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Abstract

We describe an algorithm for performing a joint schedul-
ing/interconnect synthesis optimization for System-on-Chip
(SoC) architectures. The algorithm is able to account for
different distributions of long vs. short interconnect routes
in an architecture. It is based on a genetic algorithm, and
utilizes a graph isomorphism test to significantly pare the
search space and increase the search efficiency.

1. Introduction

Interconnect synthesis is important for today’s system-
on-chip (SoC) designs. As transistor density increases,
more functional units can be placed on a single chip,
and the number of possible interconnections (links) be-
tween them increases. The longest wires on the chip are
usually due to these links. These wires contribute to de-
lay and limit the maximum achievable clock rate. Also,
routing these interconnections is a significant chal-
lenge for the EDA tools. A number of today’s architectures
for SoC provide special routing tracks for long intercon-
nects. Future architectures may even incorporate optical
interconnects. In this paper, we develop methods for de-
riving efficient interconnection networks in these archi-
tectures. The idea is that if we can incorporate routing
constraints in the high level front end design stage, place-
ment and routing can be improved in the back end of the
design process and performance will increase.

Embedded systems typically run a limited and fixed set
of applications. We can use this application-specific infor-
mation to optimize the interconnection network. For our
purposes, an optimal network is defined in the context of a
set of applications and constraints. The constraints may in-
clude the latency, throughput, and power consumption for
the given applications, along with cost and area constraints

of the overall system. A key distinguishing feature to our al-
gorithm is that we perform the application scheduling and
interconnect synthesis jointly—most existing interconnect
synthesis algorithms assume a given schedule.

2. Routing Constraints

Most FPGA designs use a heirarchy of interconnect seg-
ments of differing lengths. In the Atmel AT40K, for exam-
ple, each logic cell connects directly to its nearest neighbors
through fast dedicated local paths. These cells are nested in
a mesh of longer-range interconnect buses spanning eight
cells.

Several research groups have proposedpipelinedFPGA
architectures [3, 9] which provide for long interconnects
through a large number of registers. For example, the RaPid
architecture is targeted to high-throughput applications like
those found in DSP. The interconnect structure consists of
both long track and short track interconnects. Short tracks
are used to achieve local connectivity between functional
units, while long tracks traverse longer distances along the
datapath. It is shown in [7] that the area-delay product in
this architecture is sensitive to the short track / long track
ratio.

In a system utilizing optical interconnects, cost and area
constraints dictate the total number of transmitters and re-
ceivers in the system (i.e., total number of optical links).
Routing constraints from local partitions to their associ-
ated VCSEL transmitters and detectors dictate a maximum
fanout for each local partition. An optimum interconnect is
then one that minimizes the number of links while enabling
the application to meet the power, latency, and throughput
constraints.

Our general model for a system-on-chip (SoC) is one in
which the chip is partitioned into regions that are connected
with local interconnects, and these local regions are then
connected through longer global interconnects. The appli-
cations consist oftask graphs [11], where the individual
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tasks must fit fully into a local region. The graph vertices
(tasksor nodes) in the acyclic task graphs represent com-
putations while the edges represent the communication of
a packet of data from a source task to a sink task. Previous
work [2] has addressed global/local partitioning, schedul-
ing onto arbitrary interconnect topologies, and a prelimi-
nary interconnect synthesis algorithm. We express the rel-
ative distribution of local interconnects to global intercon-
nects as afanout constraint, which is simply the number
of long (global) interconnects available for each local re-
gion. The strength of the interconnect synthesis algorithm
described in this paper is its ability to handle interconnect
fanout constraints.

3. Link Synthesis using Genetic Algorithm

Our interconnect synthesis method utilizes a genetic al-
gorithm (GA) operating in conjuction with a list schedul-
ing algorithm. The scheduling algorithm is a dynamic level
scheduling (DLS) algorithm [1] modified for arbitrary in-
terconnection networks. The algorithm takes into account
constraints on the total number of linkslmax and a maxi-
mum fanout for each processor or functional unitfmax, as
described earlier and motivated by area and cost constraints
for the system.

3.1. Genetic Algorithm Overview

We give a brief overview of genetic algorithms here in
order to explain our link synthesis algorithm. When a ge-
netic algorithm is used to solve an optimization problem,
it is necessary to be able to represent a single solution to
the problem with a single data structure. This representa-
tion is often called achromosomeor an individual. The
quality or fitnessof a given solution is evaluated using an
objective function. Genetic algorithms are capable of both
broad search (exploration) and local search (exploitation)
of a search space. They are often preferred than gradient
search methods because they avoid local minima, and do
not require a smooth search space.

The genetic algorithm creates an initialpopulation of
candidate solutions using an initialization operator. Often
the initial population is distributed randomly over the search
space. The genetic algorithm first selects individuals from
the population and performscrossoverand mutation op-
erations on these individuals. Traditional crossover gener-
ates twochildren from two parentsin a population. This
is depicted in Figure 1 for a chromosome whose represen-
tative data structure is an array. Acrossover pointis cho-
sen, shown by the dashed vertical line in Figure 1, and
the child chromosome is formed by the elements from the
first parent chromosome to the left of the crossover point
and the elements from the second parent to the right of the

child

parent

child

parent

Figure 1: Crossover operator applied to array chromosome.

crossover point. The mutation operator specifies a proce-
dure for changing (mutating) an individual. The specifics
of the mutation depend on the data structure used to rep-
resent an individual. A typical mutation operator for an in-
dividual represented by a binary string flips the bits in the
string with a given probability (themutation probability).
Onegenerationof a genetic algorithm consists of perform-
ing crossover and mutation on individuals in the population.
There are many possibilities for evolving the population. A
simpleGA uses non-overlapping populations. Each gener-
ation creates an entirely new population of individuals. A
steady stateGA uses overlapping populations, in which a
fraction of the population is replaced in each generation. In
an incrementalGA each generation consists of only one or
two children.

3.2. Problem representation

In our algorithm, the individuals are bit vectors corre-
sponding to a given interconnect topology. The fitness func-
tion for a chromosome in our interconnect synthesis algo-
rithm is described by

fitness= M(1 + Pf + Pl) (1)

whereM is the makespan (latency) calculated by the mod-
ified DLS algorithm for the interconnect topology of the
chromosome,Pf (equation 6) is a penalty based on vio-
lating the fanout constraintfmax, andPl (equation 7) is
a penalty based on violating the maximum link constraint
lmax.

We assume that the links are directional—that is, each
link has one dedicated transmitter side and one dedicated
receiver side. Optical links, for example, consist of a laser
on one side of the link and a detector on the other side.



This assumption does not limit our model, however, because
any bidirectional link can be represented as two directional
links. We define alink vectoras a bit vector with one en-
try for each possible interconnection between two proces-
sors. For a system withN processors, there areN(N − 1)
entries in the link vector. The link vector for a four proces-
sor system would be denoted as

~l = (l01l02l03l10l12l13l20l21l23l30l31l32) (2)

wherelij equals one if there is a connection from processor
i to processorj and zero otherwise. We definelij ≡ 0 if
i = j. We also write~l as

~l = (~l0~l1 . . .~lN−1) (3)

where~lk describes the (outgoing) connections for proces-
sork. We will refer to the~lk asprocessor link vectors. We
define the fanout of processori by

fi =
N−1∑
j=0

lij
.= ‖~li‖ (4)

Then the number of links is given as

nl =
N−1∑
i=0

fi (5)

while the fanout penalty is given by

Pf =
N−1∑
i=0

Pi (6)

wherePi = max(0, (fi − fmax)). The link penalty is given
by

Pl = max(0, (nl − lmax)). (7)

3.3. Fanout Constraints

In a real system, cost and area constraints will place
a limit on the processor fanout. Therefore, as mentioned
above, it is important to have a link synthesis algorithm that
can conform to fanout constraints. Our GA is able to incor-
porate these constraints in a straightforward manner by im-
plementing the initialization, crossover, and mutation oper-
ators as described below.

3.4. Crossover and Mutation Operators

We first note that if an individual topology is represented
as a binary string as in equation 2, then the typical crossover
operations like array one-point crossover (Figure 1) or two-
point crossover will not preserve the fanout constraint. This
is illustrated in Figure 2 where both parents obey a fanout
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~l1A = (0, 0, 1) f1A = 1
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~l1X = (0, 1, 0) f1X = 1

~l2X = (0, 0, 1) f2X = 1

~l3X = (1, 0, 0) f3X = 1
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~l1Y = (0, 0, 1) f1Y = 1

~l2Y = (0, 1, 1) f2Y = 2

~l3Y = (0, 0, 0) f3Y = 0

Figure 2: Crossover operation for link synthesis using the
binary string representation Equation 2. Link fanout con-
straint is not preserved for childX, where the fanout of pro-
cessor0 is f0X = 3.

constraintfmax = 2, but processor0 of child X has fanout
f0X = 3. This is because the crossover point can be cho-
sen at any point. If we instead choose to represent the topol-
ogy by the vector representation of Equation 3, fanout con-
straints are preserved in the crossover operation, since the
processor link vectors~li are never altered. The crossover
operation only rearranges the relative position of these pro-
cessor link vectors. This is illustrated in Figure 3.

We also must ensure that the initial population obeys the
link constraint. The initialization operator generates random
processor link vectors which each satisfy the fanout con-
straint Equation 4.N − 1 of these vectors are then concate-
nated to form the link vector.

The mutation operator simply chooses a random bit in
the link vector, and sets its value to zero. This removes a
link if one existed at this point. Since the mutation opera-
tor only removes links, the fanout constraint is preserved.

4. Using Graph Isomorphism

If we consider systems in which all the processors are
identical (homogeneous processor set), then we can pare
the design space significantly if we only consider isomor-
phically unique topology graphs. Two graphsG = (V,E)
andG′(V ′, E′) are isomorphic if we can relabel the ver-
tices ofG to be vertices ofG′, maintaining the correspond-
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Figure 3: Crossover operation for link synthesis using the
vector representation Equation 3. The fanout constraint
fmax = 2 is preserved in the children.
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Figure 4: Example of two isomorphic graphs.

ing edges inG andG′. For example, the graphs in Figures
4(a) and 4(b) are isomorphic with the vertices relabelled as
follows: 1→ a, 2→ b, 3→ c, and4→ d.

Consider a topology graphG with e edges andn nodes
where each node corresponds to a processor and each edge
corresponds to a link between two processors. The maxi-
mum number of edges inG is emax = n(n−1) correspond-
ing to a fully connected graph (full crossbar interconnect). If
all links are bidirectional, the topology graph is undirected
andemax = n(n − 1)/2. We can represent the graphs with
either an adjacency list or adjacency matrix and label each
different representation. Then for a graph withe edges the
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N = 4 processors, all links bidirectional

Emax = 6

E ng nunique

Figure 5: Isomorphically unique graphs containingE edges
for n = 4 processors. Here we only consider undirected
graphs representing bidirectional links in order to make the
figure clearer.

number of different labellings is given by

ng =
(
emax

e

)
=

emax!
e!(emax − e)!

=
n(n− 1)!

e!(n(n− 1)− e)!
(8)

which increases exponentially withn. The maximum value
of ng occurs ate = emax/2. However, the number of iso-
morphically unique graphsnunique is much less thanng.
For very smalln, we can enumerate the different possibili-
ties to show this. Figure 5 depicts the different isomorphic
graphs forn = 4 processors ande = 3 bidirectional links.
There are20 different graph labellings, but we observe that
most are isomorphic—only3 are isomorphically unique.

For largern, ng increases rapidly according to Equation
8. We enumerated the possibilities and tested for isomor-
phism forn = 5 andn = 6 using Brendan McKays’snauty
program [5], which is currently the fastest published graph
isomorphism testing program. The results are shown in Fig-
ure 6 Forn = 6 ande = 12 we observe that there is a3 or-
der magnitude difference between the number of graph la-
bellingsng and those that are unique (nunique). Also, this
ratio increases withng.

We exploit this property to improve our genetic algo-
rithm. As mentioned earlier, each generation in the GA con-
sists of a predetermined number of individuals derived from
the previous generation by crossover and mutation opera-
tors. The initial population is generated randomly. However,
the results from Figure 6 imply that a large fraction of the in-
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Figure 6: A comparison of the number of possible graph la-
bellingsng given by Equation 8 with the number of these
graphs that are isomorphically unique.

dividuals in any randomly generated population will be iso-
morphically equivalent, and that we would be wasting com-
putation time by operating on equivalent interconnection
topologies. Instead, we employ an efficient online graph iso-
morphism test when generating the population, and only ac-
cept new individuals that are isomorphically unique. By re-
ducing the solution space by orders of magnitude, the GA
can search it more throroughly in a given amount of com-
putation time, and produce better results.

The graph isomorphism test is advantageous for the link
synthesis algorithm only if the isomorphism testing is effi-
cient. The complexity of the graph isomorphism problem is
still an open problem—there exists no known polynomial-
time algorithm for graph isomorphism testing, although the
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Figure 7: GA output versus generation for the FFT3 appli-
cation.

problem has also not been shown to be NP-complete. It is
thought that the problem falls in the area between P and NP-
complete, if such an area exists [10]. However, McKay’s
nauty [5] program has been proven to be very efficient in
practice. Although its worst case run time is exponential [6],
an empirical test of a large number of randomly generated
graphs produced run times of1.2p2 ns on a 1 GHz Pentium
III machine wherep is the number of nodes in the graph [5]
(p equals the number of processors in our case). By compar-
ison, the DLS scheduling algorithm has complexityO(v3p)
wherev is the number of nodes in thetask graph [8]. We
modify the DLS scheduling algorithm by adding a flexibil-
ity calculation at each scheduling step. The complexity of
the flexibility algorithm isO(v(v + e)p log p), so the over-
all complexity scheduling an arbitrary graph using the mod-
ified DLS scheduling algorithm is

O(v4(v + e)p2 log p). (9)

The number of tasks in the application will be much greater
than the number of processors in practice, sov >> p and
e >> p. For randomly generated graphs, the nauty program
is therefore much faster than the modified DLS scheduling
algorithm and we achieve significant speedup by detecting
and exploiting graph isomorphism.

4.1. Experiments

We evaluated our interconnect synthesis algorithm on
several DSP benchmark application graphs. Figure 7 shows
the convergence of the GA vs. generation number for an
FFT application, with population sizeN = 100. This ap-
plication graph, representing the computation of the fast
Fourier transform, was taken from [4]. In this plot the y-
axis refers to the schedule makespan of the best intercon-
nection topology found. Figure 8 shows how the makespan
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improves with increasing processor fanout. As explained
in [7], there is an increasing area overhead associated with
a greater number of long interconnects. In our model, the
number of long interconnects is equal to the number of pro-
cessors times the average fanout per processor.

5. Conclusion

Interconnect synthesis is becoming an increasingly im-
portant problem for designers of systems-on-chip as the
designs become larger. We presented a genetic algorithm
for synthesizing efficient interconnection networks for SoC.
The algorithm works in conjuction with a list scheduling al-
gorithm to jointly optimize both the schedule and the in-
terconnect topology. The algorithm is able to account for
different distributions of local vs. global (long) intercon-
nect routing tracks via a processor fanout constraint. It uses
graph isomorphism to significantly pare the search space in
order to search more efficiently.
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