Compensator Control For Chemical Vapor Deposition
Film Growth Using Reduced Order Design Models

G.M. Kepler, H.T. Tran, H.T. Banks*
Center For Research in Scientific Computation
North Carolina State University, Raleigh, NC 27695

Abstract

We present a summary of investigations on the use of proper orthogonal decomposition
(POD) techniques as a reduced basis method for computation of feedback controls and
compensators in a high pressure chemical vapor deposition (HPCVD) reactor that in-
cludes multiple species and controls, gas phase reactions, and time dependent tracking
signals that are consistent with pulsed vapor reactant inputs. Numerical implementa-
tion of the model-based feedback control uses a reduced order state estimator, based on
partial state observations of the fluxes of reactants at the substrate center, which can
be achieved with current sensing technology. We demonstrate that the reduced order
state estimator or compensator system is capable of substantial control authority when
applied to the full system.
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1 Introduction

Stringent control of layer thickness and composition is essential in the production of
advanced optoelectronic integrated circuits. This can sometimes be addressed, in part,
through open-loop optimization [7, 25, 41]. However, process variability and the in-
creasing demands put on control of layer thickness and composition in state-of-the art
devices increase the desirability of real-time control of film growth [8, 19, 21, 43, 42].
Low pressure chemical vapor deposition (CVD) processes are the preferred choice for
manufacturing many advanced optoelectronic devices. On the other hand, there are also
materials of potential industrial use (e.g., InN films) that exhibit relatively high decom-
position pressure as compared to other III-V compounds. These can not be adequately
produced at desirable process temperatures under low pressure conditions and thus it is
be desirable to extend the CVD processing to higher pressures. We are presently col-
laborating with material scientists at N.C. State University to design and build such a
HPCVD reactor with real-time sensing and control as an innovative feature of this proto-
type reactor. Previous work within this collaboration has experimentally demonstrated
the successful implementation of closed-loop control of film thickness and composition in
GaP/Ga; ,In,P heterostructures grown in a low pressure pulsed chemical beam epitaxy
(CBE) reactor utilizing real-time optical p-polarized reflectance signal (PRS) sensing [19].

The modeling of reactant transport in HPCVD reactors is more complicated than in
the case of low pressure CVD reactors. In general, a full mathematical model describ-
ing transport processes in (HPCVD) systems is given by a system of nonlinear partial
differential equations representing the continuity, momentum, energy, and species equa-
tions of state. Numerical simulations and control designs of such systems using finite
element, finite difference, or spectral methods lead to very large systems of ordinary
differential equations rendering real-time full model-based feedback control design infea-
sible. Substantial dimensional reduction can be realized using the method of POD to
more efficiently represent the system data [33]. In recent work, we demonstrated the
potential of a POD based reduced order model as a basis for implementing real time
control by presenting a method for the design of state feedback controllers based on data
provided by accurate model simulations of species transport [26].

In this paper we extend the design of state feedback controllers to include experimentally
relevant conditions of high pressure III-V film growth with multiple species and controls,
gas phase reactions, and time dependent tracking signals that are consistent with pulsed
vapor reactant inputs. We present implementation of Dirichlet boundary control of dilute
Group IIT and Group V reactants transported by convection and diffusion to an absorbing
substrate while undergoing gas phase reactions. Computational fluid dynamics (CFD)
simulations provide data on the full system and are used to construct a POD reduced



order model.

The control/compensator problem (or LQG tracking problem) is formulated as a linear
quadratic regulator (LQR) time dependent tracking problem. The state of the system is
estimated via a compensator gain from observations of the fluxes of Group IIT and Group
V reactants to the substrate, which are assumed to be proportional to the growth rate,
with the observed fluxes attempting to track time dependent target flux values such as
is encountered in pulsed CVD film growth. For example, one might choose a target flux
such that the integrated pulse deposits enough material to form a monolayer. Dirichlet
boundary control at the inlet determines the mass fractions of the incoming Group III
and Group V reactants. We demonstrate that the reduced order state estimator or
compensator system is capable of substantial control authority when applied to the full
System.

The use of POD (also known under the names of principal component analysis [23] and
Karhunen-Loéve expansion [24, 30]) as a method of feature extraction from data sets is
well known in statistical and pattern recognition fields [20] and has been applied in a wide
variety of areas, such as materials processing [33, 41|, characterization of human faces
[37], and turbulent coherent flows ([4, 15, 16, 18, 22, 31, 38] - see also the surveys [14, 32]).
The POD method is a linear transformation of a multivariate data set into an optimal set
of uncorrelated variables (POD modes). The original multivariate data can be written as
linear combinations of the POD modes. In many cases the POD modes more efficiently
describe the variability of the original data and some dimensional reduction is possible
by retaining only the most important modes.

Recent use of POD for reduction of order in distributed parameter systems includes
applications to parameter estimation or inverse problems [11] and both open loop and
feedback control design [1, 2, 9, 10, 26, 27, 33, 34, 41|. There are a number of nontrivial
issues related to the use of reduced basis methods in general, and POD methods in par-
ticular, as a foundation for approximation methods in infinite dimensional systems such
as those modeled by distributed parameter or partial differential equation systems. The
most important issue is whether the infinite dimensional system can be approximated
well by a finite span of basis elements. Initial efforts on error analysis for POD based
approximations in forward or simulation problems can be found in [28]. A more fun-
damental question in regard to order reduction is whether the important features of the
system are essentially low finite dimensional in nature? There is mounting computational
evidence that the answer to this question is positive for many structural systems and for
a substantial number of fluid and electromagnetic applications [11]. However, even when
this question can be answered in the affirmative, it is not at all clear that one can use
such an approach for control design.



Specifically, if one uses ‘snapshots’ of the uncontrolled system (as was done in [9, 10])
to construct the POD basis elements, there is little reason to expect that control design
based on this finite dimensional approximation will be effective when applied to the
original system. The controlled original system itself may require a different set of finite
dimensional elements for efficient approximation or, worse yet, may not be amenable to
a low order basis approximation. Fortunately, the results of [9, 10] suggest that, at least
in some situations, this is not the case. Another approach is to ‘snapshot’ on the system
under several levels of nontrivial control inputs that are not, in general, derived from any
optimal or suboptimal design. This approach has proved effective in open loop [33] as
well as closed loop [26] control problems and is employed in this paper.

In Section 2 below we describe the particular system under investigation here and describe
the simulations needed to develop POD based control design. A sample of some of our
computational results based on this approach is given in Section 3. Brief conclusions are
then summarized.

2 Methods

We consider a 2D rectangular domain (Fig. 1) representing the longitudinal cross section
through the center of an HPCVD reactor with the following dimensions: 0.011 m height,
0.156 m total length, and 0.048 m substrate length. Gas flow enters from the inlet on
the left of the domain (I'1) and exits at the right boundary of the domain (I's), after
passing over the heated substrate on the bottom wall (I's). We control the concentration
of the source material at the inlet in an effort to obtain a desired flux of reactants to the
substrate, which can be assumed to be proportional to the growth rate. The remainder of
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Figure 1: Two-dimensional cross section of HPCVD reactor geometry with the following dimensions
height=0.011 m, length=0.156 m, substrate length=0.048 m.

the Methods section is organized into two parts. The first presents methods for obtaining
simulated experimental data or time snapshots necessary for obtaining the POD modes
for the reduced order model, while the second section presents the control equations.



2.1 Simulated data

We consider only trace amounts of reactants mixed with the carrier gas. Under this
dilute approximation, we can obtain steady-state solutions for the velocity, temperature,
and pressure that are independent of the reactant concentration and are governed by the
following set of equations

(continuity)
V - (pv) =0, (1)
(momentum)
pv-Viu=—-VP+V-T—pg, (2)
where the viscous stress tensor is of the form
2 = —
T = —g,u(V NI+ p(VT+ Vi), (3)
(energy)
pc,¥- VT =V - (EVT), (4)

where ¢ is the gravitational acceleration, i, T, and P are the velocity, temperature, and
pressure, (i, cp, and k are the viscosity, specific heat, and thermal conductivity of the
carrier gas. The density variations are modeled as p = pg[1 — B(T — Tp)|, where Ty is a
reference temperature, py is a reference density calculated from the ideal gas law at the
reference temperature and reactor pressure, and [ is the volume coefficient of expansion
(8 = 1/T). The boundary conditions for the above system of equations (1)-(4) will be
discussed in subsequent sections.

The governing equations are discretized using the Galerkin finite element method with
weighted residuals for the degrees of freedom (¢, P, and T'). A mixed formulation with
132 quadrilateral elements (corresponding to 453 nodes) is used with piecewise linear dis-
continuous elements for pressure, and quadratic (8-noded) elements for the other degrees
of freedom. Solutions for the variables v, P, T', and Y,, are obtained using simulations
with commercially available code (FIDAP, Fluid Dynamics International, Evanston, IL)
on a Silicon Graphics Power Indigo 2.

For the results presented in this article, we consider a hydrogen carrier gas at atmospheric
pressure. Temperature dependent values for p, k, and ¢, are linearly interpolated from
measurements taken from the available literature [29, 39, 13]. A parabolic velocity flow
profile is specified at the inlet (I'1), with an average inlet velocity of 0.1147 m/s. No
slip (zero velocity) boundary conditions are imposed on those portions of the model
corresponding to the reactor walls (I'2,T'4,T'5, and I'6). Room temperature boundary
conditions are imposed at the inlet and along the upper wall (I'2). Along the bottom
wall, the substrate (I'5) temperature is fixed at 800°K , with a non-linear temperature
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decrease from the substrate edge to the inlet (I'6) and, similarly, from the substrate edge
to the outlet (I'4) (see Fig. 1).

Steady-state solutions for v, T', and p obtained above are used in the time-dependent
governing equation for species transport

ot P i=1
where D, is the diffusivity of the species, Y, is the mass fraction of the nth species, Nr
is the number of gas phase reactions, and r,; is the rate of production of species n in
the ¢th chemical reaction. Solutions of this equation (with boundary conditions to be
specified) are used to generate data for construction of the POD modes.

Trimethylindium (TMI) and phosphine are source materials commonly used for CVD
growth of ITI-V films where indium and phosphorus are the constituents. For high pres-
sure applications, the source gases are introduced in separate pulses with sufficient time
between pulses to allow the reactants to exit before introduction of the next source mate-
rial (Fig. 2). Pulsing of the III-V source materials prevents nucleation of the film in the
gas phase and makes PRS observation and analysis possible. A constant total volumetric
flow rate is maintained throughout the pulsing cycle.
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Figure 2: Schematic representation of source gas pulsing.

Under the reactor conditions considered here (Hy carrier gas, 800°K substrate temper-
ature, and 1 atm pressure), there are no effective gas phase reaction mechanisms for
phosphine, and the only significant gas phase reaction for TMI is the decomposition of
TMI to monomethylindium (MMI) and two methyl molecules, In(CHs); — InCHj3 +
2CHj3. This reaction can be described as a first-order Arrhenius reaction

W,
Tn = Up koe BB Y sy (6)
TMI

where v, refers to the stoichiometry of species n in the reaction, W,, and Wry refer to
the molecular weight of species n and TMI, respectively, kg = 5.25 x 10'® s ! is the rate
constant, and E = 47.2 kcal/mol is the activation energy [40].
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A transient simulation of TMI transport (5) through one cycle of pulsing and clearing -
including the thermal decomposition of TMI, diffusion of TMI and MMI, and absorption
at the substrate - is used to obtain data for construction of the POD modes for TMI
and MMI. Similarly, simulation data of phosphine transport from one pulsing and clear-
ing cycle is used to construct the POD modes for phosphine. The simulation system,
including a nonzero boundary input, is given by

oY, | - = =
22T VY, = V- (pDaVY,) + A(D)Ys
Y,(0,2) = 0
Yi(t,Z),Ya(t,Z) = 1or 0 (pulsed) on I'l
Ys3(t,Z) = OonTl (7)
Yo(t,Z) = OonT5
%a(;’—x) — 0onT2UT3UT4UT6
n = 1,2,3

where Y7, Y, and Y3 refer to the mass fractions of TMI, phosphine, and MMI, respectively,
M(T) = —koeTE/ED)  Xo(T) = 0, M3(T) = (Ws/W;)koe"E/ED) | and 6% denotes the
outward normal derivative. Since the methyl (CH3) molecules do not participate in film
growth or otherwise affect the transport properties (under the dilute approximation),
we do not include them in the transport equations. The reactor walls (I'2, T'4, and T'6)
are assumed non-absorbing, and the substrate (I'5) is assumed to be perfectly absorbing
(concentration of zero). Values for ¥ and p appearing in (5) are provided by the steady-
state solutions. Temperature dependent values for the diffusivities D,, in hydrogen are
linearly interpolated from values taken from the available literature [40].

Initially, the reactant mass fractions are assumed zero everywhere in the reactor and only
the Hy carrier gas is flowing. At the start of the pulsing cycle, a normalized TMI mass
fraction of one (Y; = 1) is maintained as a nontrivial input ‘control’ at the inlet (T'1)
for two seconds, followed by a clearing pulse of one second with no input ‘control’ at the
inlet (Fig. 2). At the end of the clearing pulse a normalized phosphine mass fraction of
one (Y2 = 1) is maintained as a second nontrivial input ‘control” at the inlet (I'1) for two
seconds, followed by a clearing pulse of one second with no input ‘control’ at the inlet.
Time integration is implemented using a backward Euler method with fixed time steps
(0.02 s). Intermediate solution values are stored at each time step to be used later in
construction of the POD basis elements.

Construction of POD Modes The reactant transport simulation described above
provides a multivariate data set consisting of K vectors X,, = {z, 20, ..., 2]}, each
vector representing N nodal values mass fraction of the nth species at different times

during the pulsing sequence This original data set X, is transformed to a new set of



uncorrelated variables (POD modes)

Zn = {28, 20, 2N} = X @, (8)
where the columns of @, = {¢X, ¢X, ... ¢K.} are the eigenvectors of the product ma-

trix (Xn' Xn) ffz = )\mgbffi, ranked, in descending order, with respect to the associated
eigenvalue. The prime superscript denotes the transpose of the matrix. The POD modes

Zy, are orthogonal zfx . zﬁg = Mnif;j, and the transformation of variables preserves the
data variability

K K K

k=1 k=1 k=1

Expansion of the original data X, in terms of the most significant POD modes minimizes
the mean square error of a reduced basis representation [20]

B

(X = 2 (Zn)in(@n)iy, (10)

k=1

where M < K. The most significant POD modes are those corresponding to the
largest eigenvalues, since the ratio of an eigenvalue to the summation of eigenvalues,
Ak / Z]K:1 Anj, gives the percentage of the mean square error unaccounted for by elimi-
nating the corresponding POD mode 22, [20] in the reduced basis representation.

2.2 The Control Problem

We seek to control the mass fractions of TMI and phosphine at the inlet (I'y) of the
reactor in order to obtain a desired flux gr(t) of reactants at point 2, on the susceptor
(I's). The general flux at a point 7, is given by

p W M| p Wy, 0%
) = | &®) T Onls, - "W Onl,, (11)
e p,Wp 02 |
*Wa on p

where Wp,, and Wp are the molecular weights of indium (a component of Y7 and ¥3) and
phosphorus (Y3), respectively.

Under the dilute approximation, the steady state solutions for ¥, p, and T" can be used



in (5). The full Dirichlet boundary control problem can then be formulated as

7 _ 1g. v
Mot 5. Vi = 5V ﬁ(pDnVYn> AV
Ya(0,7) = yno(7)
Yi(t,©) = wu(t) on I'l
Ys(t, Z) us(t) on I'l 19
Ya(t.7) = 0 on Tl (12)
Yo(t,Z) = 0 on I'5
Y, (t,2)
n 1,2,3

where Y7, Y5, and Y3 refer to the mass fractions of TMI, phosphine, and MMI, respec-
tively, and wuy(t), us(t) are the controls corresponding to TMI and phosphine, A\;(T') =
—koe(_E/RT), )\Q(T) = 0, and )\3 (T) = (Wg/Wl)koe(_E/RT).

We consider a finite time horizon problem of minimizing the cost function

T
Juy) = [ W Rut (0= 0 Qe — ar)) (13)

where the flux ¢(t) tracks the desired flux g7 ().

Penalty Boundary Formulation. We use a penalty boundary formulation of the time-

dependent species equations (5) to describe the transport of TMI, phosphine, and MMI
in the reactor for implementation of the control problem

( f) = Un ()
MILD Lyt 2) - w(t)) on 'l
Ys(t,7) _ Lva(t,2) — us(t I'l
T = e\l2 ,il,') Ug( )) on
MLE) _ 1y, )
~—on € 3(ta$) on I'l
3Ynaf; r) _ %yﬂ(u 7) on I'5
ayn(f;f) -0 on [2UIl'3UT4UrI6

n = 1,2,3

where, as before, Y7, Y5, and Y3 refer to the mass fractions of TMI, phosphine, and MMI,
respectively, and wu;(t), uz(t) are the controls. Under sufficient regularity, one can argue
that solutions of (14), in the limit as ¢ — 0, approximate solutions for the problem



with conditions Y, (¢,Z) = u,(t) on I'l, and Y, (t,Z) = 0 at T'5 (see [5, 12] for related
discussions). A value of ¢ = 1 x 1073 is used for the results presented here.

Writing (14) in weak form with test functions w;, we obtain

Ny a0 = —/ (v vy)wjda /DVY VdeQ+/ “w; D, VY, - VpdQ)
Q
1
+/ A Yow; dQ+ w;DyY,ds — — | w;Dpupds
€ JI'1,I'5 € JI'1

(15)
where n = 1,2,3 and ug = 0. Spatially dependent values for v, T, p, and D, are
interpolated from the nodal values obtained from the CFD simulations.

Discretization Method I: finite elements. Two discretization formulations are ap-
plied to (15). The first formulation, a finite element approximation, produces the full
system (which plays the role of a reactor simulator). In this case, the species mass frac-
tions (15) are approximated using standard finite element discretization with N = 453
quadratic interpolation functions v; and N nodal coefficients y7

Zym ¢z f (16)

Choosing the test functions to be w; = 1;, 7 = 1,2,..., N, we obtain in a standard way
the matrix equation

BN (1) — A3NBN (1) - B3Ny (+ £ — u1(t) 17

P = AN+ BV i) = | ) (17)

where A3V is an 3N x 3N matrix, B3Y is a 3N x 2 matrix, and the control u is a control
vector.

Discretization Method II: POD modes. The second discretization formulation pro-
duces the reduced basis model. In this case, we first use the POD modes {22} to obtain
the POD basis elements

N

Uoi(Z) = (zow)ithi(Z), k=1,2,...,K, (18)

i=1

where the functions v;(Z) are the finite element quadratic interpolation functions and
n = 1,2,3. The mass fraction for the nth species is approximated as a linear combination
of the POD basis elements corresponding to the M,, most significant POD modes

YM" t,7) Zym U, (Z) (19)
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where, in this case, M, << K << N. Application of this approximation to (15) (in this
case we use POD test functions w; = Uy, i = 1,2,..., M) yields

5 = AN 4 BMu(t) () = [ () ] , (20)

3
where M = > M,, AM is an M x M matrix, and B is an M X 2 matrix.

n=1

Tracking Control. To control the reduced order system (20), we observe the flux g(t)
of indium and phosphorus, to the center of the substrate at z, (11). The fluxes are
approximated as

ov Wi M2 5@
I IR Z = (1)
M) = —p k=1 97 |z, Ws i3 Zp

— My

%% Oy, (21)
Dy-F t

2 W2 kzz:l 877/ —‘p ka( )

= (HM)yM(t)

We seek the optimal control u* for (20) such that the output ¢™ tracks a signal gr (the
desired flux at Z,), minimizing the generalized performance index (e.g., see (3, 36))

Ty () = [ [WRu+ (@) Q™ + (@ = arY@ala™ —ar)] dt . (22)

where @, keeps ¢ bounded, ¢ = (HM)y™, (HM) =1 - LM(HMY,
LM = HM((HM)' HM)=1 and I is the identity matrix. Choosing Q@ = m2I, R = I, and

o= 0] (23)

T'22

we can rewrite this performance index as
Tyou() = [ [wRu+ 4" -3y Q" — )] d, (24)
where 711, 79, and 75 are design parameters, Q = HMQy(HM) + HMQ(HM), and

y1' (t) = Lar(t) (25)

is the desired state trajectory. This is a standard formulation for a ‘tracking’ control
problem (3, 36| for which a complete theory is known (for a summary and references see
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Chapter 7 of [8]). For the pulsed sources we specify time dependent target fluxes such
that the output ¢™ tracks the signal

)= | 0 ), (26)

qraf2(t)
with constants qr1, gr2 and target flux profiles fi(¢) and f»(t) (Fig. 3).

The optimal control is given by

o lui(t)]
us(t) (27)
= —KMyM — R7Y(BMYb(t),

where the gain is given by (see p84-85 of [3], [36], or [8])
KM = r7(BM)11 (28)
and II satisfies the algebraic Riccati equation (ARE)
0 =AM + (AMYTI - TIBMR™Y(BM)'TI + Q. (29)
The tracking variable b(t) is given by
b(t) = —(AY — BYEM)b(t) + Qur'(t), b(T) =0, (30)

where T' = T}, + A, T, is the total elapsed time for the TMI (or phosphine) pulse cycle,
and A is five times the dominant time constant associated with the eigenvalues of AM —
BMEKM (see p86 of [3]). Since there is a delay between application of the control (mass
fraction of sources at the inlet) and detection of the corresponding signal (flux at the
center of the substrate), the time dependent tracking variable plays a crucial role in the
optimal control, by allowing it to anticipate and follow the time varying target fluxes.

State Estimation. Application of the tracking control to the reduced order model (20)
yields
yM — AMyM o BMKMyM o BMR—I(BM)/b(t)
q(t) = (HM)yM(t)
with K™ and b(t) defined in (28) and (30), respectively. Note that this formulation
requires complete reduced order state feedback for the gain K™ of (28). Since the full
state of the system (or even the reduced order system) in the reactor can not be observed,
we implement a state estimator or compensator design based on observation (21) of the

(31)
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Figure 3: Indium and phosphorus target flux profiles.

flux at the center of the substrate. This yields (see [36] or Chapter 8 of [8] and the
references therein) the coupled system

gM — AMyM _ BMKMyéM _ BMRfl(BM)lb(t)

§M = A+ FM(HMYyM — BMRL(BY(1), (32

where y is the M x 1 vector approximation to the approximate state y, the compen-
sator system operator A, is given by
A, =AM — pM(gMy — BM KM, (33)
and the compensator gain (Kalman filter) is given by
FM =Myt (34)
The matrix ¥ satisfies the dual ARE given by
AMY - 2(AMY — s HMV Y HMYS + U =0, (35)

where U and V' are symmetric positive semi-definite and symmetric positive definite
matrix design parameters, respectively. We choose U = [ and V' = r3, where r3 is a third
parameter at our disposal in designing the overall feedback control /compensator system.
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This implementation of the state estimator yields the following closed-loop system for
‘optimal’ control of the reduced order model

yéw - FM(HM)I AM _ BMKM _ FM(HM)I yéw

BMRfl (BM)Ib(t) (36)
~ \ BMRY(BM)'b(t)
with the optimal control
u* = —KMyM — R7Y(BM)'b(t). (37)

Control of the Full System. Use of the design given in (36) and (37) can be expected to
produce a stabilized and generally efficient system for control of the reduced order model
(20). However, this is not the issue of practical importance in our efforts. The goal, of
course, is to design a feedback control/compensator system for (14) (or in weak form
(15)), which we hope will be a good approximation (for proper choice of €) for the actual
physical dynamics (1)-(5), i.e., transient solutions of (5) with (1)-(4) in steady state.
Thus, the real measure of the value of the control/compensator system designed above
via the reduced order model is how well it performs when used in the actual physical
system. Short of applying the control/compensator system to the physical reactor in
experiments, our best assessment of its utility is when applied to the ‘full’ system (17).
That is, we should computationally test the reduced order control/compensator design

based on (28)-(30), (33)-(37) in the system (17).

Application of the reduced order tracking control to the full system with the reduced
order state estimator yields

gN B AN —BNKM yN
yé\d - FM(HN)I AM _ BMKM _ FM(HM)/ yéM

B ( BNR—I(BM)/b(t) ) (38)
BMR-L(BMYp(t)

where HY is the observation vector for the full-dimensional system ¢~ = (HY)'yN(t),
and HM KM g™ and FM are as defined in (21), (28), (30), and (34), respectively. The
optimal control is given by (37). We report on our simulations for system (38) with
different values of the design parameters r1; and ry3 in the results of Section 3. Values of
ro and r3 were varied and then fixed at nominal performance values in the calculations
reported below.

Implementation. The governing equations (14) are nondimensionalized prior to the
calculation of the coefficient matrices (Ly = 1 x 1072 m, Dy = 1.15 x 107 m?/s, and
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po = 4.04 x 1072 kg/m3). The POD modes and the coefficient matrices AN, BN, HV,
AM BM - and HM in (38) are calculated using in-house C programs. All other matrix
calculations are implemented in the Matlab computing environment (The Math Works
Inc., Natick, MA); the optimal gain matrix K and Riccati solution IT are determined
using Matlab’s lgr() function.

The dynamical equations are integrated using a semi-implicit extrapolation integration
method for stiff equations with adaptive step size control (stifbs(), and simpr() in [35]).
During the clearance cycles the optimal control (mass fractions at the inlet) may become
negative. Since negative mass fractions are not physically meaningful, we implement a
truncation procedure at each step of the integration, which sets negative control values
equal to zero. The resulting control is suboptimal, but it will be seen that control
authority is maintained.
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3 Results

We report in sequential form results from the series of computations and simulations
described in detail in Section 2.

3.1 CFD Simulation Results

We first report on results of the CFD package simulations described in Section 2.1.
Contour plots of the steady-state solutions of the temperature and the x-component of
the velocity (Fig. 4a-b) give an indication of the steady-state transport conditions in
the reactor. With the top wall and inlet maintained at room temperature, there is a
steep temperature gradient (Fig. 4a) upstream from the substrate. In the region above
the substrate, the isotherms run parallel to the hot substrate and the opposite cold wall.
The velocity of the gas increases more than 4-fold as it passes in the vicinity of the hot
substrate (Fig. 4b), while the y-component of the velocity (not shown) remains small
throughout the reactor.

(a) Temperature

E-ar

= mnﬁi — — = = ey

(b) X-component of velocity

Figure 4: Contour plot of steady-state values for the (a) temperature in 100°K steps with T4, =750°K
and Ty, =350°K , (b) x-component of the velocity in 0.1 m/s steps with v;,4,=0.45 and v;;,;,=0.05
m/s.
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A plot of the flux of In and P at the substrate center as a function of time (Fig. 5) shows
that the flux plateaus approximately 1 s after the reactant is introduced into the reactor
and is not completely cleared from the reactor until one second after the cessation of the
reactant pulse.
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Figure 5: Flux of In and P to the substrate center as a function of time.
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3.2 Construction of POD Modes

The POD modes for each species are constructed from 150 snapshots (K = 150) taken
during the three second cycle (2 s pulsing, 1 s clearing) of each source species. Each solu-
tion vector represents the species mass fraction at the 453 nodal points and corresponds
to a time increment of 0.03-s in the time range from 0 to 3 seconds. A plot of the cap-
tured variability (Zj]\i"l Mj/ SH A\uk) as a function of the number of modes (M, < 100)
used (Fig. 6) shows that the original data is well-represented by 9 modes, or fewer. This
strongly suggests using M,, <9 in our reduced order model.
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Figure 6: Total percent variability captured as a function of the number of modes for each species
(TMI, MMI, phosphine).

While the above comments suggest the proper order for accurate reduced order model
simulations, there are additional order questions related to the control system to be used
in determining reduced order gains and compensators. The ranks of the controllability
and observability matrices have sometimes been found to be useful criteria (see the dis-
cussion in [9, 10, 26]) to help in the choice of the number of modes to use in control
design applications for the reduced basis representation (19). The controllability of the
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linear system (20) is determined from the rank of the controllability matrix C, where
C(AM,BM) = [BM | AMBM | (AM)ZBM | ... | (AMM1BM], (39)

Using standard results from optimal control theory [17], the M-dimensional linear system
(20) is controllable if, and only if, the rank of the controllability matrix is equal to M.
Similarly, the rank of the observability matrix O indicates the observability of the linear
system (31), where

O(AM, HY) = [HY [ (AMYEY [ (AM)?)HM | .| ((AM)MHY). (40)

For the system under investigation in this paper, ranks of the controllability and observ-
ability matrices are recorded in Table 1 as a function of the number of modes in the
reduced order model. Based on these results, which suggest that the maximum ranks of
the controllability and observability matrices are ten and twelve, respectively. However,
we should remember that these ranks are for the reduced order system and we are ap-
plying the control in the full order system. Nonetheless, we first used ten POD modes
(M =10: M; =4, My =4, M3 = 2) in our control /compensator applications to construct
our reduced order model (20) and obtained adequate control authority. With further ex-
perimentation, we found that by adding more modes (M = 19 : M; = 8, My = 8, M3 = 3),
though no longer being assured of the controllability and observability of the reduced or-
der system, we were able to achieve tighter control and reduce the oscillations of the
system as it tracks the desired flux values (see Fig. 9 below) in the full order system.

Table 1: Rank of the Controllability and Observability Matrices

Reduce Order Model
Dimension M and % Variability Represented

TMI Phosphine MMI Rank
M, % M, % M; % c O
5 (99.930) 5 (99.942) 3 (99.995) 10 12
5 (99.930) 5 (99.942) 2 (99.929) 10 12
4 (99.756) 4 (99.793) 2 (99.929) 10 10
5 (99.930) 4 (99.793) 2 (99.929) 10 11
5 (99.930) 3 (99.264) 2 (99.929) 9 10
5 (99.930) 4 (99.793) 1 (98.230) 10 10
8 (99.999) 8 (99.999) 3  (99.995) 10 12
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3.3 Control of Full System Using the Reduced Order State Es-
timator

A set of representative results are depicted here, where the reduced order state estimator
is used to control the full system (38) using non-dimensional tracking values of g1 =
0.0855 and qrs = 0.15. In this example, we fix the design parameters r;; = 5000,
ro = 1 x 1075, and r3 = 1 x 10, and vary the design parameter ry; = 150,200, or
300. Initially, the solution vector for the estimated state is given a small nonzero value
(yM = 1x 107*), while the full system solution is given an initial value of zero (y3¥ = 0),
where N = 453 and M =19 (M; = 8, My = 8, M3 = 3). The tracking values and pulse
profiles were chosen so that the integrated quantity of material deposited represents
approximately one monolayer each of indium and phosphorus (assuming a 100 surface
with 4.1 x 10'® sites per m? [40]). Because of the truncation employed (see Section 2.2)
the results shown here are not optimal. However, we demonstrate that the reduced order
state estimator or compensator system is still capable of substantial control authority
when applied to the full system.
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The controls (uy(t),us(t)) are plotted in Fig. 7 as a function of time along with the
(nondimensional) target flux pulse cycle (indicated by the dotted lines). From Fig. 7 it
can be seen that the control rises and falls in advance of the tracking pulses. Recall that
this is necessary because of the delay between introduction of reactant at the inlet and
transport of reactant(s) to the substrate. It is also evident from Fig. 7 that the control
values oscillate as the system adjusts to match the observed flux to the desired tracking
flux. Both the peak values and the magnitude of the oscillations of uy (corresponding to
the phosphine mass fraction at the inlet) increase as ro2 increases, i.e., as more weight
is placed on achieving the desired flux and less weight is placed on the cost of control.
As expected, the profile for u; (corresponding to the TMI mass fraction at the inlet) is
unchanging since 717 is held constant in this example.
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TIME [DIMENSIONLESS]

Figure 7: Control values (TMI and phosphine normalized mass fractions at the inlet) as a function
of time for different values of the control parameter r32: 150 (solid line), 200 (dashed line), and 300
(dash-dot line). A nondimensional representation of the target flux profile is also shown (dotted line)
for reference. The control rises and falls in advance of the tracking pulses.
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A plot of the observed flux as a function of time (Fig. 8) shows that the system is able
to closely track the time dependence of the desired flux profile without significant delays.
The ability of the system to match the target flux is sensitive to the design parameter
roo with close agreement for the case of ry3 = 200.
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Figure 8: Observed fluxes as a function of time for different values of the control parameter rg2: 150
(solid line), 200 (dashed line), and 300 (dash-dot line). The target flux profile is also shown (dotted line)
for reference. The system is able to closely track the desired flux profile.

Some oscillation of the observed flux can be seen in Fig. 8. The amplitudes of these
oscillations increase with increasing control (larger values of 72 or r17) and increase as
the size of the reduced order system is decreased. A comparison of the observed flux
using two different reduced order dimensions (Fig. 9) shows that reducing the order from
M =19 to M = 10 (the apparent rank of the controllability matrix for the reduced order
system) increases the amplitude of the oscillations.

The ability of the system to track the pulse turn off is limited when the target pulse fall
off is steep. Since there is no mechanism for removing reactant from the system other
than the carrier gas transport and absorption at the substrate, the observed flux can not
fall off faster than some characteristic rate associated with the physical parameters of
the problem (e.g., reactor dimension and carrier gas flow rate). As a result, the observed
flux may have a tail that persists substantially beyond the target pulse drop.
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Figure 9: Comparison of observed flux as a function of time for two reduced order dimensions: M = 19
(dashed line) and M = 10 (solid line). The target flux profile is also shown (dotted line) for reference.
The design parameter values for these simulations were as follows: gr; = 0.0855, g2 = 0.15, r11 = 1600,
T92 = 500, 79 = 1 x 1074, and r3 = 1 x 10*. The magnitude of the oscillations increases when the order
is reduced.

Fig. 10 plots the norm of the difference between the full system solution and the state
estimated solution as a function of time. The error decreases from an initial non-zero, the
value of which depends on the initial conditions, then begins to rise as the control values
rise in anticipation of the rising edge of the target flux pulse. The error decreases again
as the target flux plateaus and the control values are relatively constant, then rises again
as the control values fall in anticipation of the target flux drop off. The error reaches
a minimum again during the clearance time period, after which the cycle of rising and
falling is repeated again for the phosphine pulse.
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Figure 10: The norm of the difference between the full state and the POD estimated state for different
values of the control parameter rqg: 150 (solid line), 200 (dashed line), and 300 (dash-dot line). A
nondimensional representation of the target flux profile is also shown (dotted line) for reference. The
error rises as the control values change and decreases for during periods of (relatively) constant control.

4 Conclusion

We have demonstrated a computational implementation of reduced order feedback control
of pulsed HPCVD III-V film growth involving the transport of multiple species with
linear gas phase reactions. We implement feedback control using a reduced order state
estimator based on observations of the fluxes of the Group III and Group V reactants
at the substrate center. These observations are compatible with current PRS sensing
technology. The controls are chosen so that the output fluxes track time dependent
target fluxes, similar to the pulsed sources currently employed for HPCVD film growth.
Because the control values must be constrained to be positive (positive mass fraction)
the resulting truncated control is suboptimal, but the reduced order model design is still
capable of substantial control authority.

Use of the POD-based design method allows us to reduce the order of the system with
respect to a standard finite element representation, from 3N = 2159 to M = 19. These
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results suggest that real-time feedback control with partial state observations is a feasi-
ble goal for HPCVD reactors operating in steady state flow regimes with pulsed vapor
reactant inputs. The positive results on this linear system suggest one possible approach
for treating more complex situations that may be encountered when nonlinear gas phase
or surface phase reactions are present: linearizing the equations about an optimal open
loop solution and then using a reduced order feedback design on the linearized system.
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