Author Request (To be completed by applicant) - The following author(s) request authority to disclose the following presentation in the MORSS Final Report, for inclusion on the MORSS CD and/or posting on the MORS web site.

Name of Principal Author and all other author(s):
Capt June Rodriguez
2Lt Kirk Reimer

Principal Author's Organization and address:
AETC SAS
151 J Street East, Suite 2
Randolph AFB, TX 78150

Phone: (210) 652-4121
Fax: (210) 652-6895
Email: kirk.reimer@randolph.af.mil

Original title on 712 A/B: Simulation Modeling of the Altus Assault Landing Zone

Presented in (input and Bold one): (WG_22, CG, Special Session, Poster, Demo, or Tutorial):

This presentation is believed to be:
UNCLASSIFIED AND APPROVED FOR PUBLIC RELEASE
Report Documentation Page

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

<table>
<thead>
<tr>
<th>1. REPORT DATE</th>
<th>2. REPORT TYPE</th>
<th>3. DATES COVERED</th>
</tr>
</thead>
<tbody>
<tr>
<td>21 JUN 2005</td>
<td>N/A</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. TITLE AND SUBTITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALTUS AFB Assault Landing Zone Study II</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5a. CONTRACT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5b. GRANT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5c. PROGRAM ELEMENT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5d. PROJECT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5e. TASK NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5f. WORK UNIT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6. AUTHOR(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AETC SAS 151 J Street East, Suite 2 Randolph AFB, TX 78150</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. PERFORMING ORGANIZATION REPORT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10. SPONSOR/MONITOR’S ACRONYM(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11. SPONSOR/MONITOR’S REPORT NUMBER(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12. DISTRIBUTION/AVAILABILITY STATEMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approved for public release, distribution unlimited</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13. SUPPLEMENTARY NOTES</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>14. ABSTRACT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15. SUBJECT TERMS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16. SECURITY CLASSIFICATION OF:</th>
<th>17. LIMITATION OF ABSTRACT</th>
<th>18. NUMBER OF PAGES</th>
<th>19a. NAME OF RESPONSIBLE PERSON</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. REPORT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>unclassified</td>
<td>uu</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>b. ABSTRACT</td>
<td>unclassified</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. THIS PAGE</td>
<td>unclassified</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18
Air Education and Training Command

Sustaining the Combat Capability of America’s Air Force

ALTUS AFB ASSAULT
LANDING ZONE STUDY II
MORSS 2005

Capt June Rodriguez
2Lt Kirk Reimer
AETC Studies & Analysis Squadron
DSN: 487 4201
june.rodriguez@randolph.af.mil

Integrity - Service - Excellence
Overview

- Study Objective
- Background
- Approach
- Time in System and Graduate Program Requirements Document
- Limitations
- Assumptions
- Scenario Description
- Results
- Conclusion
- Future Studies
Study Objective

Does the proposed increase in C-17s at Altus AFB drive a requirement for an additional ALZ?
Background

• Dec ’01 – Congress authorized AF 180 C-17s by end of FY07– an additional increment to 222 may be authorized
 • Altus AFB fleet grows to 15 C-17s by FQ08/1; 18 C-17s by FY11 if 222 authorized

• May ’02 – 97th AMW stated the increase drives a requirement for an additional ALZ
 • Pattern saturated on existing ALZ due to conflicting traffic on East runway

• Jul ’02 – AMC as lead command refused the $16.0M funding line for a new ALZ
 • Stated traffic congestion can be handled through better scheduling
Modeling Approach

- Simulated entire flying process for 3 platform training tracks (C-17, KC-135, & C-5) from FY07 through FY11 – ran 1K times each for a total of 5K simulated years
- 26 pilot types modeled with their respective missions (e.g., Aircraft Commander Air Drop, Aircraft Commander Air Refueling, Instructor Pilot Continuation Training, etc.)
 - 12 C-17 types, 7 C-5 types, & 7 KC-135 types
- Factors modeled: VFR, IFR, LL & AR patterns; crew rest; weather; sunrise/sunset; scheduled and unscheduled maintenance; proficiency reflies
Approach Modeling Methodology

Pilot Pair Entry

C-17 ACAD

Weather
Enough time for sortie duration
C-17 Availability

Check

Air Refueling
VFR
Low Level

Fly Sortie 1

Input: GPRD (drives sortie generation)

Output: Avg Time In System (TiS)

Proficiency Refly

Check

NO

GO!

Delay

YES

GO!

Continue Next Sortie

GO!
Understanding TiS and GPRD

- If TiS is beyond the allotted time → saturated
- If GPRD is not met (entry ≠ grads) → saturated
- If TiS is within the allotted time and GPRD is met (entry = grads) → not saturated

- How is a pattern saturation issue determined?
 - Vary resource constraints for C-17, VFR, and Tactical → Increased resource capacity, should result in TiS decrease

- TiS decrease implies that *wait time* for a particular resource (i.e., C-17) is directly affected by increased resource

- TiS unchanged implies that increased resource is not the reason for any *wait time*
Model Limitations

• Constant Day – sunrise/sunset do not vary -- minor

• NVG & C-17 Tactical landings not modeled
 • NVG requirements not yet defined
 • C-17 high-speed tactical landings not supported by current Altus ALZ
Assumptions

• Primary model input: Student/IP GPRD requirements
• General
• Re-fly Factors
• Maintenance
• Weather
• C-17 specific
• KC-135 specific
• BASH
• Resource Capacity
Scenario Description

• **Baseline** – Current Altus AFB resources; 15 C-17s (8-5); VFR at Altus (4)

• **Baseline with Aux ALZ** (new ALZ) – C-17 VFR accomplished at Aux ALZ & Altus AFB (7);
Simulation Results
Simulation Results
C-17 FY07 GPRD Entry/Grad

FY07 GPRD

C-17 Pilot Type

of Pilots

AC ACAD ACIQ ACRQ CAD IAC IP TPS PCO PIQ SOC

0 50 100 150 200 250 300 350 400

Entry Baseline Baseline w/ Aux ALZ
Simulation Results
C-17 FY07 TiS Comparisons

FY07 Time In System

C-17 Pilots (Allotted Fly Days)

Max Desired Flying Days Baseline Baseline w/ Aux ALZ
Simulation Results
C-5 FY07 GPRD Entry/Grad

FY07 GPRD

of Pilots

C-5 Pilot Type

<table>
<thead>
<tr>
<th>C-5 Pilot Type</th>
<th>Entry</th>
<th>Baseline</th>
<th>Baseline w/ Aux ALZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACAR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACIQ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIQ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IAC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOC</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Zero grads
Simulation Results
C-5 FY07 TiS Comparisons

FY07 Time In System

C-5 Pilots (Allotted Fly Days)

- AC (8)
- ACAR (13)
- ACIQ (8)
- PIQ (14)
- IAC (8)
- SOC (1)

- Max Desired Flying Days
- Baseline
- Baseline w/ Aux ALZ

Over 247 TD
Simulation Results
KC-135 FY07 GPRD Entry/Grad

FY07 GPRD

KC-135 Pilot Type

of Pilots

Entry
Baseline
Baseline w/ Aux ALZ
Simulation Results

KC-135 FY07 TiS Comparisons

FY07 Time In System

KC-135 Pilots (Allotted Fly Days)

Max Desired Flying Days Baseline Baseline w/ Aux ALZ

AC (29) ACIQ (35) ACRQ (29) PIQ (35) IAC (20) SOC (7)
Simulation Results

TiS Decrease w/ Aux ALZ x GPRD

<table>
<thead>
<tr>
<th>Pilot Type (FY07 GPRD)</th>
<th>TiS decrease</th>
<th>TiS decrease x GPRD</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-17 AC (154)</td>
<td>12.0</td>
<td>1855</td>
</tr>
<tr>
<td>C-17 ACAD (40)</td>
<td>6.9</td>
<td>278</td>
</tr>
<tr>
<td>C-17 ACIQ (94)</td>
<td>12.8</td>
<td>1199</td>
</tr>
<tr>
<td>C-17 ACRQ (18)</td>
<td>5.8</td>
<td>104</td>
</tr>
<tr>
<td>C-17 CAD (80)</td>
<td>7.2</td>
<td>577</td>
</tr>
<tr>
<td>C-17 PIQ (392)</td>
<td>26.6</td>
<td>10432</td>
</tr>
<tr>
<td>C-17 IAC (114)</td>
<td>26.2</td>
<td>2989</td>
</tr>
<tr>
<td>C-5 ACAR (12)</td>
<td>2.9</td>
<td>34</td>
</tr>
<tr>
<td>KC-135 AC (150)</td>
<td>10.2</td>
<td>1532</td>
</tr>
<tr>
<td>KC-135 ACIQ (68)</td>
<td>14.0</td>
<td>950</td>
</tr>
<tr>
<td>KC-135 ACRQ (34)</td>
<td>13.4</td>
<td>456</td>
</tr>
<tr>
<td>KC-135 PIQ (206)</td>
<td>12.1</td>
<td>2502</td>
</tr>
<tr>
<td>KC-135 IAC (92)</td>
<td>1.1</td>
<td>106</td>
</tr>
<tr>
<td>TOTAL</td>
<td>151.3</td>
<td>23015</td>
</tr>
</tbody>
</table>
Results

• The model shows the TiS requirement for C-17 and KC-135 pilots cannot be met with current resource availability

• FY07 TiS is improved for all 3 platforms with the addition of an Aux ALZ

• Overall C-17 and KC-135 Baseline TiS implies saturation
Conclusion

- Given the resource capacity and the current GPRD requirements applied to the model, coupled with the Time in System output
 - The Altus AFB simulation model shows pattern saturation
 - Requirement exists for an additional ALZ at Altus AFB
Future Studies

- Model additional C-17 Abeam constraints
- Clarify the high speed tactical approach and the NVG command responsibility training standards for model inclusion
Questions???
Back-up Slides
Assumptions Start
Assumptions
General

• Sorties greater than 99 minutes = 10 min standard deviation
• Sorties less than 99 minutes = 5 min standard deviation
• Aerial Refueling time to and from RP is 80 minutes
• No student refly sorties modeled for KC-135
• Senior Officer Course (SOC) sorties are all during daytime and no reflies required
• Reflies have priority over "new class"
Assumptions General

• Pilots usually fly in pairs, odd pilots can fly in singles
• Global Weather – No-fly weather occurs based on historical average (~3%) (Altus Wx Shop); lasts ½ to 1 day with equal probability
 • C-17 does not take off w/ low ceiling--2-4 hrs delay
• Fifteen-minute taxi-out and an additional fifteen-minute taxi-in incurred before and after each sortie (not counted as flying hours), respectively
• Time in System (TiS): Training days required to accomplish flying training
Assumptions
General

- Schoolhouse Flying Window: 0830-0230
- Training days = 246
- AR resource capacity not affected by C-17 tactical maneuvers
- Altus receivers have priority over non-Altus receivers for AR
- SOC sorties all accomplished at Altus and always Priority 1
- IP sorties accomplished at Altus
Assumptions
C-17

• Staggered take-off calculated as follows:
 • 1st available C-17 is ready at 0830
 • 2nd available C-17 is ready at 17 minutes (0847) into the start of operation, then 15 minute interval for other C-17s

• When the VFR rwy is used for C-17 tactical at Altus, the following resource capacity decrease occurs:
 • VFR = 2
 • IFR & LL = 0
Assumptions
KC-135

- Most evaluation sorties are flown during daylight hours
- IAC sorties are flown anytime
- AC, ACRQ, ACIQ, & CIQ sorties - 1st 2 sorties are during daylight hours, next 2 are during nighttime hours, remaining sorties can be flown anytime
Assumptions
KC-135

- Staggered take-off is calculated as follows:
 - First KC-135 ready 7 minutes (0837) into the start of operation. The 2nd to 5th aircraft becomes available in 15-minute intervals. The 6th to 10th aircraft becomes available in 7.5-minute intervals.

- 25% of all sorties will fly off-station except for SOCs and IPs
Assumptions
BASH/Day/Night

- Occurs in Dec-Jan 1700-1859 hours
- Daylight hours are 0830-1759 (non BASH months)
- Daylight hours are 0830-1659 (BASH months)
- Nighttime hours are 1800-0230 (non BASH months)
- Nighttime hours are 1900-0230 (BASH months)
Assumptions

Resource Capacity

<table>
<thead>
<tr>
<th>Resource</th>
<th>Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-17 Fleet</td>
<td>6 to 8</td>
</tr>
<tr>
<td>C-5 Fleet</td>
<td>2</td>
</tr>
<tr>
<td>KC-135 Fleet</td>
<td>10</td>
</tr>
<tr>
<td>KC-135 AR Tnkr Track</td>
<td>4</td>
</tr>
<tr>
<td>Rcvr AR Track</td>
<td>4</td>
</tr>
<tr>
<td>Sooner ALZ Pattern</td>
<td>3</td>
</tr>
<tr>
<td>Additional Tanker Track</td>
<td>4</td>
</tr>
<tr>
<td>LL Pattern</td>
<td>Infinite</td>
</tr>
<tr>
<td>IFR Pattern</td>
<td>8</td>
</tr>
<tr>
<td>VFR Pattern</td>
<td>4</td>
</tr>
<tr>
<td>Tactical Pattern (C-17)</td>
<td>2</td>
</tr>
</tbody>
</table>
Assumptions End
Model Snap-shots
Main Logic

C-17 SET
- C-17 Logic

KC-135 SET
- KC-135 Logic

C-5 One

C-5 Two
- C-5 Logic

Wx Logic
- Time Dependent Logic
- Air Refueling Logic
KC-135 Logic

ACRQ

AC

ACIQ

PIQ

TNOW
08:30:00

1 = Day Time
2 = Night Time

of Classes generated after pairing up pilots
Prior to Sortie Check
Sortie Profile
Air Refueling Logic
Glossary
Acronyms/Abbreviations

• AC – Aircraft Commander Upgrade
• ACAD – Aircraft Commander Airdrop
• ACAR – Aircraft Commander Air Refueling
• ACIQ – Aircraft Commander Initial Qualification
• ACRQ – Aircraft Commander Requalification
• AETC – Air Education and Training Command
• AFB – Air Force Base
• ALZ – Assault Landing Zone
• AMC – Air Mobility Command
• AMW – Air Mobility Wing
• AR – Air Refueling
• BASH – Bird Aircraft Strike Hazard
• CAD – Copilot Airdrop
• FY – Fiscal Year
• GPRD – Graduate Programmed Requirement Document
• IAC – Instructor Aircraft Commander Qualification
• IFR – Instrument Flight Rules
• IP – Instructor Pilot
• KPP – Key Performance Parameter
Acronyms/Abbreviations

- LL – Low Level
- Mx – Maintenance
- NVG – Night Vision Goggles
- PCO – Pilot Check-out
- PIQ – Pilot Initial Qualification
- Qtr – Quarter
- Rwy – Runway
- SAS – Studies and Analysis Squadron
- SOC – Senior Officer Course
- TPS – Tactical Proficiency Sortie
- VFR – Visual Flight Rules
- Wx - Weather
- XP – Plans and Programs