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equivalent shell thicknesses in the x and y directions and
for shear, respectively per unit length of circumference
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area of ring

=EI
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circumferential bending stiffness and torsional stiffness of
the corrugated cylinder, respectively

=EI1 /L
ryr r
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rzr ' r
moduli of elasticity of corrugation and ring, respectively
=Et
X

= ErAr/ LI_
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ference
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length of cylinder
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radial shear stress resultant aéting on ring element
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THE GENERAL INSTABILITY OF RING-STIFFENED
CORRUGATED CYLINDERS UNDER AXIAL COMPRESSION

SUMMARY

$A method is presented to determine the general instability load of a ring-
stiffened corrugated cylinder under axial compression. This method is developed
using linear small deflection theory. The stiffness properties of the rings are
uniformly distributed along the cylinder and the eccentricity of the rings with re-
spect to the corrugation centerline is taken into account. W

Analytical and experimental results are compared. In this comparison
good agreement is obtained for cylinders loaded in pure compression. For the
cylinders subjected to bending or a combination of bending and compression the
analytical calculations are conservative.

A computer program for the application of this method has been developed.
The program and an explanation of its notation are included in this report.

INTRODUCTION

Axially loaded ring-stiffened corrugated cylinders are susceptible to two
types of instability; panel instability and general instability. Panel instability ig
defined as buckling of the cylinder between rings. In general instability, the rings
as well as the cylinder undergo buckling displacements. Panel instability is dis-
cussed in many textbooks and manuals; however, the same is not true for general
instability.

In comparing the stiffness characteristics of a corrugated cylinder to those
of a monocoque cylinder of the same weight it must be noted that the corrugated
shell has a much greater longitudinal bending stiffness. This advantage is offset
to some degree by the low circumferential extensional stiffness of the corrugated
cylinder. Because of this lack of circumferential extensional stiffness each
corrugation will act as an individual column unless the shell is reinforced by rings.-
Low extensional stiffness may be desirable, however, in areas of high thermal
gradients.

In the past, ring-stiffened cylinders have often been designed to prevent
general instability by employing semi-empirical methods to size the rings. One
of the most commonly used of such methods is given by Shanley [1]. Until re-
cently it was believed that the ring moment of inertia obtained from his formula




was sufficient to safeguard against general instability. Tests performed under
the direction of the Marshall Space Flight Center as part of the Saturn V develop-
ment program have shown, however, that Shanley's criterion may be very uncon-
servative for the design of ring-stiffened corrugated cylinders. The results of
these tests are given in Tables I and II.

Since Shanley's work was published, considerable research has been
performed on the stability of stiffened cylinders. A major contribution was made
by Van der Neut [ 2], when he considered the effect of ring and stringer eccentric-
ities. Additional contributions were made by Hedgepeth and Hall [ 3], Card [4],
and Baruch and Singer [5]. Often, however, research in this field has produced
a method which is either too academic or too complex to be used by the stress

analyst.

The purpose of this report is to present a reliable and relatively simple
mea.n predicting the general instability load of corrugated cylinders under axial
compression. This method considers the eccentricity of the rings with respect

To the corrugation centerline. It also incorporates all the stiffnesses attributable
to the rings and the shear and longitudinal stiffness properties of the corrugation.
The circumferential extensional and bending stiffnesses and the torsional stiffness
of the corrugation are small (generally less than 1 percent of the longitudinal

stiffnesses) and are therefore neglected.
ITGeNERAL THEORY

Assumptions

n The method of analysis presented in this paper is based on the following
assumptions:

1. Linear small deflection theory applies. This is justified because
the high longitudinal bending stiffness of a corrugated cylinder makes it less
susceptible to initial imperfections and other monocoque effects.

2. The longitudinal wavelength of the buckled skin is sufficiently large
to permit a '""smeared" ring approach; i.e., all the ring stiffness parameters
may be uniformly distributed along the cylinder.

3. The corrugated cylinder can be treated as an equivalent orthotropic
cylinder, the radius of which is equal to the mean radius of the corrugation. {




;):L./ The circumferential extensional and bending stiffnesses of the cor-
rugation as well as its torsional stiffness can be neglected since they are small
as compared to the longitudinal stiffness properties of the shell.

5. Buckling displacements are sinusoidal.

6. Prebuckling deformations are neglected.

7. Plasticity effects and local failures are not considereg ______.,.? ) o

Displacements and Boundary Conditions

The cylinder is in equilibrium under the applied load just prior to buckling
and deformations due to buckling are measured from this position. In accordance
with assumption 5, displacements may be written in the form

- mrx
u=UcosT cos nb

v =YV sin mrx sin nd (1)

. mwx
w= W sin cos né

L

This corresponds to the following simply supported boundary conditions at
x=0, L

X
v=20 M =0
X

Thus, at the ends of the cylinder motion radially and tangentially is prevented,
while longitudinal motion is allowed; i.e., u # 0. These boundary conditions are
appropriate for cylinders bounded by deep supporting rings, which are rigid in
their own planes but may readily bend or warp out of their planes.

Elastic Relations

For an orthotropic shell the relations for the stress resultants and couples
in terms of the strains and curvatures are




Nx= i—u}'{u)‘r (Ex us'lgy)
Et '
Ny = -p by (" &)
ny= G Ty
(2)

M = x (k_+ p K )

X i—uxuy X

D
yz_i_:—ﬁ;yz;_ (kg * uxK )

M K
Xy Xy Xy

In view of assumption (4) and with the use of the reciprocal theorem,
equations (2) lead directly to the following expressions for the corrugated cylinder

N=_€=—E—a‘u—
X X X
_a i odu, v
ny_G(RE)G ox
2
M_=D « =D§—§-]
X X X X Ox

(3)

The rings are considered eccentric with respect to the centerline of the

skin and displacements of the ring at its centroid may be found by means of the
transformations

u =u-c§-—
r ox
o tr o obw
T R R 56 )
W =W




where c¢ is the distance from the ring centroid to the skin centerline. For a ring
loaded normal to, as well as in the plane of, initial curvature, the strain, curva-
tures and specific twist at the central axis, may be written

02 u oW

K =—L - R L
zr Ri 00> r ox
0% w du

_Lofg — 1
nyr RI% r 9x 00 00

Assuming the shear center to coincide with the ring centroid, the stress
resultants and stress couples acting on an element of the ring are related to the
strains and curvatures by the equations

N =E c
yr r yr
M =D K
yr yr yr
M = K
zr Zr Zr
M = K
yXr r VXr

Substituting equations (4) and (5) in the above expressions gives

0% w

— 1 0 1 c
= — = = o= —
Nop =B IR o0 R_ (W R 302)

D
__yr [ v dw
Myr R R (ae 062 (6)

D
zr | 8%u 0 9w
= — — — + ———
Mzr R* 90%  ox (Rrw ¢ 802)
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M ==F (QP- +R --Q—Z‘L—) (6 concluded)

yXIr R; 96 ox 96

Equilibrium Equations

Differential equations are obtained by considering separately the equi-
librium of an element of the skin and a corresponding ""smeared' ring element.
Six conditions of equilibrium must be satisfied by the forces and moments acting
on each of the elements. An element of the skin is shown in Figure 1 a, b, c.
The first of these figures shows the stress resultants and the forces X, Y, and Z
acting at the interface of the skin and the ring, and the second figure gives the
stress couples and the moments Ty and Ty transferred into the skin element from
the ring. Components of the buckling force resulting from the deformation of the
element are shown in Figure 1c. The component in the x direction is multiplied
by the quantity (1 + ¢,) to include the straining of the middle surface as suggested
by Fligge (7). The components in the y and z directions are due to the rotations
dv/9x and 8w/ dx of the element respectively.

The six conditions of equilibrium for the skin lead to the following equations

oON oN

x,1 " yx 8% _
ox TR 00 Yoz TX=0
N

Xy - A

ox Apgz FY=0
BQX - —a—zw- +7Z=0 ™
ax P -

BMX
. 4 + —
ox Qx Tx 0
T =0
y
- N = O
Xy yX

These equations may be combined and put in the form




X=-"%x "R 20 92
S ' .
R ox qax (8)
2
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The six equations of equilibrium for an element of the ring (Fig. 2) may
be obtained in a similar manner. They are

18N
R o0 -X=0
N @
1 _yr, _yr Y=o
R o6 R
oQ N
1 _yr__yr _7=0 (9)
R 06 R
oM
1 YXr € __yXr ZX o=
R o0 R 90 R X
18Myr c aNyr
R o R 00 +er "Ty:0
oM
Y M =0

Rr Nyxr * e T yXr

The last three of the above equations are used to eliminate er and Ny"xr’
This yields the following three equations

M oM
1 . zr 1 VX
R R 00 R R 99
Ir : T
T R ON oM
yo—Y- _r _yr 1 _ yr
R R o0 R 90
T T N 92 N (10)
g o —X 41y _yr L L r
ox R 00 R R? 99
0% M 92 M 9% M
L yxe 100 [ A 4 _ yr
R, 8x 8 R & | zr R, 902 R? 0992




The forces X, Y, and Z and the moments Ty and T, acting at the inter-
face of the skin and ring may now be eliminated by subtracting equation (8) from
equation (10). Hence,

2
aNx +_1_ anx _ 1 0 Mzr + 1 8Myxr _ 9% -0
ex 'R 20 RR_ 0? RR_ 80 9 5x2
8NVX+ R aNyr n _a_M . qa_ZV_ »
2 Y - -
ox R oo R 00 ox (11
M N N %M 9 M
_ X__yr _ ¢ Vr_i vr __l YXr
x> R R? g2 R? 3¢ R 6x 90
3
1 oM, __c M,y _ %W “ 0o
R ox RR_ox 0p° 9752

These are the equilibrium equations in terms of the stress resultants.
Substituting the expressions (3) and (6) for the stress resultants into equations
(11) gives the equilibrium equations in terms of the displacements.

— D
= d%u G [o% o%v Zr 3*u 8w 8w
+ + + -—g + +
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K 2 3 2
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After introducing the expression for the displacements given by equations
(1) into the differential equations (12) one obtains the following three linear equa-

tions.
R : KrR -
- Em+ T2 | nt+ i + mn
ITE +Gn +Dzr (R) D"+ 43 n:lU [Gm —:lV
T r
3 /R K 3
R Iy -2 — =2 r R —_— =2 9
- - — - +— | = + =
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Determination of Buckling Load

The set of homogeneous equations (13) has nontrivial solutions only when
the determinant of its matrix is zero. Equations (13) may be written in matrix
form

[ay; +A ag ag | [U]
asi agg TA A \4 =0 (14)
a3y agy ags + A_J W_]




The determinant of the characteristic matrix of A is a polynominal of the
third degree in A. The problem of determining the buckling load (q = A/%?) for
known values of m and n has therefore been reduced to that of finding the roots
(eigenvalues) of the characteristic equation

at+tbr+cA2+a3=0 (15)

where a, b, and c are known functions of the coefficients a;;. Obviously only
real and positive roots of equation (15) are of interest, the lowest of which de~
termines the buckling load for the mode shape under consideration. The critical
buckling load of the cylinder may be found by calculating q for a range of values
of m and n, and plotting a family of curves as shown in Figure 3. The critical
buckling load will then be the minimum value of q corresponding to integer values
of m and n. If the computer program (see Appendix) is used, the minimum
buckling load will be indicated for the specified range of m and n, and no plotting
is required.

Since W is usually in the order of n times larger than V or U an approxi-
mate solution for g may be obtained by dropping the terms containing q in the
first two of equations (13). This yields

Al
= — 16
9m,n (a2, - ajy agy) ™° (16)

where |A| is the determinant of the symmetrical matrix
Fau ay2 a13

a4 agy 23

ai3 g3 ags

o -

If an iterative procedure is used to find the roots of equation (15), the above
approximation is found to be very useful as a starting point.

/EE)N\PARISON WITH TEST RESUL]_'_S_[

Axial Load
4 r;]a OaJ

u‘ As a part of the Saturn v development program eleven ring-stiffened
corrugated cylinders were tested to failure under axial load. Of these, five l

i0

, 4




failed in general instability. The remaining cylinders failed either by panel in-
stability or local crippling before the general instability load was reached.J A
photograph of a typical general instability failure is shown in Figure 4. Figure 5
shows one of the rings of this cylinder after the failure. | Table I g1ves)the geom- .
etries of these five cylinders along with their actual and calculated failure load
Thg%[ose agreement between the experimental data and calculations supports the
validity of the method of analysis given in this report.

- A1)

==
ATABLE I. RING-STIFFENED CORRUGATED CYLINDERS - AXIAL LOADING ’

CYLINDER No. } No. 2 No. 3 No. 4 No. 5
Aluminum Alloy 7075-T6 7075-T6 7075-T6 | 7075-T6 7075-T6
Cylinder Length (in.) 33.0 33.0 33.0 69.6 69. 6

(cm) 83.8 83,8 83.8 176.8 176.8
Radius (in.) 24,7 24.7 24.7 49.4 49.4
(cm) 62.7 62.7 62.7 125.0 125. 0
Corrugation Pitch (in.) 1.43 1.43 1.43 2.85 2.85
(cm) 3.63 3.63 3.63 7.24 7.24
Corrugation Thickness (in,). 0. 020 0.019 0.025 0,041 0.041
(cm) 0.05 0. 048 0. 06 0.10 0.10
Corrugation Depth (in.) 0.44 0.44 0.44 0.87 0. 87‘
(cm) 1.12 1.12 1.12 2.21 2.21
Type of Ring E * I I I I
Ring Spacing (in.) 6. 38 6.38 6.38 12.4 12.4
(cm) 16.21 16.21 16.21 31.5 31.5
Ring Moment of Inertia (in. 4_) 0. 0050 0.0104 0.0104 0.286 0.286
(em®) 0. 208 0.433 0.433 11.9 11.9
Ring Area (in.?) 0. 040 0.121 0.121 0.180 0.180
(cm?) 0. 258 0.178 0.78 1.16 1.16
Ring Eccentricity (in.) -0.73 -0.53 -0.53 -1.99 -1.99
{(cm) -1.85 -1.35 ~1.35 -5.056 - -5.05
Actual Failure Load (Kips) 131, 174. 224. 659. 648.
(N) 5.83x 1091 7.74x 10%] 9.96 x 10° | 2,93 x 10°| 2. 88 x 108
Calculated Failure Load (Kips)| 118. 198. - 233. 654. 654,
(N)[5.25 x10% | 8.81 x 10%| 1.04x 10¢| 2,91 x 105 2,91 X 108
Percent Error (%) 11.0 -12.1 -3.9 0.8 -0.9

Ring neutral axis

* For this ring an effective
moment of inertia and ef-
fective area were calculated
using the approach given in
Reference 9.




The-instrumentation on these cylinders provided some interesting informa-
tion. The radial deflection gages located on the rings showed that as the load
increased most of the rings deflected into the theoretically predicted circumferen-
tial mode shape. Figure 6 shows a typical example of this phenomenon. When the
radial deflection at a point of maximum bending on the ring is plotted versus axial
load the curve obtained is asymptotic to the failure load as is shown in Figure 7.

Another interesting phenomenon was shown by the strain gages located on
the corrugated skin. Two gages were located opposite each other at various points
on the skin, see Figure 8, so that longitudinal bending of the corrugation could be
observed. As the axial load on the cylinder increased, the strain versus load plot
of the two gages in each set remained linear and almost coincident until just below
the failure load. Then at various locations on the cylinder the strain in one gage
increased nonlinearly while the strain in the other leveled off and then decreased as
shown in Figure 9. This meant that the corrugation was bending appreciably, and
failure of the cylinder was imminent. The actual cylinder failures were similar to
monocoque failures in their swiftness. Conjecture can be made that this second
phenomenon might be used to determine the general instability failure load of a
ring-stiffened corrugated cylinder without actually failing the specimen.

rrA;al Load and Bendil:n__g;}

(Test data is also available for a ring-stiffened corrugated cylinder loaded
in pure bending and for a cylinder loaded simultaneously in bending and axial com-
pression. Table II gives the cylinder geometries and loads.\ |Cylinders loaded in. ’[ﬂ'é % 17/
the above manner are usually analyzed by calculating the maximum compressive -
stress due to bending and axial load and then assuming this stress to act along the ,70-{4

entire periphery of the cylinder. This, however, leads to a conservative prediction
for the buckling stress, since a stiffened cylinder can withstand a greater maximum
stress in bending than in pure compression. This increased load carrying capability
of cylinders in bending can be expressed in terms of a bending factor, 8. If the
bending factor g and the allowable stress in pure compression 0 are known then the
maximum allowable stress in any combination of bending and compression may be

calculated from the equation




EBLE II. RING-STIFFENEDCO

UGATED CYLINDERS -

— AXIAL AND BE NG LOADING l
i SRR ROADT )
CYLINDERS No. 6 No. 7
Aluminum Alloy 7075-T6 7075-T6
Cylinder Length (in.) 268.6 33.0
(cm) 682, 2 83.8
|Radius (in.) 197. 6 24.7
(cm) 501.9 62.7
Corrugation Thickness (in.) 0. 145 0.020
{cm) 0.368 0.051
Corrugation Pitch (in.) 11.40 1.43
(cm) 28.95 3.63
Corrugation Depth (in.) 3.48 0,44
(cm) 8. 84 1.12
%
Type of Ring I E
Ring Spacing (in.) 51.0 6.38
(cm) 129, 54 16.20
Ring In-Plane Moment of Inertia (in. 4) 34.4 0. 0050
(cm?) 0.1431 | 0.208
Ring Out-of-Plane Moment of Inertia (in.?) 0 0
(cm?) 0 0
Ring Torsional Stiffness/Gg (in.?) 0 0
(cm?) 0 0
Ring Area (in.?) 2.48 0. 040
(cm?) 16. 00 0. 258
Ring Eccentricity (in.) -6.24 ~-0,73
(cm) -15.84 -1.85
Actual Bending Load (Kip-ft.) 27, 900 i61.0
(N-m) 3.79 x 107 [2.18 x 10°
Actual Axial Load (Kips) 6, 930 0
(N) 30.8x 108} o
Actual Maximum Stress (lb./in.?) 43, 530 37, 960
(N/ m?) 3.00x 10% {2.62 x 10
Calculated Maximum Stress without Bending Factor (lb./in.?%) 37, 560 28, 620
(N/ m?) 2.59 x 10% [1.97 x 10°
Percent Error (%) i5.9 32.6
B 1.20 1.20
Y . 328 1.0
Calculated Maximum Stress with Bending Factor (Ib./in.?) 39, 700 34, 300
(N/ m?) 2.74x 10° 12,36 x 108
Percent Error (%) 9.6 10.7

* For this ring an effective moment of inertia and effective area were calculated using

the approach given in reference- 9.

s
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where ¥ is the ratio of the bending stress to the maximum total .stress. Table II
shows the calculated maximum stress for these cylinders both without and with the
bending factor8 . For the latter, 8 has been taken as 1.20 which is the ratio of the
actual failure stress of cylinder No. 7 to the actual failure stress of cylinder No. 1.
These cylinders are identical; one was tested in bending and the other in compression.

Additional Remarks

The average number of rings (@) per longitudinal half wavelength for the
cylinders given in Tables I and I is relatively low, « varying from 1.7 for
cylinders No. 2 and No. 3 to 2.6 for cylinder No. 6. Van der Neut [ 6 ] performed
a study to determine what error is produced by using a ''smeared'" ring approach
when « is low. He states that for stiffened cylinders the error is on the order of
4 percent for o = 2, 0 and 6 percent for a = 1, 6, the exact error being dependent
upon the cylinder stiffness properties.

m the cylinders given in Tables I and II had some end fixity. Deflection
measurements indicate that for cylinders No. 4, 5, and 6 the amount of end
fixity was negligible. Unfortunately there were not sufficient deflection measure-
ments on the other cylinders to determine the amount of end fixity, but it is

believed to be small for these cylinders als;c:—_&f__a 30 %’// 30

DISCUSSION

The method for predicting general instability developed in this report con-
siders the eccentricity of the ring with respect to the skin centerline. It can be
shown that this factor has a large effect on the general instability failure load. In
fact, moving the rings from the inside to the outside of the cylinder can sometimes
change the general instability load 100 percent or more. As an example, the general
instability failure load of cylinder No. 4 is 654 kips (2.9 x 108 N) for inside rings
and 1254 kips (5.6 x 108 N) if the same rings are on the outside of the corrugation.
This same type of effect is present in cylinders with inside or outside longitudinal
stiffeners as is shown by the test data in reference 4.

As the test results show, good agreement is obtained for the cylinders
loaded in bending and for those loaded simultaneously in bending and axial com-
pression, if a bending factor of 1.20 is applied to the bending portion of the load.
Cylinders loaded in bending carry a greater maximum stress because the portion
of the cylinder that is highly loaded is stabilized by the remainder of the cylinder.
At the present, though, sufficient information is not available as to exactly what
bending factor should be used for each particular cylinder, this factor being a
function of the cylinder stiffness properties. Based on currently available infor-
mation, it is not recommended that a bending factor be used for design.
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The use of linear small deflection theory has been justified because the
relatively high bending stiffness of a corrugated shell makes the cylinder less
susceptible to initial imperfections and other monocoque effects. A corrugated
shell for which this assumption does not hold true is not envisioned as being
practical, but still it would be possible to make a cylinder with such a small
corrugation depth that it would actually approach monocoque in properties. For
a design of this nature a reduction factor will have to be applied to the failure
load given by this method. An acceptable technique for determining the reduction
factor is given by Almroth [8].

For all the cylinders tested the ring extensional and in-plane bending stiff-
nesses were the only ring properties affecting the failure load. It is believed
by the authors that for most practical applications the out-of-plane bending
stiffiness and the torsional stiffness of the ring are of secondary importance.

In computing the stiffness properties of the ring, care should be taken by
the analyst that the effective rather than the apparent stiffness properties are
used. This is especially true for the out-of-plane properties such as the lateral
bending and torsional stiffness, but may also be important for the in-plane proper-
ties of the ring; e.g. a channel section having wide and comparatively thin flanges
may not be fully effective in bending, as is discussed in reference 9,

It should also be mentioned that the method given in this report only de-
termines the general instability failure load. It does not check for panel buckling
or local crippling failures.

CONCLUD ING REMARKS

Linear small deflection theory has been used to develop a method to de~
termine the general instability load of a ring-stiffened corrugated cylinder under
axial compression. The general instability failure loads of seven corrugated cylin~
ders have been compared with loads calculated by using this method. Agreement
between the calculated and actual failure loads were quite close for the five
cylinders loaded in pure compression. When a bending factor of 1,20 was used,
good agreement was also obtained for one cylinder loaded in pure bending
and for one cylinder having a combination of axial and bending load. Since
calculations must be made for many different mode shapes before the minimum
buckling load can be determined, a computer program was developed.
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FORCES AND MOMENTS ACTING ON SKIN ELEMENT

FIGURE 1.



do
M ¢ corrugation

FIGURE 2. FORCES AND MOMENTS ACTING ON RING ELEMENT
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FIGURE 8. TYPICAL STRAIN GAGE LOCATIONS
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APPEND IX

The computer program is written in Fortran II. The program notation is
given on page 24 and the program listing on pages 25 through 27. The sequence
of steps for program compilation and operation is given in reference 10.

The program input data and corresponding column locations on the input
cards are in the following form.

1-19 20 - 69 70 - 80
|Card 1 - Case Title -

1-16 17-32 33-48 49-64 65-80
Card 2 E ER G GR R
Card 3 QL TX TS QIX c
Card 4 QLR AR QIYR QIZR QJR

1-4 5-8 9-12 13-16 17-80
Card 5 M1 MM N1 NN -

where M1, N1 and MM, NN are the first and last values of m and n respectively,
and

TX =t (D.F.)
TS = t/D. F.

where D, F, , the development factor, is defined as the ratio of the average skin
area per inch of circumference to the skin thickness.
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An example of the program output is shown on pages 28 and 29. The
axisymmetric mode shapes (n = 0) have been included for completeness.

In using the computer program a sufficient range of mode shapes must
be considered so that the minimum buckling load is definitely obtained. This is
mentioned because it is possible to have more than one apparent minimum buckling
load as is shown in Figure 10, ‘

COMPUTER PROGRAM NOTATION

TEXT NOTATION PROGRAM NOTATION
aij AlJ

c C

m, n QM, QN

m QMBAR

n QNBAR

q Q3

tyes tg TX, TS

A, AR

Dy, Dyps Dy DX, DYR, DZR
E, E, E, ER

E EBARX

Eg EBARR

G, Gp G, GR

G GBAR

Ie» Lps Iy QIX, QIYR, QIZR
J. QJR

K, QKR

L, L, QL, QLR

R, R, R, RR
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THE GENERAL INSTABILITY OF RING STIFFENED CORRUGATED

CYLINDERS UNDER AXIAL COMPRESSION
1 READ 4 :

READ 29 Es ERs Gs GRs Rs QL9 TXs TSs QIXos
1 Cs» QLRs ARs QIYRs GIZRs QURs M1ls MMs N1s NN

PUNCH 3

PUNCH 4

PUNCH 5

PUNCH 12

PUNCH 6

PUNCH 79 Es ERs Gs GRy R

PUNCH 8

PUNCH 99 QL9 TXs TSs GIXs C

PUNCH 10

PUNCH 99 QLRs ARs QIYRs GIZRs QJR

PUNCH 13

PUNCH 14, ™M1, MMs N1s NN

PUNCH 15

PUNCH 16

PUNCH 17

PUNCH 18

EBARX = E*TX

GBAR = G¥*TS

DX = E#QIX
EBARR = ER¥AR/ LR
DYR = ER¥QIYR/QLR
DZR = ER%*JIZR/QLR
QKR = GR*¥GJR/QLKR
RR = R + C
RRR = R/RR
Y =0

20 DO 51 N = N1ls NN
DO 51 M = Mly MH
QM = M
OGN = N
QMBAR = QM¥3,14159/QL
QNBAR = QN/R

QR = R¥*(C*QNBAR#*%#2 + 1,

QRR = =R*CH*QONBAR*¥%2 + 14/RRR

All = -EBARX*GMBAR¥%2 - GBARXQNBAR%%2 — (DZR¥QNBAR®¥2 + UKR/R*¥%*2)%
1 RRR*#*3%GNBAR%*%2

Al2 = GBAR®*UMBAR*OINBAR

Al3 = — (DZR*GRK + OKR)*(KRR*UNBAR ) %#2%QMBAR/ RR

A22 = — GBAR*GMSARN%2 - (EBARR/RRR + DYR¥RRK/R%%2)%QNBAR®*2

A23 = - (EBARR¥QUNBARX¥UK/R + DYR¥QNBAR%*%3/RR)

A33 = = DX*¥QMEBAR®¥4 —~ (EBARR¥QR*%2/R%%2 + DYR*GNBAR**4 + RRR*%2%
1 (DZR¥YRR* %2 /R*%2 4+ QKR¥UNBAR%#2) % QGMBAR%%2) *KRR

DD = QOMBARX%*6

CC = UMBAR*#4%(A11 + AZ2 + A33)

&15] QMBAR®*¥ 2% (AL11%AZ22 + ALLI¥A33 + A22%A33 = Alcl%%2 -
1 Al3#%2 = A23%%2)
AA = ATLI¥A22%A33 + 2e%L12%A13%A23 = A23XK%2%AL] = AL3H¥2%A2D
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1 - Al2%%2%A33

XXX = Oo

Q1 = Oo

El = DD¥Q1%¥3 + CC*¥Ql®%¥2 + BB*Q1 + AA

DQ = o¢1*AA/((AL2%%2 — ALLI*¥A22)%(QUMBAR¥*%2))
21 Q2 = Q1 + DO
22 E2 = DD*Q2%%3 + CC*Q2%%2 + BB*¥Q2 + AA

IF (E1#E2) 28928+26
26 Q1 = Q2

El = E2

GO TO 21

28 IF (XXX) 29929530
29 DQ = +01%Q2

XXX = 1le
GO TO 21
30 @3 = Q1
RAD = = 34¥(DD*W3)%*%2 — 2,%¥DD¥*¥CC*Q3 + CC*¥*2 = 44%¥DD*BB
IF (RAD) 50 31 31 ’
31 Q4 = (—{CC + DD*¥Q3) + SQRTF(RAD))/(2+%DD)
@5 = (=(CC + DD*Q3) = SQRTF(RAD))/(24%DD)

IF (Q4) 34y 344 32
32 IF (@3 - Q4) 34y 349 33
33 03 = Q4 i
34 IF (Q5) 50s 50s 35
35 IF (Q3 - Q5) 50s 50s 36
36 Q3 = Q5
50 P = 6428%#R%*¥Q3
STRES = Q3/7TX
IF (Y) 55 555 52
55 STREX = STRES
MX = M
NX = N
GO .TO 54
52 IF (STRES =~ STREX) 53s 51y 51
53 STREX = STRES
MX = M
NX = N
GO TO 51
54 Y = 1
51 PUNCH 19s Q3s Ps STRESs Ms N
PUNCH 23
PUNCH 24
PUNCH 11s STREXs MXs NX
GO 70 1
2 FORMAT (4F 16609 F1l6e4/ 5F16e4/ 5F1l6e4/ 414)
3 FORMAT (//19X41HTHE GENERAL INSTABILITY OF RING STIFFENLD/
119X44HCORRUGATED CYLINDERS UNDER AXIAL COMPRESSION//)
FORMAT (19X49H )
FORMAT (///35X10HINPUT DATA)
FORMAT (15X1HEs 14X2HERs 15X1HGs 14X2HGRs 15X1HR)
FORMAT (4F)640s Flb6a4//)
FORMAT (14X2HGLs 14X2HTXs 14XZ2HTSs 13X3HQAIXs 15X1HC)

o ~JOU; P
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9 FORMAT (5F16e6//)
10 FORMAT (13X3HWLRs 14X2HARs 12X4HQIYRs 12X4HQIZRs 13X3HQJR)
11 FORMAT (4XFl6e4s 2(7X13))
12 FORMAT (35X10WH///7/777777177)
13 FORMAT (14X2HMls 14XZHMMs 14%X2HNL1s 14X2HNN)
14 FORMAT (4(12X14)//7)
15 FORMAT (35X11HOUTPUT DATA)
16 FORMAT (35X11H////7/71/71777/777)
17 FORMAT (15X5HAXIAL)
18 FORMAT (7X13HLOAD PER INCHs 10X10HAXIAL LOADs 8X12HAXIAL STRESSSs
1 9X1HMs 9X1IHN/)
19 FORMAT (3(4XFl6e4)s 2(7X13))
23 FORMAT (///3X17HMINe AXIAL STRESS)
24 FORMAT (2X18HIN THE ABOVE RANGEs 9X1HMs 9X1HN)
101 FORMAT (Fl6e4)
END
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