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Progressive Failure Analysis of Plain Weaves Using Damage Mechanics Based
Constitutive Laws

M. Kollegal, S. N. Chatterjee and G. Flanagan
Materials Sciences Corporation,

500 Office Center Drive, Suite 250
Fort Washington, PA 19034

The behavior of plain woven fabric composites is studied using three-dimensional finite
elements which allows detailed modeling of the geometric complexities and spatial material
variations within the fabric. Damages in the composite constituents viz. yarn and pure
matrix are modeled on a continuum basis and related to their material constitutive behav-
ior. The 3D constitutive laws describing pure matrix and yarn behavior are developed us-
ing a damage mechanics based approach with the dissipated energy density as the damage
parameter. The strain energy dissipation (SED) concept is employed to describe the dam-
age state and current stiffnesses of the weave constituents. A progressive failure analysis
of plain woven fabrics subjected to tension and in-plane shear is carried out considering
both geometric and material nonlinearities. The initiation and progression of damage
within the fabric is investigated and the significant damage mechanisms outlined.

Keywords: Woven composites, finite element analysis, damage mechanics, constitutive
laws, failure

INTRODUCTION

Micromechanics of textile composites has been the focus of study by many investigators [1-11]. The

proper description of the internal weave geometry and spatial variation in material properties within the

fabric presents a formidable task in the analysis of such composites. Most of the analytical studies on such

composites have focussed on predicting their elastic properties [1-7]. Studies relating to prediction of their

strength and failure modes are relatively few [8-11].

A detailed study of the significant stresses and strains developed within the fabric and possible damage

mechanisms can be accomplished by the use of three-dimensional finite elements. Nonlinear material be-

havior of composites is due to damage accumulation, which causes changes in the stiffnesses of the mate-

rial. It is well known that macroscopic failure is preceded by an accumulation of different types of micro-

scopic damage and stiffness losses due to the accumulation of such damage, which cause significant load
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redistribution. Final failure usually occurs due to the development of one or more areas of highly localized

stiffness losses, which behave as macroscopic damages or cracks. Hence, a proper modeling of the damage

growth, stiffness loss and load redistribution is essential for a reliable prediction of the weave response.

Existing FE modeling tools and preprocessors are not adequate for rapidly creating complex 3-

dimensional models needed for the purpose. Therefore, mesh generation programs were developed which

would easily interface with a general purpose FEA software, ABAQUS [12]. FE models can be generated

for plain weaves and higher-order satin-weaves using a minimal definition of the textile architecture. In the

present approach, damages in the composite constituents are modeled on a continuum basis and related to

the material constitutive behavior. The 3D constitutive laws describing matrix and yarn behavior are devel-

oped using a damage mechanics based approach, with the dissipated energy density as the damage pa-

rameter. The strain energy dissipation (SED) concept is employed to describe the damage state and current

stiffnesses of the weave constituents. The yarns are treated as transversely isotropic while the pure matrix

pockets are assumed to be isotropic.

The developed methodology for geometric and damage modeling in fabric composites is demonstrated

through an investigation of progressive failure of plain woven composites subjected to external loads. Two

loading conditions are considered viz. in-plane tension and in-plane shear. For a realistic modeling of the

weave response, both geometric and material nonlinearities are considered. The inititiation and growth of

damage within the fabric is investigated and the important stresses causing failure identified.

GEOMETRIC MODELING

In the current analysis, the yarns follow a specified path that combines flat segments with sinusoidal

undulations where orthogonal yarns cross. The yarn path and cross-sectional geometry of the yarns are

similar to that described in Ref. [3]. The cross-section profile of the yarns and the undulation path can be
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described in terms of yarn width, filament count and fiber volume fraction. They provide an adequate rep-

resentation of the varying cross-sectional profile and undulation of the yarns.

The periodic nature of the yarn undulations makes it possible to identify repetitive portion of the woven

fabric. The mechanical response of the fabric can then be described by analyzing such repetitive portions,

termed as unit cell, of the textile. The unit cell with appropriate boundary conditions can thus be used to

examine the behavior of the entire textile subjected to various loading conditions. Unit cells of the textile

forms considered in the present study are shown in Fig. 1.

(a)

(a)

                                         (b)                                                                               (c)

Figure 1: (a) Plain Weave (one quarter highlighted) (b) 5 harness satin  (c) 8 harness satin

FINITE ELEMENT DISCRETIZATION

The weaves are discretized employing 20 noded, 15 noded and 10 noded three-dimensional elements

and the resulting mesh analyzed using ABAQUS [12]. An in-house, parametric finite element mesh gen-
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erator which permits an automatic meshing of the weave unit cell and ABAQUS input file generation is

used for this purpose. For the case of plain weaves, the point symmetrical material distribution about the z-

axis within the unit cell (Fig. 1a) makes it possible to analyze only one quarter (Figure 2) with appropriate

boundary conditions. This results in a reduction of the problem size and computational time.

Z

Y

b/2b/2

Warp

Fill

t
X

Figure 2   Quarter Cell of Plain Weave

Details of the displacement boundary conditions applicable to the quarter cell single layer plain weave

model (Figure 2) are described in Ref. [13] and are summarized below. The surfaces z = ±t/2 are assumed

to be stress free.

For the case of inplane extensional loading in the x direction:
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buo /  and bvo /  are average extensional strains in x and y directions, respectively. No shear tractions are

applied at x = b/2  and y = b/2.

The boundary conditions for inplane shear loading are:
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p/b is the average in-plane shear strain. No shear traction in z-direction and extensional stresses at x = b/2

and y = b/2 are applied. It should be noted that for a multilayer fabric composite the surfaces of each layer

can not be assumed to be stress-free. The single layer model discussed above yields an approximate meas-

ure of the in-plane stiffnesses of a multilayered composite and the stresses in the boundary layers.

ELASTIC ANALYSIS

In order to validate the weave finite element models, the elastic properties of plain, 5-harness satin and

8 - harness weaves are first computed. The present values are compared against analytical and experimen-

tal results available in literature. AS4 Graphite/Epoxy 3501 woven fabrics [3] having a yarn fiber volume
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fraction of 0.75 are selected for the purpose. The width of the yarns was 1.411 mm and its thickness was

0.01 mm. The filament count in both the warp and fill tows was assumed to be 3000 [3]. The material

properties of AS4-Graphite/epoxy yarns and matrix are shown in Table 1. Table 2 shows a comparison of

the current results with other analytical and experimental results for plain, 5-harness and 8-harness satin

weaves. For an AS4 graphite/epoxy cross-ply laminate having an overall fiber volume fraction equal to that

of the fore mentioned weaves (fV  = 0.64), the elastic modulus computed using the Classical Lamination

Theory is 67.60 GPa [3]. It can be seen that the undulation of the yarns causes a reduction in the inplane

extensional stiffness of the weaves and this reduction is maximum in plain weaves where the effect of yarn

cross-over is maximum.

MATERIAL MODELING

The nonlinear behavior of the weave constituents viz. yarns and pure matrix is modeled using a damage

mechanics approach. Constitutive laws for continuum damage mechanics are discussed in Ref. [14-17].

Such models have been found to be successful in representing the behavior of brittle materials. They make

use of a phenomenological approach and damage variables such as average crack densities. In the present

study, the dissipated energy density (φ) is chosen as the damage parameter. The nature of a damage surface

for a fixed value of φ and its change with φ can be modeled at various levels of complexity to simulate the

“in-situ” nonlinear material behaviors. Details of the constitutive modeling of the yarns and pure matrix are

shown in Appendix A. Simple quadratic forms of the damage surfaces in terms of chosen strain variables

are employed. The changes of these surfaces with φ are chosen in a manner such that they yield power law

type stress-strain relations under unidirectional straining beyond the initial elastic domain.

The material constitutive laws for yarns and pure matrix are incorporated as a user subroutine in

ABAQUS [12]. The material properties required for analyses are the elastic moduli, Poisson’s ratios and
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the variables that describe the damage surfaces in the strain space for various values of dissipated energy

density φ in the yarn/matrix.

NONLINEAR ANALYSIS

A typical unit cell of a plain weave discretized by finite elements is shown in Figure 1a. Within

each finite element of the unit cell, the stiffnesses, stresses and strains can be monitored at the material in-

tegration points. This function is performed by the material models described in the Appendix. For this

purpose, the constitutive laws for the materials are implemented through a user-defined subroutine (UMAT)

and linked with the finite element analysis program, ABAQUS. During each load increment of the nonlinear

analysis process, the material definition routines describe the current stiffnesses and damage state at the

numerical integration points of the finite elements. The reductions in stiffnesses occurring as a result of lo-

calized damage within the yarn/pure matrix pockets are monitored and incorporated into the weave re-

sponse.

An incremental-iterative approach is adopted for the nonlinear finite element analysis. The modi-

fied Newton-Raphson method is used to trace the loading path of the structure. The nonlinear analysis

starts from an equilibrium state. Loads are applied by prescribing incremental displacements and the un-

balanced forces evaluated. An iterative procedure is used until the out-of-balance load vector or the dis-

placement increments are sufficiently small. Within each element representing yarn/pure matrix, each

Gaussian integration point represents a certain volume of material whose material stiffnesses are described

by the user material definition subroutine developed. Within each load increment of the nonlinear analysis,

the material is checked for occurrence of damage. Once damage is detected, the material properties are

changed accordingly.
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The behavior of balanced E-Glass/epoxy [9] and AS4-Carbon/epoxy [8] and Carbon/epoxy [6]

plain woven fabric, described earlier, when subjected to in-plane loads is examined. The current predictions

are compared with experimental results if available or with other theoretical results available in literature.

Elastic properties of the weave constituents are tabulated in Table 1. The geometrical parameters of the

weave used in the present investigation are listed in Table 3.

Tensile Behavior

The plain woven fabrics are subjected to tensile loading along warp using boundary conditions de-

scribed in Eqn. 1. Effects of geometric nonlinearity and material nonlinearity of the yarns and surrounding

pure matrix are included in the analysis. Figures 3 and 4 show the stress/strain curves obtained from the

present FEA.

These results are compared with experimental values [6, 8, 9]. Figure 3 shows a good agreement

between the results of the present analysis and experimental values in the pre-’knee’ portion of the stress-

strain curve. The ‘knee’ in the stress-strain curve is caused due to transverse tensile failure in the fill. Un-

like E-Glass/epoxy plain weave, in AS4-Carbon/epoxy plain weave (Figure 4) the intermediate damage

mechanisms (e.g. ‘knee’) are not seen clearly in the stress/strain response prior to final failure of the weave,

i.e. the stress/strain plot is almost linear until final failure. In the case of E-Glass/epoxy plain weave, the

‘knee’ is more pronounced than that in AS4-Carbon/epoxy plain weave. The damage mechanisms seen in

the plain weaves subjected to tension along warp direction are: (i) Transverse tensile failure (of matrix) in

fill. (ii) Axial shear failure of the fill near the yarn extremities where there is a stress concentration and (iii)

Fiber tensile failure in the warp.

Figure 5 shows the behavior of Carbon/epoxy plain weave lamina [6] subjected to tension along

warp and tension along an off-axis (θ = 15o) direction. In off-axis tensile loading, the boundary conditions
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for inplane extensional case induce shearing deformations within the unit cell apart from extensional ac-

tions. For the case of off-axis loading, considerable shear softening occurs in the transverse fill before final

failure of the weave. Damage in the fill due to transverse tension occurs much earlier (177 MPa) than the

damage in the warp caused by fiber failure. The damage mechanisms seen in the plain weave subjected to

off-axis tension are: (i) Transverse tensile failure (of matrix) in fill. (ii) Axial shear failure in fill and (iii)

Fiber failure in tension in warp.
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Figure 4.  Response of AS4/Carbon/Epoxy Plain Weave Subjected to Tension

Figure 5: Response of Carbon/epoxy [6] plain weave subjected to on-axis and off-axis tension
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In-Plane Shear

The behavior of E-Glass/epoxy and AS4-Carbon/epoxy plain weaves under in-plane shear is examined

using boundary conditions shown in Eqn. 2. Figures 6 and 7 show the stress-strain curves obtained from

the present analysis. For the case of AS4-Carbon/epoxy plain weave, the present results are compared with

an experimental result available in literature [8]. The ultimate strength prediction agrees well with the ex-

perimental result though the failure strains differ. This could be due to differences in material properties

used in the present material model and those tested. The sequence of failure for plain weaves subjected to

inplane shear is (i) Axial shear failure in fill (ii) Transverse shear failure in warp (iii) matrix failure in

transverse tension in fill.

0

10

20

30

40

50

60

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035

Strain

S
tr

es
s 

(M
P

a)

Present

Figure 6.  Response of E-Glass/Epoxy Plain Weave Subjected to Inplane Shear



12

0

20

40

60

80

100

120

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

strain

S
tr

es
s 

(M
P

a) Experimental

Present

Figure 7.  Response of AS4-Carbon/Epoxy Plain Weave Subjected to In-Plane Shear

CONCLUSIONS

An investigation into the micromechanics of fabric composites has been attempted using 3D finite ele-

ments and a damage mechanics based constitutive model for the yarns and pure matrix. The strain energy

dissipation φ is chosen as the damage parameter and the nature of damage surface for a particular value of

φ and its change with φ modeled. In the present study, simple quadratic forms of the damage surfaces in

terms of chosen strain variables are used to simulate the "in-situ" nonlinear material behavior. The changes

of these surfaces with φ are chosen in a manner such that they yield power law type stress-strain relations

under unidirectional straining beyond the initial elastic domain. The material model has been used to study

and describe the initiation and growth of damage in plain woven fabrics. A progressive failure analysis of

plain woven fabrics subjected to inplane loading has been undertaken and the results compared with ana-

lytical/experimental results in literature. Plain weaves, when subjected to tension exhibit an almost linear
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behavior prior to failure. The dominant failure mechanism is transverse tensile failure of the fill for a plain

weave loaded in the warp direction. Such failure causes a reduction in the stiffness of the plain weave and

is reflected as a "knee%# in the stress-strain plot. Plain woven fabrics exhibit a non-linear behavior when

subjected to inplane shear. This nonlinear behavior is mainly due to the shear softening of matrix in the

yarns. Failure of matrix in warp due to inplane shear and transverse tensile failure of the fill are prime

mechanisms of failure under such loading conditions.
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APPENDIX

Damage Mechanics Based Constitutive Laws

A continuum damage mechanics based model is used for representing the behavior of brittle materials.

If internal damage variables be represented as ωα, (such as average crack densities [15]), one can write the

Clausius-Duhem inequality as

σ dε - ρdψ =dφ ≥ 0; (A1a)

where, σ,  ε  are stress and strain vectors, respectively and ρ is the density

σ = σ [ε, ωα; α = 1, 2, …k]

k = total number of damage variables

ψ = ψ [ε, ωα], Helmholtz free energy

σ ρ ∂ψ
∂εi

i

= (A1b)

φ = φ (ε, ωα), the dissipated energy density

d R d
k

φ ω
α

α α= ∑ ≥
=1

0 (A1c)

Rα = conjugate thermodynamic force, an energy release rate for the

damage variable ωα = Rα (ε, ωα)
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= − =ρ ∂ψ
∂ω

∂φ
∂ωα α (A1d)

In the strain energy dissipation (SED) concept employed in [17], there is one damage variable (k = 1)

which is the dissipated energy density φ (=ω1) and for this case one may choose the following form for the

Helmholtz free energy

ρψ ε ε ε φ φ
φ

= − I1
2

C R dij i j
o

c

,0 5 (A2)

where φc is the current value of φ and Cij are the elastic stiffnesses in contracted notation. It follows from

the expression for R1 = R in (A1d) then for damage growth to occur

R ε φ,0 5 = 1 (A3)

which defines the damage surface (for a given value of φ) in the strain space and when R (ε φ, ) < 1, no

damage growth would occur. It is clear that the dissipated energy is a function of the strain variables inde-

pendent of the loading path and unloading will occur in a straight line from the current strain state to the

origin (Figure A1). Obviously, these assumptions have to be checked by conducting tests and it has been

reported [17] that data justify these assumptions.

The damage surfaces have to be determined by suitable designed tests, so that in-situ behavior of the

unidirectional composite or the matrix in a structure or a laminate can be modeled using these surfaces. A

special test apparatus is described in [17] for determining the surfaces in a three-dimensional strain space

(in-plane extensional and shear stresses) from tests on (±θ)ns laminate specimens. Data from standard ten-

sions and compression tests (±θ)ns and (0/90)ns coupons as well as those from a quasi-isotropic laminate

with a hole are used in [18] to obtain simple representations of damage surfaces in the same strain space.

Such results are useful for modeling laminate behaviors. No representation of R in a six-dimensional strain

space is reported in literature. Some simple forms are discussed next.
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Figure A1.  Helmholtz Free Energy  and Dissipated Energy φ

DAMAGE SURFACES FOR TRANSVERSELY ISOTROPIC MATERIAL

For a fiber composite which is transversely isotropic in the elastic state, one can write the Helmholtz free

energy in the following form.

ρψ ε ε ε ε

ε γ γ γ

ε φ φ
φ

= + +

+ + + +

−I

1

2
211 1

2
12 1

2

2
23
2

12
2

13
2

C C k

G G

R d

s s

T d A

o

2 7 2 7
1 6,

(A4a)

where

ε ε ε
ε ε ε

s

d

= +
= −

2 3

2 3
(A4b,c)

k is the plane strain bulk modulus and GA and GT are the axial and transverse shear moduli, respectively.

The stresses are given by
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σ ρψ
ε

σ σ ρψ
ε

σ σ ρψ
ε

τ ρψ
γ

τ ρψ
γ

τ ρψ
γ

1
1

2 3
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12
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23
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∂
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∂
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= ∂
∂

= ∂
∂
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∂

( )

( )

( )

( )

( )

( )

s

d (A4d-i)

Based on the assumption of a quadratic interaction criterion in terms of stresses, one may choose the

following form of R for zero (damage initiation) to moderate values of the dissipated energy density

R a b

a b

a a

s s

d

ε φ φ φ ε ε

φ φ ε ε

φ ε γ φ γ γ

, ( ) ( )sgn

( ) ( )sgn

( ) ( )

* *2

* *2

0 5 = B
= B

3 8 3 8

= +

+ +

+ + + +

1
2 11 11 1 1

22 22

44
2

23
2

66 12
2

13
2

(A5a)

where

ε ε α ε
ε ε α ε

α
α

1 1 12

21 1

12 12 11

21 12

*

*

/

/

= +
= +
=
=

s

s s

C C

C k

(A5b-e)

Use of (A4a-i) yields a transversely isotropic material with the following values of reduced stiffnesses in

the damaged state for the current value of φ.

C C A B A B

C C A B A B

k k A B A B

C G A

C G A

s

s

s

T

A

11 11 11 11 1 22 22 21
2

12 12 11 11 1 12 22 22 21

22 22 11 11 1 12
2

44 44
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* * *

* * *

* * *

*

*

( ) ( )sgn ( ) ( )sgn

( ) ( )sgn ( ) ( )sgn

( ) ( )sgn ( ) ( )sgn

( )

( )

= − + − +

= − + − +

= − + − +

= −

= −

φ φ ε φ φ ε α

φ φ ε α φ φ ε α

φ φ ε φ φ ε α

φ

φ

3 8 3 8
3 8 3 8

3 8 3 8 (A5f-j)
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where

A B a b dij ij ij ij( ), ( ) ( ), ( )φ φ φ φ φφ= I0 3 8 (A5k)

For small to moderate values of φ, it is possible to use the following representations for the losses in vari-

ous stiffnesses in (A5f-k) and (A5m) to match test data for in-situ softening observed in (±θ)ns and other

laminate layups.

A B C

A A B k

A G

A G

n

n

T
n

A
n

11 11 11 1

22 22 22 2

44 4

66 6

1 1

2 1 1

1 1

1 1

1

2

4

6

( ) ( ) /

( ) ( ) ( ) /

( ) /

( ) /

φ φ φ φ

φ φ φ φ φ

φ φ φ

φ φ φ

± = − +á
! 

"
$#

= + = − +á
! 

"
$#

= − +á
! 

"
$#

= − +á
! 

"
$#

± −

+ −

−

−

±

+

3 8

3 8

3 8

3 8

(A6a-d)

It may be noted that these representations are adequate when the stress-strain relations are of the power

law type after the onset of damage. Also, (A6b) and (A5h) imply that the material behaves elastically under

hydrostatic compressive stress, i.e. σ2 =  σ3 = p. These assumptions may not be adequate for large values

of φ. From test data for AS4/3501-6 laminates reported in literature, it appears that the following parame-

ters should yield reasonable fits to the laminate responses when φ  is not large.

n in lb in

n in lb in

n in lb in

n in lb in

n in lb in

1 1
3

1 1
3

2 2
3

4 4
3

6 6
3

2 576 4812

1372 2810

2 538 22 68

0 287 1140

0 478 14 86

+ +

− −

+ +

= =
= =
= =
= =
= =

. , /

. , /

. , . /

. , . /

. , . /

φ
φ
φ
φ
φ

DAMAGE SURFACES FOR AN ISOTROPIC MATERIAL

In addition to the unidirectional fiber composites in wavy forms, textile composites contain matrix

pockets, which are also brittle and will undergo stiffness loss with increasing strain.  The Helmholtz free

energy for such materials is chosen in the following simple form based on the principles of damage me-
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chanics and assumptions similar to those used for the damage surfaces (in the previous sub-section) for

fiber composites.

ρψ ε γ ε φ φ

γ ε ε ε γ γ γ

φ
= + −

= ′ + ′ + ′ + + +

I1

2

2

2 2

2
11

2
22
2

33
2

12
2

23
2

13
2

K G R dv eff o

eff

,1 6
2 7

(A7a,b)

where K is the bulk modulus, G is the shear modulus.

ε ε ε ε

ε ε ε

γ

v

ij ij v

ij

i j

i j

= + +

′ = − =

= ≠

11 22 33

3

,

/ ;( ),

; ( )

volumetric strain

deviatoric strains

shear strains

(A7c-e)

R ε φ,0 5 = 1 (for damage growth to occur) (A7f)

(A7f) define the damage surfaces for various values of φ  and no damage growth will occur if R ε φ,0 5 < 1.

The simplest form of R( , )ε φ , which may be chosen is of the following form

R a b a

R d A B A

v v v v s eff

v v v v s eff

( , ) ( ) ( )sgn ( )

( , ) ( ) ( )sgn ( )

ε φ φ φ ε ε φ γ

ε φ φ φ φ ε ε φ γφ

= + +

I = + +

1
2

1

2

2 2

0
2 2

1 6

1 6
(A8a,b)

Substitution of (A8b) in (A7a) and use of (A7g-i) yield the following expressions for stresses

σ φ φ ε φ ε δ

φ ε

τ φ γ

ij v v v s v ij

s ij

ij s ij

K A B G A

G A i j

G A i j

= − + − −%&'
()*

+ − =

= − ≠

( ) ( )sgn ( )

( ) ;

( ) ;

1 6 1 6
1 6

; @

2

3

2 (A8c,d)

It is clear that the damaged material behaves as an isotropic material with a reduced bulk modulus of

K A Bv v v− ±( ( ) sgn )φ φ ε1 6< A  and a reduced shear modulus of G As− ( )φ; @. If the material is assumed to

behave elastically under hydrostatic compression then one may choose B AV V( ) ( )φ φ= . Power law type

relations, similar to those discussed in the previous sub-section can again be chosen for AV  and AS .
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Note: The constitutive laws described above are used in the UMAT subroutine as described in the text. As

evident from the average stress-strain plots of the fabric composites, the values of dissipated energies are

not too large as compared to the stored energy (maximum values are of the order of 20%). It should be

pointed out that when dissipated energies become large, the materials may no longer behave in transversely

isotropic or isotropic fashion [17]. For the types of problems under consideration, however, the simple rep-

resentations given here appear to be adequate.

The parameters needed for modeling stiffness losses (as in (A6b-d)) for unidirectional composites are

obtained from stress-strain responses of unidirectional or laminated composites determined from standard

coupon type tests. Parameters in (A6a) are chosen for an assumed softening pattern in the fiber direction.

Ideally, they should be determined from tests on a laminate coupon with a hole. Parameters in (A8c,d) are

obtained from tension, compression and shear tests on bulk epoxy material.
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Table 1
Material properties of the yarns

Material E11

GPa
(Msi)

E22

GPa
(Msi)

νννν12 νννν23 G12

GPa
(Msi)

G23

GPa
(Msi)

AS4/Epoxy 3501

( y
fV  = 0.64) [3]

144.80
(21.0)

11.73
(1.70)

0.230 0.30 5.52
(0.8)

3.3
(0.47)

E-Glass/Epoxy

( y
fV =0.65) [9]

48.47
(7.03)

18.06
(2.62)

0.25 0.34 5.58
(0.81)

3.31
(0.48)

AS4-Carbon/Epoxy 3501

( y
fV  = 0.70) [8]

155.83
(22.60)

10.13
(1.47)

0.24 0.5 5.72
(0.83)

3.38
(0.49)

Carbon/Epoxy

( y
fV

 
= 0.6) [6]

135.27
(19.61)

9.65
(1.40)

0.28 0.43 5.37
(0.78)

3.38
(0.49)

Epoxy 3502 [8] 3.79
(0.55)

3.79
(0.55)

0.35 0.35 1.38
(0.20)

1.38
(0.20)
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Table 2
Comparison of present results with analytical and experimental studies

Textile Ex

GPa
(Msi)

Ez

GPa
(Msi)

ννννxy ννννzx Gxy

GPa
(Msi)

Gxz

GPa
(Msi)

Present 62.33
(9.04)

11.84
(1.72)

0.060 0.420 4.7125
(0.68)

3.85
(0.56)

Experimental [3] 61.92
(8.98)

- 0.110 - - -

AS4/Epoxy
Plain weave

( o
fV  = 0.64)

FEA [3] 63.78
(9.25)

11.38
(1.65)

0.031 0.329 4.82
(0.69)

4.97
(0.72)

Present 66.09
(9.58)

11.75
(1.70)

0.050 0.410 4.17
(0.60)

3.85
(0.56)

Experimental [3] 69.43
(10.06)

- 0.060 - 5.24
(0.76)

-

AS4/Epoxy
5-harness satin

( o
fV  = 0.64 )

FEA [3] 65.99
(9.57)

11.38
(1.65)

0.030 0.320 4.96
(0.72)

5.03
(0.73)

Present 66.99
(9.71)

11.57
(1.67)

0.045 0.37 4.462
(0.65)

3.99
(0.57)

Experimental [3] 72.19
(10.47)

- 0.06 - 6.76
(0.98)

-

AS4/Epoxy
8-harness satin

( o
fV  = 0.64 )

FEA [3] 66.74
(9.68)

11.45
(1.66)

0.03 0.32 4.96
(0.72)

5.03
(0.73)
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Table 3
Geometrical Properties of Yarns

Material Yarn
width

mm (in.)

Yarn thickness
mm (in.)

Yarn spacing
mm (in.)

y
fV o

fV

E-Glass/epoxy [9] 1.747

(0.068)

0.268

(0.010)

1.747

(0.068)

0.65 0.35

AS4-Carbon/epoxy [8] 1.760

(0.069)

0.129

(0.005)

1.760

(0.069)

0.70 0.60

Carbon/epoxy [6] 2.499

(0.0984)

0.109

(0.0043)

2.499

(0.0984)

0.63 0.50


