The following author(s) request authority to disclose the following presentation in the MORSS Final Report, for inclusion on the MORSS CD and/or posting on the MORS web site.

Name of Principal Author and all other author(s): Norman L. Reitter

Principal Author’s Organization and address:
Concurrent Technologies Corporation (CTC)
100 CTC Drive
Johnstown, PA 15904

Phone: 814-269-2516
Fax: 814-269-2727
Email: reittern@ctc.com

Original title on 712 A/B: Transportation Capacity Planning: Establishing a Five-day Planning Horizon to the Last Tactical Mile

Revised title: __

Presented in (input and Bold one): (WG_X_, CG___, Special Session ___, Poster, Demo, or Tutorial):

This presentation is believed to be
UNCLASSIFIED AND APPROVED FOR PUBLIC RELEASE
Title: Transportation Capacity Planning: A Five-day Horizon to the Last Tactical Mile

Author: Concurrent Technologies Corporation (CTC)

Performing Organization: Johnstown, PA 15904

Date: 21 Jun 2005

Report Number: N/A

Abstract: See also ADM201946, Military Operations Research Society Symposium (73rd) Held in West Point, NY on 21-23 June 2005. The original document contains color images.

Subject Terms:

Security Classification:
- **Report:** unclassified
- **Abstract:** unclassified
- **This Page:** unclassified

Limitation of Abstract: UU

Number of Pages: 23

DISTRIBUTION/AVAILABILITY STATEMENT: Approved for public release, distribution unlimited.
Transportation Capacity Planning: A Five-day Horizon to the Last Tactical Mile

Norman L. Reitter, Principal Logistics Engineer
Donald Spidahl, Senior Logistics Specialist
Captain Eric Wolf, USMC, Logistics Operations Analyst
Captain Bryan Hatfield, USMC, Logistics Operations Analyst

June 21, 2005
Presentation Agenda

- Stakeholders
- Problem Definition
- Approach for Development and Analysis
- Observations
Stakeholders

- Coordinated by USMC Headquarters
 - LtCol Robert Rackham, Technical Point of Contact
 - Logistics Capabilities Center
 - Mr. Steve Thien, Distribution Branch Head
 - Logistics Studies and Analysis
 - Capt Eric Wolf,
 - Capt Bryan Hatfield

- Stakeholders in the Marine Forces
 - I, II, and III Marine Expeditionary Forces
 - Marine Forces Reserve

- Managed and Executed by Concurrent Technologies Corporation (CTC)
 - Mr. Norm Reitter, Project Manager
TCPT: An Innovation from the Expeditionary Warfare Logistics Testbed

- The Expeditionary Warfare Logistics Testbed (EWLT) Initiatives
 - Refines future planning capabilities through prototype development and assessment in an Applied Research & Development (AR&D) environment
 - Supported by a Web-enabled application for collaboration (http://ewlt.ctc.com)

- The Transportation Capacity Planning Tool (TCPT)
 - Represents first prototype developed as an EWLT initiative
 - Provides online decision support for transportation planning application
 - Affords desired transportation capacity awareness and planning over the USMC “last tactical mile”
 - Undergoing user validation in OIF
Distribution Network Characteristics
Magnify the Transportation Problem
Operation Iraqi Freedom I
Distribution Network Characteristics
Magnify the Transportation Problem
Operation Iraqi Freedom II & III
The USMC Transportation Planning Problem during OIF

• Transportation planning problems are not new

• The USMC experienced multiple transportation challenges during Operation Iraqi Freedom (OIF), including:
 - Inability to visualize capacity based on available resources and upcoming demands
 - Difficulty managing transportation taskers from initial entry through allocation and assignment, resulting in inability to make “capable to promise” determination
 - Lack of complete situational awareness of transportation resources through mission execution

• The USMC needed a near-term transportation capacity planning prototype to do the following:
 - Address an immediate need for improved awareness and planning
 - Gather feedback for future planning tool acquisition
The Need for Enhanced Decision Support

- Improved **situational awareness** for Logistics Command and Control
 - View of capacity, resources, and mission status
- **Flexibility** to alter the plan and see the impact of overall planning quality
- Reduce **planning cycle time**
 - Increase the amount of planning time to improve “capable to promise” answers
- Increase **delivery reliability**
 - Ensure delivery dates and times are met at the desired location
- Increase **resource efficiency**
 - With a desired level of effectiveness
Approach for Development and Analysis

1. Define Transportation Capacity Planning Process
 - Critical activities
 - Information flow
 - Measures of effectiveness

 - Routine validation through spiral development

3. Provide Convoy Allocation Course of Action Planner
 - Using COTS solver provided by Insight, Inc.
 - Define problem
 - Modify solver
 - Develop COA capability
 - Implement in TCPT

4. Assess Quality of Decision Support Solution
 - Solution validation
 - Input/Output testing
 - User validation

USMC validation
Transportation Planning Events

TCM Battle Rhythm
Execute
Monitor
Update
24 Hour Cycle

Mission Commander Plans Complete
Personnel/Equipment Availability Set
Personnel/Equipment Resources Assigned
Run Roster Set
Taskers Allocation Complete
Transportation Planning Flow in TCPT

Transportation Planning Process in TCPT

- input into next step / information flow in TCPT
- by exception input

24 hour cycle

Higher Headquarters Order Manager
- Define Movement Tasks

Future Operations Planner
- Estimate Future Tasker/Load/Convoy Allocation

Current Operations Planner
- Set Current Tasker/Load/Convoy Allocation

Motor Pool Chiefs
- Estimate Operator Availability
- Estimate Transporter Availability

Mission Commander
- Assign Operators and Transporters to Convoys
- Monitor Mission
- Execute Mission

TCPT GUI
- Manage Tasks
- Provide Capacity View
- Track and Display Mission Statuses

TCPT DB
- Collect Resource Availability Data
- Collect Transportation Demand Data

Solver
- Provide COA Comparison (allocation optimization)
Information and Product Flow in TCPT
Transportation Capacity Planning Tool Components
Convoy Allocation Problem

• The objective is to minimize total equipment distance driven over the planning horizon determined by the input tasker set.

• The solver considers physical and policy constraints, including:
 - Tasker source and destination
 - Time windows
 - Tasker priorities
 - Minimum and maximum number of vehicles per convoy
 - Minimum and maximum number of convoys allowed in plan
 - Maximum distances, times, and stops per convoy
 - Route distances and times
 - Unload times
Convoy Allocation Planner Solution

1. Read taskers, equipment availability, solver parameters from the user-defined scenario

2. Conduct work/balance summary

3. Determine equipment allocated to each tasker

4. Build “least-cost” convoy plan

5. Allocate equipment and sources to convoys

6. Generate output to TCPT

7. Evaluate convoy utilization and seek to improve load utilization within convoys

8. Display course of action (COA) for user assessment, solve again, if needed, and follow with resource assignment
Convoy Allocation Planner Evaluation

- Understand user input issues and impact of Commercial-Off-the-Shelf (COTS) solver limitations on back-end solution enhancements
- Assess how tasker packaging definition impacts percent utilization based on solver output
 - Less than truckload vs. truckload taskers
- Assess the impact of time and distance costs on solution results
- Determine the impact of minimum and maximum convoy sizes for on-time deliveries and overall road times
 - Minimum convoy size input \{1, 15, 25, 50, 75\}
 - Maximum convoy size input \{25, 50, 75, 100, 125\}
Results

- Tasker packaging definition does impact convoy and load utilization
- Time and distance costs have little impact on solution output
- Lowest combined total on-the-road hours and number of vehicles observed with minimum convoy size of 50 and maximum size of 100
Next Steps

• Expand user base to all elements of I, II, III Marine Expeditionary Forces and the Marine Reserves for full evaluation

• Automate information feeds to extend transportation planning horizon

• Collect feedback on functional planning needs for rapid planning tool prototyping and assessment

• Improve decision support for distribution planning as identified by operational need and determined by acquisition plan
Observations

• AR&D provides substantial near-term benefits for the warfighter, while helping to reduce risk of future acquisitions.

• COTS advanced planning tools and techniques have a significant potential to harness the flow of information and improve inputs into the logistics planning process.

• Warfighter input is critical to successfully applying modeling and simulation tools for logistics decision support.

• The government should fully assess COTS modeling and simulation technology in an AR&D operational environment before acquiring “out-of-the-box” solutions.
TCPT Demonstration Points of Contact

HQMC LX Points of Contact
wolfes@hqmc.usmc.mil
hatfieldbc@hqmc.usmc.mil

CTC Points of Contact
reittern@ctc.com
spidahld@ctc.com
Questions?

\[
\sum_{s \in S_w} y_s + \omega_w - \overline{\omega_w} = 1, \forall w
\]

(1)

\[
\overline{CONVOY}_c \leq \sum_{s \in S_c} y_s + \overline{\chi_w} - \overline{\chi_w} \leq \overline{CONVOY}_c, \forall c
\]

(2)

\[
y_s \in \{0,1\}, \forall s
\]

(3)

\[
\omega_w, \overline{\omega_w} \geq 0, \forall w
\]

\[
\overline{\chi_w}, \overline{\chi_w} \geq 0, \forall c
\]

(4)

Minimize

\[
\sum_{s} COST_s y_s + \sum_{w}(WP_w \omega_w + \overline{WP_w \omega_w})
\]

\[
+ \sum_{c}(CP_c \overline{\chi_c} + \overline{CP_c \chi_c})
\]

(5)