Name of Principal Author and all other author(s):
Tyson C. Kackley

Principal Author’s Organization and address:
Naval Surface Warfare Center - Panama City
Littoral Warfare Analysis Branch
110 Vernon Avenue
Panama City, FL 32407-7001
DSN: 436-4751

Phone: (850) 234-4751
Fax: (850) 234-4825
Email: tyson.kackley@navy.mil

Original title on 712 A/B: LHA(R) Cargo Handling System Trade Study Models

Revised title: N/A

Presented in (input and Bold one): (WG 13, CG___, Special Session ___, Poster, Demo, or Tutorial):

This presentation is believed to be:
UNCLASSIFIED AND APPROVED FOR PUBLIC RELEASE

June 2005, LHA(R) Cargo Handling System Trade Study Models
LHA(R) Cargo Handling System Trade Study Models

1. REPORT DATE
01 JUN 2005
2. REPORT TYPE
N/A
3. DATES COVERED
-
4. TITLE AND SUBTITLE
LHA(R) Cargo Handling System Trade Study Models
5a. CONTRACT NUMBER
-
5b. GRANT NUMBER
-
5c. PROGRAM ELEMENT NUMBER
-
5d. PROJECT NUMBER
-
5e. TASK NUMBER
-
5f. WORK UNIT NUMBER
-
6. AUTHOR(S)
-
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
NSWC PC 110 Vernon Ave. Panama City, FL 32407
8. PERFORMING ORGANIZATION REPORT NUMBER
-
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
-
10. SPONSOR/MONITOR’S ACRONYM(S)
-
11. SPONSOR/MONITOR’S REPORT NUMBER(S)
-
12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited
13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

<table>
<thead>
<tr>
<th>a. REPORT</th>
<th>b. ABSTRACT</th>
<th>c. THIS PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>unclassified</td>
<td>unclassified</td>
<td>unclassified</td>
</tr>
</tbody>
</table>

17. LIMITATION OF ABSTRACT
UU
18. NUMBER OF PAGES
17
19a. NAME OF RESPONSIBLE PERSON
-
LHA(R) Cargo Handling System
Trade Study Models

- presented to the 73rd Military Operations Research Society Symposium -

Tyson Kackley
Naval Surface Warfare Center Panama City
Littoral Warfare Analysis
June 2005
Agenda

• Motivation for Tasking
• Tasking
• Approach and Assumptions
• Model Functionality
• Demonstration
• Conclusions
• Future Directions
Caveat

This brief is for one of the ship concepts for LHA(R) and does not reflect the final LHA(R) design.
Motivation for Tasking

• LHA(R) undergoing trade study to answer question:
 – What cargo handling system is best for the LHA(R) well deck?

• Current LHDs use a combination of fork trucks and overhead cargo monorail to move pallets.
Why Change?

• Cargo monorail maintenance.

• If the well deck had a bridge crane (like LPD-17), a variety of additional tasks could be performed over and above pallet loading.

 • LCAC Skirt Maintenance
 • LCAC Engine Maintenance
 • etc.
• Requirement handed down from earlier LHA/LHDs:
 – 150 pallets/hour must pass through the well deck and out onto LCACs.

• Questions:
 – Will a bridge crane meet this requirement?
 – Does the current system meet this requirement?
Tasking

• Construct AutoMod simulations to determine the pallet throughput achievable using:

 - Fork Trucks alone.
 - Current cargo monorail system.
 - Proposed bridge crane system.
Approach & Assumptions

• For current operations, consulted with SMEs
 – Former Combat Cargo Officer
 – Former LCAC operator.

• For proposed bridge crane operations, consulted with LHA(R) Mission Systems IPT.
 – Research into currently available bridge crane systems.
 – Notional characteristics of bridge crane system.

• Utilized previously collected data relating to well deck operations.
Approach & Assumptions

• Resulting assumptions:
 – 40 pallets pre-staged on the upper vehicle deck
 – 1 LCAC off-cushion in well deck close to ramp.
 – 10K rough terrain fork trucks always back down the ramp.
 – Fork truck speed varies based on level/inclined surface.
 – Only one fork truck at a time allowed onto LCAC.
Model Functionality

• For each cargo handling option, the model
 – Loads the LCAC as fast as possible.
 – Allows the LCAC to leave.
 – Brings the next LCAC in.

• Extra time added for non-concurrent operations:
 – Time required for
 • Starting/stopping engines
 • Raising/lowering bow ramp
 • Fueling
 • etc.
Conclusions

• 1. Neither fork trucks alone nor current monorail system could meet the 150 pallets/hr requirement.
 – Why?
 • Most likely because early LHDs had 9 cargo monorail cars.
 • Latest LHDs only have 3 monorail cars, with one of them held in reserve.

• 2. The bridge crane achieved throughput comparable to the current monorail system.
Future Directions

• Develop similar model to determine realistic, achievable throughput rates of notional skin-to-skin replenishment.

 – On Container Ship
 • Setup
 • Pickup
 – Transfer
 – On Receiving Ship – MPF(F)
 • Set down
 • Break out
 • Transport below deck.
Future Directions

• Develop similar model to determine realistic, achievable throughput rates of notional interfaces between connectors and MPF(F), taking into account
 – Geometry of interface
 – Material Handling Equipment used
 – Manpower required
 – Vehicles versus palletized or containerized cargo

• Use models to identify bottlenecks and compare interface options.
Future Directions

• But how do we deal with uncertainty regarding MPF(F) and Connector designs?

• A) Make baseline assumptions
 • Deck space available.
 • Cargo handling equipment available.
 • Types of cargo being transferred.
 – Provides a baseline throughput rate.

 or

• B) Model several promising design scenarios and use the models to evaluate throughput of each option.

June 2005, LHA(R) Cargo Handling System Trade Study Models
Questions?