THE NATIONAL SHIPBUILDING RESEARCH PROGRAM

Proceedings of the REAPS Technical Symposium

Paper No. 25: Computer Graphics Hardware and Application in Shipbuilding

U.S. DEPARTMENT OF THE NAVY CARDEROCK DIVISION, NAVAL SURFACE WARFARE CENTER
4. TITLE AND SUBTITLE

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Surface Warfare Center CD Code 2230 - Design Integration Tools Building 192, Room 128 9500 MacArthur Blvd Bethesda, MD 20817-5700

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release, distribution unlimited

16. SECURITY CLASSIFICATION OF:

- a. REPORT unclassified
- b. ABSTRACT unclassified
- c. THIS PAGE unclassified

17. LIMITATION OF ABSTRACT

SAR

18. NUMBER OF PAGES

16
DISCLAIMER

These reports were prepared as an account of government-sponsored work. Neither the United States, nor the United States Navy, nor any person acting on behalf of the United States Navy (A) makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness or usefulness of the information contained in this report/manual, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or (B) assumes any liabilities with respect to the use of or for damages resulting from the use of any information, apparatus, method, or process disclosed in the report. As used in the above, “Persons acting on behalf of the United States Navy” includes any employee, contractor, or subcontractor to the contractor of the United States Navy to the extent that such employee, contractor, or subcontractor to the contractor prepares, handles, or distributes, or provides access to any information pursuant to his employment or contract or subcontract to the contractor with the United States Navy. ANY POSSIBLE IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR PURPOSE ARE SPECIFICALLY DISCLAIMED.
Proceedings of the
REAPS Technical Symposium
June 15-16, 1976
Atlanta, Georgia

Research and
Engineering for
Automation and
Productivity in
Shipbuilding

IIT RESEARCH INSTITUTE
10 WEST 35 STREET
CHICAGO, ILLINOIS 60616
The general economical situation in shipbuilding and the cancelation of a number of big tankers has affected many yards in many ways. The development and application of computer technology has also been influenced. When it comes to giving priority to development projects on computer applications, the following two criteria are very important:

1. The tools should be able to handle prototype products.
2. Faster return on investment in computer technology.

As to the first point, we do believe that the system we already have is a good starting point. By adding more editing and output functions, we believe that our system will be better suited to handle .

As to the second point, we think it is right to use the same economical criteria for investments in computer technology as we use when investing in any production equipment or technology.

Even if life should be easier for the shipbuilding industry, it is not likely that investments in computer technology will be handled in the same way as 10–15 years ago. Most yards will not be allowed to invest in more than they can utilize and make profit from within a short period of time.

Those of us who are used to the “good old days” will probably react with certain views on how the development of computer assisted systems will progress under such conditions. What about the realization of all the good ideas we have? If we do not get the setup of computer hardware and software we had in mind, we do not see how our philosophy can be implemented. This is of course a problem, but there is a solution to it. Think the situation over once more, but now within the technical and economical framework of today. There is usually another approach, and maybe even a better one.
In cooperation with CIIR, the Akergroup and SRS has worked on these problems for about one and a half years. The aim of the effort is partly to develop operational application programs, but also to establish a knowledge about the possibilities of using low cost graphical terminals in our applications. The most significant results from this project are listed below.

An operational interactive parts nesting program.
Subroutine packages for handling of input commands, database administration, error messages, communication with graphic displays etc.
A concept and systems design for future development of such systems.
A specification of a general tool for editing and presentation, of drawings from databases containing geometry elements.
Know-how about the computer graphics technology and available hardware and software.

The last point is of particular interest when it comes to investments and economical aspects. Computer graphics techniques are traditionally based on special and rather expensive equipment. However, when investigating the problem a "bit closer and in the light of the needs the shipbuilding industry has, we have found that a yard may have access to this new technology for a reasonable amount of money.

Computer graphics is very important, but not always central.

Graphical functions are natural parts of systems like Autokon and Auto-fit. We often think of computer graphics as output functions like scaling, making projections, hidden line removal etc. However, a graphics system has also several input functions which in certain applications may be very useful (digitizing, additional graphical info. via menu printing via display screen etc.).
The “graphical” function in relation to Autokon and Autofit may be split in two categories (see fig. 1):

1. Direct output in connection with the execution of the application programs.

2. Editing and presentation of final drawings (documents).

The type 1 output is typical for the Autokon programs we know today. The output is initiated by some application function and the purpose of the output is to serve as documentation of the information that resides in the database after the execution of the program. An example of such output is the part drawings from ALKON. Other output, like the bodyplan drawing from FAIR and the LANSK1 drawing, acts both as...n of the database and a base for a physical drawing. The third type of output is represented by the drawings from SHELL and NEST, which primarily are a control of the contents of the cutting tapes, but serve also as a base for the production drawings prepared for the operator of the cutting machine. In general, this output is rather rigid as to content and layout. The necessary additions and modifications for getting a final drawing will have to be done by traditional manual means.

The type 2 output is what we will be able to produce when the GDT (General Drafting Tool) is operational. As shown in fig. 1, this drafting function will be implemented as a freestanding system. Some characteristic data is given in fig. 2. The idea behind the system is to give the designer/artist the possibility of making the drawings completely finished by means of a computer graphics system. In addition, he will have the drawings and the information on them organized in a database, which we may call a “computer assisted library of drawings”.

The GDT will serve as a general tool for all applications that require editing of predefined information to produce final drawings. Such a function is very general, because the system does not have to have any “knowledge” of what the graphics, symbols and text represent.
Implicit and explicit implementation of GDT (General Drafting Tool)
PREPARATION OF OUTPUT

START, RESTART, END
INCLUDE, EXCLUDE
TEXT
KILL
POS, ROT, MIRR
SCALE
FORMAT
;
;
;
etc.

PRESENTATION OF OUTPUT

PRESENT
SHOW
FETCH
DELETE
SPLIT
SELECT
CHARDIM
;
;
;
etc.

GDT - Examples of functions
Such knowledge is supposed to be found partly in the application database, but also in the brain of the designer/draftsman. The idea is, therefore, that GDT shall be used with Autokon and Autofit, both as a freestanding system and in connection with direct output from application programs.

Computer graphics as "turnkey system" or "do it yourself kit"?

In our investigation a number of alternatives were listed and removed from the list again, because they were too expensive or they were not supported in Norway.

In the last phase of the investigation, we had two principal alternatives left:

1. Turnkey system
2. Build our own system from standard components.

The final conclusion was to go for alternative 2 as the main rule, but to buy turnkey systems when that would be the most economical solution to a special graphics problem.

The general characteristics of such a turnkey system are given below. See also general hardware setup in fig. 3.

- Price ranges from $200,000 to $300,000, dependent on the number of workstations and make.

- Typical functions are:

 - 3D geometry input from language, menu and coordinate readout device.

 - Possible to define standard symbols for more effective preparation of drawings.

 - A database for administration of the "drawing file".
Fig 3

1. HC drafting
2. TTY/alpha screen
3. Computer
4. Disc
5. Work station
6. Hardcopy unit.

TYPICAL TURNKEY SYSTEM
possible to get new projections on the basis of the drawings in tune database.

Hardware components

A number of work stations comprising a graphical screen (storage), keyboard and a menu facility.

Drafting table

Digitizer

Computer

Disc station.

The general impression is that these systems are powerful and advanced drafting tools. There is a good integration between the miscellaneous hardware and software components. This makes a good system for general drafting, but makes it less suited for integration with other applications. The system is very general, and quite a bit of effort will have to be put into it before you have an efficient application tool.

As you will see from the point above, a turnkey system is an interesting drafting tool. How interesting is, however, very dependant on the yard's specific needs, its present tools or methods, its philosophy for further development and the economical situation.

After serious considerations, the Aker Group decided not to go for a turnkey solution. However, computer graphics techniques and equipment for development and use of applications based on this technology has a high priority. The development philosophy will be to build up the hardware configuration of relatively standard components. The system design and the software components will be made fairly general, so that changes in the hardware setup may be easily carried out.
The general setup of hardware is shown in fig. 4. The systems we develop will in most cases be made available both on the central computer and locally. The hardware situation will be different from one yard to another, and the volume of the application will vary quite a bit.

When there is a need for a big computer to solve the application problem or when the application volume is fairly low, the alternative with direct access to a central computer is very interesting. If the volume is very low, an ordinary 300 - 600 baud connection will be sufficient. However, most applications will benefit from a higher transmission speed. If a GRAPHCOM adapter is inserted on the line, the speed may be increased to 9600 baud. The same adapter may be used as a line concentrator for up to 4 terminals simultaneously. In addition, hardcopy units may be added. Normally one unit may be shared between a number of terminals (maximum 1). If then the terminals are equipped with a 'tablet', input may be given via menus, and the resulting setup will be a rather efficient tool. The price for this will depend on which level is chosen. Approximate component prices are (in Norway):

- TEKTRONIX 4014 display $13,000
- TEKTRONIX hardcopy unit $6,000
- GRAPHCOM adapter $9,000
- TEKTRONIX tablet $6,000

From a user’s point of view, the alternative with a local computer is very similar to the remote computer alternative. What differences he will see will probably vary with the type of computer and the application.

The implementation of such a system will be rather different from one yard to another. The implementation sequence and the dimensioning of the equipment (number of terminals, disc # capacity etc) will depend on what equipment the yard has available> the application to be supported, the volume of the application.
Drvelcn.xnt plans

So far, two systems are operational:

1. Interactive parts nesting program, which is implemented on a local computer. Its input is based on part descriptions made by ALKON, and stored in a Autokon database. The parts are produced on the remote computer and transferred to the local computer via telephone line and a communication computer.

2. On-line preparation of isometric pipe drawings. This system is implemented on a remote computer, and is operated from a TEKTRONIX 4014 display via a telephone line. We do not have a GRAPHCON adapter yet, and the transmission speed is 300 baud.

These two developments are right now in a final testing stage in the design offices, and will be in full operation within this year.

The next development will continue on the line we have started. Within this year three projects will be started:

1. On-line parts coding and editing. This will be a set of coding and editing commands to support the parts nesting function we already have. The idea is to do the main bulk of the parts generation by means of ALKON on the big computer and transfer these to the local computer for modification, if needed, and finally nesting.

2. The General Drafting Tool (GDT) will be implemented as a free-standing system with necessary functions for editing and presentation of drawings. It will be based on predefined geometry from one Autokon database. In this version of the system, only 212 functions will be implemented.

3. The third project with a graphics approach, will be the Autofit subsystem for preparation of functional models and diagrams for piping systems (P&I diagrams). This is an
example of an application where the graphics part of the system will be rather peripheral to the application, but anyway important as a bridge between the application database and the user.

In addition we will continue our work 'with simple utilization of the display terminal as fast "drafting machine" for output from our present programs.

Conclusions

Today's technology will help the shipbuilder in adding a new dimension to the present CAD systems. Computer graphics implies on-line access to the computer system, and will give the users a more direct contact with the computer assisted design process. Fast information retrieval and graphical presentation of the contents of the database will make the database more user oriented than today.

The computer graphics technology is now developed far enough to be applicable in CAD systems for use in the shipbuilding industry. It is however a long way before we see the end of this development, and our present systems should be made flexible enough to be able to absorb elements from the further development.
Additional copies of this report can be obtained from the National Shipbuilding Research and Documentation Center:

http://www.nsnet.com/docctr/

Documentation Center
The University of Michigan
Transportation Research Institute
Marine Systems Division
2901 Baxter Road
Ann Arbor, MI 48109-2150

Phone: 734-763-2465
Fax: 734-763-4862
E-mail: Doc.Center@umich.edu