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Abstract 
Transactions in real-time database systems should 

be scheduled considering both data consistency and tim- 
ing constraints. In addition, a real-time database must 
adapt to changes in the operating environment and guar- 
antee the completion of critical tasks. The effects of 
scheduling decisions and concurrency control mecha- 
nisms for real-time database systems have typically been 
demonstrated in a simulated environment. In this paper 
we present a functional real-time relational database 
manager, called MRDB, which provides an operational 
platform for research in real-time database issues. Cur- 
rent research issues involving the development of run- 
time estimates for use in scheduling decisions, temporal 
consistency characteristics, and our efforts in using these 
are also discussed. 

1. Introduction 
Real-time database systems have (at least some) 

transactions with explicit timing constraints such as 
deadlines.The correctness of the system depends not 
only on the logical results but also on the time within 
which the results are produced. In a real-time database 
system, transactions must be scheduled in such a way 
that they can be completed before their corresponding 
deadlines expire. Real-time databases are essential for 
applications that are both data intensive and subject to 
real-time constraints, such as defense systems, industrial 
automation, aerospace and network management 
[Son88]. Appropriate methods and techniques for 
designing and implementing database systems that take 
timing constraints into account are playing an ever 
increasing role in determining the success or failure of 
real-time systems. In recent workshops [IEEE93, 
RTA931, developers of real-time systems have pointed to 
the need for basic research in database systems that sat- 
isfy timing constraint requirements in collecting, updat- 
ing, and retrieving shared data. 

Real-time database systems have many similari- 
ties with conventional database management systems 
and with conventional real-time systems. They fall in the 
intersection between the two types of systems, and is not 
quite the same as either one of the two. Real-time data- 
base systems must process transactions and guarantee 
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that database consistency is not violated just as in a con- 
ventional database system. Conventional database sys- 
tems, however, do not stress the notion of time 
constraints or deadlines with respect to transactions. 
Individual temporal constraints are not taken into 
account when making scheduling decisions. The perfor- 
mance goal for conventional database systems is usually 
expressed in terms of minimizing average response times 
instead of constraints on individual transactions. 

Conventional real-time systems do take transac- 
tion temporal specifications into account, but ignore data 
consistency issues. Real-time systems also typically 
work with processes which have predictable resource 
requirements, to include data requirements. Database 
systems tend to make unpredictable data accesses. This 
exasperates the scheduling problem, and highlights 
another difference between a conventional real-time sys- 
tem and a real-time database system. The conventional 
real-time system attempts to ensure that no temporal con- 
straints are violated. In real-time database systems, it is 
impossible to guarantee all temporal constraints because 
of the unpredictable data accesses, so the system must 
strive to minimize the number of constraints which are 
violated [Abb92, Kim93, Son931. 

State-of-the-art database systems are typically not 
used in real-time applications due to two major inade- 
quacies: lack of predictability and poor performance 
[Son90]. Current database systems do not schedule their 
transactions to meet response requirements and they 
commonly lock data objects to assure the consistency of 
the database. The problem is that locks and time-driven 
scheduling are incompatible. Low priority transactions 
can and will block higher priority transactions leading to 
priority inversions and response requirement failures. 
Recently, a considerable research effort has been focused 
on real-time database scheduling and data consistency 
control mechanisms. The integration of the two in real- 
time database systems is not trivial, because all existing 
concurrency control methods synchronize concurrent 
data accesses by the combination of two measures; block 
and rollback, both of which create barriers for time-crit- 
ical scheduling. Concurrency control mechanisms such 
as Priority inheritance, Priority ceiling protocol, Opti- 
mistic protocols, and Conditional restart have been stud- 
ied and implemented in an attempt to manage the 
integration of real-time scheduling and data consistency 
requirements in real-time databases [Abb89, Car89, 
Har90, Hua90, Sha911. They are typically compatible 
with time-driven scheduling, and meet both the required 
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system response predictability and temporal consistency. 
The design and evaluation of real-time database 

systems presents challenging problems. In this paper we 
describe a functional multi-user real-time relational 
database system (MRDB), which we have developed for 
exploring real-time database issues. In  addition, we 
examine issues involving the development of credible 
run-time estimates for use in real-time database schedul- 
ing decisions, the integration of data and temporal func- 
tionality, and the use of temporal consistency 
specifications in performing database operations. The 
remainder of the paper is organized as follows. Section 
2 provides the reader with information on temporal con- 
straint issues and temporal functionality which were 
sought in the design of MRDB. Section 3 describes our 
multi-user real-time database server and the environment 
in which i t  operates. Section 4 presents real-time sched- 
uling policies that are implemented in MRDB, our deri- 
vation and use of run-time estimates and initial run-time 
performance measurements. Finally, Section 5 summa- 
rizes the paper and the areas of future work. 

2. Temporal Functionality and Issues 
One of the major goals in  designing real-time 

database systems is to meet timing constraints. It is also 
one of the major problems when designing a real-time 
scheduler which attempts to minimize the probability of 
transactions failing to meet their respective deadlines. 
Various approaches have been investigated to develop 
database systems to achieve this goal. The designers of 
CASE-DB [ O Z S O ~ ~ ]  used an iterative evaluation tech- 
nique coupled with a risk probability attribute in  an 
attempt to provide as much information as possible 
within a given deadline. The priority ceiling protocol, 
which was initially developed as a task scheduling proto- 
col for real-time operating systems, has been extended 
for use in  RTDBS [Sha91]. It is based on a two-phase 
locking protocol and employs blocking, versus rollback, 
in  an attempt to minimize the number of transactions that 
fail to meet their deadline. Protocols to schedule real- 
time transactions using the concept of dynamically 
adjusting the serialization order have been developed 
and evaluated [Lee93, Lin90, Son921. 

Those approaches attempt to make scheduling 
decisions based mainly on transaction attributes such as 
priority, release time and deadline. These transaction 
characteristics are critical pieces in the scheduling puz- 
zle, but they are not the only attributes available for use 
in solving the problem. One key attribute absent from 
most scheduling decisions is a viable transaction run- 
time estimate. Numerous research efforts have explored 
the possibility of using run-time estimates in the sched- 
uling decision process. Run-time estimates have been 
used in workload policies, priority assignment policies, 
conflict resolution policies and IO scheduling policies. 
These run-time estimates have typically been model- 
driven. The results derived have shown that run-time 
estimates are a credible option for use in scheduling deci- 
sions. However, the derivation and use of run-time esti- 
mates in a functional real-time database has not been 
explored extensively. Schedulers which do not incorpo- 
rate run-time estimates into account are failing to use a 

key attribute which can simplify the scheduling decision. 
Scheduling decisions which do not take computation 
requirements into account allow such occurrences as 
processor time to be expended upon transactions which 
cannot meet their deadlines. 

If the real-time database scheduler can be pro- 
vided with an estimate of transaction execution time, that 
information can be used in  determining which transac- 
tion is closest to missing a deadline, and hence should be 
given higher priority, or which transaction can be 
delayed without risking violation of their timing con- 
straints. In addition, run-time estimates can be used by 
the scheduler to initially screen transactions to determine 
eligibility. All transactions with feasible deadlines 
(release time plus run-time estimate is less than deadline) 
remain in the system and are eligible for service, while 
all ineligible transactions are aborted. 

We sought predictability and accuracy in explor- 
ing the feasibility of using run-time estimates in schedul- 
ing decisions for real-time database systems. Without a 
predictable and accurate run-time estimate, little can be 
gained in the scheduling decision cycle, while leaving 
the system susceptible to unpredictable behavior. That is 
not to say that run-time estimates have to be correct 
100% of the time, since the typical real-time database 
performance goal is usually expressed in terms of mini- 
mizing missed deadlines, not guaranteeing no missed 
deadlines. However, because of their serious impact on 
scheduling decisions, the run-time estimates must be 
both predictable and reliable [Kim93]. 

Often a significant portion of a real-time database 
is highly perishable in the sense that it has value only if 
it is used in time. In addition to deadlines, therefore, 
other kinds of temporal information should be associated 
with data as well as transactions in a real-time database 
system. For example, each sensor input could be 
indexed by the time at which i t  was taken. Once entered 
in the database, data may become out-of-date if i t  is not 
updated within a certain period of time. To quantify this 
notion of age, data may be associated with a valid inter- 
val. The valid interval indicates the time interval after 
the most recent updating of a data object during which a 
transaction may access it with 100% degree of accuracy. 
What occurs when a transaction attempts to access a data 
object outside of its valid interval is dependent upon the 
semantics of data objects and the particular implementa- 
tion. For some data objects, for instance, reading it  out 
of its valid interval would result in 0% accurate values. 
In general, each data object can be associated with a 
validity curve that represents its degree of validity with 
respect to the time elapsed after the data object was last 
modified. The system can compute the validity of data 
objects at the given time, provided the time of last mod- 
ification and its validity curve [Liu88, Son91]. 

A real-time transaction should include its tempo- 
ral consistency requirement which specifies the validity 
of data values accessed by the transaction. For example, 
if the temporal consistency requirement is 10, it indicates 
that data objects accessed by the transaction cannot be 
older than 10 time units relative to the start time of the 
transaction. This temporal consistency requirement can 
be specified as either hard or soft, just as deadlines are. 
If it  is hard, an attempt to read an invalid dataobject (i.e., 
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out of its valid interval) will cause the transaction to be 
aborted. 

a substitute for functional systems. They fail to account 
for all factors found in an operational system, and tend to 

While a deadline can be thought of as providing a 
time interval as a constraint in the future, temporal con- 
sistency specifies a temporal window as a constraint in 
the past. As long as the temporal consistency require- 
ment of a transaction can be satisfied, the system must be 
able to provide an answer using available (may not be 
up-to-date) information. The answer may change as 
valid intervals change with time. In a distributed data- 
base system, sensor readings may not be reflected to the 
database at the same time, and may not be reflected con- 
sistently due to the delays in processing and communica- 
tion. A temporal data model for real-time database 
systems must therefore be able to accommodate the 
information that is partial and out-of-date. One of the 
aspects that distinguishes a temporal data model for a 
real-time database systems from that of conventional 
database systems is that values in a real-time database 
system are not necessarily correct all the time, and hence 
the system must be selective in interpreting data values. 

Another design goal of real-time database systems 
is to enhance the temporal functionality associated with 
the data stored within the database. Temporal informa- 
tion has been stored in conventional databases for many 
years; accounting and payroll systems are typical exam- 
ples. In these systems the attributes involving time are 
manipulated solely by the application programs. None 
of these systems interpret temporal domains when deriv- 
ing new relations or extracting data. Most conventional 
database systems represent the state of an enterprise at a 
single moment of time. Although the contents of the 
database continue to change as new information is 
added, these changes have typically been viewed as 
modifications to the state, with the old, out-of-date data 
being deleted from the database. The new state also does 
not necessarily reflect the current status of the real world, 
since changes to the database always lag behind changes 
in the real world [Sno87]. 

3. Implementation of MRDB 
MRDB is a functionally complete relational data- 

base manager. It offers not only a functionally complete 
set of relational operators such as project, select, join, 
union and set difference, and aggregate operators such as 
max, min, avg, count and sum, but also other necessary 
relational operators such as create, insert, update, delete, 
rename, compress, extract, import, export, sort, and 
print. These operators give the user a fair amount of rela- 
tional power and convenience for managing the data- 
base. 

MRDB is designed along the traditional client- 
server paradigm. It has a multiple-threaded server that is 
capable of accepting MRDB commands from multiple 
client sites. MRDB was designed with the goal of pro- 
viding a temporal platform for conducting research on 
real-time database issues. It allow us to analyze real- 
time database mechanisms in an operational environ- 
ment. This is a major and natural step forward from per- 
formance analysis conducted in a simulated real-time 
database environment. Simulated environments are not 

be more subjective in the sense that system parameters 
can be readily modified. An operational system cannot 
be modified to fit the real-time mechanism being ana- 
lyzed. The results derived from an operational real-time 
database system provide us with a set of more realistic 
performance measurements. 

The MRDB server is the heart of the database 
management system. It is responsible for receiving and 
acting on requests from multiple clients, and returning 
desired information to the clients. The server contains 
an infinite loop that accepts high-level database requests 
(e.g., create, union, insert) from multiple clients. The 
requests come in as packets. The MRDB system pro- 
vides two different types of packets: call packets and 
return packets. The call packet is created by the client 
and is the database transaction. The call packet contains 
all the information that the server needs to carry out the 
desired database access operation, to include the timing 
constraint and temporal consistency specifications asso- 
ciated with the transaction. Clients are able to specify 
timing constraints and temporal consistency specifica- 
tions for each transaction submitted to the server thread. 
A different timing constraint can be specified for each 
transaction submitted, or the client can use the default 
timing constraint previously established. The MRDB cli- 
ent thread passes the call packet forward to the MRDB 
server. The server performs some preprocessing and then 
forwards the packet to the MRDB scheduler. 

The MRDB scheduler uses a run-time estimate 
evaluation technique to determine if the system can pro- 
vide the client with the information requested within the 
timing constraint specified. The MRDB server will spin- 
off a separate MRDB thread to execute the transaction if 
the scheduler makes the determination that a transaction 
can be computed within the given deadline. No thread 
spun-off will occur if the MRDB scheduler determines 
that the transaction cannot be completed within the spec- 
ified timing constraint. The thread will execute until 
completion and then forward the call packet back to the 
client. The client thread will process the return packet 
accordingly. A transaction is not preempted by the 
MRDB thread even if the determination has been made 
that a deadline is missed. The fact that a transaction has 
missed its deadline will be reported to the client, along 
with the results of the transaction. 

MRDB also associates a temporal ‘valid time’ 
attribute with each relation created in MRDB. This is 
inherent to the system, requiring no client involvement. 
The temporal attribute is attached to each tuple of a rela- 
tion and is comparable to a timestamp that represents the 
valid time that the stored information models reality. The 
client cannot set or modify the values associated with the 
valid time attribute. However, this attribute can be 
manipulated for use in specifying transaction temporal 
consistency requirements. For example, 

select trk-num from trackfile where valid time < 1 

will return only the track numbers (trk-num) of tuples 
inserted or updated in the database relation (trackfile) 

545 



within the last second of the transaction release time. 
Track numbers with valid time attribute values older than 
a second are active within the relation, but do not satisfy 
the temporal consistency requirement specified. MRDB 
also allows users of the system to manipulate the valid 
time attribute in output displays and in creating and 
manipulating relations that are similar to those found in 
historical temporal database systems [Sno87]. A rela- 
tion without the temporal attribute valid time attribute 
can be formed by projecting or selecting attributes other 
than valid time into a new relation. The MRDB system 
will process such relations without attaching any tempo- 
ral meaning to them. 

The MRDB system employs a strict two-phase 
locking (2PL) protocol for concurrency control [Ber87]. 
The strict locking protocol was selected for concurrency 
control because of its prevalence in commercial applica- 
tions system and because of its desirable characteristic of 
being recoverable and avoiding cascaded aborts. Fur- 
thermore, abort can be implemented by simply restoring 
before images. Numerous conflict resolution policies 
such as High Priority, Priority Inheritance, Priority Ceil- 
ing and Conditional Priority Inheritance have been stud- 
ied extensively in conjunction with a locking protocol 
environment [Abb89, Abb92, Hua90, Lin89, Sha88, 
Sha911. The results indicate that such conflict resolution 
policies are compatible with time-driven scheduling, and 
meet both the required goals of system response predict- 
ability and temporal consistency. The area of conflict 
resolution policies, a significant area with respect to the 
scheduling of transactions in a manner which minimizes 
missed deadlines, is an ongoing area of research within 
MRDB, and is not addressed further in this paper. 

A MRDB transaction is characterized by its tim- 
ing constraints and its computation requirements. The 
timing constraints are a release time ‘r’ and deadline ‘d’. 
The release time is the time associated with the transmit- 
tal of the transaction by a client site. A computation 
requirement is represented by a run-time estimate ‘rte’ 
which approximates the amount of computation, IO, and 
communication costs associated with processing a trans- 
action. The deadline corresponds to the client-specified 
timing constraint. 

time + ;t 

The release time and deadline are known to the 
MRDB scheduler when a transaction arrives. The com- 
putation requirements are calculated based on the opera- 
tion being performed and the physical characteristics of 
the data involved. This information is made available 
prior to the scheduling decision being made. We think it 
is viable to estimate the execution time of a transaction 
without having prior knowledge of the exact data access 
pattern of a transaction. 

The goal of our system is to minimize the number 
of transactions that miss their deadlines, i.e., that finish 
after time ‘d’. If transactions can miss deadlines, one 

must address the issue as to what happens to transactions 
that have already missed their deadlines but have not yet 
finished. There are two alternatives. One is to assume 
that a transaction that has missed its deadline can be 
aborted. This may be reasonable where the value of a 
transaction is dependent on the timeliness of the return 
response. For example, suppose that a transaction is sub- 
mitted to update the ballistic path of a projectile based on 
a radar sensing. If the deadline is missed, it may be more 
desirable not to perform the operation of updating the 
ballistic path, but instead to re-submit the update request 
based on a newer sensor reading. The conditions that led 
to the triggering of the transaction may have changed. 
The initiator of the transaction may be better served if the 
transaction is re-submitted. 

A second option is to assume that all transactions 
must eventually be completed, regardless of whether 
they have missed their deadlines. This may be a correct 
approach in an application such as banking where a cus- 
tomer would rather have his financial transaction done 
late rather than not at all. If the decision is made to pro- 
cess the transaction, there is still the issue of the priority 
of tardy transactions with respect to other transactions in 
the system. Transactions which cannot meet their dead- 
lines could receive a higher priority as their lateness 
increases, or they could be postponed to a later more con- 
venient time. 

The MRDB implementation decision was a com- 
bination of the two approaches. When a transaction 
enters the system, a determination is made as to whether 
a transaction can be executed within the temporal con- 
straint associated with it. If the transaction cannot meet 
its deadline, it is aborted. This has the nice property of 
not allowing computation time to be expended on trans- 
actions which cannot meet their deadlines, even with the 
best effort. To allow such transactions into the system 
can adversely affect overall system performance espe- 
cially during high load periods. Aborting a few late 
transactions helps all other transactions meet their dead- 
lines, by eliminating the competition for resources by 
tardy transactions. Once a transaction has been accepted 
for processing, it  is executed to completion, regardless as 
to whether or not a deadline has been met. This approach 
was adopted as a means of validating the run-time esti- 
mates derived by the scheduler. 

The MRDB system has been developed on Sun 
workstations under the Unix operating system. MRDB 
is written in C and designed to operate across a local area 
network, with multiple client nodes accessing the cen- 
tralized database maintained by the system. MRDB was 
designed for Unix because of the prevalence of the oper- 
ating system. MRDB has the nice property of being 
readily ported to other Unix sites interested in real-time 
database research. An argument can be made that real- 
time database operations need to be coherent with the 
operating system, because correct functioning and tim- 
ing behavior of database control algorithms depend on 
the services of the underlying operating system. We 
agree that Unix is not ideal to support predictable trans- 
action processing. We have found, however, through our 
performance analysis of MRDB, that dedicated 
resources in an environment such as above can provide 
reasonably analyzable and meaningful results. 
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4.Scheduling Policies and Run-Time Estimates 

r 

Time Continuous LS Static LS 
s = d-(t+rte-p) s = d-(t+rte) 

The MRDB scheduling algorithms have three 
components: a policy to determine which tasks are eligi- 
ble for service, a policy for assigning priorities to tasks, 
and a conflict resolution policy. Only the first two poli- 
cies are explored in the remainder of this paper. 

0 

1 

4.1. Scheduling Policies 
The MRDB scheduler is invoked whenever a 

transaction enters the system or terminates. The sched- 
uler can also be invoked to resolve contention (for either 
the CPU or data) when conflicts occur between transac- 
tions. The first task of the scheduler is to divide the set of 
ready transactions into two categories, those transactions 
that are capable of meeting their temporal constraints (eli- 
gible) and those that cannot meet their temporal con- 
straints (ineligible). All ineligible transactions are 
aborted and the MRDB client is informed of the decision. 
Eligible transactions remain in the system and are eligible 
for further processing. This approach differs from the 
non-tardy policy [Abb92] which accepts transactions that 
are currently not late, but may be in a position where it is 
physically impossible to make their deadlines. Only 
those transactions with feasible deadlines are considered 
to be eligible. A transaction has a feasible deadline if its 
deadline is less than or equal to the current time plus its 
run-time estimate: 

Si = 4 - (0 + 3 - 0) = 1 SI = 4  - (0+ 3) = 1 

S 1 = 4 - ( 1 + 3 - 1 ) = 1  s*= 1 
S 2 = 5 - ( I  + 2 - 0 ) = 2  S 2 = 5 - ( 1 + 2 ) = 2  

current time (t) + run-time estimate (rte) I deadline (a) 
In other words, based on the run-time estimate, there is 
enough time to complete the transaction before its dead- 
line. This policy can be adapted to account for the amount 
of service time a transaction has already received. The 
modified policy would be as follows: 

current time (t) + run-time estimate(*) - p 5 deadline 
(a) 
where ‘p’ equals the amount of service time a transaction 
has accumulated. This modified policy allows transac- 
tions to be screened for eligibility during the course of 
execution. Transactions that have been blocked, due to 
either data or CPU contention, could be re-evaluated to 
determine if they are still capable of meeting their tempo- 
ral constraint. Note that the success of both of these pol- 
icies is contingent on the accuracy of the run-time 
estimate. Erroneous run-time estimates which over-esti- 
mate the actual computational requirements will cause 
transactions to be aborted needlessly. Low estimates can 
degrade system performance by allowing transactions, 
which in reality cannot meet temporal constraints, to com- 
pete for system resources among transactions which are 
trying to meet deadlines. 

There are many ways for assigning priorities to 
real-time tasks. Three policies extensively studied by ear- 

Given: Transaction r rte d 

0 3 4  
1 2 5  
2.5 1 6 

T1 
T2 
T3 

1 2 . 5  I S , = 4 - ( 2 . 5 + 3 - 2 . 5 ) = 1  S I =  1 
> = 5 - (2.5 + 2 - 0) = 0.5 I s q = 2  I 
= 6 - i2.5 + 1 - Oj = 2.5 

- L  ~ 

S3 = 6 - (2.5 + 1) = 2.5 

Tl T2 TI T2 TI T2 T3 -- 
0 2.5 4.5 5 6 0 3 5 6  

Figure 1. Continuous LS vs Static LS 
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lier researchers include First Come First Serve (FCFS), 
Earliest Deadline (ED) and Least Slack.(LS) [Abb92]. 
The primary weakness of FCFS is that it does not make 
use of deadline information. It discriminates against a 
newly arrived task with an urgent deadline in favor of an 
older task which may not have such an urgent deadline. 
The ED policy has shown itself to be effective in certain 
applications, but it fails to take into account the run-time 
estimates. The LS priority assignment policy was 
adopted for MRDB. The slack time for a transaction is 
an estimate of how long we can delay the execution of a 
transaction and still meet its deadline. It is computed by 
subtracting the current time plus the run-time estimate 
from the deadline of the transaction: 

Slack (s) = deadline (d) - (current time (t) + run-time 
estimate (rte)) 

The smaller the slack, the higher the priority. A 
negative slack time is an indication that it is physically 
impossible for the transaction to meet its deadline. This 
priority assignment policy does not take the amount of 
prior service time into account. The assignment of pri- 
ority is static, occurring once when the transaction enters 
the system. The priority computed at that time remains 
with the transaction throughout its execution life. A con- 
tinuous LS policy could be used which does take service 
time into account. The continuous evaluation of priori- 
ties causes the LS of all active transaction to be recom- 
puted whenever there is contention for processor or data. 
This continuous evaluation can lead to degraded perfor- 
mance as shown in the simple example of Figure 1 .  The 
example gives the parameters for three transactions, 
shows the LS computations for both continuous and 
static versions, and plots their CPU usage based on those 

TYPe 
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priority assignments. The problem of continuous LS is 
displayed with the arrival of transaction T3 at time 2.5. 
The arrival of T3 causes the priority of T2 to become 
higher than TI, resulting in T2 gaining control of the 
CPU, and TI being blocked. This causes all three trans- 
actions to miss their deadlines. The static LS version 
allows all three to meet their deadlines. 

A negative slack time could occur if a transaction 
has already missed its deadline or is about to miss its 
deadline. The possibility of a negative slack time does 
not exist if a feasible deadline eligibility screening policy 
is implemented, and the LS priority assignment policy is 
static. The initial screening conducted to determine eli- 
gibility will eliminate any transaction which cannot 
physically meet their deadlines and the static LS priority 
will prevent the slack associated with an eligible transac- 
tion from ever becoming negative. The current MRDB 
version uses static LS as the means of assigning priorities 
to transactions for scheduling, in an attempt to expedite 
those transactions which can least afford to be delayed. 

4.2. Run-Time Estimates 
Conventional real-time systems typically deal 

with processes that have predictable resource require- 
ments. These predictable requirements allow for a static 
evaluation of computation costs. Real-time databases 
normally deal with transactions which have unpredict- 
able resource requirements. The random nature of such 
data accesses complicates the scheduling process in real- 
time database systems. A considerable amount of 
research effort has been focused on real-time database 
scheduling issues and the use of run-time estimates. The 
use of run-time estimates in scheduling decisions have 
been examined in workload screening, priority assign- 

Meaning 

track number 
latitude of track 
longitude of track 
bearing from data link ref point 
depth or height of platform 
latitude of data link ref point 
longitude of data link ref point 
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ment, conflict resolution and IO scheduling policies. The 
results from the research conducted to date have indi- 
cated that run-time estimates are a viable option for 
improving scheduling decisions [Abb89, Abb92, Kim93, 
Son911. The fact that critical information such as run- 
time costs can improve scheduling decisions and subse- 
quently overall system performance is quite intuitive. 
However, the derivation of run-time estimates is not 
straightforward, and have typically been derived from 
simulation models. The derivation and use of run-time 
estimates in a functional real-time database system has 
not been appropriately explored. 

One of the goals in the design of h4RDB was to 
derive credible run-time estimates and to integrate those 
estimates in scheduling decisions. The approach we 
used was to exploit the physical characteristics of the 
data (such as attribute types, number of attributes in a 
relation, and the numbers of tuples in a relation) being 
manipulated, along with the type of database operation 
being performed (such as union, set difference and 
project), in an attempt to derive credible run-time esti- 
mates. While the arrival and types of transactions enter- 
ing the system and the data which they access may be 
random, the computation steps involved in providing the 
appropriate response are not unpredictable. The steps 
required to execute any MRDB command is static in 
nature, and in a simplified outlook, only the number of 
iterations involved is dynamic. 

Operation 

Project 
Select 
Union 
Set Diff 

The dynamic nature of the computation is depen- 
dent on the number and types of attributes involved, 
along with the number of tuples which constitute a rela- 
tion. For example, the run-time cost for selecting values 
from a relation consisting of only a single tuple is mini- 
mal. It consists of basic start-up costs (such as transmit- 
ting the command, preprocessing, opening of relations, 
and reading in the data from disk), the actual computa- 
tion cost in selecting that single value, and basic tenni- 
nating operations (such as providing the transaction 
results). The run-time cost for selecting the same set of 
values from a relation of five hundred tuples entails the 
same basic costs associated with opening and closing 
operations for a single tuple relation, only the computa- 
tion costs increase in relation to the number of tuples that 
have to be processed. 

Other factors such as system load and data con- 
flicts do not affect the run-time costs associated with a 
given transaction. Such factors only increase the compe- 
tition for system resources, such as the CPU and IO 
access. For example, given the cost for selecting values 
from a given relation is ‘2’ time units. If half that time is 
consumed, and that select operation is subsequently 
blocked by a higher priority transaction whether it be for 
CPU or data contention reasons, it will still require ‘1’ 
time unit to complete once it becomes unblocked. 

With this approach, we ran numerous perfor- 
mance measurements tests to capture the run-time costs. 

J!@ R y i m e  @@ R y i m e  p le R -time le R -time 

1 1.266 50 2.213 100 3.141 200 4.902 
1 1.179 50 1.436 100 1.701 200 2.218 
2 2.714 100 5.499 200 10.002 300 16.248 
2 3.033 100 6.723 200 11.984 300 19.183 
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Figure 4. MRDB run-time costs 
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The results indicate that viable run-time estimates could 
be derived based on the physical characteristics of the 
data being manipulated and the operation being per- 
formed. The results which follow are a small extract 
from those numerous run-time cost analysis experi- 
ments. The results are based on database operations per- 
formed on relations of the format displayed in Figure 2. 
This relation represents the track data generated by the 
Interim Battle Group Tactical Trainer, for an outer air 
battle scenario being used at the Naval Ocean Systems 
Center [But90]. 

4.3. Performance Results 
The results of run-time estimate performance 

measurements for four basic MRDB commands (project, 
select, union, set difference) operating on relations dis- 
played in Figure 2 are given in Figure 3, and graphically 
displayed in Figure 4. The x-axis of Figure 4 is the total 
number of tuples processed by the operation. The y-axis 
is the total elapsed time from the start of the operation 
until the final result is received at the client node. The 
performance measurements were conducted in an 
attempt to isolate the cost factors attributable to the oper- 
ations performed, and the size of the data processed 
(measured by the number of tuples in the relations). The 
operations were initiated from a separate client node, 
transmitted to the server node, and the appropriate results 
returned back to the client. The run-time costs account 
for activities from the initiation of the operation to the 
receipt of the appropriate result. The results shown are 
based on 200 performance measurements for each of the 
operations and relation sizes shown. The large sample 
measurement size was required to validate the results 
produced. 

The results show that the project and select oper- 
ation run-time costs grow in a linear fashion in  relation 
to the size of the data being processed. The union and set 
difference operations run-time costs grow exponentially 

in relation to the size of the data being processed. The 
run-time cost is the mean of the 200 performance mea- 
surements. There was minimal deviation between the 
mean run-time cost and the performance measurements 
used in deriving the mean, usually with 90% of the per- 
formance measurements falling within +lo% of the 
mean. The deviation which did occur between measure- 
ments can be attributed to the limited clock granularity of 
the hardware involved, and to unpredictable behavior of 
the underlying operating system. 

Our run-time cost results did show that run-time 
estimates could be derived not only based on the data- 
base operation being performed and relation size, but 
also on the number and types of attributes which make- 
up relations. However, the results also showed that such 
derived run-time estimates were heuristic in nature, and 
that no guarantee could be made that a given transac- 
tion's actual run-time cost would be as estimated. One of 
the primary contributing factors was the support of the 
underlying operating system. However, it is still possi- 
ble to establish functions which generate acceptably 
accurate run-time estimates based on the physical char- 
acteristics of the data and the operations being executed, 
and that is what is implemented in the MRDB system. 

The MRDB system maintains data on the physical 
characteristics of the relations in the database. When the 
scheduler is invoked it extracts the physical characteris- 
tics data for the relations being processed by a given 
transaction. This information is used in conjunction with 
the operation being performed to derive a run-time esti- 
mate. The run-time estimate is subsequently used in sys- 
tem scheduling decisions. An extract of system 
performance measurements conducted to verify that sys- 
tem generated run-time estimates closely approximated 
actual run-time costs is given in Figure 5 .  The solid lines 
show the system generated run-time estimate for the 
aggregate operations avg m a ,  and sum. The dashed 
lines show the actual run-time costs for those operations 
based on 200 performance measurements. The system 
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estimate closely approximates the actual cost. 
While no guarantee can be made for a given trans- 

action, it is possible to state that a given percentage of 
transactions can complete within the run-time estimate 
generated by the system. Additionally, it can be stated 
that the run-time estimates generated will be within a 
given percentage of the actual run-time costs. For exam- 
ple, raising the system generated run-time estimates by 
10% resulted in approximately 90% of the transactions 
accepted for processing by MRDB having actual run- 
time costs within the system generated values. The 
down-side of raising the estimate is that some transac- 
tions, whose actual run-time cost is below the system 
generated estimate, may be needlessly aborted. The per- 
centage of these depends on the tightness of the temporal 
deadlines attached to the transactions. 

5. Conclusions 
A real-time database manager is one of the critical 

components of real-time systems, in which tasks are 
associated with deadlines and a significant portion of 
data is highly perishable in the sense that it has value to 
the system only if it is used quickly. To satisfy the timing 
requirements, transactions must be scheduled consider- 
ing not only the consistency requirements but also their 
temporal constraints. In addition, the system should be 
predictable, such that the possibility of missing a dead- 
line for a given transaction can be determined prior to the 
execution of that transaction or before that transaction’s 
deadline expires. 

In this paper, we have presented a relational data- 
base manager which possesses temporal functionality, 
developed for investigating real-time database issues. 
Since the characteristics of a real-time database manager 
are distinct from conventional database managers, there 
are different issues to be considered in developing a real- 
time database manager. For example, the use of run-time 
estimates in scheduling policies, and the ability to place 
temporal consistency constraints on database operations 
are important in real-time databases. MRDB was 
designed with the goal of providing an operational plat- 
form for conducting research on real-time database 
issues. Previous studies using simulated environments 
have provided valuable information with respect to real- 
time database issues. However, performance results in 
some of the simulated studies are sometimes contradic- 
tory with each other since they made different assump- 
tions about system environments [Lee94]. We believe 
that an operational environment for investigating real- 
time database issues will eliminate some of the problems 
associated with simulated systems and provide valuable 
and applicable insights to real-time database issues. 

The MRDB system is completely functional. The 
foundation now exists for studying real-time database 
issues in an operational environment. The results 
achieved in deriving and applying heuristic run-time 
estimates and the ability to attach temporal consistency 
specifications are promising. However, as with any 
active systems research projects, there remains many 
technical issues associated with real-time database man- 
agement that need further investigation. It is our goal to 

facilitate further development in this area. To that end we 
have oriented our work effort toward integrating and 
analyzing various conflict resolution mechanisms, to 
include optimistic concurrency control mechanisms 
based on the notion of dynamic adjustment of serializa- 
tion order [Son92, Lee931. We also plan to extend the 
system to a distributed environment, capture system per- 
formance measurements, and improve the temporal 
functionality. 
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