Award Number: W81XWH-04-1-0153

TITLE: Producing a Mouse Model to Explore the Linkages Between Tocopherol Biology and Prostate Cancer

PRINCIPAL INVESTIGATOR: Paul Davis, Ph.D.

CONTRACTING ORGANIZATION: University of California, Davis
 Davis, CA 95616-8671

REPORT DATE: July 2005

TYPE OF REPORT: Final

PREPARED FOR: U.S. Army Medical Research and Materiel Command
 Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release;
 Distribution Unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
Producing a Mouse Model to Explore the Linkages Between Tocopherol Biology and Prostate Cancer

A mouse model of prostate cancer i.e. male C57/BL6 mice hemizygous for TRAMP and hetero or homozygous for tocopherol (TOC) transport protein (TTP) knockout was produced. C57/BL6 mice carrying the SV40 T antigen driven by the rat probasin promoter construct (TRAMP+) were bred with TTP knockout C57/BL6 mice, offspring with the desired sex and genotypes were raised on normal mouse chow. Animals were killed at multiple ages and GI tract, prostate pathology and plasma TOC contents were assessed.

The results showed no difference in tumor development between the different TTP genotypes and their associated altered plasma levels of aT and gT. These strongly suggested that a reduction of plasma (and presumptively tissue, though unmeasured in this study) tocopherol achieved by manipulating the levels of TTP does not accelerate the course of prostate tumor formation. This raises questions regarding the possible effectiveness of tocopherol supplementation as treatment strategy for prostate cancer with possible next steps using direct supplemental feeding studies of both different tocopherols as well as these tocopherols’ metabolites in a TRAMP model to assess their roles in the development and progression of TRAMP induced prostate tumors.
Introduction

Prostate cancer is the most common tumor in U.S. men with nearly 30,000 deaths and more than 215,000 new cases expected. The growth and development of prostate cancer is initially androgen-dependent, and androgen ablation therapies have been the most common treatment for metastatic prostate cancer since the early 1940’s[1, 2]. Whereas prostate cancer patients treated with androgen ablation therapy, clinical trials of both experimental and approved chemotherapeutic agents, the efficacy of chemotherapy has been seen as needing improvement [4]. Indeed, chemotherapeutic treatment of prostate cancer has an objective response rate of less than 10% and no demonstrated survival benefit in advanced disease [5]. Therefore, given the immense public health implications, identifying further effective chemopreventive and/or chemotherapeutic strategies against this disease would be extremely useful.

One such potential chemopreventative is the class of compounds collectively known as tocopherols which have attracted a great deal of recent clinical interest due to their widely recognized antioxidant properties[6]. The rationale for targeting tocopherol to prevent prostate cancer is that a link exists between inflammation, oxidation and cancer wherein inflammation imposes an oxidative stress[7] and there is increasing evidence that this plays an important role in prostate cancer development and/or progression [8, 9]. Finally evidence comes from the clinical studies which have shown that supplementation with micronutrient antioxidants such as α-tocopherol (αT) and Se decreases (albeit to a modest degree) the incidence of prostate cancer in humans [10] and reduced prostate cancer incidence by 63% compared to subjects given placebo, respectively[11]. The linkage of prostate cancer to the antioxidant αT intake has also been documented by Heinonen and coworkers[12, 13].

However the presumption that increasing solely αT intake, the treatment chosen for the SELECT human clinical trial, appears to conflict several recent epidemiological studies that have raised questions as to the exact identity of tocopherols responsible for the prostate cancer risk reductions noted [10, 14]. These epidemiological studies have reported that risk stratification by increasing αT alone shows no prostate cancer risk reduction. Rather there appears a more complicated relationship wherein increased αT levels are related to decreased prostate cancer risk but only in the context of “sufficient” levels of γT. This then raises concerns as to the use of αT only supplement[15]. A central element of this concern is it has been reported that increased αT intake reduces γT[16, 17] although interestingly the converse does not appear to be true, i.e. increased γT intake does not drive down αT, see for example [18]. Thus the potential for “perverse” effects as γT may decline upon supplementation with only αT and this may then actually increase prostate cancer risk.

Body

The investigation undertaken was designed to further define tocopherol molecules/ molecular targets/mechanisms that mediate the effect of tocopherols on prostate cancer. To do so, we crossbreed mice bearing the TRAMP construct with a tocopherol transport protein (TTP) knockout transgenic mouse.

TRAMP mouse has become a popular preclinical model for studying chemoprevention of PCa as it exhibits similarities with human prostate cancer, including epithelial origin, progression from the PIN stage to adenocarcinoma, and metastasis by a transgene that is hormonally regulated by androgens. The prostate-specific expression of the SV40 large T/t antigen (Tag) leads to spontaneous evolution of intraepithelial hyperplasia and dysplasia, high grade PIN, and well-differentiated PCa by 10–12 weeks of age. Increasingly well characterized model of human prostate cancer, the TRAMP mouse[19]. By using this animal model, we will facilitate the extrapolation of the data obtained to human prostate cancer. However the time course appears dependent on the genetics of the mice as the development of PC in C57/bl6 x C57/bl6 is significantly slower than that found in the more typically reported C57/bl6 × FVB crosses. However, these early prostatic lesions display a high degree of histological resemblance to human PIN and PCa and TRAMP mice have been used to demonstrate antitumorigenic effects of multiple compounds and treatments including green tea polyphenols[20], and dietary restriction[21, 22].

KEY RESEARCH ACCOMPLISHMENTS

- Production of male TTP-/- TRAMP + mouse C57/bl6 x C57/bl6 model for prostate cancer.
- Long term observation of chow fed hetero (TTP-/+) and homozygote TTP-/- TRAMP + male mice
- Assessment of tumor development and plasma tocopherol (both α and γ) levels in relation to age of mouse.

REPORTABLE OUTCOMES

Breeding

Over the course of the project, we crossed TTPKO C57/bl6 males with TTPKO heterozygote females carrying TRAMP+, using this approach we obtained 255 births. Of those, 53% were male mice. Of the male mice, 48% were TRAMP+. Of the TRAMP+ males, 60% were TTP heterozygotes while 40% were TTP homozygotes. This 60/40 split between TTP heterozygotes and homozygotes occurred in both males and females irrespective of TRAMP status. There were no statistical differences in the distribution of the ages amongst the homozygote and heterozygote TTP mice (p>0.78)

Plasma tocopherol levels

We analyzed the plasma obtained from both the heterozygote and homozygote TTP KO/Tramp males. The results are presented in Table 1 and are similar to those reported earlier by our laboratory [23, 24] and indicate that the plasma levels of αT decline by 10X when TTP is completely removed and γT declined as well going below the detection limit of the HPLC based assay in the case of the TTP -/- TRAMP+ animals.
<table>
<thead>
<tr>
<th></th>
<th>αTocopherol (µM)</th>
<th>γTocopherol (µM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heterozygote TTP TRAMP+</td>
<td>2.35 ±0.20</td>
<td>0.03 ± 0.003</td>
</tr>
<tr>
<td>Homozygote TTP TRAMP+</td>
<td>0.16 ±0.015</td>
<td>Below detection limit</td>
</tr>
</tbody>
</table>

Bodyweight

The effect of the genomic constructs on bodyweight as a function of age is presented in Figure 1. As can be seen, there is virtually no effect of TTP status on bodyweight as a function of age, as the heterozygote and homozygote TTP+TRAMP mice bodyweights are indistinguishable (p>0.62).

Sex pluck weight

The effect of the genomic constructs on sex pluck weight (prostate and seminal vesicles) weight as a function of age is presented in Figure 2. As can be seen, there is virtually no effect of TTP status on tumor (sexpluck) as a function of age, as the heterozygote and homozygote TTP+TRAMP mice tumor (sexpluck) are indistinguishable.

Statistical analysis of the sex pluck weight upon grouping by TTP status showed no statistically significant differences (p>0.50) between the TTP +/- and the TTP+/+ mice. There were however statistically significant differences (p<0.005) between TTP +/- and
TTP+/- mice and the sex pluck weights of nonTRAMP TTP +/- mice (n= 7) (3.58 versus 3.37 versus 1.12) when analysis was restricted to sex pluck weights using a limited age range distribution. The restriction in ages compared was necessary as the nonTRAMP TTP +/- were sacrificed at a restricted age range (199±2 days old; mean ± SD) compared to the TTP/TRAMP mice.

Pathology and histopathology
Very limited both in numbers and types of pathology were examined given the preliminary nature of the project and the extended period of time required to allow tumor development. Upon dissection, tumors presented as enlarged GU with a typical spherical gross appearance. There was significant hypertrophy of the seminal vesicles with multiple patches of enlarged prostate tissue evident with occasional areas of necrosis in the older mice[25] One mouse’s tumor was noted to have developed its own blood supply. Histopathology of selected mice GU also revealed the normal and anticipated range of histopathologic findings that have been documented as present in C57/bl6 x C57/bl6 TRAMP crosses[26].

Conclusions
The results strongly suggest that a reduction of plasma (and presumptively tissue, though unmeasured in this study) tocopherol achieved by manipulating the levels of TTP by breeding TTP knockout animals with TRAMP mice does not accelerate the course of prostate tumor formation. The results demonstrated that heterozygote and homozygote TTP had the same sex pluck size and growth rate. These results are unexpected as it was anticipated that lowering plasma tocopherol in a stepwise fashion with heterozygote TTP knockout and then homozygote TTP knockout would accelerate tumor growth in a stepwise fashion with the intermediate tocopherol level producing a tumor production above that seen in TRAMP and TTP homozygote producing a much more drastic decline in tocopherol with resulting added increment of tumor production. The results clearly contradict this as they show no relationship between tumor developments as assessed by sex pluck weight between the different groups tested here. In addition comparison of the results documented here to those reported by Suttie and coworkers shows that the sex pluck weight increases are comparable to those obtained in their control C57/Bl6 x C57/BL6 TRAMP crosses[22]. One potential ramification of these findings is the suggestion that tocopherol levels achieved on a control diet in the TRAMP model of Suttie and coworkers are already below that where tocopherol exerts an inhibitory effect on tumor formation. These results also suggests that as lowering plasma tocopherol does not accentuate tumor production, the control points for tumor production are unaffected by low tocopherol, and are already maximally turned on in the TRAMP mice. Of note concerning the model, the tocopherol model as used does not in fact represent tocopherol deficiency as would be produced by removing tocopherol from the diet but represents the decline in only the parent tocopherols tissue and plasma levels. That is it would seem likely that the metabolites of the parent compounds, would if anything increase in the face of the absence of TTP which is not the case with tocopherol deficiency produced by reduced tocopherol intake. This difference in combination with the absence of any differential effects between the TTP hetero and homozygotes suggests that the contention of Azzi and coworkers that carboxyethyl hydroxychroman metabolites are as effective as their vitamin precursors to inhibit PC-3 growth by specific down-regulation of cyclin expression [27] may not be applicable in vivo. However caution should be taken in pushing these preliminary results too far. One concern is that the numbers of animals are relatively small and the potential for missing subtle effects is elevated. Based on their experience Hurwitz and coworkers have suggested that <25 mice per treatment cohort would be required to identify a statistically significant 15 percent difference in mean tumor size within an 80% confidence interval [25]. This requirement for large cohorts in the TRAMP model is a result of the sizable stochastic differences in rates of tumor growth and differing characteristics of tumor formation that have been documented between between the C57BL/6 T RAMP x FVB/N (TRAMPI) mice and the pure C57BL/6 TRAMP and differences that might be expected when other mice are bred with TRAMP.

In summary, the data obtained suggest that tocopherol levels as established by TTP activity are not able to affect prostate cancer in a chow fed TRAMP mouse model. This raises questions regarding the possible effectiveness of tocopherol supplementation as treatment strategy for prostate cancer. Possible next steps might include direct supplemental feeding studies using both different tocopherols as well as these tocopherols’ metabolites in a TRAMP model to assess the role of the various tocopherols themselves versus their metabolites in the development and progression of TRAMP induced prostate tumors.

REFERENCES

BIOGRAPHICAL SKETCH

Provide the following information for the key personnel in the order listed on Form Page 2. Photocopy this page or follow this format for each person.

<table>
<thead>
<tr>
<th>NAME</th>
<th>POSITION TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paul Davis</td>
<td>Research Nutritionist</td>
</tr>
</tbody>
</table>

EDUCATION/TRAINING *(Begin with baccalaureate or other initial professional education, such as nursing, and include postdoctoral training.)*

<table>
<thead>
<tr>
<th>INSTITUTION AND LOCATION</th>
<th>DEGREE (if applicable)</th>
<th>YEAR(s)</th>
<th>FIELD OF STUDY</th>
</tr>
</thead>
<tbody>
<tr>
<td>University of Michigan, Ann Arbor</td>
<td>BSc</td>
<td>1974</td>
<td>Chemistry</td>
</tr>
<tr>
<td>University of Michigan, Ann Arbor</td>
<td>MS</td>
<td>1976</td>
<td>Biol Chem</td>
</tr>
<tr>
<td>University of Michigan, Ann Arbor</td>
<td>PhD</td>
<td>1980</td>
<td>Biol Chem</td>
</tr>
</tbody>
</table>

RESEARCH AND PROFESSIONAL EXPERIENCE: Concluding with present position, list, in chronological order, previous employment, experience, and honors. Include present membership on any Federal Government public advisory committee. List, in chronological order, the titles, all authors, and complete references to all publications during the past three years and to representative earlier publications pertinent to this application. If the list of publications in the last three years exceeds two pages, select the most pertinent publications. **DO NOT EXCEED TWO PAGES.**

1979-1982 Postdoctoral Scholar, Donner Lipoprotein Center with T. Forte
Lawrence Berkeley Laboratory, University of California Berkeley
1982-1986 Postdoctoral Fellow / Assistant Research Biochemist, Division of Pulmonary Medicine, Dept. of Internal Medicine, University of California, Davis
1986- 1993 Assistant Research Biochemist, Division of Clinical Nutrition and Metabolism, Dept. of Internal Medicine, University of California, Davis
1993- 1999 Associate Research Biochemist, Division of Clinical Nutrition and Metabolism, Dept. of Internal Medicine, University of California, Davis
1995- 2000 Associate Research Nutritionist, Dept. of Nutrition
University of California, Davis
1996- 1998 Technical Supervisor, Clinical Nutrition Research Unit Lipid Metabolic Subcore, Division of Clinical Nutrition and Metabolism, Dept. of Internal Medicine University of California, Davis
1998- 2003 Academic Administrator, California Cancer Research Program, Dept of Epidemiology and Preventive Medicine
University of California, Davis
2004- 2005 Research Biochemist, Dept of Internal Medicine
University of California, Davis
2000- Present Research Nutritionist, Dept. of Nutrition
University of California, Davis

MEMBERSHIPS/HONORS
Fellow, Arteriosclerosis, Thrombosis and Vascular Biology Council, American Heart Association, Member, American Society for Nutritional Sciences, American Chemical Society, American Association for the Advancement of Science

PUBLICATIONS (from 87 total)

42. 2003 Schneeman BO, Burton-Freeman B, and Davis PA. Incorporating dairy foods into low and high fat diets increases the postprandial cholecystokinin response in men and women. Journal of Nutrition 133:4124-4128.
44. 2004 Borchers AT, Davis PA, and Gershwin ME. The asymmetry of existence: do we owe our existence to cold dark matter and the weak force? Experimental Biology and Medicine 229:21-32.

