THE NATIONAL SHIPBUILDING RESEARCH PROGRAM

Proceedings of the IREAPS Technical Symposium

Paper No. 27: Application of SHIPOPT to Preliminary Design of Commercial Ships

U.S. DEPARTMENT OF THE NAVY CARDEROCK DIVISION, NAVAL SURFACE WARFARE CENTER

Naval Surface Warfare Center CD Code 2230 - Design Integration Tools
Building 192 Room 128-9500 MacArthur Blvd Bethesda, MD 20817-5700

Approved for public release, distribution unlimited
DISCLAIMER

These reports were prepared as an account of government-sponsored work. Neither the United States, nor the United States Navy, nor any person acting on behalf of the United States Navy (A) makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness or usefulness of the information contained in this report/manual, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or (B) assumes any liabilities with respect to the use of or for damages resulting from the use of any information, apparatus, method, or process disclosed in the report. As used in the above, “Persons acting on behalf of the United States Navy” includes any employee, contractor, or subcontractor to the contractor of the United States Navy to the extent that such employee, contractor, or subcontractor to the contractor prepares, handles, or distributes, or provides access to any information pursuant to his employment or contract or subcontract to the contractor with the United States Navy. ANY POSSIBLE IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR PURPOSE ARE SPECIFICALLY DISCLAIMED.
Proceedings
IREAPS Technical Symposium
September 14-16, 1982
San Diego, California

VOLUME I
Mr. Moore has over 5 years experience in the design of vehicles and platforms for the marine environment. He is actively involved in ocean platform and ship design and analysis, including development and evaluation of platform concepts for shelf-mounted ocean thermal energy conversion (OTEC) systems, and has been involved in various ship design and modification projects, structural engineering calculations, including finite element analysis procedures and intact and damaged stability studies.

Mr. Moore holds a BS degree in physics and astronomy from the University of British Columbia, and a MS degree in naval architecture from the University of California at Berkeley. He is a member of SNAME.

Mr. Maris has provided engineering design, analysis and management services to the commercial and U.S. government shipping organizations for nearly 20 years and has extensive experience in design and analysis of submersibles for the U.S. Navy, Ocean Thermal Energy Conversion (OTEC) platforms and cold water pipes for the U.S. Department of Energy, tank ships for Chevron Shipping and cargo ships for Farrell Lines and the Trust Territories of the Pacific.
Mr. Maris holds a Professional Engineers License in Naval Architecture and Marine Engineering from Washington State, a bachelor's degree (naval architecture/marine engineering) from the University of Michigan, a masters of engineering degree (naval architecture) from the University of California, and has completed business management studies at the University of California. He is a member of the American Bureau of Shipping Special Committee for OTEC and the Society of Naval Architects (Northern California) Executive Committee.

ABSTRACT

The theory and results of applying computer-aided ship structure optimization procedures to design of a new ferry for southwestern Alaska routes is presented, and is called SHIPOPT. It has been developed by Professor Owen Hughes of the University of New South Wales, Australia, and has had recent application by Giannotti and Associates Inc, to structural design of U.S. Navy ships. Ship optimization is a rationally based, interactive procedure which recognizes prescribed design constraints and optimizes within those constraints ship structural scantlings and geometry for strength, weight, and cost. The structural constraints typically considered are allowable shear and bending stresses, buckling loads, fatigue life, weight, and ship arrangements, based on commercial or regulatory body requirements.
1) SCOPE

2) METHODOLOGY

3) APPLICATION (GENERAL) OF SHIPOPT

4) APPLICATION (SPECIFIC) OF SHIPOPT

5) ACCESSIBILITY/HARDWARE REQUIREMENTS

SHIPOPT PROVIDES:

- A RATIONALLY BASED TOOL FOR PRELIMINARY SHIP DESIGN THROUGH;

- A FAST, EFFICIENT, LOW COST, STRUCTURAL ANALYSIS AND OPTIMIZATION PROGRAM WHICH;

- ALLOWS DESIGNER INPUT OF SAFETY AND FUNCTIONAL CONSTRAINTS AND OPTIMIZATION MEASURES OF MERIT,

RATIONALLY BASED PRELIMINARY STRUCTURAL DESIGN

1) RESPONSE ANALYSIS

2) CAPABILITY (OR LIMIT STATE) ANALYSIS

3) RELIABILITY BASED STRENGTH CRITERIA

4) NONSTRUCTURAL CRITERIA

5) OPTIMIZATION

6) INTERACTIVE MODE OF OPERATION
APPLICATION (GENERAL) OF SHI POPT

- BENEFITS
- LIMITATIONS
- STARTING POINT
- RESULTS

BENEFITS (OF STRUCTURAL ANALYSIS)

- STRUCTURAL ASSESSMENT AND DESIGN REVIEW
- INVESTIGATION OF SAFETY FACTORS
- INVESTIGATION OF ALTERNATIVE DESIGN LOADS
- ASSESSMENT OF STRUCTURAL DAMAGE OR CORROSION

BENEFITS (OF OPTIMIZATION)

FIRST ORDER
- REDUCED COST AND WEIGHT
- INCREASED PERFORMANCE (E.G., LOWER VCG)
- COST VS. WEIGHT

SECOND ORDER
- REDUCED WEIGHT IMPLIES LOWER RESISTANCE
  THUS LOWER MACHINERY WEIGHTS

THIRD ORDER
- REDUCED MACHINERY WEIGHT IMPLIES FURTHER REDUCTION IN LOCAL SCANTLINGS, OVERALL WEIGHT, RESISTANCE AND COST
SHIPOPT ABILITIES

- Comprehensive 3-D structural analysis at each stage
- Explicit calculation of ultimate strength of all principal members
- Fast cycle time
- Ability to repeat a preliminary design
- Alternative structural configurations
- Standard sections
- User defined measure of merit; constraints

LIMITATIONS

- Prismatic model
- Symmetric about \( \theta \)
- Static or quasi-static loading only

STARTING POINT

- Loads
- Structural definition
  - Stiffeners and plates
  - Strakes
  - BHDS,
  - Module
- Constraints
- Partial safety factors

504
RESULTS

• ANALYSIS
  - NODAL DEFLECTIONS
  - STRESSES
  - MINIMUM CONSTRAINTS FUNCTION LOCATION IN STRAKE
  - STATISTICAL FEASIBILITY SUMMARY

RESULTS

I OPTIMIZATION
  - CONSTRAINT FUNCTION VALUES
  - ACTIVE CONSTRAINTS
  - STATISTICAL FEASIBILITY SUMMARY

APPLICATION (SPECIFIC)

I TEST CASES

I ALASKA FERRY
  - Hull Cutouts
  - Vehicle Deck
  - Superstructure
  - Extreme Heavy Weather
Units in mm
Deck and bottom plating are high tensile steel
Thickness of Bottom Plating = 17.5
Thickness of Side Shell Plating = 20
Thickness of Deck Plating = 16.5
*t = Thickness of Longitudinal Bulkhead

Fig. 6 Initial tanker scantlings

NOTE: Stiffener scantlings are for web only. For each group of stiffeners, user defines ratio of flange area to web area.
Fig. 5 Convergence and stability of SHIPOPT
Fig. 9  Initial bulk carrier scantlings

Plate Thickness

- t = 28
- t = 28
- 1000x11x150x15
- 300x28
- 100x10
- 1000x11
- 1000x11

Units = mm
Deck Plating is high tensile steel
Thickness of Bottom Plating = 21
Thickness of Floor = 13
Thickness of Inner-bottom = 24
* = Thickness including Stiffeners

- 1300x11x220x20
- 360x22
- 650x12x300x23

- 1000x12x150x12
- 290x15
- 280x15
- 21
- 15
- 15
- 16
- 16
- 18
- 18
- 2300
- 260x15
- 260x15
- 260x15
- 260x15
- 260x15
- 200x10

NOTE: Stiffener scantlings are for web only. For each group of stiffeners, user defines ratio of flange area to web area.
Fig. 10  Final bulk carrier scantlings

Units = mm
Thickness of Bottom Plating = 22
Thickness of Floor = 11
Thickness of Inner-bottom = 19
* = Thickness including Stiffeners
HARDWARE

1) MAIN FRAMES

2) "SUPER-MINI",

ACCESSIBILITY

1) OWEN HUGHES

2) GIANNOTTI & ASSOCIATES
Additional copies of this report can be obtained from the National Shipbuilding Research and Documentation Center:

http://www.nsnet.com/docctr/

Documentation Center
The University of Michigan
Transportation Research Institute
Marine Systems Division
2901 Baxter Road
Ann Arbor, MI  48109-2150

Phone: 734-763-2465
Fax: 734-763-4862
E-mail: Doc.Center@umich.edu