Author Request (To be completed by applicant) - The following author(s) request authority to disclose the following presentation in the MORSS Final Report, for inclusion on the MORSS CD and/or posting on the MORS web site.

Name of Principal Author and all other author(s): Jeffrey R. Cares

Principal Author’s Organization and address:
Alidade Incorporated
31 Bridge Street
Newport, RI 02840

Phone: 401-367-0040
Fax: 401-633-6420
Email: jeff.cares@alidade.net

Original title on 712 A/B: Sense and Respond Logistics

Revised title: Adaptive Logistics: Complexity and Adaptation

Presented in (input and Bold one): (WG19, CG___, Special Session ___, Poster, Demo, or Tutorial):

This presentation is believed to be:
UNCLASSIFIED AND APPROVED FOR PUBLIC RELEASE
Adaptive Logistics: Complexity and Adaptation

Alidade Incorporated
31 Bridge Street
Newport, RI 02840

Approved for public release, distribution unlimited

16. SECURITY CLASSIFICATION OF:
 a. REPORT unclassified
 b. ABSTRACT unclassified
 c. THIS PAGE unclassified

17. LIMITATION OF ABSTRACT UU

18. NUMBER OF PAGES 17

19a. NAME OF RESPONSIBLE PERSON

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18
Adaptive Logistics
Complexity and Adaptation

Jeffrey R. Cares
73rd MORSS
Agenda

• Introduction
• Network Fundamentals
• Complex Control Fundamentals
• Sense and Respond Logistics
Introduction

• **Adaptive Enterprise/S&R Organization**
 – Mostly theoretical
 • No working model
 – Complexity in the footnotes
 • Not fully developed

• **Research Effort**
 – Translate S&R Theory to the next level of specificity
 – More fully develop scientific basis
Research Areas

- Logistics/Supply Chain Theory
- Adaptive Enterprise/S&R Concept
- Network Flows and Graphs
 - Scale Free Networks (c. 1999-2005)
- Multi-scale Representations
- Diffusion of Innovations
- Social Network Analysis
- Complex Control Theory
- Physics of Information

Every claim in this presentation can be scientifically validated!
Central Ideas

• Exploitable properties of Complex Networks
 – Hubs/Spokes with skew distribution
 – Tipping Points in dynamic structure

• Networks better than chains in complex environments
 – Requisite Variety, Complex Control Theory

• Demand as complex network control signal

Demand Networks v. Supply Chains
Erdös Connectivity Profile

![Graph showing the Erdös Connectivity Profile with axes labeled as follows:
- Y-axis: Number of Buttons Connected
- X-axis: Ratio of Strings to Buttons
The graph demonstrates a sigmoidal relationship where the number of buttons connected increases rapidly as the ratio of strings to buttons approaches a critical value.]
Some Facts About Networks

- **Minimally Connected Network**
 - Too brittle, long CPL, poor clustering, simple pattern, simple control, scaled

- **Maximally Connected Network**
 - Robust, short CPL, too clustered, simple pattern, complex control, scaled

- **Regular Network (Lattice)**
 - Robust, long CPL, high cluster, simple pattern, simple control ($<k> < 5$), scaled

- **Erdös Random Network**
 - Brittle, short CPL, low cluster, random pattern, complex control, scaled

- **Small World Network**
 - Robust, short CPL, high cluster, complex pattern, complex control, less scaled

- **Random Network with Growth**
 - Less brittle, short CPL, low cluster, random pattern, complex control, less scaled

- **Network with Preferential Attachment**
 - Robust, short CPL, low cluster, complex pattern, complex control, scale free
Chains v. Networks

Supply Chain

Too brittle, long paths, low clustering, simple pattern, simple control, scaled

“business end” most poorly connected, hard to reconfigure or change flow

Demand Network

Very robust, short paths, low clustering, complex pattern, complex control, scale free

“business end” best connected, natural to reconfigure or change flow
Chains v. Networks

Scale may dramatically affect this comparison.
Chains v. Networks w/ Uncertainty

Network

Acceleration inherent in network design

Chain

Acceleration might not be possible (e.g., bottlenecks, etc.)

Commodity Delivered

Dramatic Change

t
...About Optimization

Makespan and Slack Time

\[
P(\text{Completing "Make" without Failure})
\]

[Graph showing the probability of completing the make process without failure as a function of time.]
Supply v. Demand

- “Supply” perspective rooted in Industrial Age Logistics
 - Paragon is WalMart Model
 - Focus is on decreasing time or cost of delivery
 - Using IT to refine the supply chain by shortening the chain (disintermediation) and better prediction
 - Still has an upper limit of efficiency
 - Would function poorly under the type of uncertainty and scales we see in combat operations

- “Demand” is the real control signal
 - Closely related to Commander’s Intent
 - Intimately related to unfolding battlefield operations
Supply v. Demand w/ Uncertainty

- Supply process requires great predictability
 - Depends on statistics of stability
 - Lagged reaction to dramatic changes

- Demand
 - We have the best insight on the control signal
 - S&R becomes a “learned response”
 - Enemy has the hardest task of the Information Age: determining our demand signal by observation
Adaptive Logistics

• Demand *Networks* rather than Supply *Chains*
 – Turn units in the main effort into nodes of preferential attachment
 – Quickly reconfigure network and hubs as situation unfolds

Unit-to-Unit (U2U) Logistics with scale-free units of issue vital (modularity)
Adaptive Logistics

• *Demand Networks* rather than *Supply Chains*
 – Closely tie logistics to operations through Commander’s Intent
 – Obscure the intent with a distributed logistics train while operating without a centralized dump
 – Adaptive Learning v. Reactive Planning
Questions?