Author Request (To be completed by applicant) - The following author(s) request authority to disclose the following presentation in the MORSS Final Report, for inclusion on the MORSS CD and/or posting on the MORSS web site.

Name of Principal Author and all other author(s): Jeffrey R. Cares

Principal Author’s Organization and address:
Alidade Incorporated
31 Bridge Street
Newport, RI 02840

Phone: ___401-367-0040___________
Fax: ___401-633-6420___________
Email: __jeff.cares@alidade.net_____

Original title on 712 A/B: Techniques for Intelligence Analysis of Networks

Revised title:

Presented in (input and Bold one): (WG7, CG___, Special Session ___, Poster, Demo, or Tutorial):

This presentation is believed to be:
UNCLASSIFIED AND APPROVED FOR PUBLIC RELEASE
Techniques for Intelligence Analysis of Networks

Alidade Incorporated

<table>
<thead>
<tr>
<th>1. REPORT DATE</th>
<th>2. REPORT TYPE</th>
<th>3. DATES COVERED</th>
<th>4. TITLE AND SUBTITLE</th>
<th>5a. CONTRACT NUMBER</th>
<th>5b. GRANT NUMBER</th>
<th>5c. PROGRAM ELEMENT NUMBER</th>
<th>5d. PROJECT NUMBER</th>
<th>5e. TASK NUMBER</th>
<th>5f. WORK UNIT NUMBER</th>
<th>8. PERFORMING ORGANIZATION REPORT NUMBER</th>
<th>10. SPONSOR/MONITOR’S ACRONYM(S)</th>
<th>11. SPONSOR/MONITOR’S REPORT NUMBER(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>01 JUN 2005</td>
<td>N/A</td>
<td>-</td>
<td>Techniques for Intelligence Analysis of Networks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

<table>
<thead>
<tr>
<th>a. REPORT</th>
<th>b. ABSTRACT</th>
<th>c. THIS PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>unclassified</td>
<td>unclassified</td>
<td>unclassified</td>
</tr>
</tbody>
</table>

17. LIMITATION OF ABSTRACT

UU

18. NUMBER OF PAGES

12

19a. NAME OF RESPONSIBLE PERSON

unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18
Techniques for Intelligence Analysis of Networks

Jeffrey R. Cares

73rd MORSS

©2005 Alidade Incorporated. All Rights Reserved
Main Points

• “Complex Networks” have exploitable properties
 – e.g.: Information Age commercial/social successes
• These exploitable properties have military relevance
 – e.g.: Sense and Respond Logistics (OSD-FT)
• There are significant intelligence analysis manifestations of these properties
• A more satisfying theory of Networked Competition (than currently exists for NCW/NCO, etc) is emerging from this research
Network Metric Thumb Rules
Experimentation and Analysis

<table>
<thead>
<tr>
<th>Metric</th>
<th>Range</th>
<th>Operational Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of nodes, n</td>
<td>$n > \sim 100$</td>
<td>Network effects unlikely to occur with $n < 50$</td>
</tr>
<tr>
<td>Number of links, l</td>
<td>$l < \sim 2n$</td>
<td>$l < < 2n$, too brittle</td>
</tr>
<tr>
<td></td>
<td>$l > > 2n$, too much overhead</td>
<td></td>
</tr>
<tr>
<td>Degree distribution</td>
<td>Skewed</td>
<td>Adaptivity, modularity</td>
</tr>
<tr>
<td>Largest hub</td>
<td>< 100 links</td>
<td>Hub appears, recedes by reconnection 5% of links</td>
</tr>
<tr>
<td>Average path length</td>
<td>$\log(n)$</td>
<td>Short distances even for large networks (e.g., 10^4 nodes \Rightarrow Average path length ~ 4)</td>
</tr>
<tr>
<td>Clustering</td>
<td>Skewed</td>
<td>Hierarchy, organization</td>
</tr>
<tr>
<td>Betweenness</td>
<td>Skewed</td>
<td>Cascade control</td>
</tr>
<tr>
<td>Path horizon</td>
<td>$\log(n)$</td>
<td>Self-synchronization</td>
</tr>
<tr>
<td>Susceptibility/Robustness</td>
<td>Low (random removal)</td>
<td>Hubs should be kept obscure until needed, damage abatement/repair schemes</td>
</tr>
<tr>
<td></td>
<td>High (focused removal)</td>
<td></td>
</tr>
<tr>
<td>Neutrality Rating</td>
<td>$(0, 1)$</td>
<td>Increased network effects, decreased susceptibility, tipping points</td>
</tr>
<tr>
<td>Coefficient of Networked Effects</td>
<td>$(0, 1)$</td>
<td>Network effects</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PFE/n</td>
</tr>
</tbody>
</table>
Number of Nodes, Links

- A factor in how many links are required for adaptive behavior
 - A very large number of nodes with low link density suggests a brute force strategy
 - A very large number of nodes with high link density suggests confusion
 - A very small number of nodes with high link density suggests tight-knit cabal
 - A very small number of nodes with low link density suggests a brittle organization

- Potential Strategy
 - Drive the link/node ratio in a direction counter to what the target organization may need for assumed mission
Degree Distribution

- **Skewed: Adaptive, Learning Organization**
 - Hubs can be kept obscure until needed
 - Hubs can recede, re-appear with re-wiring of 5-10% of links
 - All paths to hubs are short

- **Uniform (Lattice): Strict Hierarchy**
 - As average degree tends toward 1 organization becomes more “chain-like” and brittle

- **Multi-modal: Dispersed Operations**

- **Potential Strategies**
 - Skewed: encourage hub formation, follow short paths
 - Uniform: reduce average degree (increase brittleness)
 - Multi-modal: Divide and conquer
Clustering

- High: Small World Effect
- Low: Strict Hierarchy
- Skewed: Adaptive
- Potential Strategies
 - High: Follow short paths to target nodes
 - Low: Drive toward brittleness
 - Skewed: Look for “President’s Cluster”
Betweenness

- Nodes with high betweenness are nodes through which the highest number of shortest paths pass

- Potential Strategies
 - Bombard the target network with noise to flush out high betweenness
 - Keep high betweenness nodes alive until the target network needs them most
 - Look at low degree nodes close to high betweenness for gatekeeper-protected node relationships
Path Horizon

- Very Low: Tight coordination
- \(\log(n) \): Adaptive
- High: Chains
- Potential Strategies
 - Very Low: Bombard with noise
 - \(\log(n) \): Induce different structure on network
 - High: Interdict
CNE (h-cycles)

- Low h: Tight coordination
- High h: Chain
- Potential Strategy:
 - Low h: bombard with noise
 - High h: Remove links to turn into low h and then bombard with noise
Conclusions

• Structural Analysis is a useful tool for understanding networks
• Strong complement to traditional methods
• Provides recommendations for how to attack or influence the target network
• Most examples are from non-military contexts
 – Need for military-specific research
Questions?