Name of Principal Author and all other author(s):

Brock Webb

Principal Author’s Organization and address:

5695 King Centre Drive
Suite 300
Kingstowne, VA 22315

Phone: 703-924-3050 x5126
Fax: 703-924-3070
Email: Brock.Webb@cubic.com
brockwebb@cox.net

Original title on 712 A/B: Biological Defense: Evaluating Sensor Array Quantity and Quality versus Detection Capability

Revised title: n/a

Presented in (input and Bold one): (WG_2, CG___, Special Session ____, Poster, Demo, or Tutorial):

This presentation is believed to be:
UNCLASSIFIED AND APPROVED FOR PUBLIC RELEASE
BIOLOGICAL DEFENSE:
EVALUATING SENSOR ARRAY QUANTITY AND QUALITY VERSUS
DETECTION CAPABILITY

Brock Webb
Cubic Defense Applications
brockwebb@cox.net

73rd MORS Symposium
21–23 June 2005
Biological Defense: Evaluating Sensor Array Quantity And Quality Versus Detection Capability

Report Date: 30 SEP 2005
Report Type: N/A
Dates Covered: -

Performing Organization: Cubic Defense Application

Permitting Organization Name: Cubic Defense Application

Performing Organization Report Number:

Sponsoring/Monitoring Agency Name:

Sponsoring/Monitoring Agency Report Number:

Distribution/Availability Statement: Approved for public release, distribution unlimited

Supplementary Notes: See also ADM201946, Military Operations Research Society Symposium (73rd) Held in West Point, NY on 21-23 June 2005. The original document contains color images.

Abstract:

Security Classification of:
- a. Report: unclassified
- b. Abstract: unclassified
- c. This Page: unclassified

Limitation of Abstract: UU

Number of Pages: 29

Name of Responsible Person:

Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18
AGENDA

- Part 1 Background
- Part 2 Design of Experiment
- Part 3 Data Analysis
- Part 4 Results & Conclusions
- Part 5 Questions
PART 1 BACKGROUND

- Project History
- Project Objectives
- Basic Definitions
Began as a project for SYST 798 at GMU
- Investigating quality versus detection capability of different sensor arrays using a fixed number of sensors to detect an Anthrax attack
- Project sponsored by the Defense Threat Reduction Agency (DTRA) through the Weapons of Mass Destruction Assessment and Analysis Center (WMDAAC) OR Cell

Study modeled the release of Anthrax from 8 different release points
- Used HPAC to generate plume data
Sought to understand the effectiveness of four different notional sensor types in a fixed sensor array
- Study the effects of agent amount (1 & 2 kg), wind speed (4, 8, 12 knots)
- Used perfect sensors (no false detections)

Time constraints required a definitive scope of the project
- Future studies were recommended
- This new study was designed to further the research and answer questions left unanswered
Project Objectives

- Model the release of a biological agent (Anthrax) into a protected area surrounded by notional sensors
 - Determine the effect of sensor sensitivity on detection capability
 - Determine the effects of using more or less sensors
 - Understand the cost vs. performance tradeoff
 - Use perfect (no false detections) and non-perfect sensors (require multiple detections to rule out false positives)
Basic Definitions

ACPLA — Agent Containing Particles Per Liter of Air (ACPLA), for Anthrax, 1 ACPLA = 1×10^{-11} kg/m3

— Measure of a sensor’s sensitivity level; the lower the number, the better the sensor

Battle Space — A 16x19 km rectangular area that contains the total geographical region that the release of agent is modeled within

Defense Area — Found inside the Battle Space, this 10x13 km rectangular area surrounded by sensors and contains the population/valuable assets to protect

Detection/Hit — When the concentration of agent around the sensor is above the threshold of detection

HPAC — Hazardous Prediction and Assessment Capability — models the propagation of the agent’s plume across the Battle Space
PART 2 DESIGN OF EXPERIMENT

- Hypothesis
- Scenario Design
- Defining the Battle Space
- Sensor Model
Hypothesis

- An increased quantity of cheaper, notional sensors will provide equivalent or better detection capability for less cost
 - Using more sensors reduces the space between sensors and reduces the likelihood of an agent’s plume slipping through undetected
 - Instead of buying more sensitive sensors, spend less money, buy more cheaper sensors for the equivalent detection capability at a reduced cost
Scenario Design

- Scenarios Modeled in HPAC
 - 0.5, 1 and 2 kg anthrax releases
 - 8 release points
 - Release height at 2 m, over .08 km distance
 - 90% purity with 60% dissemination efficiency
 - Atmospheric conditions constant for all releases
 - Scattered clouds, ambient temperature
 - Wind speed at 4, 8, and 12 knots
 - Wind direction toward center of defense area from the release point (worse case)
 - Two releases from four different terrain conditions
 - Mountain, Desert, Forest, and Stream
 - 3 km from sensor array
Defining the Battle Space

During model runs, wind blows from Release Point to center of Defense Area

Sensor Model

- Four generic types of notional sensors used based on their threshold of detection
 - 1, 10, 20, 30 ACPLA
 - Theoretical 1 ACPLA sensor used as basis for best possible detection capability

- Sensor Configuration
 - Rectangular perimeter defense
 - Tested 16, 28, 42, 65 and 129 sensors
 - Equally distributed around the perimeter of a 10x13 km rectangle
PART 3 DATA ANALYSIS

- Technical Methodology
- Average Detections
- Defining a Better Performance Metric
- Cost vs. Performance
Technical Methodology

- Simulated release of agent using HPAC
 - Captured concentration at every point in 100 X 100 matrix representing the Battle Space in 2 minute time steps over a 4 hour period
 - Imported data into Access Database

- Determined if, at any time, a concentration in the location of a sensor exceeded the sensor’s threshold of detection

Hazard Prediction and Assessment Capability (HPAC) — government off-the-shelf software for use in modeling chemical and biological agents
Average Detections

Number of Sensors

Average Detections

1 ACPLA
10 ACPLA
20 ACPLA
30 ACPLA
Defining a Better Performance Metric

- Averaging the detections does not provide any useful information
 - Result is an average and does not let one know if one or zero detections occurred with any scenario
 - More true of lesser agent amounts (0.5 kg case)
 - Zero detection results in casualties!
 - Difficult to account for non-perfect sensors

- Better performance metric is counting the number of releases where our detection criteria is met
 - >0 for perfect
 - >1 (at least 2 detections) or >2 (at least 3 detections) for non-perfect
Detection — >1 Required

% Scenarios Detecting vs. Number of Sensors

- 1 ACPLA
- 10 ACPLA
- 20 ACPLA
- 30 ACPLA
Detection — >2 Required

Number of Sensors vs. % Scenarios Detecting

- 1 ACPLA
- 10 ACPLA
- 20 ACPLA
- 30 ACPLA

CUBIC DEFENSE APPLICATIONS
0.5 kg Case Detection — >2 Required

Number of Sensors vs. % Scenarios Detecting

- 1 ACPLA
- 10 ACPLA
- 20 ACPLA
- 30 ACPLA
Cost vs. Performance

- Cost of a notional sensor was estimated using the following formula:
 - Better Sensor = 1.5 \times \text{Cost} \text{ Worse Sensor}
 - 20 \text{ ACPLA} = 1.5 \times \text{Cost} \text{ 30 ACPLA;}
 - 10 \text{ ACPLA} = 1.5 \times \text{Cost} \text{ 20 ACPLA; etc.}

- Notional cost estimates used to examine the general behavior of the system in order to observe trends

- Cost analysis does not include:
 - Deployment cost/sensor
 - Normal cost of everyday sensor usage
 - Cyclical maintenance cost/sensor/unit time
Perfect Sensor Cost

% Scenarios Detecting vs. Notional Cost

Notional Cost

$0 $50 $100 $150

75% 80% 85% 90% 95% 100%

1 ACPLA 10 ACPLA 20 ACPLA 30 ACPLA
>1 Detection Cost

Notional Cost

% Scenarios Detecting

$0 $50 $100 $150

1 ACPLA 10 ACPLA 20 ACPLA 30 ACPLA
>2 Detection Cost

Notional Cost

% Scenarios Detecting

$50 $100 $150 $200

1 ACPLA 10 ACPLA 20 ACPLA 30 ACPLA
PART 4 RESULTS & CONCLUSIONS
Results & Conclusions

- Total count of releases meeting detection criteria is a much better metric for evaluating the notional sensor array performance
 - Total counts of successful detection reveal the cases where little or no detections occur, while averaging the counts can be misleading
 - 30 ACPLA sensors could not achieve 100% performance, even with 129 sensors (360 m spacing between sensors)

- 0.5 kg scenarios were the main driver for reduced performance
 - This is a more realistic amount to manufacture than 2 kg
 - Consider using 0.25 kg to improve understanding of smaller scale attacks
Results & Conclusions

- 1 ACPLA sensors outperform all other sensors and cost less for 100% detection when considering *non-perfect* sensors
 - 10 ACPLA sensors perform very well and are also a good alternative, especially when 3 or more detections are required
 - 20 ACPLA sensors had more difficulty with the 0.5 kg cases, and might perform even worse for smaller attacks

- Based on the results, reject the hypothesis that an increased quantity of cheaper sensors provides an equivalent or better detection capability for less cost
 - Increased sensitivity performs better with smaller releases
 - Recommend less quantity with more quality