
SHIP PRODUCTION COMMITTEE
FACILITIES AND ENVIRONMENTAL EFFECTS
SURFACE PREPARATION AND COATINGS
DESIGN/PRODUCTION INTEGRATION
HUMAN RESOURCE INNOVATION
MARINE INDUSTRY STANDARDS
WELDING
INDUSTRIAL ENGINEERING
EDUCATION AND TRAINING

THE NATIONAL
SHIPBUILDING
RESEARCH
PROGRAM

April 1997
NSRP 0532

1997 Ship Production Symposium

Paper No. 28: A Prototype
Object-Oriented CAD System
for Shipbuilding

U.S. DEPARTMENT OF THE NAVY
CARDEROCK DIVISION,
NAVAL SURFACE WARFARE CENTER

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
APR 1997

2. REPORT TYPE
N/A

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
The National Shipbuiliding Research Program 1997 Ship Production
Symposium, Paper No. 28: A Prototype Object-Oriented CAD System for
Shipbuilding

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Surface Warfare Center CD Code 2230-Design Integration Tower
Bldg 192, Room 128 9500 MacArthur Blvd Bethesda, MD 20817-5700

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

SAR

18. NUMBER
OF PAGES

12

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

DISCLAIMER

These reports were prepared as an account of government-sponsored work. Neither the
United States, nor the United States Navy, nor any person acting on behalf of the United
States Navy (A) makes any warranty or representation, expressed or implied, with respect
to the accuracy, completeness or usefulness of the information contained in this report/
manual, or that the use of any information, apparatus, method, or process disclosed in this
report may not infringe privately owned rights; or (B) assumes any liabilities with respect to
the use of or for damages resulting from the use of any information, apparatus, method, or
process disclosed in the report. As used in the above, “Persons acting on behalf of the
United States Navy” includes any employee, contractor, or subcontractor to the contractor
of the United States Navy to the extent that such employee, contractor, or subcontractor to
the contractor prepares, handles, or distributes, or provides access to any information
pursuant to his employment or contract or subcontract to the contractor with the United
States Navy. ANY POSSIBLE IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR
FITNESS FOR PURPOSE ARE SPECIFICALLY DISCLAIMED.

THE SOCIETY OF NAVAL ARCHITECT S AND MARIN E ENGINEERS
1997 Ship Production Symposium

April 21-23, 1997
New Orleans Hilton Hotel
New Orleans, Louisiana

1

THE SOCIETY OF NAVAL ARCHITECTS AND MARINE ENGINEERS
601 Pavonia Avenue, Jersey City, NJ 07306

Tel. (201) 798-4800 Fax. (201) 798-4975
Paper presented at the 1997 Ship Production Symposium, April 21-23, 1997

New Orleans Hilton Hotel, New Orleans, Louisiana

A Prototype Object-Oriented CAD System For Shipbuilding

Norman L. Whitley (V), University of New Orleans,

ABSTRACT

This paper reports on the on-going development of an object-oriented CAD system at the Advanced Computer
Laboratory for Shipbuilding at the University of New Orleans. It describes a) the reasons for object-oriented (yard-
specific) development, b) the computer-aided software development environment, c) the developing class structure
of the ship structures design application, and d) the planned developments within the CAD system and integration
of packages to support visualization, planning and enterprise management and electronic data interchange.

NOMENCLATURE

AP - Application protocol
CAD - Computer-aided design
CE - Concurrent engineering
EDI - Electronic data interchange
IPPD - Integrated product & process development
ISO - International Standards Organization
NSRP - National Shipbuilding Research Program
ODMG - Object Data Management Group
OLE - Object linking & embedding
OODBM - Object-oriented data base manager
OOP - Object-oriented programming
OOT - Object-oriented technology
PC - Personal computer
SBD - Simulation-based design
STEP - STandard for the Exchange of Product model data
2D - Two-dimensional
3D - Three-dimensional

INTRODUCTION
The work described here is concerned mainly with the use of

object technology in software application development. This new
technology is changing how computer software is written and
maintained. It is changing the paradigms of software development
while radically shortening the time scales of that development. The
specific project that will be discussed here is that of building a
customized computer-aided design system from libraries of
geometry, topology, and graphical user interface components. These
libraries include entities and algorithms. The goals of this project
were to use object technology to create a working prototype of a ship
design system, assess its advantages and weaknesses as compared to
commercially available systems, and assess the feasibility (or
economic justifiability) of in-house development within American
shipyards.

The status of this work will be discussed along with sufficient
background in object programming and technology, as well as
current business trends in information resources, design and
manufacturing. There will be some discussion of future efforts in the
use of a centralized database of which the product model is an
essential element.

BACKGROUND

Generic Computer-Aided Design

The past fifteen years have seen the appearance of computer-aided
design (CAD) systems within the design, manufacture, and
engineering components of companies worldwide. This has been
mostly due to the plummeting price of computing power and the
availability of interface-driven operating systems and powerful
application packages. The ability to prescribe, describe, and analyze
products using computer programs as a primary tool has allowed for
a pronounced change in the way that products are conceived.

The question of how to chose a CAD system that will lead to
greater success for a company is a difficult one to answer. Cost-
benefit analyses are not totally successful in that they do not reflect
the culture of a company, and are often based on processes that
currently exist and will or should not in the future. These analyses
tend to be viewed as pre-arranged - the figures were made to justify
the desired outcome. An excellent overview of the difficulty in
choosing a CAD system can be found in Marks and Riley (1). This
book also offers a superb scheme by which a rational choice could be
made.

The phrase “CAD” has taken on numerous meanings due to
the vast differences in the scope and power of commercially available
packages. CAD can mean as little as creating 2D line drawings
(drafting). It can mean as much as creating 3D solid models whether
through constructive solid geometry or through 3D boundary
representations with topology.

Low end CAD packages are in some ways not very powerful,
but still may be viewed as being complex to the uninitiated. They
run on personal computers (PC’s) running various versions of the
Microsoft Windows, Macintosh, or DOS operating systems. Vendors
in this area, which are numerous, include AutoDesk, Cadkey, and
Ashlar.

These packages also allow for connection to various external
software programs that may perform analysis, 3D visualization, or
management functions. This connection may be straightforward,
accomplished by operating system function, such as MicroSoft
Windows Object Linking and Embedding (OLE), or through saved
file structure. Often it is the case that the connection is cumbersome,
requiring file manipulation that is difficult to automate.

Regardless, these higher level functions are not the key to the
succes of these low-end packages. Historically a company’s
manufacturing processes have been based on 2D line drawings. The

2

craftsmen that build the product have extensive experience in
interpreting this kind of design output. In this sense, 2D line
drawings do reflect manufacturing process, they are the seminal
element from which manual manufacturing proceeded. It is for this
reason alone that low-end CAD packages have been such a success.

High end packages are very powerful and indeed very complex.
They run on very high-end PC’s or on workstations running some
version of the UNIX operating system. They have numerous
operations and features in an attempt to surround all possible design
algorithms and they include copious optional modules for analysis,
manufacturing, and/or management, etc. Vendors in this area include
Parametric Technologies, IBM, SDRC, ComputerVision, and
Intergraph.

Even though these systems offer enormous power they are not
the automatic preference, even for companies that need more than
2D line drawings as design output (for example they may need
toolpaths for numerically controlled machines or robots). Some of
the problems with these packages are:
• their cost - initial cost, the cost of lost productivity while

personnel learn the new system and adapt to it, and the on-
going cost of relatively sophisticated systems and computers
that require maintenance

• their difficulty to master - their powerful structure leads to
complicated interfaces with abundant selections and complex
command sequences

• their lack of open communications - even though they have
abundant modules for support they don’t directly communicate
with the company’s well honed materials management system

• their overhead of features - they have a large number of options
for doing certain tasks, many more than a company will need or
use

• their inability to reflect a company’s design practices and
manufacturing processes.
For these reasons, some businesses have taken off-the-shelf

packages and have over time tailored them to the processes and
practices of their yard. This is usually a difficult and expensive task
but results in a highly effective CAD package. This is essentially
how Boeing Aircraft has developed its world renown CAD system.
Although it is CATIA, the developers of CATIA, Dassault and IBM,
worked extensively with Boeing to provide the functionality that
Boeing required (2).

The Information Age. As companies move to cut
manufacturing costs through automation and process improvement,
it is crucial that information from design be changed to support the
new manufacturing methods. To be competitive companies need to
be responsive and capitalize on what they do well. The right kind of
information at the right place is necessary for optimal operation.
Information, in fact, and its management is now the focal point of
corporate competitiveness. Creating information and storing it in a
central database that is then shared, modified and utilized by all
internal units is seen as essential to being competitive.

At the heart of this database is the three dimensional product
model (3) which consists of the 3D geometry and topology of the
product and its parts, its material properties, its manufacturing
processes, its relationships to all other products, maintenance
requirements, etc. The database also contains marketing information
that may include 3D visualizations, or virtual reality presentations,
purchasing information, financial information, etc.

This view of centralized information as the chief company asset
is developing in conjunction with the philosophy of integrated
product and process development (IPPD) or concurrent engineering
(CE). On a philosophical level IPPD is a frontal attack on the design

of a product. It is all business units acting simultaneously in
combination with the customer to create a design. On a functional
level, IPPD cannot succeed as it is intended unless there is high level
integration of methodologies and tools, seamless communication
between working groups, and a shared database that defines the
product. The core of the functionality of IPPD is computers,
networks, and information technology. A deficiency in most current
CAD systems is that they are very much design and engineering
systems. They are not business systems. They are not a ready part
of the new IPPD world.

A new facet of IPPD that is currently emerging in
manufacturing is simulation based design (SBD). SBD is the
practice of using product design knowledge in simulations and
visualizations during the design process. As much as possible, the
product is “tested” and “reviewed” using software and computers
before manufacturing starts. This means physics-based simulation
and virtual reality evaluations of the product’s structure. SBD
requires the geometry of the product as well as knowledge about its
physical properties. The 3D product model is needed for this
process.

STEP. Another element that is playing a role in the future
of CAD is STEP- STandard for the Exchange of Product model data,
a standard of ISO (10303). Within STEP are conventions for basic
geometry and topology. On these conventions are built higher level
entities that are industry specific and these are collected in
application protocols (AP). STEP infers a standard format for
exchanging CAD data between different software systems. Much of
the world is adopting this standard. It will be the neutral format for
exchanging data and yet most CAD systems do not have the STEP
definitions as part of their basic elements. STEP translators must be
created to take a vendor’s format (AutoDesk’s DXF for instance) and
convert it to this neutral format and vice versa. This is not a trivial
task. Many CAD systems store geometry and not topology, or their
topology is not robust or consistent with STEP. There is currently a
funded effort (4) to create prototypes of these translators.

These issues point to the need for a new generation of CAD
systems that are part of the whole business process, that are
modular, flexible, extendible, and can be tailored to suit a company’s
strength. These new systems need to provide data that is available to
all business units and can be transmitted easily to business partners
and customers. Two recent brief articles by Deitz (5,6) review new
CAD systems in this light.

Shipbuilding Computer-Aided Design

The level of use of computer aids in American yards (and their
impact) has been well documented. Important recent works include
NSRP report 0373 (7), and the papers of Storch, Clark, and Lamb
(8) and Ross and Garcia (9). A broad overview of computer aids in
all aspects of ship manufacture can be found in Latorre and Zeidner
(10). A paper by Storch and Chirilo (11) speaks squarely to
effectively using CAD for more than basic design function.

Concurrent engineering is being strongly promoted by the
branches of the U. S. armed services and is being embraced by
several shipyards. It was the topic of three recent NSRP efforts.
They are documented in reports 0435 (12), 0436 (13), and 0454
(14).

There are CAD packages that are specifically for shipbuilding.
These off-the-shelf products include Autoship from Autoship
Systems, FAST SHIP from Proteus, ISDP from Intergraph, FORAN
from Senemar, and Tribon from KCS. Both IBM’s CATIA and
Parametric Technology’s Pro/Engineer have recently included ship
design packages in their optional modules. These packages like the

3

generic ones differ greatly in scope and power. Each has strengths
and weaknesses. These may not be a perfect fit for any yard but
could be profitable solutions in many yards.

The functionality of world-class CAD systems is being
reviewed and characterized in an ongoing project funded by the
NSRP (15). This project is at a midway point but its interim report
supports this idea: world-class does not have to mean cutting-edge
technology, but it does mean highly tailored systems that capture and
enable what your company does and supports it as much as possible.

As an example that is somewhat different from Boeing’s effort
with CATIA there is the Danish yard at Odense and the Hitachi
Zosen yard in Japan which have developed HICADEC, one of the
most successful computer aids in shipbuilding. This development
has almost totally been done in-house over many years, but
HICADEC has become a powerful tool for these yards which are
considered to be among the most competitive and productive in the
world.

A significant effort in this area of customization is that of
Newport News Shipyards. This shipyard participated in a DARPA
funded project for the development of simulation-based design
(Lockheed/Martin was the lead contractor). As part of that Newport
News has created a smart product modeling system for shipbuilding.
This system’s architecture is based on several commercial-off-the-
shelf products. Entities are created in the 3D CAD environment,
placed in a database, and managed by an object-oriented database
manager. This allows for those entities (objects) to possess attributes
of almost any nature. The information can be queried at any time by
the database manager. New information can be attached to an object
at any time. Thus, a smart 3D product model exists.

It is the success of these in-house developments that stimulated
this research. The lessons that could be drawn were:
• The more a yard could tailor the CAD system to their processes

and practices the more valuable it was. For CAD systems to be
of the most value they had to be flexible, modular and open.

• The users had to be able to determine their characteristics and
functionality. The users had to be able to institute new
algorithms that are useful to them alone. They had to be able to
remove all functionality that is of no use to them.

• They had to be able to create any standard entity that is
necessary for their design or manufacturing, even it is only a
standard for them. They had to be able to use terminology that
is the practice of their yard.
The success of these in-house developments is so clear one

may ask if something similar is the answer for every shipyard. If
given the opportunity by software vendors, most yards could
eventually tailor commercial products into something extraordinary
for their own use. But these developments may take many years,
and that is time that American shipyards do not have. They must
become competitive on the world market in the immediate future or
many will not survive.

One may also ask if something like the Newport News system
is the answer. With a product like that one there are dangers in that
the future is not totally controlled by the yard:
• The component commercial-off-the-shelf products will evolve

and may not remain the component that they need.
• It may not be possible to include newly identified functionality

requirements in those core products at a later time.
• It may be that the communication between these products will

not always remain clear and seamless.
The questions that motivated this research are: Is it feasible for

a yard to build a self-contained state-of-the-art CAD system (a smart
3D product modeling system) - one whose function and input/output

can be integrated into all business processes - from scratch? If
feasible, what expertise does it require? How many people would it
require? What is the time-frame of such a development?

OBJECT-ORIENTED PROGRAMMING LANGUAGES AND
PARADIGMS

Object-oriented technology (OOT) is an extension of the
paradigms upon which object-oriented programming (OOP) was
built. OOP languages are the most current fad in the computer
science community. These languages are relatively new (the oldest is
about 30 years old) but have really stormed to the front in the world
of application development within the last 5 years or so. They are
emerging as the unanimous choice for building applications that are
centered around the creation, management, and sharing of
information.

Computer languages that are most familiar to people like
Fortran, C, and Basic are of the oldest type and are called procedural
languages. They are used to create procedures for doing calculations
or manipulating data, etc. The popular languages just prior to OOP
were structured procedural languages. The motivation behind these
languages (it was more a style than a new language) was verification
of code. Large pieces of code were difficult to verify if the code
lacked a formal structure.

OOP languages have very formal structures and that is one of
their strengths This structure is based on several definitions and
paradigms, some of which will be presented below. OOP languages
obviously execute procedures. With OOP, it is how procedures are
packaged that is significant.

Detailed information about object-oriented program-ming and
technology can be found in numerous books. Among them are those
by Meyer (15), Kemper (16) and Burleson (17). A less technical
overview can be found in the book by Taylor (18), and a less
optimistic view is provided by Webster (19).

OOP Structure

In OOP language programs data and the procedures that
operate on that data are packaged together in objects, pieces of code
that are self-contained in a somewhat similar way that sub-routines
in procedural languages are self-contained. Procedures are never
written such that they are unattached to data. A class is a template
for a set of similar objects. A class is a package that contains all of
the procedures (called methods) and variables for every member of
the set. Creating a class avoids needless redundancy of code.

What follows is a short description of four important concepts
for object-oriented languages. These four traits embody the power of
these languages to improve the structure and design of programs.

Abstraction. The ability to create classes that represent a
certain set of data as a new data type is called abstraction. In most
procedural languages there are pre-defined data types: real, integer,
character, boolean, etc. It is not possible to create a new type of
data. In OOP every class can be considered to be an abstract data
type. A class represents a whole new data structure that has well
defined behaviors and characteristics.

Encapsulation. The feature of packaging together
corresponding variables and methods within an object is called
encapsulation. It is important because it allows for the details of
procedures to be hidden from outside the object. Methods are never
passed to objects, only messages. The message asks for some
method to execute but the details of the method are not known to the
sender of the message. This allows for simple interaction between
objects and therefore for easy modification of the methods without

4

wholesale changes of the code.
Inheritance. The acquisition of methods and variables by a

class simply by its position in a hierarchy is called inheritance. All
classes are placed in a hierarchy (in some OOP languages multiple
hierarchies are allowed). Classes have descendant (or sub) classes
that inherit their methods and variables. They have parent (or super)
classes from which they inherit. This is a property that eliminates
redundancy and encourages consistency.

A program contains classes for closed polygons, quadrilaterals,
rectangles, squares, triangles, and isosceles triangles. In the
hierarchy, quadrilaterals and triangles inherit from closed polygons.
Rectangles inherit from quadrilaterals and squares inherit from
rectangles. Isosceles triangles inherit from triangles. When the
message is sent to any member of the class square to provide its area,
an appropriate method executes. A “compute area” method could
exist in the class square, but one also exists in the class rectangle.
The class square could inherit the method of computing area from
the class rectangle, which may or may not inherit the method from
the class quadrilateral. The same scenario exists for the triangle
branch of the hierarchy.

Polymorphism. The ability to hide different responses to a
single message behind an object’s interface is referred to as
polymorphism. In the hierarchy above, if the message of “provide
area” is sent to a member of the class square or triangle, they both
respond with their areas even though the method used to compute
the areas is different. The message sent is simple - “provide area.”
The response it elicits is the same as seen from outside the object.
This feature of OOP allows for simple and consistent interaction
between objects.

OOP Languages and Database Managers

There are pure OOP languages and there are hybrid ones. The
most important of these would include Simula (the original),
SmallTalk, and now Java, which are pure OOP languages.
Objective-C and C++ are hybrid OOP languages, both being OOP
extensions of the language C. Both of these languages allow for
procedural code to exist along with object-oriented code. They were
created to take advantage of the power of C at doing some procedural
tasks.

The language chosen for this development is C++. C++ can
be said to be arcane and has some very challenging features that are
not good for beginning programmers, but at this time it is the most
commonly employed OOP language. There is no ANSI (or other)
standard for C++ at this time, which means that every vendor’s C++
compiler has different capabilities.

Object-oriented database managers (OODBM) use the
paradigms set forth above. Because they do they offer a powerful
way to store complex data structures. Relational databases were
designed to store conventional data types: real numbers, character
strings, boolean values, etc. When you have created a hierarchy of
objects, each of which can be considered to be an abstract data type,
relational databases cannot directly store that information. The
OODBM can store that information just as it is and can then query it.
It does so by storing references between a class and its instances,
between objects and other objects. So a composite piece has
references to all of its components - all of the variables that are
related to it. They could be character strings, real numbers,
topological characteristics, geometry, a rasterized drawing, a bill of
materials, etc.

The manipulation and communication of objects as described
above is standardized by a working group called the Object Data
Management Group. Their standard ODMG-93 is generally

accepted in this area.

OOT Conclusion

It is because of these traits of object-oriented technology that it
is currently the choice for development of complicated software
applications. It offers the ability to build applications in a highly
modular way with abstract data types of any nature. Data and
procedures are always associated with their pertinent objects. This
leads to code structure that can be more easily verified to work.
Changing code to include new features or to modify existing ones
can be done with limited re-writing of existing code. OOT leads to
data structures that can be highly heterogeneous and yet very usable.

In closing, the reader is reminded that the word “object” is
used in a lot of different contexts concerning computers. One of the
most frequent uses is in conjunction with MicroSoft’s Object Linking
and Embedding (OLE). This technology is very different from what
is described here. Not all of the paradigms listed above actually
pertain to OLE. OLE is a very rigorous and useful standard but one
that only exists in MircoSoft’s Windows operating systems.

DEVELOPMENT ENVIRONMENTS

One option for development would be to buy a C++ compiler
and start from scratch. That clearly carries a lot of risk. If that were
the only option then developing an in-house CAD system would not
be justifiable. Fortunately there are toolkits that are available that
makes this process possible and warranted. These toolkits include
those from ComputerVision Corp. (Pelorus) and Matra Datavision
(CAS.CADE - computer-aided software for computer-aided design
engineering). The details of these toolkits differ considerably but
they have both have the elements needed to create OOP CAD
applications. The toolkit or development environment used here is
CAS.CADE.

The environment consists of a methodology for creating
applications supported by appropriate tools and a set of expandable
C++ class libraries. These libraries include classes for modeling,
analysis, graphical presentation, graphical user interface
implementation using Motif constructs, and data management.
There are extensive libraries for creation of geometry and topology,
in both 2D and 3D. These two libraries are STEP compliant. The
basic entities were created using STEP Part 42 definitions. These
libraries support non-manifold topology.

For both of the environments mentioned above finished
applications can be deployed on machines running versions of the
MicroSoft Windows operating system. They also required a
language compiler, either MicroSoft Visual Basic for Pelorus or
Visual C++ for CAS.CADE.

The brief description below is meant to impart a notion of
possible elements in a robust environment for the development of
CAD. The various types of software components (development
units) are given these names (see Figure 1.):
• a set of related classes is called a package
• a set of data types known to an application database is called a

schema
• a set of related packages can be formally grouped together into

a toolkit
• a set of packages, classes, and methods whose services are

exported to the front end is called an interface.
• a set of interfaces is called an engine
• a set of chosen engines make up an application
This categorization reflects the modular nature of development.

5

Pieces are constructed from smaller pieces, and so forth.
In example, an application would include a dialogue engine

which implements the ergonomics of the user-interface. It handles
all of the user-initiated screen events
 (whether graphical, button, menu selection, or text) and passes them
to the front-end. The front-end is basically the software driver of the
engines - it calls scripts that cause messages to be sent to appropriate
objects and thus actions are taken. The application engine (there
could be more than one) would provide all of the functionality that
the user expects in terms of object creation, algorithmic behavior,

and data storage.
Referring to Figure 2., the development concepts can be seen.

The development is structurally formalized by the use of a definition
language. Using this concise language new classes are defined. The
definitions are then compiled and the results stored in the data
dictionary. At this point the compiler creates an appropriate C++
template and header for all of the methods for all of the defined
classes. The user takes these templates and completes them thereby
creating his/her desired procedures.

various
classes A Package

Various
enumerations and
exceptions

A Toolkit
Various packages

Various Toolkits

Interactive Code

An Application

Various Interfaces

An Interface A Schema

An Engine

Selected
Interfaces

Intelligent linker selects
toolkits to link to engine

Selected Persistent
 Packages

Selected packages, classes, and methods

One or more engines

Figure 1.

Figure 1. Development environment units and their roles.

6

C++

Front End

Services

Engine
Building
Tools

Engine
Interfaces

Package Package

C++ Headers

 Data
dictionary

Application
 OODB

Application
 schema

C++ Prototypes

Command
Language

Definition
Language

Definition
Language
Compiler

Definition Language
 Schema

Figure 2. Development schematic

The data dictionary is central to the workings of the
environment. By its presence in the dictionary, a class is available
for instantiation - objects of that class can exist (C++ headers are
then available). Its place in the hierarchy of classes is known, both
in the software and in the database. Therefore the database structure
is being built as the application is being developed.

The environment also includes a command language which is
an interpretive scripting language. It is available for writing front-
end scripts and for interacting directly with an application engine. It
is especially useful in building the graphical user interface and
graphical applications. It allows for debugging semantics and syntax
without constantly re-compiling the C++ code.

One other important piece of the development toolkit is the
draw environment. Draw is a wire-frame presentation environment
where one can create and present objects without having the whole
graphical use interface running. This allows the user to write,
visualize, and debug the C++ code that executes procedures in a
rapid fashion.

This toolkit provides all of the functionality required to create a
stable customized CAD system with a self-consistent object-oriented
data structure. Although the detailed workings of Pelorus are quite
different, it too offers the same results. Fairly powerful workstations
are required for these environments. For this work, the toolkit is
running on a DEC AlphaStation 250 running Digital UNIX. The
workstation has 2 GB of hard disk storage and 128 MB of memory.

A PROTOTYPE CAD SYSTEM FOR SHIP STRUCTURE

One of the prototypes in development is that of a preliminary
design system for containerships and it is within the scope of this
prototype that this discussion will proceed.

Application Specifications-

The first step in the development of a prototype is to list its
specifications. These are the sequences of tasks that are used to
design a piece of the product, for instance, the parallel midbody.
This enumeration should be done by the current designers

themselves with some input from manufacturing. This input is
needed to make sure that current or proposed fabrication practices
are being reflected in the design sequences and tasks. This should be
done with the attitude that process improvement should always be a
primary goal.

These detailed specifications should be of the intent of a task
and not of the actions taken to accomplish the task. To clarify the
difference, the intent of the task of creating the hullform in the
parallel mid-body section of a ship could be stated as, “The hullform
should have a flat portion on the bottom and a flat portion on the
vertical. In between, it should have a curvature of constant sign and
the whole surface should be continuous and have two continuous
derivatives”. That is the detail of the task. It is the “what to do.” In
contrast, a specification of action would prescribe a way of creating
that surface. It could be stated by, "Create the hullform by creating a
piecewise continuous polynomial surface that passes through a set of
prescribed points". This is the “how to do it” and that should not be
done at this initial step.

Class Hierarchies
The next step is to create the class hierarchies and

appropriately assign the procedures as methods to them. Some
classes are obvious while others are not and a developer needs to use
the product as a guide in creating these classes.

One of the benefits of using OOP to do this development is that
the standards that are in place or are developing for the exchange of
ship related CAD data are very much class hierarchies. The two
important ones are the application protocols for STEP and NSRP
(20). The STEP AP for ship structures has not yet been adopted
and it is not likely to be adopted in the near future. The NSRP
standards exist and are apparently fixed. Although the basic
geometric and topological entities of the development environment
are based on STEP definitions, this does not include high level
entities such a stiffeners, decks, bulkheads, etc. Since the STEP ship
structures AP is not yet finished, the NSRP standards have been used
for guidance in developing the structure class hierarchy.

As an example of the guidance found in the NSRP standard,
the application object ship_edge described in section 4.2.536 is

7

envisioned to be a subtype of the ISO 10303 Part 42 entity. Section
4.2.566 describes a ship_seam. This is not a subtype of Part 42 but
it is according to NSRP a type of ship_edge. It is clear, ship_seam is
a class that inherits from the class ship_edge.

Stiffeners can be created using a profile and sweeping it along
some curve to create a solid. In terms of geometry the profile is a
set of curves or line segments that form a closed loop. In terms of
topology these curves constitute an edge which bounds a face. The
topological face is used to create a solid by sweeping or piping. This
action creates new edges and faces - the defining boundary topology
of a solid.

Defining a class for stiffeners allows all manifestations of
stiffener to inherit the methods that can be used on this geometry and
its associated topology. Classes for prismatic and curved stiffeners
can be created and they will inherit from this class. In the NSRP
standard, there is an application object called structural_part
(4.2.691). It is the highest level object in the hierarchy of parts used
to build a structure. One of the types of structural_parts is
strucutral_shape_part (4.2.756). One of the types of
strucutral_shape_part is structural_stiffener (4.2.785). This clearly
suggests an appropriate class hierarchy.

Using NSRP application objects in this way, a nearly complete
ship structures class hierarchy can be created. There need not be
strict adherence but for the near future there is certainly a strong
impetus to follow the NSRP standard. Even if the NSRP names are
not used explicitly as class names they can be included in the class
definitions as variables or attributes.

An example of one facet where adherence may not make sense
is in the definitions of certain surfaces. The NSRP application
objects that are used by the unit of functionality molded hullform
includes hull_offset_definition, hull_surface_definition, and
hull_wireframe_definition. In terms of STEP Part 42, a molded
hullform is a surface which can be defined as a Bezier surface or a
NURBS surface (there are other choices), but a surface cannot be
defined by a set of points or by a wireframe. A set of points, a
polygonal faceted surface, or a wireframe may be used to represent
the hullform on a computer screen, but these are presentation
methods and do not constitute a definition of a surface.

Prototype Completion

Once the hierarchy is established then the methods can be
allocated to their proper places. The procedures for the tasks are
now chosen and the appropriate C++ code is written. There are
usually numerous ways to accomplish a task and choices need to be
made with caution. The robust and efficient nature of the resultant
CAD system is affected greatly by these choices. The assignment of
methods demands care because of the property of inheritance. A
properly placed method can help minimize the amount of code
needed. As with the example regarding polygons the method for
calculating and providing area could be in the class quadrilateral and
the class rectangle simply inherits it and then square inherits it. The
general method should be at its highest possible level in the hierarchy
where as many classes as possible can inherit it. If a more specific
method is desired for a subclass then it can the defined in that class.

It is at this point that the development environment is used to
create the application engine in the manner described above.

A somewhat similar process is followed for the development of
the hierarchy of the graphical user interface. There is much less
guidance available here and the satisfaction gained from the look,
feel, and functionality of an interface is very much decided by taste.
The creation of user the interface is something that requires serious
thought. A developer can easily create an interface that offers too

many options and features and is therefore overwhelming or
confusing for the user. A key philosophy in this area is “keep it
simple,” - only the functionality that is truly needed should be added
to the interface. “Lean and mean” interfaces are more
computationally efficient and lead to more efficient use.

CONCLUSION

An enterprise-wide, rich database, of which CAD data is only a
part, is the foundation of modern manufacturing methods.
Information is a company’s key asset and computer-aided design
systems are in the broad sense business systems which create
information. They are not isolated engineering tools. To maximize
company performance CAD systems need to be tailored to a
company’s design, manufacturing, and business practices. CAD
systems need to capitalize on a company’s strengths, help streamline
and improve the design process, and shorten design cycle times. A
purely customized CAD system would be best if it is possible and
economically feasible.

The current choice for developing information-based
applications is object-oriented technology. The power of this
emerging technology lies in its features that are extremely well suited
for large applications with heterogeneous data types. It is feasible for
a company to develop a totally customized CAD system using
commercially available object-oriented programming toolkits. These
toolkits contain the needed features and tools to develop a CAD
system, and without these such development would not be
economically justifiable.

A shipyard can build a self-contained state-of-the-art CAD
system (a smart 3D product modeling system) customized to
shipbuilding and to the yard itself. There exists significant guidance
on how to build the structure of such a CAD system in the standards
of the NSRP and STEP.

It is feasible to do so but it is not a trivial task, even with the
development environments available. It requires a clear
understanding of the existing or proposed processes in the yard. It
requires expertise in object-oriented programming languages and
technology. Obviously having people on board who already are
proficient in object-oriented programming would help a great deal,
but today those people are in great demand and not easily hired or
retained. It is easier for a yard’s employees to learn to program than
for a yard to hire experienced programmers. Engineers and
designers that can somewhat program are preferable to programmers
who can somewhat engineer or design. It does not require people
with 10 years of programming experience or masters degrees in
computer science, but it does require training.

It very difficult to judge the time-frame of such a development
or how many people it would take to build an in-house CAD system.
A best guess is that 6 to 10 productive people who have been
adequately trained in object-oriented programming could get a fairly
sophisticated system running in 6 months.

It is not the long term goal of this research to produce a
complete CAD system. Work will continue on components to clarify
the feasibility of in-house development and to prove the value of
object-oriented technology in design and manufacturing applications.
Future efforts are planned to use the CAD database in a planning
and enterprise management system, in a virtual reality environment
that supports simulation based design, and in an Internet-based
information interchange application. In each of these areas, object-
oriented toolkits exist and each should be able to use one common
database.

8

References

1) Marks, P. and Riley, K., Aligning Technology for Best Business
Results, A Guide for Selecting and Implementing Computer-aided
Design and Manufacture Tools, Peter Marks, Design Insight,
and Kathleen Riley, Los Gatos, CA, 1995.

2) Moody, J. L., Chapman, W. L., Van Voorhees, F. D., and

Bahill, A. T., Metrics and Case Studies for Evaluating
Engineering Designs, Prentice Hall PTR, Upper Saddle River,
NJ, 1997.

3) Johansson, K., "The Product Model as a Central Information

Source in a Shipbuilding Environment," proceedings of the
1995 Ship Production Symposium, Society of Naval Architects
and Marine Engineers, January, 1995.

4) “Development of STEP Ship Model Database and Translators

for Data Exchange Between U. S. Shipyards,”
DARPA/MARITECH, MARITECH SOL BAA 94-44.

5) Deitz, D., “Next-Generation CAD Systems,” Mechanical

Engineering (magazine), vol. 118, no. 7, 1996, pp. 68-71.

6) Deitz, D., “Job Shops Retool,” Mechanical Engineering

(magazine), vol. 118, no. 11, 1996, pp. 78-80.

7) “Assessment of Computer Aids in Shipyards," NSRP 0373,

National Shipbuilding Research Program and the Society of
Naval Architects and Marine Engineers, Industrial Engineering
Panel (SP-8), 1993.

8) Storch, R. L. , Clark, J., and Lamb, T., “Technology Survey of

U.S. Shipyards -1994,” proceedings of the 1995 Ship
Production Symposia, Society of Naval Architects and Marine
Engineers, January, 1995.

9) Ross, J., and Garcia, L., "The Influence of Integrated

CAD/CAM Systems on Engineering for Production
Methodologies in Shipbuilding," proceedings of the 1995 Ship
Production Symposium, Society of Naval Architects and Marine
Engineers, January, 1995.

10) Latorre, R. and Zeidner, L., "Computer-Integrated

Manufacturing: A Perspective," Journal of Ship Production, vol.
10, no. 2, May 1994, pp. 99-109.

11) Storch, R. L. and Chirilo, L. D., “The Effective Use of CAD in

Shipyards,” Journal of Ship Production, vol. 10, no. 2, May
1994, pp. 125-132.

12) "Concurrent Engineering - Primer and User's Guide for

Shipbuilding," NSRP 0435, National Shipbuilding Research
Program and the Society of Naval Architects and Marine
Engineers, Industrial Engineering Panel (SP-8), 1995.

13) "Concurrent Engineering - Application," NSRP 0436, National

Shipbuilding Research Program and the Society of Naval
Architects and Marine Engineers, Industrial Engineering Panel
(SP-8), 1995.

14) "Concurrent Engineering Implementation in a Shipyard," NSRP

0454, National Shipbuilding Research Program and the Society

of Naval Architects and Marine Engineers, Industrial
Engineering Panel (SP-8), 1995.

15) "Evaluation of Shipbuilding CAD/CAM Systems," NSRP 4-94-

1, National Shipbuilding Research Program and the Society of
Naval Architects and Marine Engineers, Design Production
Integration Panel (SP-4), 1994 (in progress).

16) Meyer, B., An object-oriented environment: principles and

application, Prentice Hall, New York, 1994.

17) Kemper, A. H., Object-oriented database management:

applications in engineering and computer-science, Prentice
Hall, New York, 1994.

18) Burleson, D. K., Practical application of object-oriented

techniques to relational databases, Wiley, New York, 1994.

19) Taylor, D. A., Object-Oriented Technology: A Manager’s Guide,

Addison-Wesley, New York, 1990.

20) Webster, B. F, Pitfalls of Object-Oriented Development, M & T

Books, New York, 1995.

21) NSRP STEP Application Protocols, Design/Production

Integraton (SP-4), March, 1996.

Additional copies of this report can be obtained from the
National Shipbuilding Research and Documentation Center:

http://www.nsnet.com/docctr/

Documentation Center
The University of Michigan
Transportation Research Institute
Marine Systems Division
2901 Baxter Road
Ann Arbor, MI 48109-2150

Phone: 734-763-2465
Fax: 734-763-4862
E-mail: Doc.Center@umich.edu

	Report cover
	Symposium cover
	Title Page
	Abstract
	Nomenclature
	Introduction
	Background
	Generic Computer-Aided Design
	The Information Age
	STEP

	Shipbuilding Computer-Aided Design

	Object-Oriented Programming Languages and Paradigms
	OOP Structure
	Abstraction
	Encapsulation
	Inheritance
	Polymorphism

	OOP Languages and Database Managers
	OOT Conclusion

	Development Environments
	Figure 1 - Development environment units and their roles
	Figure 2 - Development schematic

	A Prototype Cad System For Ship Structure
	Application Specifications-
	Class Hierarchies
	Prototype Completion

	Conclusions
	References
	For more information

