV-N for 6 days (starting day -1 or day 0) delayed the onset of illness and prolonged the time of survival – however, it failed to protect mice from death. The potency of CV-N in cell culture was corroborated by Barrientos et al. (2004).

Potential treatments. Recently, much work has been done on enveloped viruses and late domains. All retroviruses tested to date and several other enveloped viruses require one of three amino acid motifs called late domains (PTAP, PPXY, YXXL) (Demirov & Freed, 2004) to interact with components of the cellular trafficking machinery and achieve efficient egress from infected cells. Ebola has an overlapping PTAPPEY motif (Licata et al., 2003; Harty et al., 2000). As components of the cellular trafficking machinery, these late domain interacting proteins are regulated by the process known as ubiquitination. It is known that monoubiquitination often serves as a signal for the internalization and sorting of membrane-associated proteins into the endosomal pathway. Several lines of evidence suggest a connection between ubiquitination and enveloped virus release (Vogt, 2000). Among them are: i) Several retroviruses contain free, virion-associated ubiquitin (Putterman et al., 1990), and ii) proteasome inhibitors can inhibit the release of some retroviruses (Patnaik et al., 2000; Schubert et al., 2000; Ott et al., 2002; Accola et al., 2000). Inhibition of these late domain interactions and/or the ubiquitination events that might regulate these targets for antiviral therapy. Although dominant negative forms of these late domain interacting/cellular trafficking proteins inhibit viral release in cell culture, they have yet to be tested in an animal model (Demirov & Freed, 2004).

Disease modifiers. There have been very few reports of attempts to modulate filovirus disease rather than inhibit the viral life cycle. One promising report came from Geisbert et al. (2003a). In a previous report they found that the disease triggered by Ebola virus in primates results in hyper-activation of the coagulation cascade (Geisbert et al., 2003b). Specifically, Ebola causes over-expression of tissue factor. In monocytes and macrophages. This over-expression leads to recruitment of other clotting factors to cells expressing tissue factor, leaving them in short supply elsewhere in the host. This lack of clotting factors is what leads to disseminated intravascular coagulation, thrombosis related failure and vascular haemorrhage (Arai et al., 2000). Geisbert et al. (2003a) attempted to control this hyper-activation by blocking the clotting pathway. Recombinant nematode anticoagulant protein c2 (nNAPc2) directly inhibits the tissue factor complex by binding to factor X (Vlasuk & Rote, 2002). An initial study
showed that of three rhesus monkeys treated with rNAPc2 24 h after exposure to Ebola, one survived and the other two died on days 11 and 14 post-infection while the control animal died on day 8.

The animal that survived lived for more than 1 year after viral challenge. In a second, more in-depth, study, two control animals died within 9 days of exposure while of the six treated animals, four died on days 8, 10, 13 and 14, and two survived and remained healthy for more than 9 months. Although rNAPc2 is not thought to have any effect on the virus itself, viral titres were significantly lower in animals that survived. In addition, rNAPc2 did not display any toxicity within the range tested.

Ignatyev et al. (2000) treated Marburg-infected guinea pigs with anti-tumour necrosis factor (TNF)-α serum. Treatment beginning on day 3 post-infection resulted in survival of three out of five animals. In another report, treatment with a TNF-α inhibitor (desferoxamin) resulted in survival of three out of six animals (Ignat’ev et al., 1996).

Arenaviruses

Just as in the case of the filoviruses, several drugs that have already been studied for activity against other viruses were tested for inhibition of the haemorrhagic fever-causing arenaviruses. The most efficacious compound was RBV. Arenaviruses may be targeted for discovery of inhibitors of viral entry and/or replication.

Therapeutic treatments

Ribavirin. Jahrling et al. (1980) tested the efficacy of RBV in vitro and in rhesus monkeys. In vitro studies showed that RBV was effective in inhibiting viral replication in Lassa virus-infected cells. Inhibition was dependent upon dose of RBV, the multiplicity of infection and cell type. RBV was more potent in rhesus alveolar macrophages than in Vero cells. Six out of ten untreated monkeys infected subcutaneously with Lassa virus died. In the same study, all eight RBV-treated monkeys survived. A treatment regimen of an initial subcutaneous injection of 50 mg/kg followed by 10 mg/kg injections every 8 h through to day 18 was effective. It made little difference if treatment began on day 0 or 5 days after infection, although monkeys that began treatment on day 5 experienced a moderately severe disease.

McCormick et al. (1986) published a study that showed RBV to be effective for treating humans with Lassa fever at varying stages of the disease. Patients admitted to one of two participating hospitals in Sierra Leone were evaluated for risk factors associated with Lassa fever. Patients with an aspartate aminotransferase (AST) level of greater than or equal to 150 units per litre were randomly separated into treatment groups. The presence of Lassa antigen in these patients was confirmed by an immunofluorescence assay with a Lassa virus-specific antibody and viral titres were performed on 10-fold dilutions of the specimens. In untreated Lassa fever patients with serum levels of greater than or equal to 10^3 TCID_50 (tissue culture infectious dose), a 76% (46 total cases) fatality rate was observed. In patients with similar viral loads and treated with a 2 g loading dose of RBV and 1 g every 6 h for 4 days, only 32% (31 total cases) and 30% (10 total cases) of patients treated intravenously or orally respectively died. McCormick et al. (1986) also found that treatment was most effective if initiated on or before the sixth day of illness.

Weissenbacher et al. (1986a; 1986b) tested the effect of different doses of RBV on Junin-infected marmosets. All doses tested inhibited viral replication. Treatment with 15 mg/kg twice daily, a 75 mg/kg loading dose followed by 25 mg/kg daily and a 75 mg/kg loading dose followed by 25 mg/kg daily in conjunction with 2 ml of immune serum all protected ≥50% of infected animals, while all six control animals died. Unexpectedly, RBV combined with immune serum did not protect better than RBV alone. Animals that were not infected but treated with RBV developed severe anaemia and leukopenia which was similar to that present in infected RBV treated animals, but more pronounced than that induced by virus alone.

In a lethal model of intracerebrally Junin-infected 10-day-old rats, a single dose of 60 or 90 mg/kg of RBV injected intracerebrally 2 h before infection led to 40% survival. Intraperitoneal infection of 2-day-old rats is also usually lethal. Animals received five 30 mg/kg doses intraperitoneally at 24 h intervals starting 2 h before inoculation. Up to 73% of treated animals survived versus 22% in control groups (Remesar et al., 1988).

McKee et al. (1988) tested RBV in rhesus macaques. All (four) untreated animals died between 21 and 26 days after intramuscular infection with Junin virus. Laboratory animals were either treated prophylactically or therapeutically. The prophylactically treated group received 60 mg/kg/day on days 0–3, 30 mg/kg/day on days 4–7, and 15 mg/kg/day on days 8–17. All of these animals survived infection with a mild disease course. Animals were killed 6 months after infection and three out of four had no pathological signs of disease. In contrast, three out of four animals that were given 60 mg/kg on day 6 post-infection and 15 mg/kg/day on days 7–20 died. Mean time of death was slightly delayed in comparison to untreated animals although one died particularly early on day 8. The three remaining animals in this group actually recovered from clinical illness and were healthy until about day 28 post-infection, when they developed tremors and signs of aggression. Signs of central nervous system (CNS) damage progressed in two of the three monkeys and they died on days 36 and 43 post-infection. This neurological pathology
persisted in the remaining monkey until the ninth week post-infection. The last monkey was killed 6 months post-infection and all three of the monkeys that developed nervous system damage displayed pronounced lesions in the CNS. As seen in other studies, all animals that received RBV in this study had side effects that included thrombocytosis and severe anaemia. Side effects disappeared soon after cessation of drug treatment.

The Maiztegui group also published a study on the utility of RBV in Junin virus outbreaks (Enria & Maiztegui, 1994). In a double-blind study, Junin virus-infected patients were either given placebo or 34 mg/kg of RBV as a loading dose followed by 17 mg/kg every 6 h for 4 days and 8 mg/kg every 8 h for the following 6 days. Patients that received placebo had a 33.3% mortality rate while patients receiving RBV had a mortality rate of only 12.5%. The only side effect seen in RBV-treated patients was anaemia, which was easily managed.

In the autumn of 1994, three patients living in northern Bolivia presented to hospital officials with symptoms consistent with Bolivian haemorrhagic fever (BHF) (Machupo virus infection). A Centers for Disease Control and Prevention (CDC) team (Kilgore et al., 1997) was called in to evaluate the therapeutic use of RBV in these patients. The first patient died on the fourth day after admission, before diagnosis with BHF, and was unable to receive therapy with RBV. Diagnosis with BHF followed post-mortem. Patients two and three lived and worked together. Patient two was not diagnosed and treated with RBV until 12 days after admission to the hospital. Therapy continued for 19 days and the patient eventually recovered. BHF was confirmed by detection of viral antigen in the serum. Patient three did not become ill until more than 3 weeks after patient two. Because of the similar symptoms and the association with patient two, treatment with RBV was begun only 3 days after admission to the hospital, before the presence of Machupo virus was confirmed. Patient three completely recovered from a significantly less severe disease after 10 days of treatment. Although these three cases of BHF were not part of a designed experiment and there were no controls, the use of RBV in humans is still noteworthy.

Stampidine. Stampidine is a nucleoside analogue that has strong antiviral activity against HIV-1 and HIV-2 (Uckun et al., 2004), and is not associated with any noticeable toxicity in mice or rats whether given as a single intravenous dose or as an intraperitoneal injection daily for 8 weeks (Uckun et al., 2003). Uckun et al. (2004) evaluated the ability of stampidine to inhibit Lassa virus. CBA mice were intracranially injected with 1000 plaque-forming units of the Josiah strain of Lassa Virus. Mice were then given placebo or treated with a series of injections (24 h before; 1 h before; and 24, 48, 72 and 96 h after inoculation) of stampidine at 25 or 50 mg/kg. All of the 18 control mice developed sickness and 13 died between days 8 and 11. All eight mice given 25 mg/kg of stampidine also developed sickness but only two died on days 8 and 10. Of the 10 mice treated with 50 mg/kg of stampidine, only one developed any physical signs of sickness and eventually died on day 16. The remaining nine animals remained healthy through the 21 days of observation.

Other therapeutic agents. Candurra et al. (1996) did a study based on the fact that many events that take place at the plasma membrane, like endo- and exocytosis and changes in cell morphology, can be influenced by a group of drugs called phenothiazines. These same events are involved at different stages of enveloped virus–cell interactions. Trifluoperazine (TFP) and chlorpromazine (CPZ) both significantly inhibited the IV4454 strain of Junin virus in Vero cells with IC50s of 10.1 µM and 12.5 µM, respectively. Cell toxicity was determined and was low for both compounds. TFP had a 50% cytotoxic concentration (CC50) of 61.9 µM and CPZ had a CC50 of 81.4 µM. Both compounds were also tested for antiviral activity against more pathogenic strains of Junin virus and had similar IC50's. TFP and CPZ were also similarly active against Tacaribe virus while Pichinde virus was less susceptible to both compounds. Time of addition or removal experiments showed that CPZ was most active within the first 3 h of infection while TFP maintained maximal activity for up to 7 h post-infection.

Meliacine, a peptide isolated from leaves of *Melia azedarach* 1. was shown to have anti-Junin activity by Castilla et al. (1998). Meliacine had no toxicity within the range tested (0.048 µg/ml to 50 µg/ml) while inhibiting Junin replication in Vero cells with an IC50 of 0.13 µg/ml when cells were pre-treated and an IC50 of 0.94 µg/ml when the peptide was added after cells were exposed to the virus. Castilla et al. also found that Meliacine inhibits Junin virus replication at two different steps, the first when the virus is uncoated and the second while infectious particles are released.

Junin virus, along with several other members of the arenavirus genus, contains an 11 kDa protein called Z or p11 whose function is unknown. What is known, however, is that this protein contains a conserved Cys–His–Cys RING finger motif that binds two zinc ions. Other studies (Rice et al., 1996; Tummino et al., 1997; Witvrouw et al., 1997) have shown that certain compounds target the Zn-finger motifs of HIV-1 and cause the zinc ions to be ejected from the protein. This results in loss of the native structure and inhibition of virus replication. Garcia et al. (2000) tested some of these Zn-finger-targeted compounds for inhibition of Junin virus infection in Vero cell monolayers.
Fifteen compounds were tested and only three had significant antiviral activity and low toxicity. NSC20625, 2-71 and 2-77 had 50% effective concentrations (EC$_{50}$) of 9.3 µM, 6.5 µM and 8.9 µM, respectively; 3-7 had the best toxicity profile with a CC$_{50}$ of 363.7 µM, 2-71 came in second at 257.7 µM and NSC20625 had a CC$_{50}$ of 94.4 µM. Although the CC$_{50}$ of NSC20625 was the lowest, it was still 10 times higher than the EC$_{50}$.

The same group (Garcia et al., 2003a) tested the antiviral activity of several thiosemicarbazones in the same manner. Twenty-three compounds were tested but only six (1a, 4a, 6a, 8a, 10a, and 11a) showed a selectivity index (CC$_{50}$/EC$_{50}$) of 10 or more.

In a 2003 paper, Garcia et al. (2003b) identified two azoic compounds that displayed anti-arenavirus activity. These two compounds, ANN B and AB, had EC$_{50}$ of less than 35 µM for Junin virus and Tacaribe virus and CC$_{50}$ of greater than 360 µM in Vero cells. The authors suggest that the compounds are likely to affect the process of intracellular virion assembly as they do not exert their effects until late in the viral life cycle.

Conclusions

There are many compounds that have promise for inhibiting viral replication *in vitro*. However, many of these compounds are lacking the necessary pharmacokinetics, bioavailability and toxicity testing that can transform promising *in vitro* drug leads into potential candidates for advanced development and testing. The effective translation of *in vitro* results into antiviral therapies is a daunting task. There are far fewer antiviral compounds than parasite treatments or antibiotics. This may be due in part to the complex life cycle of viruses that is interwoven with host cellular function. The unique nature of viral BW agents may necessitate novel approaches to address these ever-present threats.

Disclaimer

Opinions, interpretations, conclusions and recommendations are those of the author and are not necessarily endorsed by the US Army.

References

