Author Request (To be completed by applicant) - The following author(s) request authority to disclose the following presentation in the MORSS Final Report, for inclusion on the MORSS CD and/or posting on the MORS web site.

Name of Principal Author and all other author(s):

Pete Bulanow
Steve Wilcox, Ph.D.

Principal Author’s Organization and address:

Northrop Grumman Information Technology
2100 Washington Boulevard
Arlington, VA 22204

Phone: 703-312-2394
Fax: 703-312-2780
Email: pete.bulanow@ngc.com

Original title on 712 A/B: Inducing Stochastic Behavior in a Deterministic Model

Revised title:___

Presented in (input and Bold one): (WG 24 & 26, CG___, Special Session ___, Poster, Demo, or Tutorial):

This presentation is believed to be:
UNCLASSIFIED AND APPROVED FOR PUBLIC RELEASE
<table>
<thead>
<tr>
<th>1. REPORT DATE</th>
<th>2. REPORT TYPE</th>
<th>3. DATES COVERED</th>
</tr>
</thead>
<tbody>
<tr>
<td>22 JUN 2005</td>
<td>N/A</td>
<td>-</td>
</tr>
</tbody>
</table>

4. TITLE AND SUBTITLE
Inducing Stochastic Behavior in a Deterministic Model

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Northrop Grumman Information Technology 2100 Washington Boulevard Arlington, VA 22204

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES

16. SECURITY CLASSIFICATION OF:

<table>
<thead>
<tr>
<th>a. REPORT</th>
<th>b. ABSTRACT</th>
<th>c. THIS PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>unclassified</td>
<td>unclassified</td>
<td>unclassified</td>
</tr>
</tbody>
</table>

17. LIMITATION OF ABSTRACT
UU

18. NUMBER OF PAGES
17

19a. NAME OF RESPONSIBLE PERSON

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18
Inducing Stochastic Behavior in a Deterministic Model

Pete Bulanow
Steven P. Wilcox, Ph.D.

Northrop Grumman
Information Technology Sector
June 2005
Overview

- **Background**
 - Understanding the Value Added Analysis Process

- **Challenges**
 - Demand for quick-turnaround analysis
 - Non-monotonic relationships between parameters and VIC outcomes
 - Statistical analysis to support accurate decision making

- **Our Answer**
 - Induce stochastic variation in VIC runs through perturbation
 - Utilize statistical tests for comparisons of options

- **Benefit**
 - More accurate decisions about equipment trades using VIC as part of the Value-Added Analysis process
The Value Added Analysis Process

- Supporting the Center for Army Analysis (CAA)
- Uses the Vector-in-Commander (VIC) Corps-level combat simulation model
- Objective:
 - Estimate the incremental contribution of system trades to combat effectiveness
 - Perform a cost-benefit analysis to determine the actual ‘value-added’ of the systems of interest.
- Previous methodology was a typical DOE approach
- Now a perturbation methodology induces stochastic behavior in VIC

Figure 1. The VAA Process
The Force Exchange Ratio

- Primary Measure of Effectiveness (MOE) in the VAA process
- Force Exchange Ratio (FER)
 - Ratio of relative losses
 - Used as a proxy for the win probability
 - Only high-value equipment losses are counted in our version

\[
FER = \frac{\text{Losses}_R}{\text{Strength}_R} \div \frac{\text{Losses}_B}{\text{Strength}_B}
\]
Legacy Methodology

- Comparing FERs using a Design of Experiments
- A typical DOE is to run a number of combinations of experimental settings
 - And then analyze the MOEs using analysis of variance
 - Differences in the means between treatments indicate possible differences in effectiveness
- Statistical efficiency is achieved at the cost of elaborate run setups.

<table>
<thead>
<tr>
<th>Run</th>
<th>Sys1</th>
<th>Sys2</th>
<th>Sys3</th>
<th>Sys4</th>
<th>Sys5</th>
<th>Sys6</th>
<th>Sys7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>10</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>11</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>13</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>14</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>15</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
</tr>
</tbody>
</table>

DOEs aid in making statistical “decisions”:

FER(X₁ = 1) - FER(X₁ = -1) > 0 ?

How big is the difference?
What is the confidence interval?
Two Paradigm Shifts

- VIC and complexity
 - Battle is a complex dynamical system
 - The results of battle are somewhat uncertain
 - Especially when the foes are close to evenly matched
 - VIC battles are a realization of a complex dynamical system
 - Sensitivity to parameters and initial conditions should be expected

- Embrace complexity
 - In support of quick turnaround analysis
 - Using the statistical perspective
Inducing the Expected Variability

- Statistical methods require variability and replication.
- Key Requirements for inducing stochastic behavior consistent with accurate analysis:
 - Must not alter any performance data (Bailey, 2001)
 - Must affect many battlefield operating systems (Bailey, 2001)
 - Must continuously perturb the run – not just the initial conditions (Bailey, 2001)
 - Retains the original scenario setup within the precision of combat operations
A Perturbation Methodology

- Our method perturbs several things a “small” amount
 - Unit locations and waypoints
 - Helo path points
 - Airborne sensor orbit points
- See Bulanow et al. (2004) for validation with respect to using the outputs in statistical models
The Difficulty with the Two-Run Comparison

- Non-Monotonic effects have been observed in Deterministic Combat Models
 - Better settings do not necessarily mean a better FER
- Sensitivity to initial conditions and parameter values
 - Extensively noted in toy models of combat
 - The RAND model (Dewar, et al, 1991)
 - Also noted in VIC
 - Saeger & Hinch (2001)
- The DOE is a legacy solution to this problem, but a more responsive approach is required.

Kills of Selected Equipment by a Blue System of Interest

A three-way comparison of VIC results
Parametric Sensitivity in VIC

- A direct fire system (DF Sys) fraction of time firing (FTF) is multiplied by a number randomly selected from the interval (0.95, 1.05)
- Blue kills vary non-monotonically and significantly
- Any two runs selected from these might show a difference in the MOE
 - But is the difference statistically "significant"?
Inducing Variability Through Unit Locations

- Perturbing ground unit locations and waypoints by ±10 meters produces very different pictures of the loss exchange ratio.
- Each color line represents the plot of Blue versus Red kills over the run for the original and 64 replications
 - X and Y scales include zero but are not the same

Kills by Blue and Red of High-Value Equipment
More on VIC’s Stochastic Personality

- Perturbing ground unit locations small amounts (a non-performance parameter) reveals a world of stochastic variability
 - Like what might happen in combat
- Statistical methods can characterize this variability for decision-making purposes

Kills of Selected Equipment by the Blue System of Interest

Base Case, Perturbed
Analysis Without DOE Matrices

- Paired Comparisons can be performed without an elaborate DOE

<table>
<thead>
<tr>
<th>Perturbation Set</th>
<th>Base</th>
<th>Alternative A</th>
<th>Delta</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>B1</td>
<td>A1</td>
<td>A1 - B1</td>
</tr>
<tr>
<td>2</td>
<td>B2</td>
<td>A2</td>
<td>A2 - B2</td>
</tr>
<tr>
<td>3</td>
<td>B3</td>
<td>A3</td>
<td>A3 - B3</td>
</tr>
<tr>
<td>4</td>
<td>B4</td>
<td>A4</td>
<td>A3 - B4</td>
</tr>
<tr>
<td>5</td>
<td>B5</td>
<td>A5</td>
<td>A5 - B5</td>
</tr>
<tr>
<td>6</td>
<td>B6</td>
<td>A6</td>
<td>A6 - B6</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

- We also perform multiple comparisons between numerous options
- More efficient for the analyst due to fewer run setups than with a DOE
- Has been employed in a variety of trade comparisons
Effect of Replications on the Confidence Interval of Estimates

- Confidence intervals decrease as the inverse square root of sample size.
- In actual applications, the standard deviation would be estimated.

<table>
<thead>
<tr>
<th># Replications (and run time factor)</th>
<th>Confidence Interval (assuming a notional standard deviation, known in advance)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>±32%</td>
</tr>
<tr>
<td>4</td>
<td>±16%</td>
</tr>
<tr>
<td>16</td>
<td>±8%</td>
</tr>
<tr>
<td>64</td>
<td>±4%</td>
</tr>
<tr>
<td>256</td>
<td>±2%</td>
</tr>
</tbody>
</table>
Conclusions and Way Forward

- Our perturbation analysis for VIC analysis aids in quick-turn analysis by:
 - Reducing run setups,
 - Simplifying design and analysis of experiments, and
 - Enabling statistical analysis with simple designs
- VIC run perturbation gives visibility to the complex system feature of combat
 - Even though VIC is deterministic
 - Thus providing an added window into the issue of outcome variability
References

- Randomization of VIC

- Sensitivity of VIC Settings

- Non-Monotonicity in General

- Design of Experiments