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Reasoning by Augmenting a
Description Logic Reasoner (Phase 1)

1 Introduction

This is the final report on the DARPO IPTO project Reasoning by Augmenting a Description 
Logic Reasoner (Phase 1), contract HR0011-05-C-0094, providing information on the objectives 
of the program and how these objectives were addressed.  The Reasoning by Augmenting a 
Description Logic Reasoner Project (Phase 1) was designed to provide languages and tools for 
reasoning about information expressed in expressive Description Logics or ontology languages 
similar to the W3C OWL DL Web Ontology Language.  The results of the project were designs 
of new Description Logics and new reasoning methods and optimizations for these Description 
Logics as well as the FaCT++ Description Logic reasoner.

2 Task Objectives and Technical Problems

The first objective of the project was the design of new reasoning methods and optimizations for 
reasoning in expressive representation languages (i.e., Description Logics) similar to the W3C 
OWL  DL  Web  Ontology  Language  (http://www.w3.org/TR/owl-ref),  including  optimized 
reasoning methods for hybrid datatype extensions of Description Logics.  The project also aimed 
to catalogue known relevant methods and optimizations and to analyze them for suitability.

A closely related objective was the implementation of an optimized inference engine for the 
expressive  Description  Logic  and  the  hybrid  extensions.   The  inference  engine  was  to 
incorporate at least the optimizations in current highly optimized systems, such as DLP, FaCT, 
and RACER, that are applicable to expressive Description Logics, as well as new optimizations 
designed for these languages. The performance of the inference engine was to be empirically 
analyzed on a variety of inputs, including existing ontologies.

The third objective of the project was the design and implementation of an interface to control 
the inference engine and examine its performance.  This interface was to allow the support of 
larger reasoning tasks, both by tuning the inference engine for a particular task and by allowing a 
larger system to inspect the inference engine's deliberations.   
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3 General Methods and Technical Results

An  analysis  of  Description  Logic  constructs  similar  to  those  in  the  W3C  OWL  DL  Web 
Ontology Language was performed.  Several additions to OWL DL were identified as useful for 
the purposes of the project.

One of these extensions involves the addition of a form of rules to OWL DL.  This extension is 
documented  in  the  paper  "OWL  rules:  A  proposal  and  prototype  implementation"  by  Ian 
Horrocks,  Peter  F.  Patel-Schneider,  Sean  Bechhofer,  and  Dmitry  Tsarkov,  Journal  of  Web 
Semantics,  3(1):23-40,  July  2005.   This  paper  is  available  at 
http://www.websemanticsjournal.org/ps/pub/2005-2 and as Appendix A.

A second extension involves the addition of datatypes and datatype predicates to OWL DL.  This 
extension  is  documented  in  the  paper  "Introducing  Customised  Datatypes  and  Datatype 
Predicates into OWL" by Jeff Z. Pan and Ian Horrocks, 2005 OWL: Experiences and Directions 
Workshop,  Galway,  Ireland,  November  2005.   This  paper  is  available  at 
http://www.mindswap.org/2005/OWLWorkshop/sub10.pdf and as Appendix B.

A third extension involved the addition of  operators that  allow the construction of  complex 
relationships,  such  as  construction  of  the  uncle  relationship  from  the  parent  and  brother 
relationships.  An early version of this extension is documented in the paper "The Irresistible 
SRIQ" by Ian Horrocks, Oliver Kutz, and Ulrike Sattler, 2005 OWL: Experiences and Directions 
Workshop,  Galway,  Ireland,  November  2005.   This  paper  is  available  at 
http://www.mindswap.org/2005/OWLWorkshop/sub20.pdf and  as  Appendix  C.   The  final 
version of this extension is documented in the paper “The Even More Irresistible SROIQ” by Ian 
Horrocks, Oliver Kutz, and Ulrike Sattler, in Proceedings of the Tenth International Conference 
on Knowledge Representation and Reasoning, June 2006.  A version of this paper is attached as 
Appendix L.

A report on the use of Description Logics similar to OWL DL in support of actual reasoning 
tasks is contained in the paper  "Description Logics in Ontology Applications" by Ian Horrocks, 
Proceedings  of  the  9th  International  Conference  on  Automated  Reasoning  with  Analytic 
Tableaux  and  Related  Methods  (TABLEAUX  2005),  Koblenz,  Germany,  September  2005, 
Lecture Notes in Artificial Intelligence number 3702, pages 2-13, Springer, 2005.  This paper is 
available at http://www.cs.man.ac.uk/~horrocks/Publications/download/2005/Horr05b.pdf and as 
Appendix D.

Portions of these extensions were incorporated into a proposal for an extension to the W3C OWL 
DL Web Ontology Language.  This extension, called OWL 1.1, is documented in the report 
"OWL 1.1 Web Ontology Language Syntax" by Peter F. Patel-Schneider, Bell Labs Research, 
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Lucent Technologies, 12 January 2006.  This report is available at http://www-db.research.bell-
labs.com/user/pfps/owl/syntax.html and as Appendix E.  The overall OWL 1.1 effort has a home 
page at http://owl1-1.cs.manchester.ac.uk/.

An analysis of general techniques for optimizing Description Logic reasoning was performed. 
Existing techniques were categorized being suitable for use in expressive Description Logics or 
not.   Several  new techniques  were  devised  and also  deemed  suitable  for  use  in  expressive 
Description Logics.

The optimizations  are documented in  three papers:  "Optimised Classification for Taxonomic 
Knowledge Bases" by Dmitry Tsarkov and Ian Horrocks, in Proceedings of the 2005 Description 
Logic  Workshop  (DL-2005),  Edinburgh,  Scotland,  July  2005  (available  at 
http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-147/39-TsarHorr.pdf and 
as Appendix F), "Ordering heuristics for description logic reasoning" by Dmitry Tsarkov and Ian 
Horrocks,  in  Proceedings  of  the  Nineteenth  International  Joint  Conference  on  Artificial 
Intelligence  (IJCAI  2005),  Edinburgh,  Scotland,  August  2005  (available  at 
http://www.cs.man.ac.uk/~horrocks/Publications/download/2005/TsHo05a.pdf and as Appendix 
G), and "Optimised Terminological Reasoning for Expressive Description Logics" by Dmitry 
Tsarkov, Ian Horrocks, and Peter F. Patel-Schneider, which has been submitted to the Journal of 
Automated Reasoning.  (The submitted version appears as Appendix H.)

A new Description Logic system was implemented in C++.  This system, FaCT++, incorporates 
many existing optimizations, identified during the project, as well as some new optimizations, 
also  identified  during  the  project.   FaCT++ can  reason  over  several  expressive  Description 
Logics, including SHOIQ (and thus is a reasoner for the OWL DL).

An overall description of FaCT++ can be found in "System Description: FaCT++1.0" by Dmitry 
Tsarkov and Ian Horrocks.  This document is enclosed with electronic forms of this report as 
Appendix I.

The  code  and  documentation  for  FaCT++  can  be  downloaded  from 
http://owl.man.ac.uk/factplusplus/.  A copy of the source code and documentation as of 21 April 
2006 appears as Appendix M.

Two analyses  of the performance of  Description Logic systems on existing ontologies were 
performed, one with previously-existing systems and one including the new Description Logic 
system.  The analyses are reported on in  two papers:   "Benchmarking DL Reasoners Using 
Realistic  Ontologies"  by  Zhengxiang  Pan,  in  OWL:  Experiences  and  Directions  workshop, 
Galway,  Ireland,  November  2005  (available  at 
http://www.mindswap.org/2005/OWLWorkshop/sub6.pdf and as Appendix J) and "Automated 
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Benchmarking of Description Logic Reasoners" by Tom Gardiner, Ian Horrocks, and Dmitry 
Tsarkov,  in  Proceedings  of  the  2006  Description  Logic  Workshop  (DL-2006),  June  2006 
(enclosed as Appendix K).

An analysis of the existing DIG 1.1 interface to Description Logic systems was performed.  A 
proposal for a new interface to Description Logic systems, called DIG 2.0, was underway as of 
the end of the project.  DIG 2.0 is the result of efforts by an international group of researchers, 
including  from  this  project.   Information  on  DIG  2.0  can  be  found  at 
http://homepages.cs.manchester.ac.uk/~seanb/dig/.

4 Important Findings and Conclusions

The project resulted in two different kinds of findings.

The first finding relates to extensions of expressive Description Logics.  It was found that a small 
number of extensions (composition of relationships, inclusions of composed relationships, and 
punning) dramatically improve the acceptability of the W3C OWL DL Web Ontology Language. 
These  extensions  have  been  incorporated  into  the  OWL  1.1  language,  which  is  being 
implemented by several groups worldwide.

The second findings relate to implementation of reasoners for expressive Description Logics. 
The  FaCT++ Description  Logic  reasoner  constructed  during  the  project  is  competitive  with 
existing systems and adequate for a considerable number of reasoning tasks, a result that was 
somewhat unexpected.  However no existing Description Logic reasoner is adequate for many 
other reasoning tasks, as expected, indicating that more research needs to be done in further 
optimization of such reasoners.

5 Significant Developments

The most significant developments of the project are:
1.a new analysis of optimizations for reasoning in expressive Description Logics, including 
new optimizations;
2.the FaCT++ Description Logic system, a new high-performance Description Logic system 
able to reason over the W3C OWL DL Web Ontology Language; and 
3.the OWL 1.1 extension to the W3C OWL DL Web Ontology Language.
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6 Special Comments

The  work  in  this  project  was  greatly  assisted  by  research  interactions  with  the  worldwide 
community interest in Description Logics and ontologies.  In particular, the OWL 1.1 and DIG 
2.0 efforts were the result of collaborations between geographically distributed researchers.  The 
results of such interactions are of the highest importance in the development of languages and 
systems for ontology reasoning.  Only in this way can general consensus on methods be achieved 
and this consensus is needed for widespread adoption.

7 Implications for Further Research

It turned out that getting to state of the art in Description Logic reasoners was not hard.  The 
FaCT++ reasoner developed for Phase 1 of the project was only supposed to be a testbed for 
further work on optimization, but it turned out to be competitive with existing high-performance 
reasoners.  However, although FaCT++ and other existing high-performance Description Logic 
reasoners are now suitable for many tasks, there are many other tasks for which they are not fast 
enough.   Therefore  more  research  and  implementation  on  optimizations  for  reasoning  in 
Description Logics and ontologies are needed.

During the course of the project it was evident that the existing state of the Semantic Web is in 
flux and that its overall design still needs work.  The inadequate foundation of the Semantic Web 
resulted in considerable work being done in the project to get around its limitations.  These 
problems are currently affecting the W3C Rule Interchange Format working group.  Research 
needs to be performed and consensus achieved in this important resource.

As stated above it was important to gather international groups to perform research related to 
some of the goals of the project.  In this project the groups (the DIG group and the OWL 1.1 
group) were ad hoc groups of researchers interested in research related to the goals of the project. 
There are still quite a number of areas where further collaborative research related to the goals of 
the project is needed, including future work by the DIG and OWL 1.1 groups but also work on 
rules and foundations of the Semantic Web.  DARPA has played a major role in this arena 
before,  notably  with  the  DAML  project's  development  of  the  DAML+OIL  web  ontology 
language---an important precursor to the W3C OWL Web Ontology Language.   

DARPA can and should continue to play an important role in future work in this vein, as it is one 
of the very few institutions in the United States that funds large, collaborative projects.  DARPA 
can and should support future collaborative work on languages for Semantic Web and for agent 
communication.  Such work is of interest to DARPA's customers, as evidenced by the upcoming 
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Language  for  Intelligent  Machines  workshop  sponsored  by  the  US  Army  Research  Office. 
Standards bodies (e.g., W3C, etc.)  do not have efforts that attract nearly the same caliber of 
researchers, but can serve to finalize and disseminate the results of such DARPA projects.

8 List of Abbreviations and Acronyms

DAML – DARPA Agent Markup Language
DARPA – Defense Advanced Research Projects Agency
DL – Description Logic
DLP – Description Logic Processor
FaCT – Fast Classification of Terminologies
IPTO – Information Processing Technology Office
OIL – Ontology Inference Language
OWL – W3C Web Ontology Language
RACER – Reasoner for Aboxes and Concept Expressions Renamed
SRIQ – SRIQ Description Logic
SROIQ – SROIQ Description Logic
W3C – World Wide Web Consortium
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9 Appendices

Appendix A:   

"OWL  rules:  A  proposal  and  prototype  implementation"  by  Ian  Horrocks,  Peter  F.  Patel-
Schneider, Sean Bechhofer, and Dmitry Tsarkov, Journal of Web Semantics, 3(1):23-40, July 
2005.  Enclosed with the full electronic version of this report as the file jws-rules.pdf.

9



OWL Rules: A Proposal and Prototype
Implementation

Ian Horrocks Peter F. Patel-Schneider Sean Bechhofer
Dmitry Tsarkov

February 28, 2005

Abstract

Although the OWL Web Ontology Language adds considerable expressive
power to the Semantic Web it does have expressive limitations, particularly with
respect to what can be said about properties. We present SWRL (the Semantic Web
Rules Language), a Horn clause rules extension to OWL that overcomes many of
these limitations. SWRL extends OWL in a syntactically and semantically coher-
ent manner: the basic syntax for SWRL rules is an extension of the abstract syntax
for OWL DL and OWL Lite; SWRL rules are given formal meaning via an exten-
sion of the OWL DL model-theoretic semantics; SWRL rules are given an XML
syntax based on the OWL XML presentation syntax; and a mapping from SWRL
rules to RDF graphs is given based on the OWL RDF/XML exchange syntax. We
discuss the expressive power of SWRL, showing that the ontology consistency
problem is undecidable, provide several examples of SWRL usage, and discuss a
prototype implementation of reasoning support for SWRL.

1 Introduction
The OWL Web Ontology Language [47] adds considerable expressive power to the
Semantic Web. However, for a variety of reasons (see http://lists.w3.org/
Archives/Public/www-webont-wg/ and [20]), including retaining the decid-
ability of key inference problems in OWL DL and OWL Lite, OWL has expressive
limitations. These restrictions can be onerous in some application domains, for exam-
ple in describing web services, where it may be necessary to relate inputs and outputs
of composite processes to the inputs and outputs of their component processes [51],
or in medical informatics, where it may be necessary to transfer characteristics across
partitive properties [39].

Many of the limitations of OWL stem from the fact that, while the language in-
cludes a relatively rich set of class constructors, the language provided for talking about
properties is much weaker. In particular, there is no composition constructor, so it is
impossible to capture relationships between a composite property and another (possibly
composite) property. The standard example here is the obvious relationship between
the composition of the “parent” and “brother” properties and the “uncle” property.

One way to address this problem would be to extend OWL with a more powerful
language for describing properties. For example, a decidable extension of the descrip-
tion logics underlying OWL DL to include the use of composition in subproperty ax-
ioms has already been investigated [22, 23]. In order to maintain decidability, however,
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the usage of the constructor is limited to axioms of the form P ◦ Q v P , i.e., axioms
asserting that the composition of two properties is a subproperty of one of the com-
posed properties. This means that complex relationships between composed properties
cannot be captured—in fact even the relatively simple “uncle” example cannot not be
captured (because “uncle” is not one of “parent” or “brother”).

An alternative way to overcome some of the expressive restrictions of OWL would
be to extend it with some form of “rules language”. In fact adding rules to description
logic based knowledge representation languages is far from being a new idea. Several
early description logic systems, e.g., Classic [38, 8], included a rule language compo-
nent. In these systems, however, rules were given a weaker semantic treatment than
axioms asserting sub- and super-class relationships; they were only applied to indi-
viduals, and did not affect class based inferences such as the computation of the class
hierarchy. More recently, the CARIN system integrated rules with a description logic
in such a way that sound and complete reasoning was still possible [28]. This could
only be achieved, however, by using a rather weak description logic (much weaker
than OWL), and by placing severe syntactic restrictions on the occurrence of descrip-
tion logic terms in the (heads of) rules. Similarly, the DLP language proposed in [14]
is based on the intersection of a description logic with horn clause rules; the result is
obviously a decidable language, but one that is necessarily less expressive than either
the description logic or rules language from which it is formed.

In this paper we show how a simple form of Horn-style rules can be added to the
OWL language in a syntactically and semantically coherent manner, the basic idea
being to add such rules as a new kind of axiom in OWL DL. We show (in Section 3)
how the OWL abstract syntax in the OWL Semantics and Abstract Syntax document
[37] can be extended to provide a formal syntax for these rules, and (in Section 4) how
the direct OWL model-theoretic semantics for OWL DL can be extended to provide a
formal meaning for OWL ontologies including rules written in this abstract syntax. We
will also show (in Section 5) how OWL’s XML presentation syntax can be modified to
deal with the proposed rules.

The extended language was originally called ORL (the OWL Rules Language), but
is now much better known as SWRL (the Semantic Web Rules Language), a name
that was coined when the Joint US/EU ad hoc Agent Markup Language Committee1

developed a W3C members submission based on ORL.2 Although SWRL includes
some additional features (mainly related to datatypes and predicates) and has some
minor syntactic differences, we will refer to the language described here as SWRL.

SWRL is considerably more powerful than either OWL DL or Horn rules alone. We
will show (in Section 6) that the key inference problems (e.g., ontology consistency)
for SWRL are undecidable, and (in Section 7) provide examples that utilise the power
of the combined languages.

In Section 8 we show how OWL’s RDF syntax can be extended to deal with rules,
and in Sections 9 and 10 we discuss how reasoning support for SWRL might be pro-
vided. Finally (in Section 11), we summarise the main features of the SWRL proposal
and suggest some directions for future work.

1http://www.daml.org/committee/
2http://www.w3.org/Submission/2004/SUBM-SWRL-20040521/
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2 Overview
The basic idea of the proposal is to extend OWL DL with a form of rules while main-
taining maximum backwards compatibility with OWL’s existing syntax and semantics.
To this end, we add a new kind of axiom to OWL DL, namely Horn clause rules, ex-
tending the OWL abstract syntax and the direct model-theoretic semantics for OWL
DL [37] to provide a formal semantics and syntax for OWL ontologies including such
rules.

The proposed rules are of the form of an implication between an antecedent (body)
and consequent (head). The informal meaning of a rule can be read as: whenever (and
however) the conditions specified in the antecedent hold, then the conditions specified
in the consequent must also hold.

Both the antecedent (body) and consequent (head) of a rule consist of zero or more
atoms. Atoms can be of the form C(x), P(x,y), sameAs(x,y) or differentFrom(x,y),
where C is an OWL DL description, P is an OWL property, and x,y are either variables,
OWL individuals or OWL data values. Atoms are satisfied in extended interpretations
(to take care of variables) in the usual model-theoretic way, i.e., the extended interpre-
tation maps the variables to domain elements in a way that satisfies the description,
property, sameAs, or differentFrom, just as in the regular OWL model theory.

Multiple atoms in an antecedent are treated as a conjunction. An empty antecedent
is thus treated as trivially true (i.e. satisfied by every interpretation), so the consequent
must also be satisfied by every interpretation.

Multiple atoms in a consequent are treated as separate consequences, i.e., they must
all be satisfied. In keeping with the usual treatment in rules, an empty consequent is
treated as trivially false (i.e., not satisfied by any extended interpretation). Such rules
are satisfied if and only if the antecedent is not satisfied by any extended interpreta-
tion. Note that rules with multiple atoms in the consequent could easily be rewritten
(by applying standard rules of distributivity) into multiple rules each with an atomic
consequent.

It is easy to see that OWL DL becomes undecidable when extended in this way as
rules can be used to simulate role value maps [46] and make it easy to encode known
undecidable problems as a SWRL ontology consistency problem (see Section 6).

3 Abstract Syntax
The syntax for SWRL in this section abstracts from any exchange syntax for OWL and
thus facilitates access to and evaluation of the language. This syntax extends the ab-
stract syntax of OWL described in the OWL Semantics and Abstract Syntax document
[37].

Like the OWL abstract syntax, we will specify the abstract syntax for rules by
means of a version of Extended BNF, very similar to the Extended BNF notation used
for XML [52]. In this notation, terminals are quoted; non-terminals are not quoted.
Alternatives are either separated by vertical bars ( | ) or are given in different produc-
tions. Components that can occur at most once are enclosed in square brackets ([. . . ]);
components that can occur any number of times (including zero) are enclosed in braces
({. . .}). Whitespace is ignored in the productions given here.

Names in the abstract syntax are RDF URI references [27]. These names may be
abbreviated into qualified names, using one of the following namespace names:
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rdf http://www.w3.org/1999/02/22-rdf-syntax-ns#

rdfs http://www.w3.org/2000/01/rdf-schema#

xsd http://www.w3.org/2001/XMLSchema#

owl http://www.w3.org/2002/07/owl#

The meaning of each construct in the abstract syntax for rules is informally de-
scribed when it is introduced. The formal meaning of these constructs is given in
Section 4 via an extension of the OWL DL model-theoretic semantics [37].

3.1 Rules
From the OWL Semantics and Abstract Syntax document [37], an OWL ontology in
the abstract syntax contains a sequence of annotations, axioms, and facts. Axioms may
be of various kinds, for example, subClass axioms and equivalentClass axioms. This
proposal extends axioms to also allow rule axioms, by adding the production:

axiom ::= rule
Thus a SWRL ontology could contain a mixture of rules and other OWL DL constructs,
including ontology annotations, axioms about classes and properties, and facts about
OWL individuals, as well as the rules themselves.

A rule axiom consists of an antecedent (body) and a consequent (head), each of
which consists of a (possibly empty) set of atoms. Just as for class and property ax-
ioms, rule axioms can also have annotations. These annotations can be used for several
purposes, including giving a label to the rule by using the rdfs:label annotation prop-
erty.

rule ::= ’Implies(’{annotation} antecedent consequent’)’
antecedent ::= ’Antecedent(’{atom}’)’
consequent ::= ’Consequent(’{atom}’)’

Informally, a rule may be read as meaning that if the antecedent holds (is “true”),
then the consequent must also hold. An empty antecedent is treated as trivially holding
(true), and an empty consequent is treated as trivially not holding (false). Non-empty
antecedents and consequents hold iff all of their constituent atoms hold. As mentioned
above, rules with multiple consequents could easily be rewritten (using standard rules
of distributivity) into multiple rules each with a single atomic consequent.

Atoms in rules can be of the form C(x), P(x,y), Q(x,z), sameAs(x,y) or different-
From(x,y), where C is an OWL DL description, P is an OWL DL individual-valued
Property, Q is an OWL DL data-valued Property, x,y are either variables or OWL in-
dividuals, and z is either a variable or an OWL data value. In the context of OWL Lite,
descriptions in atoms of the form C(x) may be restricted to class names.

atom ::= description ’(’ i-object ’)’
| individualvaluedPropertyID ’(’ i-object i-object ’)’
| datavaluedPropertyID ’(’ i-object d-object ’)’
| sameAs ’(’ i-object i-object ’)’
| differentFrom ’(’ i-object i-object ’)’

Informally, an atom C(x) holds if x is an instance of the class description C, an
atom P(x,y) (resp. Q(x,z)) holds if x is related to y (z) by property P (Q), an atom
sameAs(x,y) holds if x is interpreted as the same object as y, and an atom different-
From(x,y) holds if x and y are interpreted as different objects.
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Atoms may refer to individuals, data literals, individual variables or data variables.
Variables are treated as universally quantified, with their scope limited to a given rule.
As usual, only variables that occur in the antecedent of a rule may occur in the conse-
quent (a condition usually referred to as “safety”).

i-object ::= i-variable | individualID
d-object ::= d-variable | dataLiteral

i-variable ::= ’I-variable(’ URIreference ’)’
d-variable ::= ’D-variable(’ URIreference ’)’

3.2 Human Readable Syntax
While the abstract Extended BNF syntax is consistent with the OWL specification,
and is useful for defining XML and RDF serialisations, it is rather verbose and not
particularly easy to read. In the following we will, therefore, often use a relatively
informal “human readable” form similar to that used in many published works on rules.

In this syntax, a rule has the form:

antecedent → consequent,

where both antecedent and consequent are conjunctions of atoms written a1∧ . . .∧an.
Variables are indicated using the standard convention of prefixing them with a question
mark (e.g., ?x). Using this syntax, a rule asserting that the composition of parent and
brother properties implies the uncle property would be written:

parent(?a, ?b) ∧ brother(?b, ?c) → uncle(?a, ?c). (1)

If John has Mary as a parent and Mary has Bill has a brother, then this rule requires
that John has Bill as an uncle. Using the abstract syntax described in Section 3.1, this
rule would have been written as:

Implies(Antecedent(parent(I-variable(a) I-variable(b))
brother(I-variable(b) I-variable(c)))

Consequent(uncle(I-variable(a) I-variable(c)))).

4 Direct Model-Theoretic
Semantics

The model-theoretic semantics for SWRL is a straightforward extension of the seman-
tics for OWL DL given in [37]. The basic idea is that we define bindings—extensions
of OWL interpretations that also map variables to elements of the domain in the usual
manner. A rule is satisfied by an interpretation iff every binding that satisfies the an-
tecedent also satisfies the consequent. The semantic conditions relating to axioms and
ontologies are unchanged, so an interpretation satisfies an ontology iff it satisfies every
axiom (including rules) and fact in the ontology.

4.1 Interpreting Rules
From the OWL Semantics and Abstract Syntax document [37] we recall that an abstract
OWL interpretation is a tuple of the form

I = 〈R,EC,ER, L, S, LV 〉,
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where R is a set of resources, LV ⊆ R is a set of literal values, EC is a mapping from
classes and datatypes to subsets of R and LV respectively, ER is a mapping from
properties to binary relations on R, L is a mapping from typed literals to elements of
LV , and S is a mapping from individual names to elements of EC(owl : Thing).

Given an abstract OWL interpretation I, a binding B(I) is an abstract OWL inter-
pretation that extends I such that S maps i-variables to elements of EC(owl : Thing)
and L maps d-variables to elements of LV respectively. An atom is satisfied by a bind-
ing B(I) under the conditions given in Table 1, where C is an OWL DL description,
P is an OWL DL individual-valued Property, Q is an OWL DL data-valued Property,
x, y are variables or OWL individuals, and z is a variable or an OWL data value.

Atom Condition on Interpretation
C(x) S(x) ∈ EC(C)
P (x, y) 〈S(x), S(y)〉 ∈ ER(P )
Q(x, z) 〈S(x), L(z)〉 ∈ ER(Q)
sameAs(x, y) S(x) = S(y)
differentFrom(x, y) S(x) 6= S(y)

Table 1: Interpretation Conditions

A binding B(I) satisfies an antecedent A iff A is empty or B(I) satisfies every
atom in A. A binding B(I) satisfies a consequent C iff C is not empty and B(I)
satisfies every atom in C. A rule is satisfied by an interpretation I iff for every binding
B such that B(I) satisfies the antecedent, B(I) also satisfies the consequent.

The semantic conditions relating to axioms and ontologies are unchanged. In par-
ticular, an interpretation satisfies an ontology iff it satisfies every axiom (including
rules) and fact in the ontology; an ontology is consistent iff it is satisfied by at least one
interpretation; an ontology O2 is entailed by an ontology O1 iff every interpretation
that satisfies O1 also satisfies O2.

4.2 Example
Consider, for example, the “uncle” rule (1) from Section 3.2. Assuming that parent,
brother and uncle are individualvaluedPropertyIDs, then given an interpretation I =
〈R,EC,ER, L, S, LV 〉, a binding B(I) extends S to map the variables ?a, ?b, and ?c
to elements of EC(owl : Thing); we will use a, b, and c respectively to denote these
elements. The antecedent of the rule is satisfied by B(I) iff (a, b) ∈ ER(parent) and
(b, c) ∈ ER(brother). The consequent of the rule is satisfied by B(I) iff (a, c) ∈
ER(uncle). Thus the rule is satisfied by I iff for every binding B(I) such that (a, b) ∈
ER(parent) and (b, c) ∈ ER(brother), then it is also the case that (a, c) ∈ ER(uncle),
i.e.:

∀a, b, c ∈ EC(owl : Thing).
((a, b) ∈ ER(parent) ∧ (b, c) ∈ ER(brother)) → (a, c) ∈ ER(uncle)

5 XML Concrete Syntax
Many possible XML encodings could be imagined, but the most obvious solution is
to extend the existing OWL Web Ontology Language XML Presentation Syntax [17],
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which can be straightforwardly modified to deal with SWRL.3 This has several advan-
tages:

• arbitrary OWL classes (e.g., descriptions) can be used as predicates in rules;

• rules and ontology axioms can be freely mixed;

• the existing XSLT stylesheet4 can easily be extended to provide a mapping to
RDF graphs that extends the OWL RDF/XML exchange syntax (see Section 8).

In the first place, the ontology root element is extended so that ontologies can
include rule axioms and variable declarations as well as OWL axioms, import state-
ments etc. We then simply need to add the relevant syntax for variables and rules.
In this paper we use the unspecified owlr namespace prefix for the newly intro-
duced syntax (the owlx namespace prefix, which should be treated as being bound to
http://www.w3.org/2003/05/owl-xml, is used for the existing OWL XML
syntax). In practice, the owlr prefix would have to be bound to some appropriate
namespace name (e.g., the OWL namespace name, the OWL XML namespace name,
or some new namespace name).

Variable declarations are statements about variables, indicating that the given URI
is to be used as a variable, and (optionally) adding any annotations. For example:

<owlr:Variable owlr:name="x1" />,

states that the URI x1 (in the current namespace) is to be treated as a variable.
Rule axioms are similar to OWL SubClassOf axioms, except they have owlr:Rule

as their element name. Like SubClassOf and other axioms they may include anno-
tations. Rule axioms have an antecedent (owlr:antecedent) component and a conse-
quent (owlr:consequent) component. The antecedent and consequent of a rule are
both lists of atoms and are read as the conjunction of the component atoms. Atoms can
be formed from unary predicates (classes), binary predicates (properties), equalities or
inequalities.

Class atoms consist of a description and either an individual name or a variable
name, where the description in a class atom may be a class name, or may be a complex
description using boolean combinations, restrictions, etc. For example,5

<owlr:classAtom>
<owlx:Class owlx:name="Person" />
<owlr:Variable owlr:name="x1" />

</owlr:classAtom>

is a class atom using a class name (#Person), and

<owlr:classAtom>
<owlx:IntersectionOf>
<owlx:Class owlx:name="Person" />
<owlx:ObjectRestriction

owlx:property="hasParent">
<owlx:someValuesFrom

3The syntax used in the W3C Member Submission was changed slightly in order to make it more com-
patible with RuleML (see http://www.ruleml.org/).

4http://www.w3.org/TR/owl-xmlsyntax/owlxml2rdf.xsl
5Note that we use the owlx namespace prefix for the names used in examples.
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owlx:class="Physician" />
</owlx:ObjectRestriction>

</owlx:IntersectionOf>
<owlr:Variable owlr:name="x2" />

</owlr:classAtom>

is a class atom using a complex description representing Persons having at least one
parent who is a Physician.

Property atoms consist of a property name and two elements that can be individual
names, variable names or data values (as OWL does not support complex property
descriptions, a property atom takes only a property name). Note that in the case where
the second element is an individual name the property must be an individual-valued
Property, and in the case where the second element is a data value the property must
be a data-valued Property. For example:

<owlr:individualPropertyAtom
owlx:property="hasParent">

<owlr:Variable owlr:name="x1" />
<owlx:Individual owlx:name="John" />

</owlr:individualPropertyAtom>

is a property atom using an individual-valued Property (the second element is an indi-
vidual), and

<owlr:datavaluedPropertyAtom owlr:property="grade">
<owlr:Variable owlr:name="x1" />
<owlx:DataValue

rdf:datatype="&xsd;integer">4</owlx:DataValue>
</owlr:datavaluedPropertyAtom>

is a property atom using a data-valued Property (the second element is a data value, in
this case an integer).

Finally, same (different) individual atoms assert equality (inequality) between sets
of individual and variable names. Note that (in)equalities can be asserted between
arbitrary combinations of variable names and individual names. For example:

<owlr:sameIndividualAtom>
<owlr:Variable owlr:name="x1" />
<owlr:Variable owlr:name="x2" />
<owlx:Individual owlx:name="Clinton" />
<owlx:Individual owlx:name="Bill Clinton" />

</owlr:sameIndividualAtom>

asserts that the variables x1, x2 and the individual names Clinton and Bill Clinton all
refer to the same individual.

5.1 Example
The example rule from Section 3.2 can be written in the XML concrete syntax for rules
as

<owlx:Rule>
<owlr:antecedent>
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<owlr:individualPropertyAtom
owlr:property="parent">

<owlr:Variable owlr:name="a" />
<owlr:Variable owlr:name="b" />

</owlr:individualPropertyAtom>
<owlr:individualPropertyAtom

owlr:property="brother">
<owlr:Variable owlr:name="b" />
<owlr:Variable owlr:name="c" />

</owlr:individualPropertyAtom>
</owlr:antecedent>
<owlr:consequent>
<owlr:individualPropertyAtom

owlr:property="uncle">
<owlr:Variable owlr:name="a" />
<owlr:Variable owlr:name="c" />

</owlr:individualPropertyAtom>
</owlr:consequent>

</owlr:Rule>

6 The Power of Rules
In OWL, the only relationship that can be asserted between properties is subsump-
tion between atomic property names, e.g., asserting that hasFather is a subPropertyOf
hasParent. In Section 3.2 we have already seen how a rule can be used to assert more
complex relationships between properties. While this increased expressive power is
clearly very useful, it is easy to show that it leads to the undecidability of key inference
problems, in particular ontology consistency.

For extensions of languages such as OWL DL, the undecidability of the consistency
problem is often proved by showing that the extension makes it possible to encode a
known undecidable domino problem [4] as an ontology consistency problem. In partic-
ular, it is well known that such languages only need the ability to represent an infinite
2-dimensional grid in order for consistency to become undecidable [2, 24]. With the
addition of rules, such an encoding is trivial. For example, given two properties x-succ
and y-succ, the rule:

x-succ(?a, ?b) ∧ y-succ(?b, ?c) ∧ y-succ(?a, ?d) ∧ x-succ(?d, ?e)
→ sameAs(?c, ?e),

along with the assertion that every grid node is related to exactly one other node by
each of x-succ and y-succ, allows such a grid to be represented. This would be pos-
sible even without the use of the sameAs atom in the consequent—it would only be
necessary to establish appropriate relationships with a “diagonal” property:

x-succ(?a, ?b) ∧ y-succ(?b, ?c) → diagonal(?a, ?c)
y-succ(?a, ?d) ∧ x-succ(?d, ?e) → diagonal(?a, ?e),

and additionally assert that every grid node is related to exactly one other node by
diagonal.
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The proposed form of OWL rules seem to go beyond basic Horn clauses in allow-
ing:

• conjunctive consequents;

• class descriptions as well as class names as predicates in class atoms; and

• equalities and inequalities.

On closer examination, however, it becomes clear that most of this is simply “syntactic
sugar”, and does not add to the power of the language.

In the case of conjunctive consequents, it is easy to see that these could be elimi-
nated by rewriting using standard rules of distributivity. For example, the rule

A → C1 ∧ C2

is equivalent to ¬A ∨ (C1 ∧C2) and, via distributivity, to (¬A ∨C1) ∧ (¬A ∨C2), so
can be rewritten as a semantically equivalent pair of rules

A → C1

A → C2.

In the case of class descriptions, it is easy to see that a description d can be elimi-
nated from a rule simply by adding an OWL axiom that introduces a new class name
and asserts that it is equivalent to d, e.g.,

EquivalentClasses(D d).

The description can then be replaced with the name, here replacing the description d
with class name D.

In the case of equality atoms, the sameAs property could easily be substituted with
a “user defined” owl property called, for example, Eq. Such a property can be given
the appropriate meaning using a rule of the form

Thing(?x) → Eq(?x, ?x) (2)

and by asserting that it is functional. It is easy to see that the interpretation of Eq
corresponds to equality of elements in EC(owl : Thing), i.e.,

∀x, y ∈ EC(owl : Thing).〈x, y〉 ∈ ER(Eq) ⇐⇒ x = y,

and that Eq could therefore be used instead of sameAs without changing the meaning
of the ontology.
Proof : For the if direction, assume that for some interpretation I there exists an ele-
ment x of EC(owl : Thing) such that 〈x, x〉 6∈ ER(Eq). Then a binding B(I) could
extend I so that S maps ?x to x, and rule 2 would not be satisfied by B(I). For the
only if direction, assume that for some interpretation I there exist elements x, y of
EC(owl : Thing) such that 〈x, y〉 ∈ ER(Eq) and x 6= y. From the if direction we also
have that 〈x, x〉 ∈ ER(Eq), so Eq would not be functional.

The case of inequalities is slightly more complex. An owl property called, for
example, Neq, can be introduced and used to capture some of the meaning of the dif-
ferentFrom property by adding a rule of the form

Eq(?x, ?y) ∧ Neq(?x, ?y) → Nothing(?x). (3)
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It is easy to see that the interpretation of Neq is disjoint from the interpretation of Eq,
i.e.,

∀x, y ∈ EC(owl : Thing).〈x, y〉 ∈ ER(Neq) =⇒ x 6= y,

and that this leads to the implicit rule

Neq(?x, ?y) → differentFrom(?x, ?y).

Proof : Assume that for some interpretation I there exist elements x, y of
EC(owl : Thing) such that 〈x, y〉 ∈ ER(Neq) and 〈x, y〉 6∈ ER(differentFrom). If
〈x, y〉 6∈ ER(differentFrom), then x = y and 〈x, y〉 ∈ ER(Eq). A binding B(I)
could, therefore, extend I so that S maps ?x to x and ?y to y, and rule 3 would imply
that x ∈ EC(owl : Nothing), violating the semantic conditions on I.

Rule 3 shows that we could eliminate differentFrom when it occurs in the conse-
quent of a rule simply by substituting Neq. Neq does not, however, fully capture the
meaning of inequality, because there could be pairs of elements in EC(owl : Thing)
that are in the extension of neither Eq nor Neq, i.e., differentFrom does not imply Neq.
As a result, we cannot use Neq to eliminate occurrences of differentFrom in the an-
tecedent of a rule: in order to do so would require Neq to be equivalent to the negation
of Eq.

7 Examples of SWRL
We give two further examples of SWRL that serve to illustrate some of its utility, and
show how the power of SWRL goes beyond that of either OWL DL or Horn rules alone.

7.1 Transferring Characteristics
The first example is due to Guus Schreiber, and is based on ontologies used in an image
annotation demo [16].

Artist(?x) ∧ Style(?y) ∧ artistStyle(?x, ?y) ∧ creator(?x, ?z)
→ style/period(?z, ?y)

The rule expresses the fact that, given knowledge about the Style of certain Artists (e.g.,
van Gogh is an Impressionist painter), we can derive the style/period of an art object
from the value of the creator of the art object, where Style is a term from the Art and
Architecture Thesaurus (AAT),6 Artist is a class from the Union List of Artist Names
(ULAN),7 artistStyle is a property relating ULAN Artists to AAT Styles, and both
creator and style/period are properties from the Visual Resources Association catalogue
(VRA),8 with creator being a subproperty of the Dublin Core element dc:creator.9

This rule would be expressed in the XML concrete syntax as follows (assuming
appropriate entity declarations):

<owlr:Rule>
<owlr:antecedent>

6http://www.getty.edu/research/tools/vocabulary/aat/
7http://www.getty.edu/research/conducting research/vocabularies/ulan/
8http://www.vraweb.org/
9http://dublincore.org/
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<owlr:classAtom>
<owlx:Class owlx:name="&ulan;Artist" />
<owlr:Variable owlr:name="x" />

</owlr:classAtom>
<owlr:classAtom>
<owlx:Class owlx:name="&aat;Style" />
<owlr:Variable owlr:name="y" />

</owlr:classAtom>
<owlr:individualPropertyAtom

owlr:property="&aatulan;artistStyle">
<owlr:Variable owlr:name="x" />
<owlr:Variable owlr:name="y" />

</owlr:individualPropertyAtom>
<owlr:individualPropertyAtom

owlr:property="&vra;creator">
<owlr:Variable owlr:name="x" />
<owlr:Variable owlr:name="z" />

</owlr:individualPropertyAtom>
</owlr:antecedent>
<owlr:consequent>
<owlr:individualPropertyAtom

owlr:property="&vra;style/period">
<owlr:Variable owlr:name="z" />
<owlr:Variable owlr:name="y" />

</owlr:individualPropertyAtom>
</owlr:consequent>

</owlr:Rule>

The example is interesting because it shows how rules can be used to “trans-
fer characteristics” from one class of individuals to another via properties other than
subClassOf—in this case, the Style characteristics of an Artist (if any) are transferred
(via the creator property) to the objects that he/she creates. This idiom is much used in
ontologies describing complex physical systems, such as medical terminologies, where
partonomies may be as important as subsumption hierarchies, and where characteris-
tics often need to be transfered across various partitive properties [34, 41, 44]. For
example, the location of a trauma should be transfered across the partOf property, so
that traumas located in a partOf an anatomical structure are also located in the structure
itself [39]. This could be expressed using a rule such as

Trauma(?x) ∧ Location(?y) ∧ isLocatedIn(?x, ?y) ∧ isPartOf(?y, ?z)
→ isLocatedIn(?x, ?z)

A similar technique could be used to transfer properties to composite processes from
their component processes when describing web services.

Terminology languages designed specifically for medical terminology such as Grail
[40] and SNOMED-RT [48] often allow this kind of idiom to be expressed, but it cannot
be expressed in OWL (not even in OWL full). Thus this kind of rule shows one way in
which SWRL goes beyond the expressive power of OWL DL.
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7.2 Inferring the Existence of New Individuals
The second example is due to Mike Dean, and illustrates a scenario in which we want
to express the fact that for every Airport there is a map Point that has the same location
(latitude and longitude) as the Airport and that is an object of “layer” (a map Draw-
ingLayer).10 Moreover, this map point has the Airport as an underlyingObject and has
the Airport name as its Label. Note how the expressive power of SWRL allows “ex-
istentials” to be expressed in the head of a rule—it is asserted that, for every Airport,
there must exist such a map point (using an OWL someValuesFrom restriction in a
class atom). In this way SWRL goes beyond the expressive power of Horn rules.

The first part of this example is background knowledge about Airports and maps
expressed in OWL DL. (A few liberties have been taken with the OWL DL ab-
stract syntax here in the interests of better readability.) In particular, it is stated that
map:location and map:object are individual-valued Properties with inverse proper-
ties map:isLocationOf and map:isObjectOf respectively; that latitude and longitude
are data-valued Properties; that map:Location is a class whose instances have ex-
actly one latitude and exactly one longitude, both being of type xsd:double; that layer
is an instance of map:DrawingLayer; that map is an instance of map:Map whose
map:name is "Airports" and whose map:layer is layer; and that airport:GEC
is an instance of airport-ont:Airport whose name is "Spokane Intl" and whose
location is latitude 47.6197 and longitude 117.5336.

ObjectProperty(map:location)
ObjectProperty(map:isLocationOf

inverseOf(map:location))
ObjectProperty(map:object)
ObjectProperty(map:isObjectOf

inverseOf(map:location))

DatatypeProperty(latitude)
DatatypeProperty(longitude)
Class(map:Location primitive

intersectionOf(
restriction(latitude allValuesFrom(xsd:double))
restriction(latitude minCardinality(1))
restriction(longitude allValuesFrom(xsd:double))
restriction(longitude minCardinality(1))))

Individual(layer type(map:DrawingLayer))

Individual(map type(map:Map)
value(map:name "Airports")
value(map:layer layer))

Individual(airport:GEC type(airport-ont:Airport)
value(name "Spokane Intl")
value(location Individual(value(latitude 47.6197)

value(longitude 117.5336))))

10http://www.daml.org/2003/06/ruletests/translation-3.n3
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The first rule in the example requires that if a map:Location is the sameLocation
as another location, then it has the same values for latitude and longitude.

map:Location(?maploc) ∧ sameLocation(?loc, ?maploc)∧
latitude(?loc, ?lat) ∧ longitude(?loc, ?lon)

→ latitude(?maploc, ?lat) ∧ latitude(?maploc, ?lon)

The second rule requires that wherever an airport-ont:Airport is located, there is
some map:Location that is the sameLocation as the Airport’s location, and that is
the location of a map:Point that is an object of the map:DrawingLayer “layer”. Note
that the head of the rule is an atom of the form C(?loc), where the class C is an OWL
restriction.

airport-ont:Airport(?airport) ∧ location(?airport, ?loc)∧
latitude(?loc, ?lat) ∧ longitude(?loc, ?lon)
→ restriction(sameLocation

someValuesFrom(
intersectionOf(map : Location
restriction(isLocationOf
someValuesFrom(
intersectionOf(map : Point
restriction(map : isObjectOf
someValuesFrom(OneOf(layer)))))))))(?loc)

The third rule requires that the map:Point whose map:location is the
map:Location of an airport-ont:Airport has the airport as a map:underlyingObject
and has a map:label which is the name of the airport.

airport-ont:Airport(?airport) ∧map:location(?airport, ?loc) ∧
sameLocation(?loc, ?maploc) ∧map:Location(?point, ?maploc) ∧

airport-ont:name(?airport, ?name)
→ map:underlyingObject(?point, ?airport) ∧

map:label(?point, ?name)

8 Mapping to RDF Graphs
It is widely assumed that the Semantic Web will be based on a hierarchy of (increas-
ingly expressive) languages, with RDF/XML providing the syntactic and semantic
foundation (see, e.g., [5]). In accordance with this design philosophy, the charter of
the W3C Web Ontology Working Group (the developers of the OWL language) explic-
itly stated that “The language will use the XML syntax and datatypes wherever possible,
and will be designed for maximum compatibility with XML and RDF language conven-
tions.”. In pursuance of this goal, the working group devoted a great deal of effort to
developing an RDF based syntax for OWL that was also consistent with the semantics
of RDF [20]. It is, therefore, worth considering how this design might be extended to
encompass rules.

One rather serious problem is that, unlike OWL, rules have variables, so treating
them as a semantic extension of RDF is very difficult. It is, however, still possible
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to provide an RDF syntax for rules—it is just that the semantics of the resultant RDF
graphs may not be an extension of the RDF Semantics [15].

A mapping to RDF/XML is most easily created as an extension to the XSLT trans-
formation for the OWL XML Presentation syntax.11 This would introduce RDF classes
for SWRL atoms and variables, and RDF properties to link atoms to their predicates
(classes and properties) and arguments (variables, individuals or data values).12 The
example rule given in Section 7.1 (that equates the style/period of art objects with the
style of the artist that created them) would be mapped into RDF as follows:

<owlr:Variable rdf:ID="x"/>
<owlr:Variable rdf:ID="y"/>
<owlr:Variable rdf:ID="z"/>
<owlr:Rule>
<owlr:antecedent rdf:parseType="Collection">
<owlr:classAtom>
<owlr:classPredicate

rdf:resource="&ulan;Artist"/>
<owlr:argument1 rdf:resource="#x" />

</owlr:classAtom>
<owlr:classAtom>
<owlr:classPredicate

rdf:resource="&aat;Style"/>
<owlr:argument1 rdf:resource="#y" />

</owlr:classAtom>
<owlr:individualPropertyAtom>
<owlr:propertyPredicate

rdf:resource="&aatulan;artistStyle"/>
<owlr:argument1 rdf:resource="#x" />
<owlr:argument2 rdf:resource="#y" />

</owlr:individualPropertyAtom>
<owlr:individualPropertyAtom>
<owlr:propertyPredicate

rdf:resource="&vra;creator"/>
<owlr:argument1 rdf:resource="#x" />
<owlr:argument2 rdf:resource="#z" />

</owlr:individualPropertyAtom>
</owlr:antecedent>
<owlr:consequent rdf:parseType="Collection">
<owlr:individualPropertyAtom>
<owlr:propertyPredicate

rdf:resource="&vra;style/period"/>
<owlr:argument1 rdf:resource="#z" />
<owlr:argument2 rdf:resource="#y" />

</owlr:individualPropertyAtom>
</owlr:consequent>

</owlr:Rule>

where &ulan;, &aat;, &aatulan; and &vra; are assumed to expand into the appropriate

11http://www.w3.org/TR/owl-xmlsyntax/owlxml2rdf.xsl
12The result is similar to the RDF syntax for representing disjunction and quantifiers proposed in [30].
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namespace names. Note that complex OWL classes (such as OWL restrictions) as well
as class names can be used as the object of SWRL’s classPredicate property.

9 Reasoning Support for SWRL
Although SWRL provides a fairly minimal rule extension to OWL, the consistency
problem for SWRL ontologies is still undecidable (as we have seen in Section 6). This
raises the question of how reasoning support for SWRL might be provided.

It seems likely, at least in the first instance, that many implementations will provide
only partial support for SWRL. For this reason, users may want to restrict the form or
expressiveness of the rules and/or axioms they employ either to fit within a tractable
or decidable fragment of SWRL, or so that their SWRL ontologies can be handled by
existing or interim implementations.

One possible restriction in the form of the rules is to limit antecedent and conse-
quent classAtoms to be named classes, with OWL axioms being used to assert addi-
tional constraints on the instances of these classes (in the same document or in external
OWL documents). Adhering to this format should make it easier to translate rules to or
from existing (or future) rule systems, including Prolog, production rules (descended
from OPS5), event-condition-action rules and SQL (where views, queries, and facts
can all be seen as rules); it may also make it easier to extend existing rule based rea-
soners for OWL (such as Euler13 or FOWL14) to handle SWRL ontologies. Further,
such a restriction would maximise backwards compatibility with OWL-speaking sys-
tems that do not support SWRL. It should be pointed out, however, that there may be
some incompatibility between the first order semantics of SWRL and the Herbrand
model semantics of many rule based reasoners.

By further restricting the form of rules and DL axioms used in SWRL ontologies it
would be possible to stay within DLP, a subset of the language that has been shown to
be expressible in either OWL DL or declarative logic programs (LP) alone [14]. This
would allow either OWL DL reasoners or LP reasoners to be used with such ontologies,
although there may again be some incompatibility between the semantics of SWRL and
those of LP reasoners.

Another obvious strategy would be to restrict the form of rules and DL axioms
so that a “hybrid” system could be used to reason about the resulting ontology. This
approach has been used, e.g., in the CLASSIC [38] and CARIN systems [28], where
sound and complete reasoning is made possible mainly by focusing on query answer-
ing, by restricting the DL axioms to languages that are much weaker than OWL, by
restricting the use of DL terms in rules, and/or by giving a different semantic treatment
to rules.

Finally, an alternative way to provide reasoning support for SWRL would be to
extend the translation of OWL into TPTP15 implemented in the Hoolet system,16 and
use a first order prover such as Vampire to reason with the resulting first order theory
[42, 54]. This technique would have several advantages: no restrictions on the form of
SWRL rules or axioms would be required; the use of a first order prover would ensure
that all inferences were sound with respect to SWRL’s first order semantics; and the
use of the TPTP syntax would make it possible to use any one of a range of state of the

13http://www.agfa.com/w3c/euler/
14http://fowl.sourceforge.net
15A standard syntax used by many first order theorem provers—see http://www.tptp.org
16http://www.w3.org/2003/08/owl-systems/test-results-out
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art first order provers. A prototype based on this approach is described in the following
section.

10 A Prototype SWRL Reasoner
It is well known that OWL DL corresponds to the SHOIND−

n Description Logic
(DL), and that, like most other DLs, SHOIND−

n is a fragment of classical first-order
predicate logic (FOL) [10, 19, 1]. This suggests the idea of using standard methods of
automated reasoning for FOL as a mechanism for reasoning with OWL DL.

This might be done by trying to create from scratch new architectures for reasoning
in FOL, which would be specialised for dealing efficiently with typical DL reasoning
tasks. A much less expensive option is to use existing implementations of FOL provers,
with the possibility of making adjustments that exploit the structure of DL reasoning
tasks. An additional attraction of using a FO prover in this way is the fact that the trans-
lation from DL to FOL can be extended to handle SWRL, providing an implementation
of a SWRL reasoner.

Here we describe our initial prototype implementation of just such a SWRL rea-
soner, known as Hoolet. It should be noted that this initial implementation is rather
simplistic, and is only intended as a preliminary feasibility study. We will, however,
discuss the issue of possible optimisations.

There have been earlier investigations of the use of FOL provers to reason with
description logics. Paramasivam and Plaisted, for example, have investigated the use
of FOL reasoning for DL classification [36], while Ganzinger and de Nivelle have
developed decision procedures for the guarded fragment, a fragment of FOL that in-
cludes many description logics [11]. The most widely known work in this area was by
Hustadt and Schmidt [26], who used the SPASS FOL prover to reason with proposi-
tional modal logics, and, via well known correspondences [45], with description logics.
Their technique involved the use of a relatively complex functional translation which
produces a subset of FOL for which SPASS can be tuned so as to guarantee complete
reasoning. The results of this experiment were quite encouraging, with performance
of the SPASS based system being comparable, in many cases, with that of state of the
art DL reasoners. The tests, however, mainly concentrated on checking the satisfiabil-
ity of (large) single modal logic formulae (equivalently, OWL class descriptions/DL
concepts), rather than the more interesting task (in an ontology reasoning context) of
checking the satisfiability of formulae w.r.t. a large theory (equivalently, an OWL on-
tology/DL knowledge base).

In all of the above techniques, the DL is translated into (the guarded fragment of)
FOL in such a way that the prover can be used as a decision procedure for the logic—
i.e., reasoning is sound, complete and terminating. Such techniques have, however, yet
to be extended to the more expressive DLs that underpin Web ontology languages such
as DAML+OIL and OWL DL [18], and it is not even clear if such an extension would
be possible.

An alternative approach, and the one we describe here, is to use a simple “direct”
translation based on the standard first order semantics of DLs (see, e.g., [1]). Using
this approach, an ontology/knowledge base (a set of DL axioms), is translated into a FO
theory (a set of FO axioms). A DL reasoning task w.r.t. the knowledge base (KB) is then
transformed into a FO task that uses the theory. Unlike methods such as Hustadt and
Schmidt’s functional translation, this does not result in a decision procedure for the DL.
The direct translation approach can, however, be used to provide reasoning services
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(albeit without any guarantee of completeness) for the expressive DLs underlying Web
ontology languages, DLs for which no effective decision procedure is currently known.
Moreover, the translation approach can easily deal with language extensions such as
SWRL as described here.

In recent years, a number of highly efficient FO provers have been imple-
mented [32, 50, 43]. These provers compete annually on a set of tasks, and the re-
sults are published [9]. One of the most successful general-purpose provers has been
Vampire [43], and we have chosen this prover to use in our prototype.

Vampire is a general-purpose FOL prover developed by Andrei Voronkov and
Alexandre Riazanov. Given a set of first-order formulas, Vampire transforms it into an
equisatisfiable set of clauses, and then tries to demonstrate inconsistency of the clause
set by saturating it with ordered resolution and superposition (see [3, 33]). If the satura-
tion process terminates without finding a refutation of the input clause set, it indicates
that the clause set, and therefore the original formula set, is satisfiable, provided that
the variant of the calculus used is refutationally complete and that a fair strategy17 has
been used for saturation.

The main input format of Vampire is the TPTP syntax [49] (although a parser for
a subset of KIF [12] has been added recently). Using the TPTP syntax in our prototype
means that it would be possible to substitute Vampire with any one of a range of state
of the art first order provers.

10.1 Translation issues
Translating OWL Ontologies into FOL Axioms We will only discuss the transla-
tion from DL to FOL as the correspondence between OWL DL and SHOIND−

n is
well known [19]. The translation φ maps DL concepts C and role names R into unary
and binary predicates φC(x) and φR(x, y) respectively. Complex concepts and axioms
are mapped into FO formulae and axioms in the standard way [7, 1]. For example,
subsumption and equivalence axioms are translated into, respectively, FO implication
and equivalence (with the free variables universally quantified).

As an example, let’s see a translation of a couple of concept and role axioms:

DL FOL
R v S ∀x∀y(φR(x, y) → φS(x, y))
C ≡ D u ∃R.(E t ∀x(φC(x) ≡ φD(x) ∧ ∃y(φR(x, y) ∧ (φE(y) ∨

∀S−.F ) ∀x(φS(x, y) ∧ φF (x)))))
A v > 3 R.B ∀x(φA(x) → ∃y1∃y2∃y3(φR(x, y1) ∧ φB(y1) ∧

φR(x, y2) ∧ φB(y2) ∧ φR(x, y3) ∧ φB(y3) ∧
(y1 6= y2) ∧ (y2 6= y3) ∧ (y1 6= y3))

Transitive(T ) ∀x∀y∀z(φT (x, y) ∧ φT (y, z) → φT (x, z))

Simple DLs (like ALC) can be translated into the FOL class L2 (the FOL fragment
with no function symbols and only 2 variables), which is known to be decidable [31].
The above translations of the role inclusion axiom and concept equality axiom are,
for example, in L2. When number restrictions are added to these DLs, they can be
translated into C2—equivalent to L2 with additional “counting quantifiers”—which is
also known to be decidable [13].

The FOL translation of more expressive description logics, e.g., with transitive
roles (SHIQ, OWL Lite and OWL DL) and/or complex role axioms (RIQ [22]),

17I.e., all generated clauses are eventually processed
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may lead to the introduction of three or more variables.18 The above transitivity ax-
iom for role T is an example of this case. FOL with three variables is known to be
undecidable [7].

OWL DL also provides for XML schema datatypes [6], equivalent to a very simple
form of concrete domains [21]. The minimum requirement for OWL DL reasoners is
that they support xsd:integer and xsd:string datatypes, where support means
providing a theory of (in)equality for integer and string values [37].

Our translation encodes the required datatype theory by mapping datatypes into
predicates and data values into new constants. Lexically equivalent data values are
mapped to the same constant, with integers first being canonicalised in the obvious
way, and axioms are added that assert inequality between all the string and integer data
constants introduced. If a data value DV and a datatype DT are mapped to DV and
DT respectively, and DV is of type DT, then an axiom DT (DV ) is also added. As
the xsd:integer and xsd:string interpretation domains are disjoint, we add an
axiom to that effect. Finally, we add an axiom asserting the disjointness of the datatype
domain (the set of data values) and the abstract domain (the set of individuals).

In accordance with the OWL DL semantics, other “unsupported” data types are
treated opaquely, i.e., data values are mapped to the same constant if they are lexically
identical, but no other assumptions are made (we do not assume inequality if the lexical
forms are not identical) [37].

Translating SWRL Rules into FOL Axioms Using the translation approach, we
can easily extend the first-order translation to SWRL rules and thus provide a simple
implementation of a SWRL reasoner.

As we have seen, rules in SWRL are of the form:

B1, . . . , Bm → H1, . . . ,Hn

where each of the Bi or Hj are rule atoms. Possible rule atoms are shown in Table 2,
where C is an OWL class description, R an OWL property and i and j are either OWL
individual names or SWRL variables.

Table 2: Rule Atoms
Atom Type
C(i) Class Atom
R(i,j) Property Atom
i==j Equality Atom
i!=j Inequality Atom

In our prototype we have only considered a simplification of SWRL where C must
be a class name (rather than arbitrary class descriptions), and R must be an object prop-
erty. The first of these restrictions does not affect the expressiveness of the language, as
new class names can be introduced into the ontology to represent any complex descrip-
tions required in rules. The restriction to object properties simplifies our implemen-
tation, but the translation we describe could easily be extended to handle data valued
properties.

The translation of rules exactly follows the semantics of the rules as given in Sec-
tion 4. Each rule is translated as an implication, and any free variables in the rule are

18In some cases, the effects of transitive roles can be axiomatised in C2 [53].
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assumed to be universally quantified. Thus a rule:

B1, . . . , Bm → H1, . . . ,Hn

is translated to an axiom:

∀x1, x2, . . . , xk.T (B1) ∧ . . . ∧ T (Bm) → T (H1) ∧ . . . ∧ T (Hn)

where x1, x2, . . . , xk are all the variables occurring in the Bi and Hj .
Translation of atoms is trivial and is shown in Table 3. Combining this translation

with the translation from OWL to FOL described above provides us with a prototype
implementation of a SWRL reasoner. Given an ontology and a collection of rules
relating to that ontology, we translate the ontology to FOL, and then add the FOL
axioms generated by translating the rules. The resulting theory is passed to a FO prover
(Vampire in our case), where it can be used for reasoning tasks such as satisfiability
checking and instance checking.

Table 3: Rule Atom Translation
Atom Translation
C(i) C(i)
R(i,j) R(i, j)
i==j i=j
i!=j i 6= j

10.2 Examples
As an example, we will consider a variant on the “uncle” example given in Section 3.2:

hasParent(?x,?y), hasSibling(?y, ?z), Male(?z)
⇒ hasUncle(?x,?z)

If our ontology additionally includes the axiom and facts (expressed here using stan-
dard DL syntax):

Uncle ≡ ∃hasUncle−.>
〈Robert,Paul〉 : hasParent
〈Paul,Ian〉 : hasSibling

then the reasoner can infer not only hasUncle(Robert,Ian), but also that Ian is
an instance of the Uncle class.

Another interesting aspect of the language is illustrated by the following rule:

Beer(?x) ⇒ Happy(Sean)

This expresses the fact that for any instances of the class Beer, Sean must be an
instance of Happy. This effectively allows us to express an existential quantification
over the class Beer: if we can prove the existence of an instance of this class, then
Sean will be Happy. Note that we do not actually have to provide a name for such an
instance. For example, if our ontology includes the fact:

Sean : ∃drinks.Beer

then the reasoner can infer that Sean must be Happy as we now know that there exists
some instance of Beer—even though this instance is unnamed.
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10.3 Performance and Optimisation
Our prototype works well with small examples, such as those given in Sections 7
and 10.2, and we have used it successfully with SWRL ontologies containing up to
100 axioms, rules and facts. However, while it is useful to have a prototype that can be
used for illustrative and test purposes, the effectiveness of such a naive approach must
be open to question with larger SWRL ontologies.

In [55] it was shown that, when using the same translation approach to reason with
OWL DL ontologies, performance could be greatly improved by using a so-called “rel-
evant only” translation. The key idea is that when ontologies are translated, Vampire
receives all of the axioms that occur in the ontology, whereas usually only a small frac-
tion of them are actually relevant to a given subsumption or inconsistency problem.
Vampire is not optimised to deal efficiently with large numbers of irrelevant axioms,
and so it does not perform well under these circumstances.

An obvious way to correct this situation is to remove all irrelevant information from
the FO task given to Vampire. An axiom is said to be irrelevant to a consistency test of
C if it can easily be shown (i.e., via a syntactic analysis) that removing it from the on-
tology would not affect the interpretation of C; other axioms are called relevant. Note
that not every “relevant axiom” really will affect the computation of the consistency
of C, but we cannot (easily) rule out the possibility that it may affect the computation.
An FO-translation is called relevant-only if it contains only FO-translations of axioms
relevant (in the above sense) to the given satisfiability test.

The definition of relevance given in [55] can be extended to SWRL by treating
rules in the same way as general concept inclusion axioms (GCIs). A concept or role
expression depends on every concept or role that occurs in it, and a concept or role C
depends on a concept or role D if D occurs in the definition of C. In addition, a concept
C depends on every GCI and rule in the ontology.19 Relevance is the transitive closure
of depends. The process of selecting information relevant to a concept expression E
looks very much the same as unfolding (see [1]), and assumes that the KB is separated
into a set of unfoldable axioms and a set of GCIs [25] and rules. Every concept name
CN and role name RN appearing in E is relevant to E. The process is then repeated
recursively for unfoldable axioms with CN on the left hand side (whether inclusion
or equality axioms). Also, if role R is relevant to E, then so are all roles R′ s.t. R v
R′, along with their inverses (if the target DL allows inverse roles). An algorithm
for computing relevant information is quite straightforward and is described in detail
in [54].

Computing relevance leads to a small overhead when translating a SWRL ontology
into FOL, but it should greatly increase the performance of the FO prover. Preliminary
experiments with an extension of Hoolet to include an implementation of the relevant
only translation suggest that this is indeed the case [29].

11 Discussion
In this paper we have presented SWRL, a proposed extension to OWL to include a
simple form of Horn-style rules. We have provided formal syntax and semantics for
SWRL, shown how OWL’s XML and RDF syntax can be extended to deal with SWRL,

19It should be possible to treat (some) rules as unfoldable axioms, add thus eliminate the need to include
all rules in the relevant only translation, but this is still the subject of ongoing work.
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illustrated the features of SWRL with several examples, and discussed how reasoning
support for SWRL might be provided.

The main strengths of the proposal are its simplicity and its tight integration with
the existing OWL language. As we have seen, SWRL extends OWL with the most ba-
sic kind of Horn rule (sweetened with a little “syntactic sugar”): predicates are limited
to being OWL classes and properties (and so have a maximum arity of 2), there are no
disjunctions or negations (of atoms), no built in predicates (such as arithmetic predi-
cates), and no nonmonotonic features such as negation as failure or defaults. Moreover,
rules are given a standard first order semantics. This facilitates the tight integration with
OWL, with SWRL being defined as a syntactic and semantic extension of OWL DL.

While we believe that SWRL defines a natural and useful level in the hierarchy of
Semantic Web languages, it is clear that some applications would benefit from further
extensions in expressive power. In particular, the ability to express arithmetic relation-
ships between data values is important in many applications (e.g., to assert that persons
whose income at least equals their expenditure are happy, while those whose expendi-
ture exceeds their income are unhappy). It is not clear, however, if this would best be
achieved by extending SWRL to include rules with built in arithmetic predicates, or by
extending OWL Datatypes to include nary predicates [35].

Finally, we have shown how a first order theorem prover can be used to provide
reasoning services for SWRL, and how some simple optimisations can be used to im-
prove performance. Our results were sufficiently encouraging to suggest that, with
further tuning and optimisation, such a strategy would be useful in (some) realistic ap-
plications. Future work will include such tuning and optimisation, as well as empirical
investigations to determine the practical value of the resulting system.
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Introducing Customised Datatypes and
Datatype Predicates into OWL(∗)

Jeff Z. Pan and Ian Horrocks

School of Computer Science, University of Manchester, UK

Abstract. Although OWL is rather expressive, it has a very serious limitation on
datatypes; i.e., it does not support customised datatypes. It has been pointed out
that many potential users will not adopt OWL unless this limitation is overcome,
and the W3C Semantic Web Best Practices and Deployment Working Group
has set up a task force to address this issue. This paper provides a solution for
this issue by presenting two decidable datatype extensions of OWL DL, namely
OWL-Eu and OWL-E. OWL-Eu provides a minimal extension of OWL DL to
support customised datatypes, while OWL-E extends OWL DL with both cus-
tomised datatypes and customised datatype predicates.

1 Introduction

The OWL Web Ontology Language [1] is a W3C recommendation for expressing on-
tologies in the Semantic Web. Datatype support [7, 8] is one of the key features that
OWL is expected to provide, and has prompted extensive discussions in the RDF-Logic
mailing list [10] and in the Semantic Web Best Practices mailing list [12]. Although
OWL adds considerable expressive power to the Semantic Web, the OWL datatype for-
malism (or simplyOWL datatyping) is much too weak for many applications; in partic-
ular, OWL datatyping does not provide a general framework for customised datatypes,
such as XML Schema derived datatypes.

It has been pointed out that many potential users will not adopt OWL unless this
limitation is overcome [11], as it is often necessary to enable users to define their own
datatypes and datatype predicates for their ontologies and applications. One of the most
well known type systems is W3C XML Schema Part 2 [2], which defines facilities to
allow users to define customised datatypes, such as those defined by imposing some
restrictions in the value spaces of existing datatypes.

Example 1.Customised datatypes are useful in capturing the intended meaning of some
vocabulary in ontologies. For example, users might want to use the customised datatype
‘atLeast18’ in the following definition of the class ‘Adult’:

Class( Adult complete Person

restriction( age allValuesFrom( atLeast18))),

which says that anAdult is aPerson whoseage is at least 18. The datatype constraint

(∗) This work is partially supported by the FP6 Network of Excellence EU project Knowledge
Web (IST-2004-507842).



‘at least 18’ can be defined as an XML Schema user-defined datatype
<simpleType name = “atLeast18”>

<restriction base = “xsd:integer”>
<minInclusive value = “18”/>

</restriction>
</simpleType>

in which the facet ‘minInclusive’ is used to restrict the value space ofatLeast18 (a
customised datatype) to be a subset of the value space ofinteger (an XML Schema
built-in datatype).

User-defined datatypes (like the above one) cannot, however, be used in the OWL
datatyping, which (only) provides the use of somebuilt-in XML Schema datatypes and
enumerated datatypes, which are defined by explicitly specifying their instances. The
OWL datatyping does not support XML Schema customised datatypes for the following
two reasons: (i) XML Schema does not provide a standard way to access a user-defined
datatype. (ii) OWL DL does not provide a mechanism to guarantee the computability
of the kinds of customised datatypes it supports.

This paper provides a solution for this issue by presenting two decidable datatype
extensions of OWL DL, namely OWL-Eu and OWL-E. OWL-Eu provides a minimal
extension of OWL DL to support customised datatypes, while OWL-E extends OWL
DL with both customised datatypes and customised datatype predicates. The rest of the
paper is organised as follows: Section 2 further discusses the motivations of introducing
customised datatypes and datatype predicates. Section 3 extends the OWL datatyping
to unary datatype groups, which enables the use of customised datatypes. Section 4
and 5 present the OWL-Eu and the OWL-E languages, respectively; the latter one is
based on datatype groups, which are general forms of unary datatype groups. Section 6
concludes the paper and suggests some future work.

2 Motivations

Allowing users to define their own vocabulary is one of the most useful features that
ontologies can provide over other approaches, such as the Dublin Core, of providing
semantics in the Semantic Web. In the Dublin Core standard, the meaning of the set
of 15 information properties are described in English text. The main drawback of the
Dublin Core is its inflexibility; it is impossible to ‘predefine’ information properties for
all sorts of applications.

Ontologies, however, are more flexible in that users can define their own vocabu-
lary based on existing vocabularies. In ontology languages, a set of class constructors
are usually provided so that users can build class expressions based on, for example, ex-
isting class names. The intended meaning of the vocabulary, therefore, can be captured
by the axioms in the ontologies. Let us revisit Example 1 and consider the intended
meaning of theAdult class. According to its definition, anAdult is aPerson who is at
least 18 years old. As a result, programs can also understand the meaning of customised
vocabulary, with the help of ontologies.

Although OWL DL provides a set of expressive class constructors to build cus-
tomised classes, it does not provide enough expressive power to support, for example,
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XML Schema customised datatypes. In order to capture the intended meaning ofAdult,
Example 1 has already shown the necessity of customised datatypes. In what follows,
we give some more examples to illustrate the usefulness of customised datatypes and
datatype predicates in various SW and ontology applications.

Example 2.Semantic Web Service: Matchmaking
Matchmakingis a process that takes a service requirement and a group of service

advertisements as input, and returns all the advertisements that may potentially satisfy
the requirement. In a computer sales ontology, a service requirement may ask for a PC
with memory size greater than 512Mb, unit price less than 700 pounds and delivery
date earlier than 15/03/2004.

Here ‘greater than 512’, ‘less than 700’ and ‘earlier than 15/03/2004’ are customised
datatypes of base datatypes integer, integer and date, respectively.

Example 3.Electronic Commerce: A ‘No Shipping Fee’ Rule
Electronic shops may need to classify items according to their sizes, and to reason

that an item for which the sum of height, length and width is no greater than 15cm
belongs to a class in their ontology, called ‘small-items’. Then they can have a rule
saying that for ‘small-items’ no shipping costs are charged. Accordingly, the billing
system will charge no shipping fees for all the instances of the ‘small-items’ class.

Here ‘greater than 15’ is a customised datatype, ‘sum’ is a datatype predicate, while
‘sum no greater than 15’ is a customised datatype predicate.

3 Unary Datatype Groups

The OWL datatyping is defined based on the notion of datatype maps [9]. A datatype
map is a partial mapping from supported datatype URIrefs to datatypes. In this section,
we introduce unary datatype groups, which extend the OWL datatyping with a hierarchy
of supported datatypes.

Definition 1 A unary datatype groupG is a triple (Md,B,dom), whereMd is the
datatype mapof G, B is the set ofprimitive base datatypeURI references inG and
dom is thedeclared domain function. We callS the set of supported datatype URI ref-
erences ofG, i.e., for eachu ∈ S, Md(u) is defined; we requireB ⊆ S. We assume that
there exist unary datatype URI referencerdfs:Literal, owlx:DatatypeBottom 6∈ S.
The declared domain functiondom has the following properties: for eachu ∈ S, if
u ∈ B, dom(u) = u; otherwise,dom(u) = v, wherev ∈ B. �

Definition 1 ensures that all the primitive base datatype URIrefs ofG are supported
(B ⊆ S) and that each supported datatype URIref relates to a primitive base datatype
URIref through the declared domain functiondom.

Example 4.G1 = (Md1,B1, dom1) is a unary datatype group, where

– Md1 = {xsd:integer 7→ integer, xsd:string 7→ string, xsd:nonNegativeInteger
7→≥0, xsdx:integerLessThanN 7→<N},

– B1 = {xsd:string, xsd:integer}, and
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– dom1 = {xsd:integer 7→ xsd:integer, xsd:string 7→ xsd:string, xsd:nonNega-
tiveInteger7→ xsd:integer, xsdx:integerLessThanN 7→ xsd:integer}.

According to Md1, we haveS1 = {xsd:integer, xsd:string, xsd:nonNega-
tiveInteger,xsdx:integerLessThanN}, henceB1 ⊆ S1. ♦

Based on a unary datatype group, we can provide a formalism (called datatype ex-
pressions) for constructing customised datatypes using supported datatypes.

Definition 2 Let G be a unary datatype group. The set ofG-unary datatype expres-
sionsin abstract syntax (corresponding DL syntax can be found in Table 5 on page 8),
abbreviatedDexp(G), is inductively defined as follows:

1. atomic expressionsu ∈ Dexp(G), for a datatype URIrefu;
2. relativised negated expressionsnot (u) ∈ Dexp(G), for a datatype URIrefu;
3. enumerated expressionsoneOf (l1, . . . , ln) ∈ Dexp(G), for literalsl1, . . . , ln;
4. conjunctive expressionsand (E1, ..., En) ∈ Dexp(G), for unary datatype expressions

E1, ..., En ∈ Dexp(G);
5. disjunctive expressionsor (E1, ..., En) ∈ Dexp(G), for unary datatype expressions

E1, ..., En ∈ Dexp(G). �

Example 5.G-unary datatype expressions can be used to represent XML Schema non-
list simple types. Given the unary datatype groupG1 presented in Example 4 (page 3),

– the following XML Schema derived union simple type
<simpleType name = “cameraPrice”>

<union>
<simpleType>

<restriction base = “xsd:nonNegativeInteger”>
<maxExclusive value = “100000”/>

</restriction>
</simpleType>
<simpleType>

<restriction base = “xsd:string”>
<enumeration value = “low”/>
<enumeration value = “medium”/>
<enumeration value = “expensive”/>

</restriction>
</simpleType>

</union>
<simpleType>

can be represented by the following disjunctive expression

or (
and (xsd:nonNegativeInteger, xsdx:integerLessThan100000)
oneOf (“low”ˆˆxsd:string,“medium”ˆˆxsd:string, “expensive”ˆˆxsd:string)

).

Note that“low”ˆˆxsd:string is a typed literal, which represents a value of the
xsd:string datatype. “low”, instead, is a plain literal, where no datatype informa-
tion is provided. ♦

We now define the interpretation of a unary datatype group.
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Abstract Syntax DL Syntax Semantics
a datatype URIrefu u uD

oneOf (l1, . . . , ln) {l1, . . . , ln} {lD1 } ∪ . . . ∪ {lDn }
not (u) u (dom(u))D \ uD if u ∈ S \B

∆D \ uD otherwise
and (E1, . . . , En) E1 ∧ . . . ∧ En ED

1 ∩ . . . ∩ ED
n

or (P, Q) E1 ∨ . . . ∨ En ED
1 ∪ . . . ∪ ED

n

Table 1.Syntax and semantics of datatype expressions (OWL-Eu data ranges)

Definition 3 A datatype interpretationID of a unary datatype groupG =
(Md,B, dom) is a pair(∆D, ·D), where∆D (the datatype domain) is a non-empty
set and·D is a datatype interpretation function, which has to satisfy the following con-
ditions:

1. (rdfs:Literal)D = ∆D and(owlx:DatatypeBottom)D = ∅;
2. for each plain literall, lD = l ∈ PL andPL ⊆ ∆D (PL is the value space for plain

literals);
3. for any two primitive base datatype URIrefsu1, u2 ∈ B: uD

1 ∩ uD
2 = ∅;

4. for each supported datatype URIrefu ∈ S, whered = Md(u):
(a) uD = V (d) ⊆ ∆D, L(u) ⊆ L(dom(u)) andL2V (u) ⊆ L2V (dom(u));
(b) if s ∈ L(d), then(“s”ˆˆu)D = L2V (d)(s); otherwise,(“s”ˆˆu)D is not defined;

5. ∀u 6∈ S, uD ⊆ ∆D, and“v”ˆˆu ∈ uD.

Moreover, we extend·D to G unary datatype expression as shown in Table 5
(page 8). LetE be aG unary datatype expression, the negation ofE is of the form
¬E, which is interpreted as∆D \ ED. �

Next, we introduce the kind of basic reasoning mechanisms required for a unary
datatype group.

Definition 4 Let V be a set of variables,G = (Md,B, dom) a unary datatype group
andu ∈ B a primitive base datatype URIref. A datatype conjunction ofu is of the form

C =

k∧
j=1

uj(vj) ∧
l∧

i=1

6=i (v
(i)
1 , v

(i)
2 ), (1)

where thevj are variables fromV, v
(i)
1 , v

(i)
2 are variables in

∧k
j=1 uj(vj), uj are

datatype URI references fromS such thatdom(uj) = u, and 6=i are the inequality
predicates for primitive base datatypesMd(dom(ui)) whereui appear in

∧k
j=1 uj(vj).

A datatype conjunctionC is called satisfiableiff there exists an interpretation
(∆D, ·D) of G and a functionδ mapping the variables inC to data values in∆D s.t.
δ(vj) ∈ uD

j (for all 1 ≤ j ≤ k) and{δ(v(i)
1 ), δ(v(i)

2 )} ⊆ uD
i andδ(v(i)

1 ) 6= δ(v(i)
2 ) (for

all 1 ≤ i ≤ l). Such a functionδ is called asolutionfor C w.r.t. (∆D, ·D). �

We end this section by elaborating the conditions that computable unary datatype
groups require.
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Definition 5 A unary datatype groupG is conformingiff

1. for anyu ∈ S \B: there existsu′ ∈ S \B such thatu′D = uD, and
2. for each primitive base datatype inG, the satisfiability problems for finite datatype

conjunctions of the form (1) is decidable. �

4 OWL-Eu

In this section, we present a small extension of OWL DL, i.e., OWL-Eu. The underpin-
ning DL of OWL-Eu isSHOIN (G1), i.e., theSHOIN DL combined with a unary
datatype groupG (1 for unary). Specifically, OWL-Eu (only) extends OWL data range
(i.e., enumerated datatypes as well as some built-in XML Schema datatypes) to OWL-
Eu data ranges defined as follows.

Definition 6 An OWL-Eu data rangeis a G unary datatype expression. Abstract (as
well as DL) syntax and model-theoretic semantics of OWL-Eu data ranges are presented
in Table 5 (page 8). �

The consequence of the extension is that customised datatypes, represented by
OWL-Eu data ranges, can be used in datatype exists restrictions (∃T.u) and datatype
value restrictions (∀T.u), whereT is a datatype property andu is an OWL-Eu data
range. Hence, this extension of OWL DL is as large as is necessary to support cus-
tomised datatypes.

Example 6.PCs with memory size greater than or equal to 512 Mb and with price
cheaper than 700 pounds can be represented in the following OWL-Eu concept descrip-
tion in DL syntax (cf. Table 5 on page 8):

PC u ∃memorySizeInMb.<512 u ∃priceInPound. <700,

where<512 is a relativised negated expression and<700 is a supported datatype inG1.
♦

It turns out that OWL-Eu (i.e., theSHOIN (G1) DL) is decidable.

Theorem 1. TheSHOIN (G1)-concept satisfiability problem w.r.t. a knowledge base
is decidable if the combined unary datatype group is conforming.

Proof: (Sketch) We will show the decidability ofSHOIN (G1)-concept satisfiability
w.r.t. TBoxes and RBoxes by reducing it to theSHOIN -concept satisfiability w.r.t.
TBoxes and RBoxes. The basic idea behind the reduction is that we can replace each
datatype group-based conceptC in T with a new atomic primitive conceptAC in T ′.
We then compute the satisfiability problem for all possible conjunctions of datatype
group-based concepts (and their negations) inT (of which there are only a finite
number), and in case a conjunctionC1 u . . . u Cn is unsatisfiable, we add an axiom
AC1 u . . . u ACn

v ⊥ to T ′. For example, unary datatype group-based concepts
∃T. >1 and∀T. ≤0 occurring inT would be replaced withA∃T.>1 andA∀T.≤0 in
T ′, andA∃T.>1 u A∀T.≤0 v ⊥ would be added toT ′ because∃T. >1 u ∀T. ≤0 is
unsatisfiable(i.e., there is no solution for the predicate conjunction>1 (v) ∧ ≤0 (v)).
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5 OWL-E: A Step Further

In this section, we present a further extension of OWL-Eu, called OWL-E, which sup-
ports not only customised datatypes, but also customised datatype predicates.

A datatype predicate(or simply predicate) p is characterised by an aritya(p), or
a minimum arityamin(p) if p can have multiple arities, and a predicate extension (or
simply extension) E(p). The notion of predicate maps can be defined in an obvious
way. For example,=int is a (binary) predicate with aritya(=int) = 2 and extension
E(=int) = {〈i1, i2〉 ∈ V (integer)2 | i1 = i2}, whereV (integer) is the value space
for the datatypeinteger.

Now we can generalise unary datatype groups by the definition of datatype groups.
In fact, datatypes and datatype predicates can be unified in datatype groups. Roughly
speaking, a datatype group is a group of built-in predicate URIrefs ‘wrapped’ around a
set of primitive datatype URIrefs. Adatatype groupG is a tuple (Mp,B,dom), where
Mp is thepredicate mapof G, B is the set ofprimitive datatypeURI references inG
anddom is thedeclared domain function. We callS the set of built-in predicate URI
references ofG, i.e., for eachu ∈ S, Mp(u) is defined; we requireB ⊆ S. The declared
domain functiondom has the following properties: for eachu ∈ S,

dom(u) =



u if u ∈ B,
(v1, . . . , vn), wherev1, . . . , vn ∈ B if u ∈ S \B and

a(Mp(u)) = n,
{(v, . . . , v︸ ︷︷ ︸

i times

) | i ≥ n}, wherev ∈ B if u ∈ S \B and

amin(Mp(u)) = n.

Example 7.G2 = (Mp2,B2, dom2) is a datatype group, where

– Mp2 = {xsd:integer 7→ integer, xsd:string 7→ string, xsd:integerGreaterThanOr-
EqualToN7→ ≥N, xsdx:integerLessThanN 7→ <N, xsdx:integerEquality 7→ =int},

– B2 = {xsd:string, xsd:integer}, and
– dom2 = {xsd:integer 7→ xsd:integer, xsd:string 7→ xsd:string, xsd:integerGreater-

ThanOrEqualToN7→ xsd:integer, xsdx:integerLessThanN 7→ xsd:integer,
xsdx:integerEquality 7→ (xsd:integer, xsd:integer)}.

According to Mp2, we haveS2 = {xsd:integer, xsd:string, xsd:nonNega-
tiveInteger,xsdx:integerLessThanN, xsdx:integerEquality}, henceB2 ⊆ S2. ♦

Furthermore, based on datatype groups, we can extend unary datatype expres-
sions to general (n-ary) datatype expressions. While enumerated expressions remain
the same, relativised negated, conjunctive and disjunctive unary datatype expressions
can be easily extended to the n-nary case. There is a new kind of datatype expres-
sion calleddomain expression: domain (u1, . . . , un), whereui is eitherrdfs:Literal
or supported unary datatype predicate URIrefs, or their relativised negations. For ex-
ample, the customised predicate ‘sumNoGreaterThanOrEqualTo15’, with extension
E(sumNoGreaterThanOrEqualTo15) = {〈i0, i1, i2, i3〉 ∈ V (integer)4 | i0 =
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Abstract Syntax DL Syntax Semantics
not (u) u ∆D \ uD if u ∈ B

(dom(u))D \ uD if u ∈ S \B⋃
n≥1(∆D)n \ uD otherwise

domain (u1, . . . , un) [u1, . . . , un] uD
1 × . . .× uD

n

Table 2.Syntax and semantics of (new) datatype expressions

i1 + i2 + i3 and¬(i0 ≥ 15)} and aritya(sumNoGreaterThanOrEqualTo15) = 4,
can be represented by

xsdx:integerAddition ∧
[ xsdx:integerGreaterThanOrEqualTo15, xsd:integer, xsd:integer, xsd:integer ],

which is a conjunctive expression, where the first conjunct is a predicate URIref (that
represents+int) and the second conjunct is a domain expression.

We can extend the datatype interpretationID presented in Definition 3 to give se-
mantics to datatype groups. For eachu ∈ S, uD = E(Mp(u)) ⊆ (dom(u))D, where
(dom(u))D is defined as follows: ifdom(u) = (d1, . . . , dn) anda(Mp(u)) = n, then
(dom(u))D = dD

1 × . . .× dD
n ; if dom(u) = {(d, . . . , d︸ ︷︷ ︸

i times

) | i ≥ n} andamin(Mp(u)) =

n, then(dom(u))D =
⋃

i≥n (dD)i. The abstract syntax, DL syntax and semantics of
relativised negated and domain expressions are presented in Table 5.

The following definition summarises the conditions that computable datatype
groups require.

Definition 7 (Conforming Datatype Group) A datatype groupG is conformingiff

1. for anyu ∈ S \ B with a(Mp(u)) = n ≥ 2: dom(u) = (w, . . . , w︸ ︷︷ ︸
n times

) for some

w ∈ B, and
2. for anyu ∈ S \B: there existu′ ∈ S \B such thatu′D = uD, and
3. the satisfiability problem for finite negation-free predicate conjunctions is decid-

able, and
4. for each primitive datatype URIrefui ∈ B, there existswi ∈ S, s.t.Mp(wi) =6=ui

where6=ui
is the binary inequality predicate forMp(ui). �

Finally, OWL-E extends OWL-Eu with the datatype group-related class construc-
tors presented in Table 3.

Example 8.(OWL-E classes)
Assume that electronic-shops want to define small items as items of which the sum

of height, length and width is no greater than or equal to 15cm. TheSmallItem class
can be represented by the following datatype group-based concept description:

∃Ts, Th, Tl, Tw.(+int ∧ [≥15, integer, integer, integer]),
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New Element DL Syntax Semantics
expressive predicate
exists restriction

∃T1, . . . , Tn.E {x ∈ ∆I | ∃t1, . . . , tn.〈x, ti〉 ∈ T I (for all
1 ≤ i ≤ m) ∧ 〈t1, . . . , tn〉 ∈ ED}

expressive predicate
value restriction

∀T1, . . . , Tn.E {x ∈ ∆I | ∀t1, . . . , tn.〈x, ti〉 ∈ T I (for all
1 ≤ i ≤ m) → 〈t1, . . . , tn〉 ∈ ED}

expressive predicate
atleast restriction

>mT1, . . . , Tn.E {x ∈ ∆I | ]{〈t1, . . . , tn〉 | 〈x, ti〉 ∈ T I (for all
1 ≤ i ≤ m) ∧ 〈t1, . . . , tn〉 ∈ ED} ≥ m}

expressive predicate
atmost restriction

6mT1, . . . , Tn.E {x ∈ ∆I | ]{〈t1, . . . , tn〉 | 〈x, ti〉 ∈ T I (for all
1 ≤ i ≤ m) ∧ 〈t1, . . . , tn〉 ∈ ED} ≤ m}

Table 3.New class constructors in OWL-E

where Ts, Th, Tl, Tw are concrete roles representing “sum in cm”, “hight
in cm”, “length in cm” and “width in cm”, respectively, and(+int ∧
[≥15, integer, integer, integer]) is a conjunctive datatype expression representing the
customised predicate “sum no larger than or equal to 15”.1 ♦

Like OWL-Eu, OWL-E (i.e., theSHOIQ(G) DL) is also a decidable extension of
OWL-DL.

Theorem 2. TheSHOIN (G)- andSHOIQ(G)-concept satisfiability and subsump-
tion problems w.r.t. TBoxes and RBoxes are decidable.

According to Tobies [13, Lemma 5.3], ifL is a DL that provides the nominal con-
structor, knowledge base satisfiability can be polynomially reduced to satisfiability of
TBoxes and RBoxes. Hence, we obtain the following theorem.

Theorem 3. The knowledge base satisfiability problems ofSHOIN (G) and
SHOIQ(G) are decidable.

6 Conclusion

In this paper, we propose OWL-Eu and OWL-E, two decidable extensions of OWL
DL that support customised datatypes and customised datatype predicates. OWL-Eu
provides a general framework for integrating OWL DL with customised datatypes, such
as XML Schema non-list simple types. OWL-E further extends OWL-Eu to support
customised datatype predicates.

We have implemented a prototype extension of the FaCT [5] DL system, called
FaCT-DG, to support TBox reasoning in both OWL-Eu and OWL-E (without nomi-
nals). As for future work, we are planning to extend the DIG1.1 interface [3] to sup-
port OWL-Eu, and to implement a Protéǵe [6] plug-in to support XML Schema non-list
simple types, i.e. users should be able to define and/or import customised XML Schema
non-list simple types based on a set of supported datatypes, and to exploit our prototype
through the extended DIG interface. Furthermore, we plan to extend the FaCT++ DL
reasoner [4] to support the full OWL-Eu and OWL-E ontology languages.

1 To save space, we use predicates instead of predicate URIrefs here.
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Abstract. Motivated primarily by medical terminology applications,
the prominent DL SHIQ has already been extended to a DL with com-
plex role inclusion axioms of the form R ◦ S v̇ R or S ◦ R v̇ R, called
RIQ, and the SHIQ tableau algorithm has been extended to handle
such inclusions.
This paper further extends RIQ and its tableau algorithm with im-
portant expressive means that are frequently requested in ontology ap-
plications, namely with reflexive, symmetric, transitive, and irreflexive
roles, disjoint roles, and the construct ∃R.Self, allowing, for instance, the
definition of concepts such as a “narcist”. Furthermore, we extend the al-
gorithm to cover Abox reasoning extended with negated role assertions.
The resulting logic is called SRIQ.

1 Introduction

We describe an extension, called SRIQ, of the description logic (DL) SHIN
(10) underlying OWL lite and OWL DL (7). We believe that SRIQ enjoys
some useful properties. Firstly, SRIQ extends SHIN with numerous expres-
sive means which have been asked for by users, and which, we believe, will make
modeling using DLs easier and more intuitive. While the language of SRIQ is
designed to be slightly redundant in the sense that some of the new expressive
means can be simulated by others, the complete absence of those expressive
means has proven quite harmful since developers of ontologies use work-arounds
to compensate for this. As a consequence, ontologies become cluttered, com-
plicated, and difficult to understand. In the worst case, the work-around only
partially captures the intended semantics, thus leading to unintended or missing
consequences, thereby destroying one of the main features of a logic-based for-
malism, namely its well-defined semantics and reasoning services. A well-known
example are qualified number restrictions. Their absence in OWL lite and OWL
DL has caused problems in the past (12), and has led to the development and use
of questionable surrogates. Hence, SRIQ provides qualified number restrictions.
Other, novel expressive means of SRIQ concern mostly roles and include:

– disjoint roles. E.g., the roles sister and mother could be declared as being
disjoint. Most DLs can be said to be “lopsided” since they allow to express
disjointness on concepts but not on roles, despite the fact that role disjoint-
ness is quite natural and can generate new subsumptions or inconsistencies
in the presence of role hierarchies and number restrictions.
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– reflexive and irreflexive roles. E.g., the role knows could be declared as being
reflexive, and the role sibling could be declared as being irreflexive. In the
presence of the new concept ∃R.Self described below, reflexive and irreflexive
roles also become definable by Tbox assertions.

– negated role assertions. Most Abox formalisms only allow for positive role
assertions (with few exceptions (1; 5)), whereas SRIQ also allows for state-
ments such as (John, Mary) : ¬likes. In the presence of complex role inclu-
sions, negated role assertions can be quite useful and, like disjoint roles, they
overcome a certain “lopsidedness” of DLs.

– Since SRIQ extends SHIQ, we can also express that a role is transitive or
symmetric, and can use role inclusion axioms R v S.

– Since SRIQ extends RIQ (8), we can use complex role inclusion axioms
of the form R ◦ S v̇ R and S ◦ R v̇ R. For example, w.r.t. the axiom
owns◦hasPart v̇ owns, and the fact that each car contains an engine Car v̇
∃hasPart.Engine, an owner of a car is also an owner of an engine, i.e., the
following subsumption is implied: ∃owns.Car v ∃owns.Engine.

– Finally, SRIQ allows for concepts of the form ∃R.Self which can be used to
express “local reflexivity” of a role R, e.g., to define the concept “narcist”
using ∃likes.Self.

Besides a Tbox and an Abox, SRIQ provides a so-called Rbox to gather all
statements concerning roles.

Secondly, SRIQ is designed to be of similar practicability as SHIQ. The
tableau algorithm for SHIQ and the one for SRIQ presented here are very
similar. Even though the additional expressive means of SRIQ require certain
adjustments to the SHIQ algorithm, these adjustments do not add new sources
of non-determinism, and, subject to empirical verification, are believed to be
“harmless” in the sense of not significantly degrading typical performance as
compared with the SHIQ algorithm. More precisely, we employ the same tech-
nique using finite automata as in (8) to handle role inclusions R ◦ S v̇ R and
S ◦R v̇ R. This involves a pre-processing step which takes an Rbox and builds,
for each role R, a finite automaton that accepts exactly those words R1 . . . Rn

such that, in each model of the Rbox, 〈x, y〉 ∈ (R1 . . . Rn)I implies 〈x, y〉 ∈ RI .
These automata are then used in the tableau expansion rules to check, for a
node x with ∀R.C ∈ L(x) and an R1 . . . Rn-neighbour y of x, whether to add C
to L(y). Even though the pre-processing step might appear a little cumbersome,
the usage of the automata in the algorithm makes it quite elegant and compact.

The current paper describes work in progress towards a description logic
that overcomes certain shortcomings in expressiveness of other DLs. We have
used SHIN , SHIQ, and RIQ as a starting point, extended them with some
“useful-yet-harmless” expressive means, and also extended the tableau algorithm
accordingly. We wish to discuss this extension in case we have overlooked other
“useful-yet-harmless” expressive means, and we plan to further extend SRIQ:
currently, various new operators are restricted to simple roles, and we have yet
to establish which of these restrictions are necessary in order to preserve decid-
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ability1 or practicability. Moreover, we plan to extend SRIQ towards SHOIQ
(9), i.e., to also include nominals.

For a full specification of the tableau algorithm and proofs, see (6).

2 The Logic SRIQ

In this section, we introduce the DL SRIQ. This includes the definition of
syntax, semantics, and inference problems.

2.1 Roles, Role Hierarchies, and Role Assertions

Definition 1 (Interpretations). Let C be a set of concept names, R a set
of role names, and I = {a, b, c . . .} a set of individual names. The set of
roles is R ∪ {R− | R ∈ R}, where a role R− is called the inverse role of R.

As usual, an interpretation I = (∆I , ·I) consists of a set ∆I , called the
domain of I, and a valuation ·I which associates, with each role name R, a
binary relation RI ⊆ ∆I×∆I , with each concept name C a subset CI ⊆ ∆I and,
with each individual name a an element aI ∈ ∆I . Inverse roles are interpreted
as usual, i.e., for each role R ∈ R, we have

(R−)I = {〈y, x〉 | 〈x, y〉 ∈ RI}.

Note that, unlike in the case of SHIQ, we did not introduce transitive role
names. This is so since, as will become apparent below, role box assertions can
be used to force roles to be transitive.

To avoid considering roles such as R−−, we define a function Inv on roles
such that Inv(R) = R− if R ∈ R is a role name, and Inv(R) = S ∈ R if R = S−.

Since we will often work with a string of roles, it is convenient to extend
both ·I and Inv(·) to such strings: if w = R1 . . . Rn for Ri roles, then we set
wI = RI

1 ◦. . .◦RI
n and Inv(w) = Inv(Rn) . . . Inv(R1), where ◦ denotes composition

of binary relations.
A role box R consists of two components. The first component is a role hier-

archy Rh which consists of (generalised) role inclusion axioms, i.e., statements
of the form R v̇ S, RS v̇ S, and SR v̇ S. The second component is a set
Ra of role assertions stating, for instance, that a role R must be interpreted as
a transitive, reflexive, irreflexive, symmetric, or transitive relation, or that two
(possibly inverse) roles R and S are to be interpreted as disjoint binary relations.

We start with the definition of a role hierarchy, whose definition involves
a strict partial order ≺ on roles, i.e., an irreflexive and transitive relation on
R ∪ {R− | R ∈ R}.

Definition 2 ((Regular) Role Inclusion Axioms).
Let ≺ be a strict partial order on roles. A role inclusion axiom (RIA for

short) is an expression of the form w v̇ R, where w is a finite string of roles,
and R is a role name. A role hierarchy Rh, then, is a finite set of RIAs.
1 See (10) for such a case.



4

An interpretation I satisfies a role inclusion axiom S1 . . . Sn v̇ R, if

SI1 ◦ . . . ◦ SIn ⊆ RI ,

where ◦ stands for the composition of binary relations. An interpretation is a
model of a role hierarchy Rh, if it satisfies all RIAs in Rh, written I |= Rh.
A RIA w v̇ R is ≺-regular if

– R is a role name,
– w = RR,
– w = R−,
– w = S1 . . . Sn and Si ≺ R, for all 1 ≤ i ≤ n,
– w = RS1 . . . Sn and Si ≺ R, for all 1 ≤ i ≤ n, or
– w = S1 . . . SnR and Si ≺ R, for all 1 ≤ i ≤ n.

Finally, a role hierarchy Rh is said to be regular if there exists a strict partial
order ≺ on roles such that each RIA in Rh is ≺-regular.

Regularity prevents a role hierarchy from containing cyclic dependencies. For
instance, the role hierarchy

{RS v̇ S, RT v̇ R, UT v̇ T, US v̇ U}

is not regular because it would require ≺ to satisfy S ≺ U ≺ T ≺ R ≺ S, which
would imply S ≺ S, thus contradicting irreflexivity. Such cyclic dependencies
are known to lead to undecidability (8).

From the definition of the semantics of inverse roles, it follows immediately
that

〈x, y〉 ∈ wI iff 〈y, x〉 ∈ Inv(w)I .

Hence, each model satisfying w v̇ S also satisfies Inv(w) v̇ Inv(S) (and vice
versa), and thus the restriction to those RIAs with role names on their right
hand side does not have any effect on expressivity.

Given a role hierarchy Rh, we define the relation v* to be the transitive-
reflexive closure of v̇ over {R v̇ S, Inv(R) v̇ Inv(S) | R v̇ S ∈ Rh}. A role R
is called a sub-role (resp. super-role) of a role S if R v* S (resp. S v* R). Two
roles R and S are equivalent (R ≡ S) if R v* S and S v* R.

Note that, due to the fourth restriction in the definition of ≺-regularity, we
also restrict v* to be acyclic, and thus regular role hierarchies never contain two
equivalent roles.2

Next, let us turn to the second component of Rboxes, the role assertions. For
an interpretation I, we define DiagI to be the set {〈x, x〉 | x ∈ ∆I} and set
RI ↓:= {〈x, x〉 | ∃y ∈ ∆I .〈x, y〉 ∈ RI}.

2 This is not a serious restriction for, if R contains v* cycles, we can simply choose
one role R from each cycle and replace all other roles in this cycle with R in the
input Rbox, Tbox and Abox (see below).
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Definition 3 (Role Assertions). For roles R and S, we call the assertions
Ref(R), Irr(R), Sym(R), Tra(R), and Dis(R,S), role assertions, where, for
each interpretation I and all x, y, z ∈ ∆I , we have:

I |= Sym(R) if 〈x, y〉 ∈ RI implies 〈y, x〉 ∈ RI ;
I |= Tra(R) if 〈x, y〉 ∈ RI and 〈y, z〉 ∈ RI imply 〈x, z〉 ∈ RI ;
I |= Ref(R) if RI ↓⊆ RI ;
I |= Irr(R) if RI ∩DiagI = ∅;
I |= Dis(R,S) if RI ∩ SI = ∅.

Adding symmetric and transitive role assertions is a trivial move since both
of these expressive means can be replaced by complex role inclusion axioms as
follows: for the role assertion Sym(R) we can add to the Rbox, equivalently, the
role inclusion axiom R− v̇ R, and, for the role assertion Tra(R), we can add
to the Rbox, equivalently, RR v̇ R. The proof of this should be obvious. Thus,
as far as expressivity is concerned, we can assume for convenience that no role
assertions of the form Tra(R) or Sym(R) appear in Ra, but that transitive and
symmetric roles will be handled by the RIAs alone.

The situation is different, however, for the other Rbox assertions. Neither
reflexivity nor irreflexivity nor disjointness of roles can be enforced by role inclu-
sion axioms. However, as we shall see later, reflexivity and irreflexivity of roles
are closely related to the new concept ∃R.Self.

In SHIQ, the application of qualified number restrictions has to be restricted
to certain roles, called simple roles, to preserve decidability (10). In the context of
SRIQ, the definition of simple role has to be slightly modified, and simple roles
figure not only in qualified number restrictions, but in several other constructs as
well. Intuitively, non-simple roles are those that are implied by the composition
of roles.

Given a role hierarchyRh and a set of role assertions Ra (without transitivity
or symmetry assertions), the set of roles that are simple in R = Rh ∪ Ra is
inductively defined as follows:

– a role name is simple if it does not occur on the right hand side of a RIA in
Rh,

– an inverse role R− is simple if R is, and
– if R occurs on the right hand side of a RIA in Rh, then R is simple if, for

each w v̇ R ∈ Rh, w = S for a simple role S.

A set of role assertions Ra is called simple if all roles R,S appearing in role
assertions of the form Ref(R), Irr(R), or Dis(R,S) are simple in R. If R is clear
from the context, we often use “simple” instead of “simple in R”.

Definition 4 (Role Box). A SRIQ-role box (Rbox for short) is a set R =
Rh ∪ Ra, where Rh is a regular role hierarchy and Ra is a finite, simple set of
role assertions.

An interpretation satisfies a role box R (written I |= R) if I |= Rh and
I |= φ for all role assertions φ ∈ Ra. Such an interpretation is called a model of
R.



6

2.2 Concepts and Inference Problems for SRIQ

We are now ready to define the syntax and semantics of SRIQ-concepts.

Definition 5 (SRIQ Concepts, Tboxes, and Aboxes). The set of SRIQ-
concepts is the smallest set such that

– every concept name and >,⊥ are concepts, and,
– if C, D are concepts, R is a role (possibly inverse), S is a simple role (possibly

inverse), and n is a non-negative integer, then C u D, C t D, ¬C, ∀R.C,
∃R.C, ∃S.Self, (>nS.C), and (6nS.C) are also concepts.

A general concept inclusion axiom (GCI) is an expression of the form
C v̇ D for two SRIQ-concepts C and D. A Tbox T is a finite set of GCIs.

An individual assertion is of one of the following forms: a : C, (a, b) : R,
(a, b) : ¬S, or a 6 .= b, for a, b ∈ I (the set of individual names), a (possibly
inverse) role R, a (possibly inverse) simple role S, and a SRIQ-concept C. A
SRIQ-Abox A is a finite set of individual assertions.

Note that number restrictions (>nS.C) and (6nS.C), the concept ∃S.Self,
and negated role assertions (a, b) : ¬S, are all restricted to simple roles. In the
case of number restrictions we mentioned the reason for this restriction already:
without it, already the satisfiability problem of SHIQ-concepts is undecidable
(10), even for a logic without inverse roles and with only unqualifying number
restrictions (these are number restrictions of the form (>nR.>) and (6nR.>)).
For SRIQ and the remaining restrictions to simple roles in concept expressions
as well as role assertions, it is part of future work to determine which of these
restrictions to simple roles are necessary in order to preserve decidability or
practicability. For example, it should be possible to also allow non-simple roles
in negated role assertions (a, b) :¬R without losing decidability.

Note also that, in the definition of SRIQ-Aboxes, we do not assume the
unique name assumption (UNA) (which is commonly assumed in DLs (4)).
Rather, by allowing inequalities between individuals in the Abox to be explic-
itly stated, we increase flexibility while, obviously, the UNA can be regained by
explicitly stating a 6 .= b for every pair a, b ∈ I of individuals. Moreover, notice
that, in contrast to standard Aboxes, SRIQ-Aboxes can also contain negated
role assertions of the form (a, b) :¬R.

Definition 6 (Semantics and Inference Problems).
Given an interpretation I = (∆I , ·I), concepts C, D, roles R, S, and non-

negative integers n, the extension of complex concepts is defined inductively
by the following equations, where ]M denotes the cardinality of a set M :
>I = ∆I , ⊥I = ∅, (¬C)I = ∆I \ CI (top, bottom, negation)

(C uD)I = CI ∩DI , (C tD)I = CI ∪DI (conjunction, disjunction)
(∃R.C)I = {x | ∃y.〈x, y〉 ∈ RI and y ∈ CI} (exists restriction)

(∃R.Self)I = {x | 〈x, x〉 ∈ RI} (∃R.Self-concepts)
(∀R.C)I = {x | ∀y.〈x, y〉 ∈ RI implies y ∈ CI} (value restriction)

(>nR.C)I = {x | ]{y.〈x, y〉 ∈ RI and y ∈ CI} > n} (atleast restriction)
(6nR.C)I = {x | ]{y.〈x, y〉 ∈ RI and y ∈ CI} 6 n} (atmost restriction)
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An interpretation I is a model of a Tbox T (written I |= T ) iff CI ⊆ DI

for each GCI C v̇ D in T .
A concept C is called satisfiable iff there is an interpretation I with CI 6= ∅.

A concept D subsumes a concept C (written C v D) iff CI ⊆ DI holds for
each interpretation. Two concepts are equivalent (written C ≡ D) if they are
mutually subsuming. The above inference problems can be defined w.r.t. a general
role box R and/or a Tbox T in the usual way, i.e., by replacing interpretation
with model of R and/or T .

For an interpretation I, an element x ∈ ∆I is called an instance of a
concept C iff x ∈ CI .

An interpretation I satisfies (is a model of) an Abox A (I |= A) if for all
individual assertions φ ∈ A we have I |= φ, where

I |= a :C if aI ∈ CI ; I |= a 6 .= b if aI 6= bI ;
I |= (a, b) :R if 〈aI , bI〉 ∈ RI ; I |= (a, b) :¬R if 〈aI , bI〉 /∈ RI .

An Abox A is consistent with respect to an Rbox R and a Tbox T if there
is a model I for R and T such that I |= A.

For DLs that are closed under negation, subsumption and (un)satisfiability
of concepts can be mutually reduced: C v D iff C u ¬D is unsatisfiable, and C
is unsatisfiable iff C v ⊥. Furthermore, a concept C is satisfiable iff the Abox
{a :C} is consistent.

It is straightforward to extend these reductions to Rboxes and Tboxes. In
contrast, the reduction of inference problems w.r.t. a Tbox to pure concept
inference problems (possibly w.r.t. a role hierarchy), deserves special care: in
(2; 11; 3), the internalisation of GCIs is introduced, a technique that realises
exactly this reduction. For SRIQ, this technique can be modified accordingly.

Now, note also that, instead of having a role assertion Ref(R) ∈ Ra, we
can add, equivalently, the GCI ∃R.> v̇ ∃R.Self to T , which can in turn be
internalised. Likewise, instead of asserting Irr(R), we can, equivalently, add the
GCI > v̇ ¬∃R.Self. Thus, we arrive at the following theorem:

Theorem 1. 1. Satisfiability and subsumption of SRIQ-concepts w.r.t. Tboxes
and Rboxes are polynomially reducible to (un)satisfiability of SRIQ-concepts
w.r.t. Rboxes.

2. Consistency of SRIQ-Aboxes w.r.t. Tboxes and Rboxes is polynomially re-
ducible to consistency of SRIQ-Aboxes w.r.t. Rboxes.

3. W.l.o.g., we can assume that Rboxes do not contain role assertions of the
form Irr(R), Ref(R), Tra(R), or Sym(R).

With Theorem 1, all standard inference problems for SRIQ-concepts and
Aboxes can be reduced to the problem of determining the consistency of a
SRIQ-Abox w.r.t. to an Rbox, where we can assume w.l.o.g. that all role as-
sertions in the Rbox are of the form Dis(R,S)—we call such an Rbox reduced.
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3 SRIQ is Decidable

As we have just seen, we can restrict our attention to the consistency of Aboxes
w.r.t. reduced Rboxes only. We have extended the tableau algorithm for RIQ
to SRIQ, and will spend the remainder of this paper on its description.

In a first step, the tableau algorithm takes a reduced Rbox R and an Abox
A and builds, for each possibly inverse role R occurring in R or A, a non-
deterministic finite automaton BR. Intuitively, such an automaton is used to
memorise the path between an object x that has to satisfy a concept of the form
∀R.C and other objects, and then to determine which of these objects must sat-
isfy C. The following proposition states that BR indeed captures all implications
between (paths of) roles and R that are consequences of the role hierarchy Rh,
where L(BR) denotes the language (a set of strings of roles) accepted by BR.

Proposition 1. I is a model of Rh if and only if, for each (possibly inverse)
role R occurring in Rh, each word w ∈ L(BR), and each 〈x, y〉 ∈ wI , we have
〈x, y〉 ∈ RI .

Since Aboxes usually involve several individuals with arbitrary role relation-
ships between them, the completion algorithm presented works on forests rather
than on trees. A forest is a collection of trees whose root nodes correspond to
the individuals appearing in the input Abox and which form an arbitrarily con-
nected graph according to the role assertions stated in the Abox. Similar as for
RIQ, we define a set fclos(A,R) of “relevant sub-concepts” of those concepts
occurring in A; see (6) for details.

Definition 7. A completion forest F for a SRIQ-Abox A and an Rbox R is
a collection of trees whose distinguished root nodes can be connected arbitrarily.
Moreover, each node x is labelled with a set L(x) ⊆ fclos(A,R) and each edge
〈x, y〉 from a node x to its successor y is labelled with a non-empty set L(〈x, y〉)
of (possibly inverse and possibly negated) roles occurring in A and R. Finally,
completion forests come with an explicit inequality relation 6 .= on nodes which
is implicitly assumed to be symmetric.

Let x and y be nodes in F and R a role. If R′ v* R and R′ ∈ L(〈x, y〉), then
y is called an R-successor of x.

If y is an R-successor of x or x is an Inv(R)-successor of y, then y is called
an R-neighbour of x. Moreover, a node x is a neighbour of y, if it is an
R-neighbour for some role R. Successors, predecessors, ancestors, and de-
scendants are defined as usual.

For a role S, a concept C, and a node x in F, we define SF(x,C) by

SF(x,C) := {y | y is an S-neighbour of x and C ∈ L(y)}.

A node is blocked iff it is either directly or indirectly blocked. A node x is
directly blocked iff none of its ancestors are blocked, and it has ancestors x′,
y and y′ such that

1. none of x′, y and y′ is a root node,
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2. x is a successor of x′ and y is a successor of y′ and
3. L(x) = L(y) and L(x′) = L(y′) and
4. L(〈x′, x〉) = L(〈y′, y〉).

In this case, we say that y blocks x.
A node y is indirectly blocked if one of its ancestors is blocked.
Given a non-empty SRIQ-Abox A and a reduced Rbox R, the tableau algo-

rithm is initialised with the completion forest FA,R defined as follows:

– for each individual a occurring in A, FA,R contains a root node xa,
– if (a, b) :R ∈ A or (a, b) :¬R ∈ A, then FA,R contains an edge 〈xa, xb〉,
– if a 6 .= b ∈ A, then xa 6

.= xb is in FA,R,
– L(xa) := {C | a :C ∈ A}, and
– L(〈xa, xb〉) := {R | (a, b) :R ∈ A} ∪ {¬R | (a, b) :¬R ∈ A}.

A completion forest F is said to contain a clash if there are nodes x and y
such that

1. ⊥ ∈ L(x), or
2. for some concept name A, {A,¬A} ⊆ L(x), or
3. x is an S-neighbour of x and ¬∃S.Self ∈ L(x), or
4. x and y are root nodes, y is an R-neighbour of x, and ¬R ∈ L(〈x, y〉), or
5. there is some Dis(R,S) ∈ Ra and y is an R- and an S-neighbour of x, or
6. there is some concept (6nS.C) ∈ L(x) and {y0, . . . , yn} ⊆ SF(x,C) with

yi 6
.= yj for all 0 ≤ i < j ≤ n.

A completion forest that does not contain a clash is called clash-free. A com-
pletion forest is complete if none of the rules from Figure 1 can be applied to
it.

When started with a non-empty Abox A and a reduced Rbox R, the tab-
leau algorithm initialises FA,R and repeatedly applies the expansion rules from
Figure 1 to it, stopping when a clash occurs, and applying the shrinking rules
eagerly, i.e., the ≤- and the ≤r-rule are applied with highest priority. The algo-
rithm answers “A is satisfiable w.r.t. R” iff the expansion rules can be applied
in such a way that they yield a complete and clash-free completion forest, and
“A is unsatisfiable w.r.t. R” otherwise.

Lemma 1. Let A be a SRIQ-Abox where all concepts are in negation normal
form and R a reduced Rbox.

– The tableau algorithm terminates when started for A and R.
– The expansion rules can be applied to A and R such that they yield a complete

and clash-free completion forest iff there is a tableau for A w.r.t. R.

From Theorem 1 and Lemma 1, we thus have the following theorem:

Theorem 2. The tableau algorithm decides satisfiability and subsumption of
SRIQ-concepts with respect to Aboxes, Rboxes, and Tboxes.
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u-rule: if C1 u C2 ∈ L(x), x is not indirectly blocked, and {C1, C2} 6⊆ L(x),
then L(x) −→ L(x) ∪ {C1, C2}

t-rule: if C1 t C2 ∈ L(x), x is not indirectly blocked, and
{C1, C2} ∩ L(x) = ∅

then L(x) −→ L(x) ∪ {E} for some E ∈ {C1, C2}
∃-rule: if ∃S.C ∈ L(x), x is not blocked, and

x has no S-neighbour y with C ∈ L(y)
then create a new node y with

L(〈x, y〉) := {S} and L(y) := {C}
Self-rule: if ∃S.Self ∈ L(x), x is not blocked, and S /∈ L(〈x, x〉)

then add an edge 〈x, x〉 if it does not yet exist, and
set L(〈x, x〉) −→ L(〈x, x〉) ∪ {S}

∀1-rule: if ∀S.C ∈ L(x), x is not indirectly blocked, and
∀BS .C 6∈ L(x)

then L(x) −→ L(x) ∪ {∀BS .C}
∀2-rule: if ∀B(p).C ∈ L(x), x is not indirectly blocked, p

S→ q in B(p),
and there is an S-neighbour y of x with ∀B(q).C /∈ L(y),

then L(y) −→ L(y) ∪ {∀B(q).C}
∀3-rule: if ∀B.C ∈ L(x), x is not indirectly blocked, ε ∈ L(B), and C 6∈ L(x)

then L(x) −→ L(x) ∪ {C}
choose-rule: if (6nS.C) ∈ L(x), x is not indirectly blocked, and

there is an S-neighbour y of x with {C, ¬̇C} ∩ L(y) = ∅
then L(y) −→ L(y) ∪ {E} for some E ∈ {C, ¬̇C}

>-rule: if (>nS.C) ∈ L(x), x is not blocked, and
there are no y1, . . . , yn ∈ SF(x, C)
with yi 6

.
= yj for each 1 ≤ i < j ≤ n

then create n new successors y1, . . . , yn of x with L(〈x, yi〉) = {S},
L(yi) = {C}, and yi 6

.
= yj for 1 ≤ i < j ≤ n.

6-rule: if (6nS.C) ∈ L(x), x is not indirectly blocked, and
#SF(x, C) > n, there are y, z ∈ SF(x, C) with
not y 6 .= z and y is not a root node nor an ancestor of z,

then 1. L(z) −→ L(z) ∪ L(y) and
2. if z is an ancestor of x

then L(〈z, x〉) −→ L(〈z, x〉) ∪ Inv(L(〈x, y〉))
else L(〈x, z〉) −→ L(〈x, z〉) ∪ L(〈x, y〉)

3. Set u 6 .= z for all u with u 6 .= y.
4. remove y and the sub-tree below y from F.

6r-rule: if (6nS.C) ∈ L(x), #SF(x, C) > n,
and there are two root nodes y, z ∈ SF(x, C) with not y 6 .= z,

then 1. L(z) −→ L(z) ∪ L(y) and
2. For all edges 〈y, w〉:

i. if the edge 〈z, w〉 does not exist, create it with L(〈z, w〉) := L(〈y, w〉);
ii. else L(〈z, w〉) −→ L(〈z, w〉) ∪ L(〈y, w〉).

3. For all edges 〈w, y〉:
i. if the edge 〈w, z〉 does not exist, create it with L(〈w, z〉) := L(〈w, y〉);
ii. else L(〈w, z〉) −→ L(〈w, z〉) ∪ L(〈w, y〉).

4. Set u 6 .= z for all u with u 6 .= y.
5. Remove y and all incoming and outgoing edges from y from F.

Fig. 1. The Expansion Rules for the SRIQ Tableau Algorithm.
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Abstract. Description Logics (DLs) are a family of logic based knowl-
edge representation formalisms. Although they have a range of appli-
cations (e.g., configuration and information integration), they are per-
haps best known as the basis for widely used ontology languages such
as OWL (now a W3C recommendation). This decision was motivated
by a requirement that key inference problems be decidable, and that it
should be possible to provide reasoning services to support ontology de-
sign and deployment. Such reasoning services are typically provided by
highly optimised implementations of tableaux decision procedures; these
have proved to be effective in applications in spite of the high worst case
complexity of key inference problems. The increasing use of DL based
ontologies in areas such as e-Science and the Semantic Web is, however,
already stretching the capabilities of existing DL systems, and brings
with it a range of research challenges.

1 Introduction

Description Logics (DLs) are a family of class (concept) based knowledge repre-
sentation formalisms. They are characterised by the use of various constructors
to build complex concepts from simpler ones, an emphasis on the decidability of
key reasoning tasks, and by the provision of sound, complete and (empirically)
tractable reasoning services.

Although they have a range of applications (e.g., reasoning with database
schemas and queries [1–3]), DLs are perhaps best known as the basis for on-
tology languages such as OIL, DAML+OIL and OWL [4]. The decision to base
these languages on DLs was motivated by a requirement not only that key infer-
ence problems (such as class satisfiability and subsumption) be decidable, but
that “practical” decision procedures and “efficient” implemented systems also
be available.

That DLs were able to meet the above requirements was the result of exten-
sive research within the DL community over the course of the preceding 20 years
or more. This research mapped out a complex landscape of languages, exploring
a range of different language constructors, studying the effects of various com-
binations of these constructors on decidability and worst case complexity, and
devising decision procedures, the latter often being tableaux based algorithms.
At the same time, work on implementation and optimisation techniques demon-
strated that, in spite of the high worst case complexity of key inference problems



(usually at least ExpTime), highly optimised DL systems were capable of pro-
viding practical reasoning support in the typical cases encountered in realistic
applications.

With the added impetus provided by the OWL standardisation effort, DL
systems are now being used to provide computational services for a rapidly
expanding range of ontology tools and applications [5–10]. The increasing use
of DL based ontologies in areas such as e-Science and the Semantic Web is,
however, already stretching the capabilities of existing DL systems, and brings
with it a range of research challenges.

2 Ontologies and Ontology Reasoning

In Computer Science, an ontology is usually taken to mean a conceptual model
(of some domain), typically realised as a hierarchical vocabulary of terms, to-
gether with formal specifications of the meaning of each term. These specifica-
tions are often given with reference to other (simpler) terms in the ontology. For
example, in a medical terminology ontology, the meaning of the term Gastritis
might be specified as an InflammatoryProcess whose outcome is InflammationOf-
Stomach, where InflammatoryProcess, outcome and InflammationOfStomach are
all terms from the ontology. Such vocabularies may be used, e.g., to facilitate
data sharing and reuse (often by annotating data using terms from a shared
ontology), to structure data, or simply to explicate and investigate knowledge of
a domain.

Ontologies play a major role in the Semantic Web (where they are used to
annotate web resources) [11, 12], and are widely used in, e.g., knowledge manage-
ment systems, e-Science, and bio-informatics and medical terminologies [13–16].
They are also of increasing importance in the Grid, where they may be used,
e.g., to support the discovery, execution and monitoring of Grid services [17–19].

Given the formal and compositional nature of ontologies, it is natural to use
logics as the basis for ontology languages—this allows for the precise definition
of the meaning of compositional operators (such as “and” and “or”), and of re-
lationships between terms (such as “subclass” and “instance”). The effective use
of logic based ontology languages in applications will, however, critically depend
on the provision of efficient reasoning support. On the one hand, such support
is required by ontology engineers in order to help them to design and maintain
sound, well-balanced ontologies [20]. On the other hand, such support is required
by applications in order to exploit the formal specification of meaning captured
in ontologies: querying ontologies and ontology structured data, is equivalent to
computing logical entailments [21].

3 Ontology Languages and Description Logics

The OWL recommendation actually consists of three languages of increasing
expressive power: OWL Lite, OWL DL and OWL Full. Like OWL’s predecessor
DAML+OIL, OWL Lite and OWL DL are basically very expressive description



logics with an RDF syntax. OWL Full provides a more complete integration
with RDF, but its formal properties are less well understood, and key inference
problems would certainly be much harder to compute.1 For these reasons, OWL
Full will not be considered here.

More precisely, OWL DL is based on the SHOIQ DL [23]; it restricts the
form of number restrictions to be unqualified (see [24]), and adds a simple form
of Datatypes (often called concrete domains in DLs [25]). Following the usual DL
naming conventions, the resulting logic is called SHOIN (D), with the different
letters in the name standing for (sets of) constructors available in the language: S
stands for the basic ALC DL (equivalent to the propositional modal logic K(m))
extended with transitive roles [22], H stands for role hierarchies (equivalently,
inclusion axioms between roles), O stands for nominals (classes whose extension
is a single individual) [26], N stands for unqualified number restrictions and
(D) stands for datatypes) [27]. OWL Lite is equivalent to the slightly simpler
SHIF(D) DL (i.e., SHOIQ without nominals, and with only functional number
restrictions).

These equivalences allow OWL to exploit the considerable existing body of
description logic research, e.g.:

– to define the semantics of the language and to understand its formal prop-
erties, in particular the decidability and complexity of key inference prob-
lems [28];

– as a source of sound and complete algorithms and optimised implementation
techniques for deciding key inference problems [29, 22, 27];

– to use implemented DL systems in order to provide (partial) reasoning sup-
port [30–32].

3.1 SHOIN Syntax and Semantics

The syntax and semantics of SHOIN are briefly introduced here (we will ignore
datatypes, as adding a datatype component would complicate the presentation
and has little affect on reasoning [33]).

Definition 1. Let R be a set of role names with both transitive and normal role
names R+ ∪RP = R, where RP ∩R+ = ∅. The set of SHOIN -roles (or roles
for short) is R ∪ {R− | R ∈ R}. A role inclusion axiom is of the form R v S,
for two roles R and S. A role hierarchy is a finite set of role inclusion axioms.

An interpretation I = (∆I , ·I) consists of a non-empty set ∆I , called the
domain of I, and a function ·I which maps every role to a subset of ∆I × ∆I

such that, for P ∈ R and R ∈ R+,

〈x, y〉 ∈ P I iff 〈y, x〉 ∈ P−I ,
and if 〈x, y〉 ∈ RI and 〈y, z〉 ∈ RI , then 〈x, z〉 ∈ RI .

1 Inference in OWL Full is clearly undecidable as OWL Full does not include restric-
tions on the use of transitive properties which are required in order to maintain
decidability [22].



An interpretation I satisfies a role hierarchy R iff RI ⊆ SI for each R v S ∈ R;
such an interpretation is called a model of R.

Definition 2. Let NC be a set of concept names with a subset NI ⊆ NC of
nominals. The set of SHOIN -concepts (or concepts for short) is the smallest
set such that

1. every concept name C ∈ NC is a concept,
2. if C and D are concepts and R is a role, then (C u D), (C t D), (¬C),

(∀R.C), and (∃R.C) are also concepts (the last two are called universal and
existential restrictions, resp.), and

3. if R is a simple role2 and n ∈ N, then 6nR and >nR are also concepts
(called atmost and atleast number restrictions).

The interpretation function ·I of an interpretation I = (∆I , ·I) maps, addition-
ally, every concept to a subset of ∆I such that

(C uD)I = CI ∩DI , (C tD)I = CI ∪DI , ¬CI = ∆I \ CI ,
]oI = 1 for all o ∈ NI ,

(∃R.C)I = {x ∈ ∆I | There is a y ∈ ∆I with 〈x, y〉 ∈ RI and y ∈ CI},
(∀R.C)I = {x ∈ ∆I | For all y ∈ ∆I , if 〈x, y〉 ∈ RI , then y ∈ CI},

6nRI = {x ∈ ∆I | ]{y | 〈x, y〉 ∈ RI} 6 n},
>nRI = {x ∈ ∆I | ]{y | 〈x, y〉 ∈ RI} > n},

where, for a set M , we denote the cardinality of M by ]M .
For C and D (possibly complex) concepts, C v̇ D is called a general concept

inclusion (GCI), and a finite set of GCIs is called a TBox.
An interpretation I satisfies a GCI C v̇ D if CI ⊆ DI , and I satisfies a

TBox T if I satisfies each GCI in T ; such an interpretation is called a model
of T .

A concept C is called satisfiable with respect to a role hierarchy R and a
TBox T if there is a model I of R and T with CI 6= ∅. Such an interpretation is
called a model of C w.r.t. R and T . A concept D subsumes a concept C w.r.t.
R and T (written C vR,T D) if CI ⊆ DI holds in every model I of R and T .
Two concepts C,D are equivalent w.r.t. R and T (written C ≡R,T D) iff they
are mutually subsuming w.r.t. R and T . (When R and T are obvious from the
context, we will often write C v D and C ≡ D.) For an interpretation I, an
individual x ∈ ∆I is called an instance of a concept C iff x ∈ CI .

Note that, as usual, subsumption and satisfiability can be reduced to each
other, and reasoning w.r.t. general TBoxes and role hierarchies can be reduced
to reasoning w.r.t. role hierarchies only [22, 27].

2 A role is simple if it is neither transitive nor has any transitive subroles. Restricting
number restrictions to simple roles is required in order to yield a decidable logic [22].



3.2 Practical Reasoning Services

Most modern DL systems use tableaux algorithms to test concept satisfiability.
These algorithms work by trying to construct (a tree representation of) a model
of the concept, starting from an individual instance. Tableaux expansion rules
decompose concept expressions, add new individuals (e.g., as required by ∃R.C
terms),3 and merge existing individuals (e.g., as required by 6nR.C terms). Non-
determinism (e.g., resulting from the expansion of disjunctions) is dealt with by
searching the various possible models. For an unsatisfiable concept, all possible
expansions will lead to the discovery of an obvious contradiction known as a
clash (e.g., an individual that must be an instance of both A and ¬A for some
concept A); for a satisfiable concept, a complete and clash-free model will be
constructed [34].

Tableaux algorithms have many advantages. It is relatively easy to design
provably sound, complete and terminating algorithms, and the basic technique
can be extended to deal with a wide range of class and role constructors. More-
over, although many algorithms have a higher worst case complexity than that of
the underlying problem, they are usually quite efficient at solving the relatively
easy problems that are typical of realistic applications.

Even in realistic applications, however, problems can occur that are much
too hard to be solved by naive implementations of theoretical algorithms. Mod-
ern DL systems, therefore, include a wide range of optimisation techniques, the
use of which has been shown to improve typical case performance by several or-
ders of magnitude [29, 35, 36, 32, 37, 38]. Key techniques include lazy unfolding,
absorption and dependency directed backtracking.

Lazy Unfolding In an ontology, or DL Tbox, large and complex concepts are
seldom described monolithically, but are built up from a hierarchy of named
concepts whose descriptions are less complex. The tableaux algorithm can take
advantage of this structure by trying to find contradictions between concept
names before adding expressions derived from Tbox axioms. This strategy is
known as lazy unfolding [29, 36].

The benefits of lazy unfolding can be maximised by lexically normalising and
naming all concept expressions and, recursively, their sub-expressions. An ex-
pression C is normalised by rewriting it in a standard form (e.g., disjunctions are
rewritten as negated conjunctions); it is named by substituting it with a new con-
cept name A, and adding an axiom A ≡ C to the Tbox. The normalisation step
allows lexically equivalent expressions to be recognised and identically named,
and can even detect syntactically “obvious” satisfiability and unsatisfiability.

Absorption Not all axioms are amenable to lazy unfolding. In particular, so
called general concept inclusions (GCIs), axioms of the form C v D where C
is non-atomic, must be dealt with by explicitly making every individual in the
3 Cycle detection techniques known as blocking may be required in order to guarantee

termination.



model an instance of Dt¬C. Large numbers of GCIs result in a very high degree
of non-determinism and catastrophic performance degradation [36].

Absorption is another rewriting technique that tries to reduce the number
of GCIs in the Tbox by absorbing them into axioms of the form A v C, where
A is a concept name. The basic idea is that an axiom of the form A u D v D′

can be rewritten as A v D′ t ¬D and absorbed into an existing A v C axiom
to give A v C u (D′ t ¬D) [39]. Although the disjunction is still present, lazy
unfolding ensures that it is only applied to individuals that are already known
to be instances of A.

Dependency Directed Backtracking Inherent unsatisfiability concealed in
sub-expressions can lead to large amounts of unproductive backtracking search
known as thrashing. For example, expanding the expression (C1tD1)u. . .u(Cnt
Dn)u ∃R.(AuB)u ∀R.¬A could lead to the fruitless exploration of 2n possible
expansions of (C1 t D1) u . . . u (Cn t Dn) before the inherent unsatisfiability
of ∃R.(A u B) u ∀R.¬A is discovered. This problem is addressed by adapting a
form of dependency directed backtracking called backjumping, which has been
used in solving constraint satisfiability problems [40].

Backjumping works by labelling concepts with a dependency set indicating
the non-deterministic expansion choices on which they depend. When a clash is
discovered, the dependency sets of the clashing concepts can be used to identify
the most recent non-deterministic expansion where an alternative choice might
alleviate the cause of the clash. The algorithm can then jump back over inter-
vening non-deterministic expansions without exploring any alternative choices.
Similar techniques have been used in first order theorem provers, e.g., the “proof
condensation” technique employed in the HARP theorem prover [41].

4 Research Challenges for Ontology Reasoning

The development of the OWL language, and the successful use of reasoning
systems in tools such as the Protégé editor [42], has demonstrated the utility of
logic and automated reasoning in the ontology domain. The increasing use of DL
based ontologies in areas such as e-Science and the Semantic Web is, however,
already stretching the capabilities of existing DL systems, and brings with it a
range of challenges for future research.

Scalability Practical ontologies may be very large—tens or even hundreds of
thousands of classes. Dealing with large-scale ontologies already presents a chal-
lenge to the current generation of DL reasoners, in spite of the fact that many
existing large-scale ontologies are relatively simple. In the 40,000 concept Gene
Ontology (GO), for example, much of the semantics is currently encoded in class
names such as “heparin-metabolism”; enriching GO with more complex defini-
tions, e.g., by explicitly modelling the fact that heparin-metabolism is a kind of
“metabolism” that “acts-on” the carbohydrate “heparin”, would make the se-
mantics more accessible, and would greatly increase the value of GO by enabling



new kinds of query such as “what biological processes act on glycosaminoglycan”
(heparin is a kind of glycosaminoglycan) [43]. However, adding more complex
class definitions can cause the performance of existing reasoners to degrade to
the point where it is no longer acceptable to users. Similar problems have been
encountered with large medical terminology ontologies, such as the GALEN on-
tology [44].

Moreover, as well as using a conceptual model of the domain, many appli-
cations will also need to deal with very large volumes of instance data—the
Gene Ontology, for example, is used to annotate millions of individuals, and
practitioners want to answer queries that refer both to the ontology and to the
relationships between these individuals, e.g., “what DNA binding products inter-
act with insulin receptors”. Answering this query requires a reasoner not only to
identify individuals that are (perhaps only implicitly) instances of DNA binding
products and of insulin receptors, but also to identify which pairs of individuals
are (perhaps only implicitly) instances of the interactsWith role. For existing
ontology languages it is possible to use DL reasoning to answer such queries,
but dealing with the large volume of GO annotated gene product data is far
beyond the capabilities of existing DL systems [45].

Several different approaches to this problem are already under investigation.
One of these involves the use of a hybrid DL-DB architecture in which instance
data is stored in a database, and query answering exploits the relatively simple
relational structure encountered in typical data sets in order minimise the use
of DL reasoning and maximise the use of database operations [46]. Another
technique that is under investigation is to use reasoning techniques based on
the encoding of SHIQ ontologies in Datalog [47]. On the one hand, theoretical
investigations of this technique have revealed that data complexity (i.e., the
complexity of answering queries against a fixed ontology and set of instance
data) is significantly lower than the complexity of class consistency reasoning
(i.e., NP-complete for SHIQ, and even polynomial-time for a slight restriction
of SHIQ) [48]; on the other hand, the technique would allow relatively efficient
Datalog engines to be used to store and reason with large volumes of instance
data.

Expressive Power OWL is a relatively rich ontology language, but many ap-
plications require even greater expressive power than that which is provided
by the existing OWL standard. For example, in ontologies describing complex
physically structured domains such as biology [43] and medicine [44], it is often
important to describe aggregation relationships between structures and their
component parts, and to assert that certain properties of the component parts
transfer to the structure as a whole (a femur with a fractured shaft is a frac-
tured femur) [49]. The importance of this kind of knowledge can be gauged from
the fact that various “work-arounds” have been described for use with ontology
languages that cannot express it directly [50].

It may not be possible to satisfy all expressive requirements while staying
within a decidable fragment of first order logic. Recent research has, therefore,



studied the use in ontology reasoning of semi-decision procedures such as reso-
lution based theorem provers for full first order logic [51]. There have also been
studies of languages that combine a DL with some other logical formalism, of-
ten Datalog style rules, with the connection between the two formalisms being
restricted so as to maintain decidability [52, 47, 53]

Extended Reasoning Services Finally, in addition to solving problems of
class consistency/subsumption and instance checking, explaining how such in-
ferences are derived may be important, e.g., to help an ontology designer to
rectify problems identified by reasoning support, or to explain to a user why an
application behaved in an unexpected manner.

Work on developing practical explanation systems is at a relatively early
stage, with different approaches still being developed and evaluated. One such
technique involves exploiting standard reasoning services to identify a small set of
axioms that still support the inference in question, the hope being that presenting
a much smaller (than the complete ontology) set of axioms to the user will
help them to understand the “cause” of the inference [54]. Another (possibly
complementary) technique involves explaining the steps by which the inference
was derived, e.g., using a sequence of simple natural deduction style inferences
[55, 56].

As well as explanation, so-called “non-standard inferences” could also be
important in supporting ontology design; these include matching, approximation,
and difference computations. Non-standard inferences are the subject of ongoing
research [57–60]; it is still not clear if they can be extended to deal with logics
as expressive as those that underpin modern ontology languages, or if they will
scale to large applications ontologies.

5 Summary

Description Logics are a family of class based knowledge representation for-
malisms characterised by the use of various constructors to build complex classes
from simpler ones, and by an emphasis on the provision of sound, complete and
(empirically) tractable reasoning services. They have been used in a wide range
of applications, but perhaps most notably (at least in recent times) in providing
a formal basis and reasoning services for (web) ontology languages such as OWL.

The effective use of logic based ontology languages in applications will, how-
ever, critically depend on the provision of efficient reasoning services to support
both ontology design and deployment. The increasing use of DL based ontologies
in areas such as e-Science and the Semantic Web is, however, already stretching
the capabilities of existing DL systems, and brings with it a range of challenges
for future research. The extended ontology languages needed in some applications
may demand the use of more expressive DLs, and even for existing languages,
providing efficient reasoning services is extremely challenging.

Some applications may even call for ontology languages based on larger frag-
ments of FOL. The development of such languages, and reasoning services to



support them, extends these challenges to the whole logic based Knowledge
Representation community.
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"OWL 1.1 Web Ontology Language Syntax" by Peter F. Patel-Schneider, Bell Labs Research, 
Lucent Technologies, 12 January 2006.  Enclosed with the full electronic version of this report as 
the file owl-1.1-syntax.html.
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Abstract

OWL 1.1 extends OWL DL in several ways, extending the Description Logic underlying OWL 1.1 to SROIQ, adding
user-defined datatypes and restrictions involving datatype predicates, adding a punning version of meta-modelling, and
adding a semantics-free comment mechanism. This document defines the function-style syntax for OWL 1.1, and
provides an informal discussion of the meaning of the additional constructs.

Status of this Document

This is a editor's draft, for comment by the OWL community.

When approved, this document will serve as a target for implementation by the major developers of OWL systems.

This document has been produced for approval of the ad-hoc OWL community. Comments, both from within and without
the community, are welcome. Although the development of OWL 1.1 is not a W3C activity, public comments should be
sent to the semantic-web@w3c.org (archive) to ensure widest visibility.

Table of Contents
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1.2 Facts
1.3 Axioms
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2 OWL 1.1 Syntax Additions
2.1 Syntactic Sugar
2.2 SROIQ
2.3 Datatypes
2.4 Meta-modelling and annotations
2.5 Comments
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1. OWL DL Syntax

This is a recapitulation of the OWL DL syntax, with some changes that do not affect the language, included here as a
basis for the OWL 1.1 syntax. The OWL DL syntax is called an abstract syntax, which is not quite right, so the syntax is
here called the function-style syntax where necessary.

The syntax is specified here by means of a version of Extended BNF, very similar to the EBNF notation used for XML
[XML]. Terminals are quoted; non-terminals are bold and not quoted. Alternatives are either separated by vertical bars
(|) or are given in different productions. Components that can occur at most once are enclosed in square brackets ([…]);
components that can occur any number of times (including zero) are enclosed in braces ({…}). Whitespace is ignored in
the productions.

1.0. Preliminaries 

Names in the syntax are RDF URI references, [RDF Concepts]. These names can be abbreviated into qualified names.
The following prefixes are oftern used:

Namespace name Namespace
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rdf http://www.w3.org/1999/02/22-rdf-syntax-ns#

rdfs http://www.w3.org/2000/01/rdf-schema#

xsd http://www.w3.org/2001/XMLSchema#

owl http://www.w3.org/2002/07/owl#

Names are divided up into several syntactic categories:

datatypeID ::= URIreference
classID ::= URIreference
individualID ::= URIreference
ontologyID ::= URIreference
datavaluedPropertyID ::= URIreference
individualvaluedPropertyID ::= URIreference
annotationPropertyID ::= URIreference
ontologyPropertyID ::= URIreference

A name cannot be both a datatypeID and a classID in an ontology. A name also cannot be more than one of an
datavaluedPropertyID, an individualvaluedPropertyID, an annotationPropertyID, or an ontologyPropertyID in an ontology.

Further, a name cannot be more than one of the above categories in OWL DL. (This limitation is separated because it is 
relaxed in OWL 1.1.)

There are two built-in classes in OWL. The class with identifier owl:Thing is the class of all individuals. The class with
identifier owl:Nothing is the empty class.

The following XML Schema datatypes [XML Schema Datatypes] can be used in OWL as built-in datatypes by means of
the XML Schema canonical URI reference for the datatype: xsd:string, xsd:boolean, xsd:decimal, xsd:float, xsd:double,
xsd:dateTime, xsd:time, xsd:date, xsd:gYearMonth, xsd:gYear, xsd:gMonthDay, xsd:gDay, xsd:gMonth, xsd:hexBinary,
xsd:base64Binary, xsd:anyURI, xsd:normalizedString, xsd:token, xsd:language, xsd:NMTOKEN, xsd:Name, xsd:NCName,
xsd:integer, xsd:nonPositiveInteger, xsd:negativeInteger, xsd:long, xsd:int, xsd:short, xsd:byte, xsd:nonNegativeInteger,
xsd:unsignedLong, xsd:unsignedInt, xsd:unsignedShort, xsd:unsignedByte, and xsd:positiveInteger.

There are several built-in annotation properties in OWL, namely owl:versionInfo, rdfs:label, rdfs:comment, rdfs:seeAlso,
and rdfs:isDefinedBy. In keeping with their definition in RDF, rdfs:label and rdfs:comment can only be used with data 
literals.

There are also several built-in ontology properties; they are owl:imports, owl:priorVersion, owl:backwardCompatibleWith,
and owl:incompatibleWith. Ontology annotations that use owl:imports have the extra effect of importing the target
ontology.

1.1. Ontologies and Annotations 

ontology ::= 'Ontology(' [ ontologyID ] { directive } ')'
directive ::= 'Annotation(' ontologyPropertyID ontologyID ')'
           | 'Annotation(' annotationPropertyID URIreference ')'
           | 'Annotation(' annotationPropertyID dataLiteral ')'
           | 'Annotation(' annotationPropertyID individual ')'
           | axiom
           | fact

annotation ::= 'annotation(' annotationPropertyID URIreference ')'
            | 'annotation(' annotationPropertyID dataLiteral ')'
            | 'annotation(' annotationPropertyID individual ')'

1.2. Facts 

fact ::= individual 
individual ::= 'Individual(' [ individualID ] { annotation } { 'type(' type ')' } { value } ')'
value ::= 'value(' individualvaluedPropertyID individualID ')'
        | 'value(' individualvaluedPropertyID  individual ')'
        | 'value(' datavaluedPropertyID  dataLiteral ')'

type ::= description

dataLiteral ::= typedLiteral | plainLiteral>
typedLiteral ::= lexicalForm^^URIreference
plainLiteral ::= lexicalForm | lexicalForm@languageTag
lexicalForm ::= as in RDF, a unicode string in normal form C
languageTag ::= as in RDF, an XML language tag

fact ::= 'SameIndividual(' individualID individualID {individualID} ')'
       | 'DifferentIndividuals(' individualID individualID {individualID} ')'

1.3. Axioms

To preserve decidability of reasoning in OWL Lite, not all properties can have cardinality restrictions placed on them or
be specified as functional or inverse-functional. An individual-valued property is complex if 1/ it is specified as being
functional or inverse-functional, 2/ there is some cardinality restriction that uses it, 3/ it has an inverse that is complex,
or 4/ it has a super-property that is complex. Individual-valued properties that are not complex are called simple. Only
simple properties can be specified as being transitive.

1.3.1. Class Axioms 

axiom ::= 'Class(' classID  ['Deprecated'] modality { annotation } { description } ')'
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modality ::= 'complete' | 'partial'

axiom ::= 'EnumeratedClass(' classID ['Deprecated'] { annotation } { individualID } ')'

axiom ::= 'DisjointClasses(' description description { description } ')'
         | 'EquivalentClasses(' description { description } ')'
         | 'SubClassOf(' description description ')'

axiom ::= 'Datatype(' datatypeID ['Deprecated']  { annotation } )'

1.3.2. Descriptions

description ::= classID
             | restriction
             | 'unionOf(' { description } ')'
             | 'intersectionOf(' { description } ')'
             | 'complementOf(' description ')'
             | 'oneOf(' { individualID } ')'

1.3.3. Restrictions

restriction ::= 'restriction(' datavaluedPropertyID dataRestrictionComponent { dataRestrictionComponent } ')'
            | 'restriction(' individualvaluedPropertyID individualRestrictionComponent { individualRestrictionComponent
dataRestrictionComponent ::= 'allValuesFrom(' dataRange ')'
            | 'someValuesFrom(' dataRange ')'
            | 'value(' dataLiteral ')'
            | dataCardinality
dataCardinality ::= 'minCardinality(' non-negative-integer ')'
            | 'maxCardinality(' non-negative-integer ')'
            | 'cardinality(' non-negative-integer ')'
individualRestrictionComponent ::= 'allValuesFrom(' description ')'
            | 'someValuesFrom(' description ')'
            | 'value(' individualID ')'
            | individualCardinality 
individualCardinality ::= 'minCardinality(' non-negative-integer ')'
            | 'maxCardinality(' non-negative-integer ')'
            | 'cardinality(' non-negative-integer ')'
dataRange ::= datatypeID | 'rdfs:Literal'
            | 'oneOf(' { dataLiteral } ')'

1.3.4. Property Axioms 

axiom ::= 'DatatypeProperty(' datavaluedPropertyID ['Deprecated'] { annotation } 
                { 'super(' datavaluedPropertyID ')'} ['Functional']
                { 'domain(' description ')' } { 'range(' dataRange ')' } ')'
        | 'ObjectProperty(' individualvaluedPropertyID ['Deprecated'] { annotation } 
                { 'super(' individualvaluedPropertyID ')' }
                [ 'inverseOf(' individualvaluedPropertyID ')' ] [ 'Symmetric' ] 
                { individualvaluedPropertyFlags }
                { 'domain(' description ')' } { 'range(' description ')' } ')'
        | 'AnnotationProperty(' annotationPropertyID { annotation } ')'
        | 'OntologyProperty(' ontologyPropertyID { annotation } ')'

individualvaluedPropertyFlags ::= 'Functional' | 'InverseFunctional' | 'Transitive'

axiom ::= 'EquivalentProperties(' datavaluedPropertyID datavaluedPropertyID  { datavaluedPropertyID } ')'
        | 'SubPropertyOf(' datavaluedPropertyID  datavaluedPropertyID ')'
        | 'EquivalentProperties(' individualvaluedPropertyID individualvaluedPropertyID
                                  { individualvaluedPropertyID } ')'
        | 'SubPropertyOf(' individualvaluedPropertyID  individualvaluedPropertyID ')'

2. OWL 1.1 Syntax Additions

2.1. Syntactic Sugar

OWL 1.1 extendes the syntax of OWL in two ways that simply provide shorthand notations (syntactic sugar) for
expressive power otherwise in OWL DL.

axiom ::= 'DisjointUnion(' description description { description } ')'

value ::= 'valueNot(' individualvaluedPropertyID individualID ')'
         | 'valueNot(' individualvaluedPropertyID  individual ')'
         | 'valueNot(' datavaluedPropertyID  dataLiteral ')'

The first construct is simply the obvious combination of a DisjointClasses of all the descriptions except the first and an
EquivalentClasses of the first description and the union of the other descriptions. The second construct is the
complementOf the restriction of the property to the value.

2.2. SROIQ

OWL 1.1 includes a number of Description Logic constructs that raise the core Description Logic expressive power from
SHOIN to SROIQ [SROIQ]. This amounts to adding qualified cardinality restrictions; local reflexivity restrictions for simple
properties; reflexive, irreflexive, and anti-symmetric flags for simple properties; disjointness of simple properties; and
regular property inclusion axioms.

dataCardinality ::= 'minCardinality(' non-negative-integer dataRange ')'
              | 'maxCardinality(' non-negative-integer dataRange ')'
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              | 'cardinality(' non-negative-integer dataRange ')'

individualCardinality ::= 'minCardinality(' non-negative-integer description ')'
              | 'maxCardinality(' non-negative-integer description ')'
              | 'cardinality(' non-negative-integer description ')'

individualRestrictionComponent ::= 'self'

individualvaluedPropertyFlags ::= 'Reflexive' | 'Irreflexive' | 'Symmetric' | 'AntiSymmetric' 

axiom ::= 'DisjointProperties(' dataavaluedPropertyID datavaluedPropertyID  { datavaluedPropertyID } ')'
         | 'DisjointProperties(' individualvaluedPropertyID individualvaluedPropertyID  { individualvaluedPropertyID

axiom ::= 'SubPropertyOf(propertyChain(' individualvaluedPropertyID { individualvaluedPropertyID } ')' 
                                                                                   individualvaluedPropertyID ')'

Only simple properties can have the self restriction component. Only simple properties can be specified as being
Reflexive, Irreflexive, Symmetric, or Antisymmetric. Only simple properties can used in DisjointProperties axioms for 
individual-valued properties.

The SubPropertyOf axioms involving individual-valued properties must be regular. That is, there must be a strict partial
order, <, on individual-valued properties such that for each SubPropertyOf axiom involving individual-valued properties,
of the form SubPropertyOf( S R )

S is the inverse of R,1.
S is of the form propertyChain( R ... R ),2.
S is of the form propertyChain( S1 ... Sn ) and each Si \lt; R,3.
S is of the form propertyChain( R S1 ... Sn ) and each Si \lt; R, or4.
S is of the form propertyChain( S1 ... Sn R ) and each Si \lt; R.5.

The meaning of all these constructs is the same as in SROIQ.

2.3. Datatypes

OWL 1.1 includes its own methods for user-defined datatypes. The syntax for OWL 1.1 user-defined datatypes is similar
to the one used in Protege. The semantics for OWL 1.1 user-defined datatypes is taken from XML Schema Datatypes
[XML Schema Datatypes].

dataRange ::= 'datatype(' datatypeID { datatypeRestriction } ')'
datatypeRestriction ::= datatypeFacet'(' dataLiteral')'
datatypeFacet ::= 'length' | 'minLength' | 'maxLength' | 'pattern' | 'enumeration'
               | 'maxInclusive' | 'maxExclusive' | 'minInclusive' | 'minExclusive'
               | 'totalDigits' | 'fractionDigits'

axiom ::= 'Datatype(' datatypeID { annotation } 'base(' datatypeID ')' { datatypeRestriction } ')'

Datatype facets should only by used where they would be allowed in XML Schema Datatypes [XML Schema Datatypes], 
except that the 'length', 'minLength', 'maxLength', and 'pattern' facets are not allowed for numeric types. Datatype
facets have the same meaning as in XML Schema Datatypes, except that they uniformly work in the value space, never
the lexical space. If a datatype facet is used in a way that has no meaning, such as (length "5"^^xsd:string) or
(datatype xsd:string (maxInclusive "5"^^xsd:int)) then the datatype extension is empty. Note that this means that
rdfs:Literal has no useful facets.

OWL 1.1 allows restrictions that relate values for different data-valued properties on the same individual.

restriction ::= 'holds(' datatypePredicateID { argument } ')'
restriction ::= datatypePropertyID | dataLiteral 
datatypePredicatesID ::= 'equal' | 'notEqual' | 'lessThan' | 'lessThanEqual' | 'greaterThan' | 'greaterThanEqual' 

The syntax here allows an arbitrary number of arguments, but must be appropriate for the predicate, and all the current
predicates only allow two arguments.

The base types of the values being compared must be the same, although this may be liberalized if the Semantic Web
Best Practices note on datatypes is generally adopted. All invalid combinations are unsatisfiable (i.e., they do not signal
an error). The equality and order for a particular base type is taken from XML Schema Datatypes [XML Schema 
Datatypes]. If a base datatype does not have an order then the restriction is unsatisfied.

2.4. Meta-modelling and annotations

OWL 1.1 removes the limitation on names being only one of a class, a property, or an individual in OWL DL. The
semantic change to allow this without computational consequences is to break the RDF-inspired connection between
class and property extensions and the individual denotation of names.

With this change, non-annotation properties can be placed on any name. The property applies to the use of the name as
an individual. As a simple syntactic sugar, non-annotation properties can be part of certain class and property axioms.

OWL 1.1 changes the status of the built-in properties rdfs:label and rdfs:comment from annotation properties to
data-valued properties with no domain or range.

annotation ::= value
        | 'type(' description ')' 

A class or property axiom with an annotation is syntactic sugar for an extra Individual axiom for the name with just the
annotations.
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2.5. Comments

OWL 1.1 allows arbitrary comments to be inserted in ontologies.

comment ::= 'Comment(' { commentEntry } ')' 
commentEntry ::= dataLiteral | URIreference 

A comment is allowed anywhere white space is allowed and acts as white space.

Comments have no semantic import in OWL 1.1, but systems are expected to keep track of comments.
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Abstract

Many legacy ontologies are now being translated into Description
Logic (DL) based ontology languages in order to take advantage of DL
based tools and reasoning services. The resulting DL Knowledge Bases
(KBs) are typically of large size, but have a very simple structure, i.e.,
they consist mainly of shallow taxonomies. The classification algorithms
used in state-of-the-art DL reasoners may not deal well with such KBs
In this paper we propose an optimisation which dramatically speeds-up
classification for such KBs.

1 Introduction
Motivated by the W3C recommendation, and the availability of DL based tools
and reasoning services, many legacy ontologies are now being translated into the
Description Logic (DL) based OWL DL ontology language [3]. The resulting DL
Knowledge Bases (KBs) are typically of (very) large size, but often have only a
(very) simple structure. In particular, the sub-class hierarchy often resembles a
taxonomy (i.e., an asserted hierarchy of primitive concepts), and is very broad
and shallow.

The classification algorithms used in state-of-the-art DL reasoners (such as
FaCT and RACER) may not deal well with such KBs, mainly due to the fact that
some classes in the hierarchy will have very large numbers of direct sub-classes.
For such KBs, the top-down phase of the standard classification algorithm [2]
will perform a very large number of subsumption tests, almost all of which will
fail (i.e., conclude that no subsumption relationship holds). Although the simple
structure of the KB means that the time required for each such test is small,
the very large number of tests can still lead to performance problems.

In this paper we present a classification optimisation that identifies (subsets
of) KBs for which it is possible to compute the concept hierarchy without per-
forming any subsumption tests. This technique is very effective when used on
the kinds of legacy KB described above as it avoids performing large numbers



of negative subsumption tests. It also turns out to produce (smaller) improve-
ments in classification times for some more complex ontologies, as even in these
ontologies a significant part of the upper level structure often resembles a tax-
onomy.

The drawback of this new optimisation is that it is only applicable to purely
“definitional” knowledge bases, i.e., those that do not contain any general con-
cept inclusion axioms (GCIs). However, the well known absorption optimisation
has already been shown to be able to eliminate GCIs from typical ontologies [6]
and, moreover, when absorption fails to eliminate GCIs, we may already expect
serious reasoning performance problems from other sources (i.e., the hardness
of individual subsumption tests). It is also only applicable to that portion of
a KB which has the necessary simple structure, but this is often a major part
of legacy KBs and, as mentioned above, is usually a significant part of more
complex KBs.

2 Preliminaries
Description Logics are concept (class) based knowledge representation systems.
They are (usually) decidable fragments of First Order Predicate Calculus, and
have a have standard first order style model theoretic semantics [1]. The formal
specification of semantics coupled with decidability allows for the design of deci-
sion procedures (sound, complete and terminating algorithms) for key reasoning
tasks such as concept subsumption.

A DL Knowledge Base is often thought of as consisting of two parts: a Tbox
and an Abox. The Tbox consists of a set of axioms that describe constraints on
instances of given concepts (roughly akin to a conceptual schema in a database
setting); the Abox consists of a set of axioms that assert instance relationships
between individuals and concepts, and role relationships between pairs of indi-
viduals (roughly akin to data in a database setting). Tbox axioms are of the
form C v D or C ≡ D, where C and D are concepts. When C is a concept
name, such an axiom is often called a definition (of C), and when a definition
is of the form C v D, C is called a primitive concept.

Classification of a Tbox is the task of computing and caching the concept
hierarchy for all of the named concepts that occur in the Tbox, i.e., computing
the subsumption partial ordering of the named concepts.1 Tbox classification is a
basic reasoning task for DL reasoners—the concept hierarchy may be interesting
in its own right, and is used to optimise many other reasoning tasks (e.g., query
answering). This latter point is particularly important as, even if the Tbox part
of a KB is very simple, the Abox may describe instances of complex concept
expressions. This is typical, e.g., for applications of the Gene Ontology [4].

We will first briefly recall the optimised procedure for computing the concept

1We assume w.l.o.g. that all concept names occurring in the Abox also occur in the Tbox;
this can be achieved by adding axioms of the form C v > to the Tbox for any concept name
C that would otherwise occur only in the Abox.



hierarchy first described in [2]. In this procedure, all concept names are sorted
into definitional order, i.e. if concept name D occurs in the definition of concept
name C, then D ≤ C.2 The concept hierarchy is initialised to contain the two
concepts > and ⊥ (with > being a super concept of ⊥), and the named concepts
are classified (added to the hierarchy in the appropriate position) one at a time
in definitional order.

Classifying a concept involves two phases: a top-down phase in which its par-
ents (i.e., direct subsumers) are computed, and a bottom-up phase in which its
children (i.e., direct subsumees) are computed. In many cases, adding concepts
in definitional order may allow the bottom-up phase to be omitted (because
when a new concept is classified its only child will be ⊥).

Various optimisations are used in order to minimise the number of subsump-
tion tests needed in each phase. For example, when adding a concept C to the
hierarchy, a top-down breadth first traversal is used that only checks if D sub-
sumes C when it has already been determined that C is subsumed by all the
concepts in the hierarchy that subsume D. The structure of Tbox axioms is also
used to compute a set of told subsumers of C (i.e., trivially obvious subsumers).
For example, if the Tbox contains an axiom C v D1 u D2, then both D1 and
D2, as well as all their told subsumers, are told subsumers of C. As subsump-
tion is immediate for told subsumers, no tests need to be performed w.r.t. these
concepts. In order to maximise the benefit of this optimisation, all of the told
subsumers of a concept C are classified before C itself is classified.

The told subsumer optimisation can be used to approximate the position of
C in the hierarchy: all of its told subsumers, and any super-concepts of these
told-subsumers, can be marked as subsumers of C. The most specific concepts
in this set of marked concepts are then candidates to be parents of C. In the
standard algorithm, however, it is necessary to check (recursively) if the children
of these concepts are also subsumers of C. When it has been determined for
some subsumer D of C that none of the children of D subsume C, then we know
that D is a parent of C.

At the end of the top-down phase we will have computed the set of parents
of C; all of the concepts in this set, along with all their super-concepts, are
subsumers of C; all other concepts are non-subsumers of C. The next step
is to determine the set of children of C (as mentioned above, this step can be
omitted for a primitive concept when concepts have been classified in definitional
order [2]). This phase is very similar to (the reverse of) the top-down one, and
as our optimisation only relates to the top-down phase we won’t describe it
here—interested readers can refer to [1] for full details.

For large and shallow taxonomies, a concept D may have hundreds or even
thousands of children. If, when classifying a concept C, one of its told subsumers
is D, then the above algorithm may lead to all of the other children of D being

2In the FaCT++ implementation we actually use quasi-definitional order, as proposed in [5],
but to simplify the presentation we will assume that definitional order is used.



checked to see if they subsume C. Although the time taken for each such test
may be small, the cumulative cost of all these tests may be prohibitive when
classifying such a Tbox. Moreover, in many cases all of these tests will be
negative (i.e., no subsumption relationship will be found), and might be thought
of as somehow “wasted”. The objective of our optimisation is to avoid these
“wasted” tests.

3 Completely Defined Concepts
Given a Tbox T , a primitive concept C is said to be completely defined w.r.t.
T when, for the definition C v C1 u . . . u Cn in T , it holds that:

1. For all 1 6 i 6 n, Ci is a primitive concept.

2. (minimality) There exist no i 6= j such that 1 ≤ i, j ≤ n and Ci v Cj u . . ..

When the Tbox is obvious from the context we will talk about completely defined
concepts without reference to the Tbox.

If we assume a cycle-free Tbox containing only CD concepts and no GCIs,
then the classification process is very simple. In fact, we don’t need to perform
any subsumption tests at all: the position of every concept in the hierarchy is
completely defined by its told subsumers. If concepts are processed in definitional
order, then when a concept C is classified, where C is defined by the axiom
C v C1 u . . . u Cn, the parents of C are C1, . . . , Cn, and the only child of C is
⊥. Note that every concept in such a taxonomy is satisfiable, because there is
no use of negation.

The following theorem is straightforward:

Theorem 1 If a cycle-free KB contains only completely-defined concepts and
no general axioms, then the taxonomy built by the above method will be correct.

This theorem is, however, of very little practical value due to the very strin-
gent conditions on the structure of the Tbox. In the following we will show
how the basic technique can be made more useful by weakening some of these
conditions.

Primitivity. In general, a CD concept should not have non-primitive concepts
in its definition. This is because, when the hierarchy already includes non-
primitive concepts (which will be the case given definitional order classification),
the bottom-up phase can not be omitted, and the CD method could therefore
lead to incorrect results. Assume, e.g., a TBox

{C v C1 u C2 u C3, C ′ = C1 u C2}. (1)

Using the CD classification approach, C will be classified under C1, C2, C3,
whereas it should be classified under C ′ and C3.

One case in which this condition can be weakened is for synonyms. A non-
primitive concept C is a synonym if it’s definition is of the form C = D, where



D is a primitive concept. Synonyms may came from an application domain, or
occur as a result of KB simplification, KB merging, etc.

It is easy to see that synonyms don’t require special classification: once D is
classified, C will take the same place in the hierarchy. So, adding synonyms to
the CD-only KB still allows application of the CD approach.

Minimality. Non-minimal concepts may occur as a result of badly designed
ontologies and/or due to absorption of GCIs. The minimality check may, how-
ever, be removed from the definition of CD concepts in the classification algo-
rithm. Indeed, checking if each Ci in a definition C v C1 u . . . u Cn is really a
parent of C (i.e., has no children that are subsumers of C) is exactly the check
that is needed in order to detect non-minimality. This check is relatively cheap
and already exists in the classification algorithm.

Non-CD concepts. This is the most important case, because “interesting”
ontologies, including most ontologies designed using DL based languages, will
contain concept constructors other than conjunction, and this will lead to some
concepts being non-CD. This means that, in its current form, the CD approach
will usually be largely useless. On the other hand, almost all KBs will contain
some CD concepts. In this case, it may be possible to split the Tbox into two
parts—a CD part (i.e., containing only CD concepts) and a non-CD part—and
use the CD algorithm only for the CD part.

Note that such a split will not introduce any problems if the CD part of
the classification is performed first—in fact the classification of the CD part
is independent of the non-CD part of the Tbox because the definitions of CD
concepts only refer to other CD concepts. In the Tbox 1 above, for example,
concepts C1, C2, C3 and C will be in the CD part, and C ′ in the non-CD part.
After CD-classification C will have 3 parents, and standard algorithm then insert
C ′ with parents C1, C2 and child C.

Cycles. We will distinguish two kinds of definitional cycles. The first (and
simplest) is a cycle via concept names, as in the Tbox K = {A v B u C, B v
A}. This kind of cycle can be detected syntactically and transformed into an
equivalent definition K ′ = {A v C, B = A} where A is a CD concept and B is
a synonym of A.

Any other kind of terminological cycle must involve non-CD concepts, and
so must occur in the non-CD part of TBox. In this case it will be dealt with in
the normal way by the standard classification algorithm.

General axioms. GCIs are axioms of the form C v D, where C and D are
arbitrary concept expressions.3 It is easy to see that, in the general case, the
CD approach cannot be used in the presence of GCIs. Consider, for example, a
Tbox K = {C v >,> v D}. In this case, the CD algorithm classifies C under
>, whereas it should be classified under D.

3Note that, in case there are multiple axioms of the form C v D or C ≡ D for some
concept name C, then only one of these can be considered the definition of C, and the rest
must be treated as GCIs (or, in the case of C ≡ D, as a pair of GCIs C v D and D v C).



Fortunately, most realistic KBs contain only general axioms that can be
absorbed into either concept implications [6] or role domain restrictions [8], and
in this case the CD approach is still applicable.

4 Two-stage Approach Using CD.
The two-stage CD classification algorithm has been implemented in our FaCT++
reasoner as follows. First of all, the following transformations are performed
on the Tbox (only transformations relevant to the classification algorithm are
mentioned here):

1. Absorb general axioms into concept definitions and/or role domains. If
some of the axioms are not absorbable, set useCD to false. If all the
axioms were absorbed, set useCD to true.

2. Transform simple cycles into sets of synonyms.

3. If useCD is true, mark some concepts as CD. Namely, > is marked as
CD; a primitive concept C is marked as CD iff it has the definition C v
C1 u . . . u Cn and every Ci is marked CD; a non-primitive concept D is
marked CD iff it has definition D = C and C is marked CD.

If useCD is true after the preprocessing, the CD classifier is run prior to
the general classifier. The CD classifier works on concepts that are marked CD,
processing them in definitional order. For each such concept C, the steps it
performs are as follows:

1. If C is a synonym of some already classified concept D, then insert C at
the same place as D.

2. For CD C with definition C v C1 u . . . u Cn, concepts C1, . . . , Cn are
candidates to be parents of C.

3. For every candidate Ci, check whether it is redundant, i.e. whether Ci

has a child that is an ancestor of a C. This can be done by labelling all
ancestors of candidate concepts: labelled candidates will be redundant.
Remove redundant candidates from the list of candidates.

4. Insert C into the taxonomy with the remaining candidates as parents and
⊥ as the only child.

Then the rest of the ontology is then classified using the standard classifica-
tion algorithm.

We have tested our implementation using several KBs: NCI is the National
Cancer Research Institute ontology; GO is the Gene Ontology from the Gene
Ontology Consortium; GALEN is the anatomical part of the well-known medi-
cal terminology ontology [7]. Details of KB characteristics are given in Table 1,



KB PConcepts nCD NConcepts Synonyms
NCI 27652 15195 0 0
GO 13926 11718 3 0
GALEN 2048 546 699 18

Table 1: test KB properties

KB CD time nOps nTests nCache
NCI no 76.40 1,614,903 0 10,311,489

yes 3.61 1,012,281 0 766,054
GO no 7.40 835,194 30,834 5,184,070

yes 3.67 783,024 29,768 1,432,892
GALEN no 204.70 67,524,538 25,660 82,962

yes 204.54 68,032,698 25,722 43,043

Table 2: test KB results

where PConcepts is the number of primitive concepts, nCD the number of com-
pletely defined concepts, NConcepts the number of non-primitive concepts, and
Synonyms the number of synonyms. All experiments used v.0.99.4 of FaCT++
running under Linux on an Athlon 1.3GHz machine with 768Mb of memory.

The results of the classification tests are given in Table 2, where time is the
time taken to classify the KB (in seconds), nOps is the number of expansion
rule applications during the classification process, nTests is the number of sub-
sumption tests, and nCache is the number of subsumptions that were computed
using cached models [6].

Using CD speeds up the classification of NCI by a factor of more than 20. In
both cases, all subsumption tests are solved cheaply using cached models, but
more than ten million tests are performed when CD is not used; employing CD
reduces this number to less than one million. Classification of GO is twice as fast
with CD than without it. Again, GO has a simple structure, but is very broad,
so CD still gives a significant reduction in the large number of cache based tests.
GALEN behaves differently. It is the only KB where more “real” (non cache
based) subsumption tests are performed with CD than without. This is due to
the large number of non-primitive concepts that are classified in the middle of
the hierarchy. Even in this case, however, saving large numbers of cache based
tests leads to a slightly smaller overall classification time.

5 Discussion
The proposed classification technique is applicable to a large number of real-
life ontologies, i.e., those where there are no non-absorbed GCIs. The best
results are, of course, for ontologies with large numbers of primitive concepts
and a simple structure, but even in cases where it has little beneficial effect, it
does not appear to have any detrimental one. The number of such ontologies
may decrease, because newly created ontologies will (probably) use more of



the expressive possibilities provided by modern DLs. With legacy ontologies,
however, the method may prove to be very useful.

In [5] the so-called bucket method was proposed as a way to deal with broad
and shallow hierarchies. In this method, when some concept in the hierarchy
is found to have a large number of children, a new “virtual” concept is added
to the hierarchy; this non-primitive concept is defined to be equivalent to the
disjunction of some of the children of the original concept, and is used in fast
cache-based comparison.

It is possible to use the bucket method at the second stage of the CD clas-
sification algorithm. However, this method will not improve first stage of the
algorithm, since no search is actually performed there.
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Abstract
We present a new architecture for Description
Logic implementations, a range of new optimisa-
tion techniques and an empirical analysis of their
effectiveness.

1 Introduction
Description Logics (DLs) are a family of logic based knowl-
edge representation formalisms. Although they have a
range of applications (e.g., configuration [McGuinness &
Wright, 1998], and reasoning with database schemas and
queries [Calvanese et al., 1998b; 1998a]), they are per-
haps best known as the basis for widely used ontology lan-
guages such as OIL, DAML+OIL and OWL [Horrocks et
al., 2003]. As well as DLs providing the formal under-
pinnings for these languages (i.e., a declarative semantics),
DL systems are also used to provide computational services
for ontology tools and applications [Knublauch et al., 2004;
Rectore, 2003].

Most modern DL systems are based on tableaux algo-
rithms. Such algorithms were first introduced by Schmidt-
Schauß and Smolka [Schmidt-Schauß & Smolka, 1991], and
subsequently extended to deal with ever more expressive log-
ics [Baader et al., 2003]. Many systems now implement the
SHIQ DL, a tableaux algorithm for which was first pre-
sented in [Horrocks et al., 1999]; this logic is very expres-
sive, and corresponds closely to the OWL ontology language.
In spite of the high worst case complexity of the satisfiabil-
ity/subsumption problem for this logic (ExpTime-complete),
highly optimised implementations have been shown to work
well in many realistic (ontology) applications [Horrocks,
1998].

Optimisation is crucial to the viability of tableaux based
systems: in experiments using both artificial test data and
application ontologies, (relatively) unoptimised systems per-
formed very badly, often being (at least) several orders of
magnitude slower than optimised systems; in many cases,
hours of processing time (in some cases even hundreds of
hours) proved insufficient for unoptimised systems to solve
problems that took only a few milliseconds for an optimised
system [Massacci, 1999; Horrocks & Patel-Schneider, 1998].
Modern systems typically employ a wide range of optimisa-
tions, including (at least) those described in [Baader et al.,
1994; Horrocks & Patel-Schneider, 1999].

Tableaux algorithms try to construct a graph (usually a
tree) representation of a model of a concept, the structure of
which is determined by syntactic decomposition of the con-
cept. Most implementations employ a space saving optimisa-

tion known as the trace technique that uses a top-down con-
struction requiring (for PSpace logics) only polynomial space
in order to delineate a tree structure that may be exponential
in size (with respect to the size of the input concept). For
the ExpTime logics implemented in modern systems, how-
ever, guaranteeing polynomial space usage is no longer an
option. Moreover, for logics that support inverse roles (such
as SHIQ), a strictly top down approach is no longer possible
as constraints may be propagated both “up” and “down” the
edges in the tree.

We describe an alternative architecture for tableaux imple-
mentations that uses a (set of) queue(s) instead of (an adap-
tion of) the standard top-down approach. This architecture,
which we have implemented in our new FaCT++ system, has
a number of advantages when compared to the top-down ap-
proach. Firstly, it is applicable to a much wider range of log-
ics, including the expressive logics implemented in modern
systems, because it makes no assumptions about the structure
of the graph (in particular, whether tree shaped or not), or the
order in which the graph will be constructed. Secondly, it
allows for the use of more powerful heuristics that try to im-
prove typical case performance by varying the global order
in which different syntactic structures are decomposed; in a
top-down construction, such heuristics can only operate on a
local region of the graph—typically a single vertex.

2 Preliminaries
We present here a brief introduction to DL (in particular
SHIQ) syntax, semantics and reasoning; for further details
the reader is referred to [Baader et al., 2003].
2.1 Description Logics
Syntax Let R be a set of role names with both transitive and
normal role names R+∪RP = R, where R+∩RP = ∅. The
set of SHIQ-roles (or roles for short) is R∪{R− | R ∈ R}.
Let NC be a set of concept names. The set of SHIQ-
concepts (or concepts for short) is the smallest set such that
every concept name C ∈ NC is a concept, and if C and D
are concepts, R is a role, S is a simple role1 and n ∈ IN, then
(C u D), (C t D), (¬C), (∀R.C), (∃R.C), (6nR.C) and
(>nR.C) are also concepts; the last four are called, respec-
tively, value, exists, atmost and atleast restrictions.

For R and S (possibly inverse) roles, R v S is called a
role inclusion axiom, and a finite set of role inclusion axioms
is called a role hierarchy. For C and D (possibly complex)

1A simple role is one that is neither transitive nor has any tran-
sitive subroles. Restricting number restrictions to simple roles is
required for decidability [Horrocks et al., 1999].



concepts, C v D is called a general concept inclusion (GCI),
and a finite set of GCIs is called a TBox.
Semantics An interpretation I = (∆I , ·I) consists of a non-
empty set ∆I , the domain of I, and a function ·I which maps
every role to a subset of ∆I ×∆I such that, for P ∈ R and
R ∈ R+, 〈x, y〉 ∈ P I iff 〈y, x〉 ∈ P−I , and if 〈x, y〉 ∈ RI

and 〈y, z〉 ∈ RI then 〈x, z〉 ∈ RI . The interpretation func-
tion ·I of an interpretation I = (∆I , ·I) maps, additionally,
every concept to a subset of ∆I such that

(C uD)I = CI ∩DI , (C tD)I = CI ∪DI ,
¬CI = ∆I \ CI ,

(∃R.C)I = {x ∈ ∆I | RI(x,C) 6= ∅},
(∀R.C)I = {x ∈ ∆I | RI(x,¬C) = ∅},

(6nR.C)I = {x ∈ ∆I | ]RI(x, C) 6 n}, and
(>nR.C)I = {x ∈ ∆I | ]RI(x, C) > n},

where ]M is the cardinality of a set M and RI(x, C) is de-
fined as {y | 〈x, y〉 ∈ RI and y ∈ CI}.
An interpretation I satisfies a role hierarchy R iff RI ⊆ SI

for each R v S ∈ R, and it satisfies a TBox T iff CI ⊆ DI

for each C v D ∈ T ; such an interpretation is called a model
of R and T .

A concept C is satisfiable w.r.t. a role hierarchy R and a
TBox T iff there is a model I of R and T with CI 6= ∅.
Such an interpretation is called a model of C w.r.t. R and T .
As usual for expressive DLs, subsumption can be reduced to
satisfiability, and reasoning w.r.t. a TBox and role hierarchy
can be reduced to reasoning w.r.t. a role hierarchy only [Hor-
rocks et al., 1999].
2.2 Tableaux Algorithms
The basic idea behind a tableau algorithm is to take an in-
put concept C and role hierarchy R, and to try to prove the
satisfiability of C w.r.t. R by constructing a model I of C
w.r.t. R. This is done by syntactically decomposing C so as
to derive constraints on the structure of such a model. For
example, any model of C must, by definition, contain some
individual x such that x is an element of CI , and if C is of
the form ∃R.D, then the model must also contain an individ-
ual y such that 〈x, y〉 ∈ RI and y is an element of DI ; if D
is non-atomic, then continuing with the decomposition of D
would lead to additional constraints. The construction fails
if the constraints include a clash (an obvious contradiction),
e.g., if some individual z must be an element of both C and
¬C for some concept C. Algorithms are normally designed
so that they are guaranteed to terminate, and guaranteed to
construct a model if one exists; such an algorithm is clearly a
decision procedure for concept satisfiability.

In practice, algorithms often work on a tree shaped graph
that has a close correspondence to a model; this may be be-
cause, e.g., models could be non-finite (although obviously
finitely representable), or non-trees (although usually tree-
like). Typically this will be a labelled graph (usually a tree
or collection of trees) where nodes represent individuals in
the model, and are labelled with a set of concepts of which
they are instances, and edges represent role relationships be-
tween pairs of individuals, and are labelled with a set of role
names.

The decomposition and construction is usually carried out
by applying so called tableaux expansion rules to the concepts
in node labels, with one rule being defined for each of the
syntactic constructs in the language (with the exception of

negation, which is pushed inwards using re-writings such as
de Morgan’s laws, until it applies only to atomic concepts).
For example, the expansion rule for conjunction causes C and
D to be added to any node label already containing C uD (in
order to guarantee termination, side conditions prevent rules
from being applied if they do not change either the graph or
its labelling).

There are two forms of non-determinism in the expansion
procedure. In the first place, many rules may be simultane-
ously applicable, and some order of rule applications must be
chosen. From a correctness perspective, this choice is usually
irrelevant2 (because, if there is a model, then it will be found
by any expansion ordering), but as we will see later, the order
of expansion can have a big effect on efficiency. In the second
place, some rules expand the graph non-deterministically;
e.g., the expansion rule for disjunction causes either C or
D to be added to any node label already containing C t D.
From a correctness perspective, this choice is relevant (be-
cause one choice may lead to the successful construction of
a model, while another one does not), and is usually dealt
with by backtracking search. Although such search must (in
the worst case) consider all possible expansions, the order in
which they are considered can still have a big effect on effi-
ciency.

Two kinds of rule will be of particular interest in the fol-
lowing discussion: non-deterministic rules, such as the t-rule
mentioned above, and generating rules, such as the ∃-rule,
that add new nodes to the graph. Applying these rules is
likely to be more “costly”, as they either increase the size
of the graph or increase the size of the search space, and they
are typically applied with lower priority than other rules.

3 FaCT++ System Architecture
As discussed above, many implementations use a top-down
expansion based on the trace technique. The idea of the top-
down expansion is to apply the ∃-rule with the lowest priority
(i.e., only apply this rule when no other rule is applicable); the
added refinement of the trace technique is to discard fully ex-
panded sub-trees, so that only a single “trace” (i.e., a branch
of the tree) is kept in memory at any one time.

This technique has the advantage of being very simple and
easy to implement—a procedure that exhaustively expands a
node label can be applied to the current node and then, recur-
sively, to each of its successors. It does, however, have some
serious drawbacks. In the first place, for logics with inverse
roles, the top-down method simply breaks down as it relies
on the fact that rules only ever add concepts to the label of
the node to which they are applied or to the label of one of its
successor nodes. The result is that, once the rules have been
exhaustively applied to a given node label, no further expan-
sion of that label will be possible. In the presence of inverse
roles, expansion rules may also add concepts to the labels of
predecessor nodes, which could then require further expan-
sion. Moreover, discarding fully expanded sub-trees may no
longer be possible, as the expansion of a concept added to
the label of a predecessor may cause concepts to be added
to the label of a sibling node that had previously been fully
expanded.

In the second place, the top down method forces non-
deterministic rules to be applied with a higher priority than
generating rules. As the size of the search space caused
by non-deterministic rule expansions is, in practice, by

2Although the correctness of some algorithms requires a priority
ordering for different rules.



far the most serious problem for tableaux based systems
[Horrocks, 1997], it may be advantageous to apply non-
deterministic rules with the lowest priority [Giunchiglia &
Sebastiani, 1996]. In fact, top-down implementations typ-
ically apply non-deterministic rules with a priority that is
lower than that of all of the other rules except the generat-
ing rules [Horrocks & Patel-Schneider, 1999].
ToDo List Architecture The FaCT++ system was designed
with the intention of implementing DLs that include inverse
roles, and of investigating new optimisation techniques, in-
cluding new ordering heuristics. Currently, FaCT++ imple-
ments SHIF , a slightly less expressive variant of SHIQ
where the values in atleast and atmost restrictions can only
be zero or one.3

Instead of the top-down approach, FaCT++ uses a ToDo
list to control the application of the expansion rules. The ba-
sic idea behind this approach is that rules may become appli-
cable whenever a concept is added to a node label. When this
happens, a note of the node/concept pair is added to the ToDo
list. The ToDo list sorts all entries according to some order,
and gives access to the “first” element in the list.

A given tableaux algorithm takes an entry from the ToDo
list and processes it according to the expansion rule(s) rele-
vant to the entry (if any). During the expansion process, new
concepts may be added to node labels, and hence entries may
be added to the ToDo list. The process continues until either
a clash occurs or the ToDo list become empty.

In FaCT++ we implement the ToDo list architecture as a
set of queues (FIFO buffers). It is possible to set a priority
for each rule type (e.g., u and ∃), and a separate queue is im-
plemented for each unique priority. Whenever the expansion
algorithm asks for a new entry, it is taken from the non-empty
queue with the highest priority, and the algorithm terminates
when all the queues are empty. This means that if the ∃-rule
has a low priority (say 0), and all other rules have the same
priority (say 1), then the expansion will be (modulo inverse
roles) top-down and breadth first; if stacks (LIFO buffers)
were used instead of queues with the same priorities, then
the expansion would simulate the standard top-down method.

4 Heuristics
When implementing reasoning algorithms, heuristics can be
used to try to find a “good” order in which to apply infer-
ence rules (we will call these rule-ordering heuristics) and,
for non-deterministic rules, the order in which to explore the
different expansion choices offered by rule applications (we
will call these expansion-ordering heuristics). The aim is to
choose an order that leads rapidly to the discovery of a model
(in case the input is satisfiable) or to a proof that no model
exists (in case the input is unsatisfiable). The usual technique
is to compute a weighting for each available option, and to
choose the option with the highest (or lowest) weight. Much
of the “art” in devising useful heuristics is in finding a suit-
able compromise between the cost of computing the weight-
ings and their accuracy in predicting good orderings.

Such heuristics can be very effective in improving the
performance of propositional satisfiability (SAT) reason-
ers [Freeman, 1995], but finding useful heuristics for descrip-
tion and modal logics has proved to be more difficult. Choos-
ing a good heuristic, or at least not choosing a bad one, is very
important: an inappropriate heuristic may not simply fail to
improve performance, it may seriously degrade it. Even more

3SHIF corresponds to the OWL-Lite ontology language [Hor-
rocks et al., 2003].

problematical is, given a range of possible heuristics, choos-
ing the best one to use for a given (type of) problem.

So far, the heuristics tried with DL reasoners have mainly
been adaptions of those already developed for SAT reason-
ers, such as the well known MOMS heuristic [Freeman,
1995] and Jeroslow and Wang’s weighted occurrences heuris-
tic [Jeroslow & Wang, 1990]. These proved to be largely in-
effective, and even to degrade performance due to an adverse
interaction with backjumping [Baader et al., 2003]. An al-
ternative heuristic, first presented in [Horrocks, 1997], tries
to maximise the effect of dependency directed backtracking
(backjumping) by preferentially choosing expansions that in-
troduce concept with “old” dependencies. Even this heuristic,
however, has relatively little effect on performance with real-
istic problems, e.g., problems encountered when reasoning
with application ontologies.

We conjecture that the standard top-down architecture has
contributed to the difficulty in finding useful heuristics as it
rules out many possible choices of rule-ordering; in particu-
lar, the top-down technique may require generating rules to be
applied with a low priority, and so lead to non-deterministic
rules being applied before deterministic generating rules. In
contrast, the ToDo list architecture gives a much wider range
of possible rule orderings, and so has allowed us to investigate
a range of new rule-ordering heuristics, in particular heuris-
tics that give non-deterministic rules the lowest priority.

Another factor that has contributed to the weakness of SAT
derived heuristics is that they treat concepts as though they
were atoms. This is obviously appropriate in the case of
propositional satisfiability, but not in the case of concept sat-
isfiability where sub-concepts may have a complex structure.
We have also investigated expansion-ordering heuristics that
take into account this structure, in particular a concept’s size,
maximum quantifier depth, and frequency of usage in the
knowledge base.
Implementation in FaCT++ The FaCT++ reasoner uses the
standard backtracking search technique to explore the differ-
ent possible expansions offered by non-deterministic rules
(such as the t-rule). Before applying a non-deterministic
rule, the current state is saved, and when backtracking, the
state is restored before re-applying the same rule (with a dif-
ferent expansion choice). When inverse roles are supported,
it is possible for a sequence of deterministic rule applications
to propagate changes throughout the graph, and it may, there-
fore, be necessary to save and restore the whole graph struc-
ture (in addition to other data structures such as the ToDo
list). FaCT++ trys to minimise the potentially high cost of
these operations by lazily saving the graph, (i.e., saving parts
of the graph only as necessitated by the expansion), but the
cost of saving the state still makes it expensive to apply a
non-deterministic rule, even if the state is never restored dur-
ing backtracking.

As discussed in Section 3, FaCT++ uses a ToDo list ar-
chitecture with separate queues for each priority level. Dif-
ferent rule-ordering heuristics can, therefore, be tried sim-
ply by varying the priorities assigned to different rule types.
Low priorities are typically given to generating and non-
deterministic rules, but the ToDo list architecture allows dif-
ferent priority ordering of these rule types; in contrast, the
top-down architecture forces a lower priority to be given to
generating rules.

FaCT++ also includes a range of different expansion-
ordering heuristics that can be used to choose the order in
which to explore the different expansion choices offered by
the non-deterministic t-rule. This ordering can be on the ba-



sis of the size, maximum quantifier depth, or frequency of us-
age of each of the concepts in the disjunction, and the order
can be either ascending (smallest size, minimum depth and
lowest frequency first) or descending. In order to avoid the
cost of repeatedly computing such values, FaCT++ gathers
all the relevant statistics for each concept as the knowledge
base is loaded, and caches them for later use.

5 Empirical Analysis
In order to evaluate the usefulness of the heuristics imple-
mented in FaCT++, we have carried out an empirical analy-
sis using both real-life ontologies and artificial tests from the
DL’98 test suite [Horrocks & Patel-Schneider, 1998].

Ontologies can vary widely in terms of size and complexity
(e.g., structure of concepts, and types of axiom used). We
used three ontologies with different characteristics in order to
see how the heuristics would perform in each case:
WineFood A sample ontology that makes up part of the

OWL test suit4 [Carroll & De Roo, 2004]; it is small, but
has a complex structure and includes 150 GCIs.

DOLCE A foundational (top-level) ontology, developed in
the WonderWeb project [Gangemi et al., 2002]; it is of
medium size and medium complexity.

GALEN The anatomical part of the well-known medical
terminology ontology [Rogers et al., 2001]; it is large
(4,000 concepts) and has a relatively simple structure,
but includes over 400 GCIs.

FaCT++ separates the classification process into satisfia-
bility testing (SAT) and subsumption testing (SUB) phases;
the results from the SAT phase are cached and used to speed
up subsequent tests via a standard “model-merging” optimi-
sation [Horrocks & Patel-Schneider, 1999]. FaCT++ allows
different heuristics to be used in the two phases of the pro-
cess; this is because the tests have different characteristics: in
the SAT phase, nearly all of the tests are satisfiable (ontolo-
gies typically do not give names to unsatisfiable concepts),
while in the SUB phase, up to one in four of the tests are un-
satisfiable. We measured the time (in CPU seconds) taken by
FaCT++ to complete each phase.

In addition to the ontologies, we used artificially generated
test data from the DL’98 test suite. Artificial tests are in some
sense corner cases for a DL reasoner designed primarily for
ontology reasoning, and these tests are mainly intended to in-
vestigate the effect of hard problems with very artificial struc-
tures on the behaviour of our heuristics. For this purpose we
selected from the test suite several of the tests that proved to
be hard for FaCT++.

Each of these tests consists of a set of 21 satisfiability test-
ing problems of similar structure, but (supposedly exponen-
tially) increasing difficulty; the idea of the test is to determine
the number of the largest problem that can be solved within a
fixed amount of processing time (100 seconds of CPU time in
our case). The names of the tests are of the form “test p”
or “test n”, where “test” refers to the kind of problem
(e.g., the “ph” tests are derived from encodings of pigeon
hole sorting problems), and “p/n” refers to whether the prob-
lems in the test set are satisfiable (n) or unsatisfiable (p). For
these tests we have reported the number of the largest prob-
lem solved in less than 100 seconds (21 means that all the
problems were solved), along with the time (in CPU seconds)
taken for the hardest problem that was successfully solved.

4This ontology therefore has a much weaker claim to being “real-
life”.

For all the tests, FaCT++ v.0.99.2 was used on Pentium
4 2.2 GHz machine with 512Mb of memory, running Linux.
Times were averaged over 3 test runs.
5.1 Rule-ordering Heuristics
In these tests we tried a range of different rule-ordering strate-
gies. Each “strategy” is shown as a sequence of letters spec-
ifying the priorities (highest first) of the different rule types,
where “O” refers to the t-rule, “E” to the ∃-rule, and “a” to
any other rule type. E.g., “aO” describes the strategy where
the t-rule has the lowest priority, and all other rules have an
equal higher priority.
Ontology tests The results of using different rule-ordering
strategies with the various ontologies are shown in Table 1.
All ontologies were tested with the best disjunction-ordering
heuristic, as determined in separate tests (see below).

KB DOLCE WineFood GALEN
SAT SUB SAT SUB SAT SUB

a 0.74 0.74 0.22 2.44 99.44 1678.11
aO 0.64 0.68 0.14 1.64 29.80 569, 64

aEO 0.58 0.57 0.15 1.67 9.88 173.79
aE 0.60 0.58 0.27 2.87 13.35 205.32

aOE 0.61 0.59 0.27 2.93 13.22 201.40

Table 1: Ontology tests with different rule-orderings
The first thing to note is that rule-orderings have relatively

little effect on the DOLCE and WineFood ontologies; in con-
trast, the performance of the best and worst strategies dif-
fers by a factor of almost 10 in the GALEN tests. Even in
the GALEN case, however, the difference between the “-O”
strategies (i.e., those that assign the lowest priority to the t-
rule) and “-E” strategies (i.e., those that assign the lowest pri-
ority to the ∃-rule) is relatively small. In most cases the best
result is given by the “aEO” strategy, i.e., by assigning the
lowest priority to the t-rule and the next lowest priority to the
∃-rule, and even when “aEO” is not the best strategy, the dif-
ference between it and the best strategy is very small. More-
over, the difference between the “aEO” and “aOE” strategies
is small in most cases, and never more than a factor of 2.
DL98 tests The results of using different rule-ordering strate-
gies with the DL98 tests are shown in Table 2. The first thing
to note from these results is that rule-ordering heuristics can
have a much more significant effect than in the ontology tests:
in some cases the performance of the best and worst strategies
differs by a factor of more than 100. In most tests, the “-E”
strategies give the best results, with the difference between
“-O” and “-E” strategies being much more marked than in
the case of the ontology tests. In the case of the d4 n test,
however, performance is dramatically improved (by a factor
of 20) when an “-O” strategy is used.

test br n br p d4 n ph n ph p
last time last time last time last time last time

a 8 16.7 9 20.5 20 94.8 11 99.0 7 15.5
aO 11 38.2 11 38.1 21 0.8 10 10.8 7 32.1

aEO 11 38.8 11 39.0 21 0.8 10 10.9 7 32.9
aE 11 17.1 12 18.3 21 15.7 11 97.4 7 15.2

aOE 11 19.3 12 21.1 21 16.1 11 99.5 7 15.9

Table 2: DL-98 tests with different rule-ordering strategies

5.2 Expansion-ordering Heuristics
In these tests we tried a range of different expansion-ordering
heuristics. Each heuristic is denoted by two letters, the first of



which indicates whether the ordering is based on concept size
(“S”), maximum depth (“D”) or frequency of usage (“F”), and
the second of which indicates ascending (“a”) or descending
(“d”) order. In each group of tests we used the best rule-
ordering heuristic as determined by the tests in Section 5.1.
Ontology tests For the ontology tests, we tried different or-
derings for the SAT and SUB phases of classification. The
results are presented in Tables 3, 4 and 5; the first figure in
each column is the time taken by the SAT phase using the
given ordering, and the remaining figures are the subsequent
times taken using different SUB phase orderings.

For DOLCE (Table 3), the difference between the best and
worst orderings was a factor of about 4, and many possible or-
derings were near optimal. For WineFood (Table 4), the dif-
ference between the best and worst orderings was a factor of
about 2, and using Sd for SAT tests and Dd for SUB tests gave
the best result, although several other orderings gave similar
results. For GALEN (Table 5), the difference between the
best and worst orderings was so large that we were only the
orderings given allowed tests to be completed in a reasonable
time. The best result was given by using Da for both phases.

SAT Sa Da Fa Sd Dd Fd
SUB 1.29 1.28 1.24 0.61 0.6 0.6
Sa 2.53 2.52 2.52 2.46 2.45 2.41
Da 2.53 2.53 2.53 2.44 2.44 2.41
Fa 0.91 0.91 0.89 0.97 0.98 0.88
Sd 0.61 0.60 0.60 0.59 0.59 0.59
Dd 0.60 0.60 0.60 0.60 0.59 0.60
Fd 1.33 1.34 1.33 1.30 1.34 1.33

Table 3: DOLCE test with different expansion-orderings

SAT Sa Da Fa Sd Dd Fd
SUB 0.26 0.29 0.19 0.13 0.13 0.20
Sa 3.15 3.57 3.27 3.21 3.21 3.68
Da 3.54 3.57 3.44 3.20 3.40 3.47
Fa 3.67 3.57 2.32 2.12 2.41 2.35
Sd 1.77 1.80 1.71 1.80 1.80 1.83
Dd 1.69 1.77 1.87 1.66 1.78 1.78
Fd 2.30 2.26 2.75 3.14 3.54 2.76

Table 4: WineFood test with different expansion-orderings

SAT Sa Da
SUB 18.76 9.88
Sa 276.90 276.16
Da 185.79 172.89
Fd 1049.74 943.06

Table 5: GALEN test with different expansion-orderings
DL98 tests Table 6 presents the results for the DL98 tests.
Each column shows the times taken using different expan-
sion orderings to solve the hardest problem that was solvable
within the stipulated time limit using any ordering.

In almost every test, the difference between the best and
worst strategies is large: a factor of more than 300 in the d4 n
test. Moreover, strategies that are good in one test can be very
bad in another (the Sd and Dd strategies are the best ones in
the branch tests (br n and br p), but (by far) the worst in the
d4 n test), and this is not strongly dependent on the satisfi-
ability result (in the br tests, all strategies perform similarly
in both satisfiable and unsatisfiable cases). The Fd strategy is,
however, either optimal or near optimal in all cases.

order br n br p d4 n ph n ph p
test 11 test 12 test 21 test 10 test 7

Sa 22.6 24.8 0.9 8.1 29.5
Da 22.6 24.8 0.9 >300 24.5
Fa >300 >300 32.0 22.9 20.2
Sd 17.0 18.3 >300 38.7 24.7
Dd 17.1 18.3 >300 19.7 19.3
Fd 22.2 25.1 0.8 6.2 15.3

Table 6: DL98 tests with different Or strategies

5.3 Analysis
The different rule-ordering heuristics we tried had relatively
little effect on the performance of the reasoner when classify-
ing the DOLCE and WineFood ontologies. With the GALEN
ontology, any strategy that gave a lower priority to the ∃- and
t-rules worked reasonably well, and the aEO strategy was
optimal or near-optimal in all cases. The crucial factor with
GALEN is giving low priority to the ∃-rule. This is due to
the fact that GALEN is large, contains many GCIs and also
contains existential cycles in concept inclusion axioms (e.g.,
C v ∃R.D and D v ∃R−.C); as a result, the graph can grow
very large, and this increases both the size of the search space
(because GCI related non-determinism may apply on a per-
node basis) and the cost of saving and restoring the state dur-
ing backtracking search. Giving a low priority to the ∃-rule
minimises the size of the graph and hence can reduce both the
size of the search space and the cost of saving and restoring.
This effect is less noticeable with the other ontologies be-
cause their smaller size and/or lower number of GCIs greatly
reduces the maximum size of graphs and/or search space. In
view of these results, FaCT++’s default rule-ordering strategy
has been set to aEO.5

The picture is quite different in the case of the DL’98 tests.
Here, different strategies can make a large difference, and no
one strategy is universally near optimal. This is to be ex-
pected, given that some of the tests include very little non-
determinism, but are designed to force the construction of
very large models (and hence graphs), while others are highly
non-deterministic, but have only very small models. Given
that these extreme cases are not representative of typical real-
life ontologies, the test results may not be directly relevant to
a system designed to deal with such ontologies. It is inter-
esting, however, to see how badly the heuristics can behave
in such cases: in fact the standard aEO strategy is near opti-
mal in two of the tests, and is never worse than the optimal
strategy by a factor of more than 2.

The expansion-ordering heuristics had a much bigger
effect on ontology reasoning performance (than the rule-
ordering heuristics). In the case of DOLCE and WineFood,
almost any strategy that uses Sd or Dd in the SUB phase is
near optimal. For GALEN, however, using Da in both phases
gives by far the best results. This is again due to the character-
istic structure of this ontology, and the fact that preferentially
choosing concepts with low modal depth tends to reduce the
size of the graph. Unfortunately, no one strategy is univer-
sally good (Da/Da is best for GALEN but worst for DOLCE
and WineFood); currently, Sd/Dd is the default setting, as the
majority of real life ontologies resemble DOLCE and Wine-
Food more than GALEN), but this can of course be changed

5Top-down architectures necessarily give lowest priority to the
∃-rule, and generally give low priority to t-rule, which is why they
work relatively well with ontologies.



by the user if it is known that the ontology to be reasoned with
will have a GALEN-like structure.

For the DL’98 tests, the picture is again quite confused:
the Sd strategy (the default in the SAT phase) is optimal in
some tests, but bad in others—disastrously so in the case of
the d4 n test. As in the ontology case, the only “solution”
offered at present is to allow users to tune these settings ac-
cording to the problem type or empirical results.

6 Discussion and Future Work
We have described the ToDo list architecture used in the
FaCT++ system along with a range of heuristics that can be
used for rule and expansion ordering. We have also presented
an empirical analysis of these heuristics and shown how these
have led us to select the default setting currently used by
FaCT++.

These default settings reflect the current predominance of
relatively small and simply structured ontologies. This may
not, however, be a realistic picture of the kinds of ontology
that we can expect in the future: many existing ontologies (in-
cluding, e.g., WineFood) pre-date the development of OWL,
and have been translated from less expressive formalisms.
With more widespread use of OWL, and the increasing avail-
ability of sophisticated ontology development tools, it may be
reasonable to expect the emergence of larger and more com-
plex ontologies. As we have seen in Section 5.1, heuristics
can be very effective in helping us to deal efficiently with
such ontologies, but choosing a suitable heuristic becomes of
critical importance.

In our existing implementation, changing heuristics re-
quires the user to set the appropriate parameters when using
the reasoner. This is clearly undesirable at best, and unre-
alistic for non-expert users. We are, therefore, working on
techniques that will allow us to guess the most appropriate
heuristics for a given ontology. The idea is to make an initial
guess based on an analysis of the syntactic structure of the on-
tology (it should be quite easy to distinguish GALEN-like on-
tologies from DOLCE and WineFood-like ontologies simply
by examining the statistics that have already been gathered
for use in expansion-ordering heuristics), with subsequent ad-
justments being made based on the behaviour of the algorithm
(e.g., the size of graphs being constructed).

Another limitation of the existing implementation is that a
single strategy is used for all the tests performed in the clas-
sification process. In practice, the characteristics of differ-
ent tests (e.g., w.r.t. concept size and/or satisfiability) may
vary considerable, and it may make sense to dynamically
switch heuristics depending on the kind of test being per-
formed. This again depends on having an effective (and
cheap) method for analysing the likely characteristics of a
given test, and syntactic and behavioural analyses will also
be investigated in this context.
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Abstract. Tableaux algorithms are currently the most widely-used and empirically the fastest
algorithms for reasoning in expressive Description Logics, including the important Descrip-
tion LogicsSHIQ andSHOIQ. Achieving a high level of performance on terminological
reasoning in expressive Description Logics when using tableaux-based algorithms requires
the incorporation of a wide variety of optimisations. The Description Logic systemFaCT++
implements a wide variety of such optimisations, some present in other reasoners and some
novel or refined inFaCT++. Together these optimisations makeFaCT++ one of the fastest
current systems for terminological reasoning on expressive Description Logics.

Keywords: Description Logic, Reasoning Systems, Optimisations

1. Introduction

Description Logics (DLs) are a family of logic based knowledge representa-
tion formalisms. Although they have a range of applications (e.g., configura-
tion (McGuinness and Wright, 1998) and reasoning with database schemas
and queries (Calvanese et al., 1998b; Calvanese et al., 1998a)), they are per-
haps best known as the basis for widely used ontology languages such as
OIL (Fensel et al., 2001), DAML+OIL (Horrocks et al., 2002) and OWL (Hor-
rocks et al., 2003). As well as DLs providing the formal underpinnings for
these ontology languages (by means of the declarative semantics of DLs), DL
systems are also used to provide computational services for ontology tools
and applications (Knublauch et al., 2004; Rector, 2003). Such services typ-
ically include (at least) computing the subsumption hierarchy and checking
the consistency of named concepts in an ontology.

Most modern DL systems are based on tableaux algorithms. Such al-
gorithms were first introduced by Schmidt-Schauß and Smolka (Schmidt-
Schauß and Smolka, 1991), and subsequently extended to deal with a wide
range of different logics (Baader et al., 2003). Many systems now implement
theSHIQ DL, a tableaux algorithm for which was first presented by Hor-
rocks, Sattler, and Tobies (Horrocks et al., 1999), or its extensionSHOIQ,
whose tableaux algorithm was recently described by Horrocks and Sattler

c© 2006Kluwer Academic Publishers. Printed in the Netherlands.

Optimisations.tex; 27/04/2006; 9:02; p.1



2 Tsarkov, Horrocks and Patel-Schneider

(Horrocks and Sattler, 2005). These two DLs are very expressive, and cor-
respond closely to the OWL ontology language. (Reasoning in OWL Lite
can be reduced to reasoning inSHIQ and reasoning in OWL DL can be
reduced to reasoning inSHOIQ (Horrocks and Patel-Schneider, 2003).) In
spite of the high worst case complexity of the satisfiability/subsumption prob-
lem for this logic (ExpTime-complete forSHIQ and NExpTime-complete
for SHOIQ), highly optimised implementations of the tableaux algorithms
for SHIQ andSHOIQ have been shown to work well in many realistic
(ontology) applications (Horrocks, 1998; Pan, 2005; Stevens et al., 2002;
Wolstencroft et al., 2005).

Optimisation is crucial to the viability of systems that employ tableaux-
based algorithms for DL reasoning: in experiments using both artificial test
data and application ontologies, (relatively) unoptimised systems performed
very badly, often being (at least) several orders of magnitude slower than op-
timised systems; in many cases, hours of processing time (in some cases even
hundreds of hours) proved insufficient for unoptimised systems to solve prob-
lems that took only a few milliseconds for an optimised system (Massacci,
1999; Horrocks and Patel-Schneider, 1998).

The optimisation of tableaux based systems has been the subject of exten-
sive study over the course of the last fifteen years (Baader et al., 1994; Hor-
rocks, 1998; Haarslev and M̈oller, 2001a; Haarslev and M̈oller, 2001b; Hor-
rocks, 2003; Horrocks and Sattler, 2002; Tsarkov and Horrocks, 2005b), and
modern systems typically employ a wide range of optimisations, including
(at least) those described by Baaderet al (Baader et al., 1994) and Horrocks
and Patel-Schneider (Horrocks and Patel-Schneider, 1999).

In this paper we describe the optimisation techniques employed in our
FaCT++ reasoner (Tsarkov and Horrocks, 2005b). While focusing mainly
on novel techniques and significant refinements and extensions of previously
known techniques, we have also described the “standard” techniques as well
as some simple techniques that are widely employed but often not reported
in the literature. In this way we hope to provide both a report on the novel
techniques developed in theFaCT++ system and a reasonably comprehen-
sive survey of the optimisation techniques employed in state of the art DL
reasoning systems.

Many of the techniques we will describe could be applied to a wide range
of DLs. We will, however, focus onSHOIQ, because

− the expressive power ofSHOIQ subsumes that of most of the DLs
discussed in the literature or implemented in DL reasoners;

− SHOIQ is the logic implemented in ourFaCT++ system, and in other
state of the art DL reasoners such as Pellet (Sirin et al., 2005b);1 and

1 In fact Pellet implements the slightly weaker logicSHOIN .

Optimisations.tex; 27/04/2006; 9:02; p.2



Optimising Expressive DLs 3

− as the basis of the W3C OWL web ontology language,SHOIQ is now
very widely used in practice.

DLs usually distinguish between the terminological part of a knowledge
base (called the TBox), which describes the structure of the domain of dis-
course in terms of concepts and roles, and the assertional part (called the
ABox), which describes some particular situation in terms of instances of
concepts and roles.FaCT++ is primarily designed to support TBox reason-
ing, as this kind of reasoning is widely used, e.g., in ontology design and
maintenance tools such as Protéǵe (Prot́eǵe, 2003) and Swoop (Kalyanpur
et al., 2005). However, the expressive power ofSHOIQ is such that it blurs
the usual distinction between TBox and ABox, andFaCT++ exploits this
to support ABox reasoning. This simple approach would, however, clearly
not scale to very large ABoxes, and for a discussion of implementation and
optimisation techniques designed to address the problems of reasoning with
large ABoxes, the reader is referred to work on optimising ABox reasoning in
the Racer system (Haarslev and Möller, 2000; Haarslev and M̈oller, 2001a).

2. Preliminaries

We present here a brief introduction to description logic syntax and seman-
tics (in particular the syntax and semantics ofSHOIQ), and to tableaux
algorithms for description logics (in particular forSHOIQ). We will not
attempt to give a comprehensive description of the algorithms, or present
any proofs; rather we will provide just such details of the basic, unoptimised
method as will be necessary in order to understand the subsequent sections
on optimisation techniques. The interested reader is referred to other work on
tableaux algorithms (such as (Baader and Sattler, 2001)) for further details on
tableaux algorithms in general, and the introduction of theSHOIQ tableaux
algorithm (Horrocks and Sattler, 2005) for further details on theSHOIQ
algorithm.

2.1. SHOIQ SYNTAX AND SEMANTICS

SHOIQ is a very expressive DL that, in addition to the standard Boolean
connectives, allows for transitive roles, a hierarchy of sub- and super-roles,
inverse (sometimes called converse) roles, qualified cardinality constraints,
and nominals (i.e., the ability to refer to individuals in concept expressions).
This last feature leads to a blurring of the usual DL distinction between TBox
(a set of axioms concerning classes and roles) and ABox (a set of axioms con-
cerning individuals); we will return to this point when discussing the syntax
and semantics ofSHOIQ knowledge bases.

Optimisations.tex; 27/04/2006; 9:02; p.3



4 Tsarkov, Horrocks and Patel-Schneider

DEFINITION 1. LetR be a set ofrole nameswith both transitive and nor-
mal role namesR+ ∪RP = R, whereRP ∩R+ = ∅. The set ofSHOIQ-
roles(or rolesfor short) isR ∪ {R− | R ∈ R}. A role inclusion axiomis of
the formR v S, for two rolesR andS. A role hierarchyis a finite set of role
inclusion axioms.

An interpretationI = (∆I , ·I) consists of a non-empty set∆I , thedomain
of I, and a function·I which maps every role to a subset of∆I × ∆I such
that, forP ∈ R andR ∈ R+,

〈x, y〉 ∈ P I iff 〈y, x〉 ∈ P−I ,
and if 〈x, y〉 ∈ RI and〈y, z〉 ∈ RI , then〈x, z〉 ∈ RI .

An interpretationI satisfies a role hierarchyR if RI ⊆ SI for eachR v
S ∈ R; such an interpretation is called amodelofR.

We introduce some notation to make the following considerations easier.

1. The inverse relation on roles is symmetric, and to avoid considering roles
such asR−−, we define a functionInv which returns the inverse of a role:
for R ∈ R, Inv(R) := R− andInv(R−) := R.

2. Since set inclusion is transitive andRI ⊆ SI impliesInv(R)I ⊆ Inv(S)I ,
for a role hierarchyR, we introducev* R as the transitive-reflexive clo-
sure ofv onR∪ {Inv(R) v Inv(S) | R v S ∈ R}. We useR ≡R S as
an abbreviation forR v* RS andS v* RR.

3. Obviously, a roleR is transitive if and only if its inverseInv(R) is tran-
sitive. However, in cyclic cases such asR ≡R S, S is transitive ifR
or Inv(R) is a transitive role name. In order to avoid these case distinc-
tions, the functionTrans returnstrue iff R is a transitive role—regardless
whether it is a role name, the inverse of a role name, or equivalent to a
transitive role name (or its inverse):Trans(S,R) := true if, for someP
with P ≡ S, P ∈ R+ or Inv(P ) ∈ R+; Trans(S,R) := false otherwise.

4. A roleR is calledsimplew.r.t.R iff Trans(S,R) = false for all S v* RR.

5. In the following, ifR is clear from the context, then we may abuse our
notation and usev* andTrans(S) instead ofv* R andTrans(S,R).

DEFINITION 2. Let NC be a set ofconcept nameswith a subsetNI ⊆
NC of nominals. The set ofSHOIQ-concepts(or conceptsfor short) is the
smallest set such that

1. every concept nameC ∈ NC is a concept,
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2. if C andD are concepts andR is a role, then(C uD), (C tD), (¬C),
(∀R.C), and(∃R.C) are also concepts (the last two are called universal
and existential restrictions, resp.), and

3. if C is a concept,R is a simple role2 and n ∈ IN, then(6nR.C) and
(>nR.C) are also concepts (called atmost and atleast restrictions, resp.).

The interpretation function·I of an interpretationI = (∆I , ·I) maps, addi-
tionally, every concept to a subset of∆I such that

(C uD)I = CI ∩DI , (C tD)I = CI ∪DI ,
¬CI = ∆I \ CI , ]oI = 1 for all o ∈ NI ,

(∃R.C)I = {x ∈ ∆I | RI(x,C) 6= ∅},
(∀R.C)I = {x ∈ ∆I | RI(x,¬C) = ∅},

(6nR.C)I = {x ∈ ∆I | ]RI(x,C) 6 n}, and
(>nR.C)I = {x ∈ ∆I | ]RI(x,C) > n},

where]M is the cardinality of a setM and RI(x,C) is defined as{y |
〈x, y〉 ∈ RI andy ∈ CI}.

DEFINITION 3. A SHOIQ knowledge base (KB) is a pair〈T ,A〉, where

− T (the TBox) is a set ofgeneral concept inclusion(GCI) axioms of the
formC v D, whereC andD are (possibly complex) concepts, and

− A (the ABox) is a set of axioms of the formi : C and(i, j) : R, where
C is a (possibly complex) concept,R is a role, and{i, j} ⊆ NI are
nominals.

An interpretationI satisfiesa GCI C v D if CI ⊆ DI , it satisfies an
axiom i : C if iI ⊆ CI , and it satisfies an axiom(i, j) : R if for some
〈x, y〉 ∈ RI , iI = {x} andjI = {y}. An interpretationI satisfiesa TBoxT
(resp. an ABoxA) if it satisfies each axiom inT (resp.A), and it satisfies a
KBK = 〈T ,A〉 if it satisfies bothT andA; such an interpretation is called
a model ofT (resp.A,K).

Note that the use of nominals instead of individuals in ABox axioms leads
to the slightly non-standard semantics, but is otherwise insignificant.

As mentioned above, nominals blur the distinction between TBox and
ABox. ABox axioms can be transformed into TBox axioms: it is easy to see
that an interpretationI satisfies an axiomi : C iff it satisfiesi v C, and it
satisfies an axiom(i, j) : R iff it satisfiesi v ∃R.j. It is, therefore, possible
(and convenient) to think of aSHOIQ KB as consisting only of a TBox.

2 Restricting number restrictions to simple roles is required in order to yield a decidable
logic (Horrocks et al., 1999).
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6 Tsarkov, Horrocks and Patel-Schneider

DEFINITION 4. A TBoxT is satisfiable w.r.t. a role hierarchyR if there
is a modelI of T andR. A conceptC is satisfiable w.r.t. a role hierarchy
R and a TBoxT if there is a modelI of R andT with CI 6= ∅. Such an
interpretation is called amodel ofC w.r.t.R andT . A conceptD subsumes
a conceptC w.r.t.R andT (written C vR,T D) if CI ⊆ DI holds in every
modelI of R and T . Two conceptsC,D are equivalent w.r.t. R and T
(writtenC ≡R,T D) if they are mutually subsuming w.r.t.R andT .

Note that, as usual, subsumption and satisfiability can be reduced to each
other:C vR,T D if (C u ¬D) is not satisfiable w.r.t.R andT ; andC is
not satisfiable w.r.t.R andT if C vR,T ⊥. Moreover, the satisfiability of a
concept w.r.t. a role hierarchy and TBox can be reduced to the satisfiability of
a TBox w.r.t. a role hierarchy:C is satisfiable w.r.t.R andT if T ∪ {o v C}
is satisfiable w.r.t.R, whereo is a “fresh” nominal, i.e., one that does not
occur inT . WhenR is obvious from the context (or assumed to be empty)
we will talk about TBox satisfiability; when bothR andT are obvious from
the context (or assumed to be empty) we will talk about concept satisfiabiliy
and subsumption (writtenC v D).

2.2. A TABLEAUX ALGORITHM FORSHOIQ

The basic idea behind the tableaux algorithm forSHOIQ TBox satisfiability
is to take as input a TBoxT and role hierarchyR, and to try to prove the
satisfiability ofT w.r.t. R by demonstrating the existence of a modelI of
T w.r.t. R. This is done by syntactically decomposingT so as to derive
constraints on the structure of such a model. For example, if a nominalo
occurs inT , then any model ofT must, by definition, contain some individual
x such thatoI = {x}, and if o v ∃R.D is an axiom inT , then the model
must also contain an individualy such that〈x, y〉 ∈ RI andy is an element
of DI ; if D is non-atomic, then continuing with the decomposition ofD
would lead to additional constraints. The construction fails if the constraints
include aclash(an obvious contradiction), e.g., if some individualz must be
an element of bothC and¬C for some conceptC. The algorithm is designed
so that it is guaranteed to terminate, and guaranteed to construct a model if
one exists; such an algorithm is clearly a decision procedure forSHOIQ
TBox satisfiability.

In practice, the algorithm works on a labelled graph, called acompletion
graph, that has a close correspondence to a model; this is becauseSHOIQ
models may be non-finite (although obviously finitely representable), and
because it is convenient not to explicate edges that may be implied by transi-
tivity (of roles).

For ease of presentation we will, as usual, assume all concepts to be in
negation normal form(NNF). A concept can be transformed into an equiv-
alent one in NNF by pushing negation inwards, making use of de Morgan’s
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laws and the duality between existential and universal restrictions, and be-
tween atmost and atleast number restrictions (Horrocks et al., 2000). For a
conceptC, we use¬̇C to denote the NNF of¬C, and we usecl(C) to denote
the set of all subconcepts ofC (includingC). We will also abuse our notation
by saying that a TBoxT is in NNF if all the concepts occurring inT are in
NNF, and by usingcl(T ) to denote the set of all subconcepts of the concepts
occurring inT , i.e.,

⋃
(CvD)∈T cl(C) ∪ cl(D).

DEFINITION 5. Let R be a role hierarchy andT a SHOIQ TBox in
NNF. Acompletion graphfor T with respect toR is a directed graphG =
(V,E, L, 6 .=) where each nodex ∈ V is labelled with a setL(x) ⊆ cl(T ) and
each edge〈x, y〉 ∈ E is labelled with a set of role namesL(〈x, y〉) containing
(possibly inverse) roles occurring inT or R. Additionally, we keep track of
inequalities between nodes of the graph with a symmetric binary relation6 .=
between the nodes ofG.

If 〈x, y〉 ∈ E, theny is called asuccessorof x andx is called aprede-
cessorof y. Ancestoris the transitive closure of predecessor, anddescendant
is the transitive closure of successor. A nodey is called anR-successor of
a nodex if, for someR′ with R′ v* R, R′ ∈ L(〈x, y〉); x is called anR-
predecessor ofy if y is anR-successor ofx. A nodey is called aneighbour
(R-neighbour) of a nodex if y is a successor (R-successor) ofx or if x is a
successor (R−-successor) ofy.

For a roleS and a nodex in G, we define the set ofx’s S-neighbours with
C in their label,SG(x,C), as follows:

SG(x,C) := {y | y is anS-neighbour ofx andC ∈ L(y)}.

G is said to contain aclashif

1. for someA ∈ NC and nodex of G, {A,¬A} ⊆ L(x),

2. for some nodex ofG, (6nS.C) ∈ L(x) and there aren+1 S-neighbours
y0, . . . , yn of x with C ∈ L(yi) for each0 ≤ i ≤ n andyi 6

.= yj for each
0 ≤ i < j ≤ n, or

3. for someo ∈ NI , there are two nodesx, y of G with x 6 .= y and o ∈
L(x) ∩ L(y).

If o1, . . . , o` are all the nominals occurring inT , then the tableau algo-
rithm starts with the completion graphG = ({r0, r1 . . . , r`}, ∅,L, ∅) where
L(r0) = {D} andL(ri) = {oi} for 1 ≤ i ≤ `. G is then expanded by
repeatedly applying the expansion rules given in Figures 1 and 2, stopping if
a clash occurs.

The expansion rules use some auxiliary terms and operations, defined
here:
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Nominal Nodes and Blockable NodesWe distinguish two types of nodes in
G, nominalnodes andblockable nodes. A nodex is a nominal node ifL(x)
contains a nominal. A node that is not a nominal node is a blockable node. A
nominalo ∈ NI is said to benew inG if no node inG haso in its label.

Blocking A nodex is label blockedif it has ancestorsx′, y and y′ such
that

1. x is a successor ofx′ andy is a successor ofy′,

2. y, x and all nodes on the path fromy to x are blockable,

3. L(x) = L(y) andL(x′) = L(y′), and

4. L(〈x′, x〉) = L(〈y′, y〉).

In this case, we say thaty blocksx. A node isblockedif either it is label
blocked or it is blockable and its predecessor is blocked; if the predecessor of
a blockable nodex is blocked, then we say thatx is indirectly blocked.

Generating and Shrinking Rules and Safe NeighboursThe rules >-rule,
∃-rule, ando?-rule are calledgenerating rules, and the rules6-rule and
o-rule are calledshrinking rules. An R-neighboury of a nodex is safeif (i)
x is blockable or if (ii)x is a nominal node andy is not blocked.

Pruning When a nodey is mergedinto a nodex, we “prune” the completion
graph by removingy and, recursively, all blockable successors ofy. More
precisely, pruning a nodey (written Prune(y)) in G = (V,E, L, 6 .=) yields a
graph that is obtained fromG as follows:

1. for all successorsz of y, remove〈y, z〉 from E and, if z is blockable,
Prune(z);

2. removey from V .

Merging merging a nodey into a nodex (written Merge(y, x)) in G =
(V,E, L, 6 .=) yields a graph that is obtained fromG as follows:

1. for all nodesz such that〈z, y〉 ∈ E

a) if {〈x, z〉, 〈z, x〉} ∩ E = ∅, then add〈z, x〉 to E and setL(〈z, x〉) =
L(〈z, y〉),

b) if 〈z, x〉 ∈ E, then setL(〈z, x〉) = L(〈z, x〉) ∪ L(〈z, y〉),
c) if 〈x, z〉 ∈ E, then setL(〈x, z〉) = L(〈x, z〉) ∪ {Inv(S) | S ∈

L(〈z, y〉)}, and

d) remove〈z, y〉 from E;
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u-rule: if 1. C1 u C2 ∈ L(x), x is not indirectly blocked, and

2. {C1, C2} 6⊆ L(x)
then setL(x) = L(x) ∪ {C1, C2}

t-rule: if 1. C1 t C2 ∈ L(x), x is not indirectly blocked, and

2. {C1, C2} ∩ L(x) = ∅
then setL(x) = L(x) ∪ {C} for someC ∈ {C1, C2}

∃-rule: if 1.∃S.C ∈ L(x), x is not blocked, and

2. x has no safeS-neighboury with C ∈ L(y),
then create a new nodey with L(〈x, y〉) = {S}

andL(y) = {C}

∀-rule: if 1.∀S.C ∈ L(x), x is not indirectly blocked, and

2. there is anS-neighboury of x with C /∈ L(y)
then setL(y) = L(y) ∪ {C}

∀+-rule: if 1.∀S.C ∈ L(x), x is not indirectly blocked, and

2. there is someR with Trans(R) andR v* S,

3. there is anR-neighboury of x with ∀R.C /∈ L(y)
then setL(y) = L(y) ∪ {∀R.C}

?-rule: if 1. (6nS.C) ∈ L(x), x is not indirectly blocked, and there

2. is anS-neighboury of x with {C, ¬̇C} ∩ L(y) = ∅
then setL(y) = L(y) ∪ {E} for someE ∈ {C, ¬̇C}

>-rule: if 1. (>nS.C) ∈ L(x), x is not blocked, and

2. there are notn safeS-neighboursy1, . . . , yn of x with

C ∈ L(yi) andyi 6
.= yj for 1 ≤ i < j ≤ n

then createn new nodesy1, . . . , yn with L(〈x, yi〉) = {S},
L(yi) = {C}, andyi 6

.= yj for 1 ≤ i < j ≤ n.

6-rule: if 1. (6nS.C) ∈ L(z), z is not indirectly blocked, and

2. ]SG(z, C) > n and there are twoS-neighbours

x, y of z with C ∈ L(x) ∩ L(y), and notx 6 .= y

then 1. ifx is a nominal node, thenMerge(y, x)
2. else ify is a nominal node or an ancestor ofx,

thenMerge(x, y)
3. elseMerge(y, x)

v-rule: if 1. C1 v C2 ∈ T , x is not indirectly blocked, and

2. {¬̇C1, C2} ∩ L(x) = ∅
then setL(x) = L(x) ∪ {C} for someC ∈ {¬̇C1, C2}

Figure 1. Basic tableaux expansion rules forSHOIQ
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10 Tsarkov, Horrocks and Patel-Schneider

2. for all nominal nodesz such that〈y, z〉 ∈ E

a) if {〈x, z〉, 〈z, x〉} ∩ E = ∅, then add〈x, z〉 to E and setL(〈x, z〉) =
L(〈y, z〉),

b) if 〈x, z〉 ∈ E, then setL(〈x, z〉) = L(〈x, z〉) ∪ L(〈y, z〉),
c) if 〈z, x〉 ∈ E, then setL(〈z, x〉) = L(〈z, x〉) ∪ {Inv(S) | S ∈

L(〈y, z〉)}, and
d) remove〈y, z〉 from E;

3. setL(x) = L(x) ∪ L(y);

4. addx 6 .= z for all z such thaty 6 .= z; and

5. Prune(y).

Two kinds of rule will be of particular interest in the following discussion:
non-deterministicrules, such as thet-rule andv-rule, andgeneratingrules,
such as the∃-rule and >-rule. In practice, non-deterministic rules are dealt
with by using backtracking search to investigate the completion graphs result-
ing from each possible expansion. Applying such rules is, therefore, likely to
be more “costly”, as they either increase the size of the graph or increase the
size of the search space.

o-rule: if for someo ∈ NI there are 2 nodesx, y with

o ∈ L(x) ∩ L(y) and notx 6 .= y

thenMerge(x, y)

o?-rule: if 1. (6nS.C) ∈ L(x), x is a nominal node, and there is

a blockableS-neighboury of x such thatC ∈ L(y)
andx is a successor ofy

2. there is nom with 1 6 m 6 n, (6mS.C) ∈ L(x),
and there arem nominalS-neighboursz1, . . . , zm of

x with C ∈ L(zi) andyi 6
.= yj for all 1 ≤ i < j ≤ m.

then 1. guessm 6 n and setL(x) = L(x) ∪ {(6mS.C)}
2. createm new nodesy1, . . . , ym with

L(〈x, yi〉) = {S}, L(yi) = {C, oi} for oi ∈ NI
new inG, andyi 6

.= yj for 1 ≤ i < j ≤ m,

Figure 2. Expansion rules dealing with nominals
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Optimising Expressive DLs 11

3. Preprocessing and simplifications

The first group of optimisations inFaCT++ are performed directly on the
syntax of the input KB. These optimisations serve to preprocess and sim-
plify the KB into a form more amenable to later processing. As well as
simplifications such as tautology elimination and obvious clash detection,
preprocessing optimisations (like absorption, Section 3.2.5) can also lead to
significant simplification of the subsequent reasoning process.

Note that satisfiability checking for expressive DLs requires, in the worst
case, time that is at least exponential in the size of the input, whereas most
preprocessing optimisations have polynomial, or even linear worst case com-
plexity.

3.1. LEXICAL NORMALISATION AND SIMPLIFICATION

Descriptions of DL tableau algorithms, such as the one given in Section 2,
typically assume that the input is in negation normal form (NNF); this sim-
plifies the (description of the) algorithm, but it means that the first (and most
common) kind of clash, i.e.,{C,¬C} ⊆ L(x) for some nodex in the com-
pletion graph, will only be detected whenC is a named concept. For example,
when testing the satisfiability of the concept(AuB)u¬(AuB), the transfor-
mation into NNF would give(AuB)u(¬At¬B); in practice this means that,
in spite of the “obvious” contradiction, backtracking search will be performed
in order to determine that the concept is unsatisfiable.

For this reason, practical algorithms do not transform the input into NNF,
but include a¬-rule that performs a single (negation) normalisation step (e.g.,
applying the¬-rule to¬(A uB) ∈ L(x) would cause¬A t ¬B to be added
to L(x)), and the completion graph is said to contain a clash if it contains
a nodex with {C,¬C} ⊆ L(x) for an arbitrary conceptC. Moreover, in
order to facilitate the detection of such clashes, the input isnormalisedand
simplifiedso that logically equivalent concepts are more often syntactically
equivalent. This is achieved by (recursively) applying a set of rewrite rules
to concepts expressions, and by ordering conjuncts w.r.t. some total ordering.
For example, we re-writet and∃ concepts as negatedu and∀ concepts,
respectively; we merge several conjunctions together; we order conjuncts;
and we use logical equivalences and semantics preserving transformations
in order to simplify concepts. These equivalences and transformations can
be split into three groups:constant elimination, syntactic equivalencesand
semantic transformations.

The constant elimination group includes the following equivalences:
(C u >) ≡ C, (C u ⊥) ≡ ⊥, ∀R.> ≡ >.
The syntactic equivalence group includes the following equivalences:
(C u C) ≡ C, ¬¬C ≡ C, C u ¬C ≡ ⊥,≥ 1R.C ≡ ∃R.C
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12 Tsarkov, Horrocks and Patel-Schneider

The semantic transformation group exploits semantic information already
gathered during the preprocessing phase to simplify concept expressions. For
example, if the KB contains an axiomA v B for named conceptsA andB,
then the concept expressionA u B can be simplified toA. The same is true
for arbitrary concept expressions.

Rewrite rules can be separated into two classes: “cheap” ones and “ex-
pensive” ones. Cheap ones (i.e.,C u ⊥ → ⊥) are easily applied and almost
always give a positive effect. They are, therefore, applied to every concept
expression appearing in the KB.

Expensive rules require more effort to recognise when they are applicable
(i.e., A u B → A when A v B), and may not give a positive effect at
all. Indeed, a well designed KB is likely to include few such constructions,
so applying such rule to the whole (possibly huge) KB will be a waste of
time. However, there are special cases in which it is crucial to have concept
expression be as simple as possible. Such cases include unabsorbed axioms,
absorbed concept expressions and role ranges and domains (all of which will
be explained below). In these cases, all simplification rules (including the
expensive ones) are applied.

3.2. DEALING WITH AXIOMS

If dealt with naively, TBox axioms can lead to a serious degradation in reason-
ing performance, as each such axiom would cause a disjunction to be added to
every node of the completion graph, leading to potentially enormous amounts
on nondeterministic expansion and backtracking search.

For example, given a TBoxT , if > v A ∈ T , with A = ((C1 t D1) u
. . . u (Cn tDn)), and testing the satisfiability ofT leads to the construction
of a completion graph containingk nodes, then there are2kn different ways
to apply theu- andt-rules to the resultingk copies ofA. This explosion in
the size of the search space can easily lead to a catastrophic degradation in
performance, even when optimisations such as backjumping (see Section 4.3)
and caching (see Section 4.6) are employed (Horrocks, 1997).

Fortunately, optimisations known aslazy unfoldingandabsorptionhave
proved to be very effective in reducing the size of the search space.

3.2.1. Lazy Unfolding
TBox axioms are often (restricted to be) of the formA v C or A ≡ C for
some concept nameA (whereA ≡ C is an abbreviation for the pair of GCIs,
A v C and¬A v ¬C). Such axioms are often calleddefinitional, as they
can be thought of as defining the meaning ofA. A TBox

T = {A1 ≡ C1, . . . , A` ≡ C`, A`+1 v C`+1, . . . , A`+m v C`+m}

is said to beunfoldable, if it satisfies the following conditions.
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− All axioms inT are definitional.

− Axioms in T areunique. I.e., for each concept nameA, T contains at
most one axiom of the formA ≡ C (i.e.,Ai 6= Aj for 1 6 i < j 6 `),
and if it contains an axiom of the formA ≡ C, then it does not contain
any axiom of the formA v C. (Note that an arbitrary set of axioms
{A v C1, . . . , A v Cn} can be combined into a single axiomA v
C1 u . . . u Cn).

− T is acyclic. I.e., there is no axiomAi ≡ Ci ∈ T such thatAi occurs
either directly or indirectly inCi.3 A concept nameA occurs indirectly
in a concept expressionC if there is a concept nameA′ such thatA′

occurs directly inC, and there is an axiomA′ ≡ C ′ ∈ T such thatA
occurs either directly or indirectly inC ′.

Instead of being dealt with using thev-rule, such a set of axioms can be
lazily unfoldedduring the tableau expansion. I.e., for an axiomA1 v C1 ∈
T , if Ai is added toL(x) for some nodex, thenCi is also added toL(x), and
for an axiomAj ≡ Cj ∈ T , if Aj (¬Aj) is added toL(x) for some nodex,
thenCj (resp.¬Cj) is also added toL(x).

It is obvious that an arbitrary TBoxT can be divided into an unfoldable
part Tu and a general partTg such thatTu ∪ Tg = T andTu ∩ Tg = ∅.
The unfoldable partTu can then be dealt with using lazy unfolding while
the general partTg is dealt with using thev-rule. In fact it has been shown
that the definition of an unfoldable TBox can be extended somewhat while
still allowing the use of the above lazy unfolding technique. In particular,
the concept expressions occurring on the left hand side of subsumptions and
equivalences can also be negated named concepts, and the acyclicity condi-
tion can be relaxed by distinguishing positive and negative occurrences of
named concepts in a stratified theory (Horrocks and Tobies, 2000b; Lutz,
1999).

Lazy unfolding can be viewed as a modification of the tableaux expansion
rules, replacing thev-rule with two rules, one for unfoldable axioms and one
for general axioms. These two rules, thevu-rule and thevg-rule are given in
Figure 3.

A form of lazy unfolding can also be used to deal more efficiently with so
calledrangeanddomainconstraints. These often arise in KBs derived from
ontologies, where it is common to state, e.g., that the role “drives” has domain
“adult” and range ”vehicle”, where adult and vehicle are concepts, and where
the intuitive meaning is that only adults can drive, and that only vehicles
can be driven. This can easily be expressed asSHOIQ axioms of the form

3 For the purposes of lazy unfolding, only cycles consisting entirely of≡ axioms are
problematical.
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14 Tsarkov, Horrocks and Patel-Schneider

vu-rule: if 1. C1 ∈ L(x), C1 v C2 ∈ Tu, x is not indirectly blocked, and

2. {C2} ∩ L(x) = ∅
then setL(x) = L(x) ∪ {C2}

vg-rule: if 1. C1 v C2 ∈ Tg, x is not indirectly blocked, and

2. {¬̇C1, C2} ∩ L(x) = ∅
then setL(x) = L(x) ∪ {C} for someC ∈ {¬̇C1, C2}

Figure 3. Tableaux expansion rules for unfoldable and general axioms

R-rule: if 1.> v ∀S.C ∈ Tr, x is not indirectly blocked, and

2. there is anS-neighboury of x with C 6∈ L(y)
thenL(y) −→ L(y) ∪ {C}

Figure 4. Tableaux expansion rule for domain and range axioms

> v ∀R−.C (to state that the domain ofR is C, e.g.,> v ∀drives−.adult),
and> v ∀R.C (to state that the range ofR is C, e.g.,> v ∀drives.vehicle).

Such axioms are not unfoldable, and will therefore be dealt with by the
v-rule. For an axiom> v ∀R.C, this would lead to¬> t ∀R.C being
added to the label of each node. This can clearly be simplified to∀R.C, so
there is no need for non-deterministic expansion. Even so, when there are
very large numbers of range and domain axioms (which is the case in some
KBs derived from ontologies, where it is common practice to specify the
range and domain ofeveryrole), this may lead to a significant degradation of
performance simply due to the large size of node labels (and using complex
data structures for node labels is also problematical due to the saving and
restoring that is needed during backtracking search). Extending the tableaux
algorithm to lazily unfold range and domain axioms not only deals with this
problem, but also provides additional opportunities for applying the important
absorptionoptimisation (see Section 3.2.5).

It is obvious that an arbitrary TBoxT can be divided into three parts: an
unfoldable partTu, a range and domain partTr, and a general partTg, such
thatT = Tu∪Tr∪Tg, andTu, Tr andTg are pairwise disjoint. The unfoldable
partTu is as before, the range and domain partTr consists of all the axioms
of the form> v ∀R.C that would formerly have been inTg (note thatR can
be an inverse role), andTg consists of the remaining general axioms. A new
tableaux expansion rule, theR-rule, is added in order to deal withTr; this
rule is given in Figure 4.
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Optimising Expressive DLs 15

3.2.2. Synonym replacement
Assume that the only axiom with named conceptA on the left hand side
is A ≡ B, whereB is also a named concept. This means that there exist
two names for the same concept. This redundancy in the TBox may prevent
the application of further optimisations, and may introduce “fake” cycles and
dependencies into the TBox. To avoid this, we applysynonym replacement.

If A ≡ B ∈ Tu, thenA is called asynonymof B, B is called therepresen-
tative conceptof A, and the axiomA ≡ B is called thesynonym definition
of A. During synonym replacement, all synonyms occurring in the TBox (ex-
cept in synonym definitions) are replaced with their representative concepts.
After this, other simplifications, such as those described in Section 3.1, can be
applied. For example, the concept expressionA u ¬B, whereA is synonym
of B, would be transformed toBu¬B, which can be further simplified to⊥.

3.2.3. Told Cycle Elimination
The idea of a told subsumer is widely used in DL reasoning, especially in
classification algorithms (see Section 5 below). Informally, a named concept
C has atold subsumerD if C v D is “obvious” from the syntactic structure
of the KB. This information is useful in classification, because it provides
some initial information about subsumption relations.

More formally, a conceptD appears in the expressionC, if eitherC = D,
orC = C1u. . .uCn andD appears in the expressionCi for some1 ≤ i ≤ n.
A named conceptB is called animmediate told subsumer(ITS) of a named
conceptA, writtenB ∈ ITS(A), iff:

− A v C ∈ T or A ≡ C ∈ T andB appears in the expressionC;

− A v C ∈ T or A ≡ C ∈ T , ∃R.D appears in the expressionC,
> v ∀ Inv(R).E ∈ Tr andB appears in the expressionE;

− A v C ∈ T or A ≡ C ∈ T , ≥ nR.D appears in the expressionC,
> v ∀ Inv(R).E ∈ Tr andB appears in the expressionE.

Told subsumeris the transitive closure of ITS.

A TBox T has adefinitional cycleif, for someA ∈ NC , A is a told
subsumer for itself. The presence of definitional cycles in the TBox can lead
to several problems, and in particular can cause problems for algorithms that
exploit the told subsumer hierarchy (i.e., the concept hierarchy that is implied
by told subsumer relations). Definitional cycles also make some GCI simpli-
fications inapplicable. These cycles are, however, often quite easy to elimi-
nate. We assume that most modern reasoners include such an optimisation,
although we know of no reference to it in the literature.

AssumeA1 . . . An are named concepts, such thatAi+1 ∈ ITS(Ai) for all
1 ≤ i < n, andA1 = An. In this case, allAi are equivalent. We can choseA1
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16 Tsarkov, Horrocks and Patel-Schneider

as a representative concept, makeA2, . . . , An−1 synonyms ofA1 by adding
axiomsAi ≡ A1 to Tu, and run the synonym replacement algorithm onT .

3.2.4. Redundant subsumption elimination
After applying told cycle elimination, some axioms might include redundant
information due to synonym replacement. For example, ifA v B u C ∈ T ,
and after told cycle eliminationB ≡ A was added toTu, then the axiom
would be transformed intoA v A u C, where theA in A u C is clearly
redundant.Redundant subsumption eliminationis a simple optimisation that
removes this kind of redundancy.

The optimisation works as follows. For every axiomA v C1u . . .uCn ∈
Tu, and for1 6 i 6 n, if Ci = A, thenCi is replaced with>; the usual
syntactic simplifications are then applied to the axiom.

Note that this optimisation is different from told cycle elimination (Sec-
tion 3.2.3), although there are some axioms that can be simplified using either
optimisation; the axiomA v A u ¬B would, for example, be simplified to
A v ¬B by either optimisation. Told cycle elimination cannot, however, deal
with axioms likeA v ¬AtC, and redundant subsumption elimination is not
applicable if several axioms are involved in a cycle.

3.2.5. Absorption
Given the effectiveness of lazy unfolding in dealing with the unfoldable part
of a TBoxTu and the range and domain axioms inTr, it makes sense to try to
rewrite the axioms inT so that the size ofTg can be reduced.

Absorptionis such a rewriting optimisation that tries to eliminate GCIs
in Tg by absorbing them into concept definitions inTu (concept absorption)
or domain axioms inTr (role absorption). This is usually done by rewriting
generals axiom in an equivalent form suitable for one of these absorptions: for
concept absorption, the axiom should be of the formCN v D, whereCN
is a named primitive concept andD is an arbitrary concept expression (Hor-
rocks, 2003); for role absorption, the axiom should be of the form∃R.> v D,
whereD is an arbitrary concept expression (Tsarkov and Horrocks, 2004). In
addition, a special form of concept absorption, called nominal absorption, can
be employed when an axiom has formo1t. . .ton v D, or∃R.o v D, where
o, o1, . . . , on are nominals andD is an arbitrary concept expression (Sirin
et al., 2005a).

Given a TBoxT , absorption proceeds as follows. First,Tu, Tr andTg

are initialised such thatTr = ∅, Tu ∪ Tg = T andTu is unfoldable. This
can be trivially achieved by settingTg = T andTu = Tr = ∅, but it is
usually best to try to maximise the number of definitional axioms inTu, and in
particular to maximise the number of definitional axioms of the formA ≡ D
in Tu (Horrocks and Tobies, 2000b). Due to the uniqueness and acyclicity
restrictions, however, there may be no unique maximalTu.
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Next, the axioms inTg are normalised by rewriting them as semantically
equivalent axioms of the form> v C, i.e., A v B is rewritten as> v
C, whereC = (B t ¬A). The concepts occurring in such axioms can be
simplified using the techniques described in Section 3.1, and trivial axioms
can be dealt with as follows:

− > v > is trivially satisfiable and can be removed from the TBox.

− > v ⊥ is trivially unsatisfiable and leads directly to TBox unsatisfiabil-
ity.

Finally, a range of rewriting rules can be applied to axioms inTg in order
to transform them into a suitable form, and then add them to eitherTu or
Tr. These rules are repeatedly applied until eitherTg is empty or no further
rules are applicable. Note that it is important to first eliminate told cycles, as
described in Section 3.2.3, otherwise application of the rewriting rules may
not terminate.

Axiom transformation rules:

− > v B t C, whereB is a named concept withB ≡ D ∈ Tu, can
be rewritten as> v D t C.

− > v ¬B tC, whereB is a named concept withB ≡ D ∈ Tu, can
be rewritten as> v ¬D t C.

− > v (D1 uD2) tC can be rewritten as two axioms> v D1 tC
and> v D2 t C.

Concept absorption:

− > v ¬AtC, whereA is a named concept withA v D ∈ Tu, can
be absorbed intoTu by removing> v ¬AtC from Tg and adding
A v C to Tu.

Role absorption:

− > v (∀R.C) tD can be absorbed intoTr by removing it fromTg

and adding> v ∀ Inv(R).((∀R.C) tD) to Tr.

− > v (≤ nR.C) tD can be absorbed intoTr by removing it from
Tg and adding> v ∀ Inv(R).((≤ nR.C) tD) to Tr.

Nominal absorption:

− > v C, whereC = ¬(o1 t . . . t on) t D, can be absorbed into
Tu by removing> v C from Tg and addingoi v C to Tu for all
1 ≤ i ≤ n.
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− > v C, whereC = ¬(∃R.(o1 t . . . t on)) tD, can be absorbed
into Tu by removing> v C from Tg and addingoi v ∀ Inv(R).C
to Tu for some1 ≤ i ≤ n.

Note that there may be many different ways to apply these rewriting rules,
some of which may eventually lead to different absorptions. Defining what
constitutes a “good” absorption is still an open problem, but an absorption
that leavesTg empty is invariably better in practice than one which does
not (Horrocks and Tobies, 2000a; Tsarkov and Horrocks, 2004).

4. Optimisations in Core Satisfiability Testing

The core ofFaCT++ is its KB satisfiability algorithm, which implements a
highly optimised version of the tableaux algorithm described in Section 2.2.
But before introducing used optimisations, we remind in short “standard”
implementation on the tableaux algorithm for testing concept satisfiability.

4.1. STANDARD SATISFIABILITY ALGORITHM

It is easy to prove termination and correctness of the tableaux algorithm pre-
sented in Section 2.2, but practical applicability is limited. No practical ways
to deal with non-deterministic rules are given. All this lead us to define “stan-
dard” satisfiability testing algorithm which is based on theoretical description
from Section 2.2.

One point worth to note is that concept expressions doesnotusually trans-
formed to NNF. Instead, as we described in Section 3.1, algorithms used
simplified normal form together with an additional¬-rule, which allows al-
gorithms to find clashes faster.

Real-life algorithms usually keeps track of changes in the completion
graph (i.e., which concepts were added to node labels, or creation new edges
in a completion graph) and maintain some ordering of concepts that have to
be expanded. As a the same time several expansion rules might be applicable,
so some order of applying rules may be chosen.

The other thing that differs real algorithm from theoretical description is
the way it deals with branching rules.

For every expansion of branching rule algorithm creates abranching point,
in which it saves state of a reasoning process (including completion graph,
chosen alternative in branching concept, etc), apply chosen decision and con-
tinue reasoning process. If later on clash occurs, algorithmbacktracksto the
latest branching point, restores state and apply next alternative. If all possible
choices from given branching rule leads to clash, algorithm returns to the
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previous branching point. If backtrack happens in the first created branching
points, then building of a completion graph fails, and concept is unsatisfiable.

So, there exists two main sources of non-determinism in tableaux algo-
rithm: choice of an expansion rule to apply, and choose an alternative in a
branching rule. Most optimisations that are used in real implementations are
targeted these two.

4.2. ORDERING OFEXPANSION RULES

Most systems use (modified)top-downapproach for ordering expansion
rules. In this approach generating rules (like≥-rule and∃-rule) are applied
after all other rules. This comes from times where description logics were
weaker and hence more tractable. For some subsets ofSHOIQ, like SHF
(logic with simplified number restrictions and without inverse roles and nom-
inals), such strategy might be used for creating algorithms with polynomial
size (so-calledtrace technique). In short, algorithm builds the only branch
of a completion tree (for such logics completion graph is tree-shaped), fully
expand it and then discard fully expanded sub-tree in order to reuse space for
the other branches.

Note that trace technique can not be used in presence of inverse roles, in
particular because concepts that involve inverse roles may propagate infor-
mation back from fully expanded subtrees. However, most of algorithms still
use the same (accordingly modified) schema.

The FaCT++ system was designed with the intention of implementing
DLs that include inverse roles, and of investigating new optimisation tech-
niques, including new ordering heuristics.

Instead of the top-down approach,FaCT++ uses aToDo list to control the
application of the expansion rules. The basic idea behind this approach is that
rules may become applicable whenever a concept is added to a node label.
When this happens, a note of the node/concept pair is added to the ToDo list.
The ToDo list sorts all entries according to some order, and gives access to
the “first” element in the list. A given tableaux algorithm takes an entry from
the ToDo list and processes it according to the expansion rule(s) relevant to
the entry (if any). During the expansion process, new concepts may be added
to node labels, and hence entries may be added to the ToDo list. The process
continues until either a clash occurs or the ToDo list become empty.

In FaCT++ the ToDo list architecture is implemented as a priority queue.
It is possible to set a priority for each rule type, and whenever entry would be
added to the queue, it inserts after already existing entries with same of higher
priorities. This means that if the∃-rule (the generating rule that expands
existential restrictions) has a low priority (say 0), and all other rules have
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the same priority (say 1), then the expansion will be (modulo inverse roles)
top-down and breadth first.

This architecture has a number of advantages when compared to the top-
down approach. Firstly, it is applicable to a much wider range of logics,
including the expressive logics implemented in modern systems, because it
makes no assumptions about the structure of the graph (in particular, whether
tree-shaped or not), or the order in which the graph will be constructed. Sec-
ondly, it allows for the use of more powerful heuristics that try to improve
typical case performance by varying the global order in which different syn-
tactic structures are decomposed; in a top-down construction, such heuristics
can only operate on a local region of the graph—typically a single node.

Empirical analysis shows (Tsarkov and Horrocks, 2005b) that the best
ordering for the expansion rules application is whethert-rule has the lowest
priority, generating rules has second-lowest priority, and then all other rules
has the same priority (except foro-rule ando?-rule, that should have higher
priority in order to ensure termination of the algorithm).

4.3. DEPENDENCY-DIRECTED BACKTRACKING (BACKJUMPING)

Consider, for example, the following concept:

(C1 tD1) u . . . u (Cn tDn) u ∃R.(A uB) u ∀R.¬A.

In a classic top-down architecture the disjunctions would be expanded before
the existential. So the tableaux algorithm would first expandn disjunctions
and then find a clash due to the∃−rule.4 In the case of normal (unoptimised)
backtracking,2n choices of different disjunctions expansions would be done
before the concept would be determined as unsatisfiable.

To avoid an exponential search during checking the satisfiability ofC and
similar concepts, a more sophisticated solution is required, and can be found
by adapting a form of dependency directed backtracking calledbackjump-
ing, which has also been used, e.g., in solving constraint satisfiability prob-
lems (Baker, 1995) and (in a slightly different form) in the HARP theorem
prover (Oppacher and Suen, 1988).

Intuitively, backjumping works by labelling each conceptC in the la-
bel of a nodex with a dependency setDepC(x) indicating thebranching
points(i.e., applications of the a branching rule) on which it depends. In case
the completion tree contains some nodex with {C,¬C} ∈ L(x), we use
DepC(x) andDep¬C(x) to identify the most recent branching pointb on
which eitherC or ¬C depends. The algorithm can thenjumpback tob over

4 If the ToDo list algorithm is used with the priority of∃ higher than priority oft, clash
would be found after two expansion of∃-rule. However, this example can be easily modified
to have an exponential behaviour even in such a case.
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intervening branching pointswithoutexploring any alternative branches (non-
deterministic choices), and make a different non-deterministic choice which
might not lead to the same closure condition being encountered. In case no
suchb exists, the closure did not depend on any non-deterministic choice, and
the algorithm stops.

4.4. OPTIMISATIONS OFDISJUNCTIONPROCESSING

4.4.1. Boolean constraint propagation (BCP)
As well as the standard tableau expansion rules described in Section 2, addi-
tional inference rules can be applied to the concept occurring in a node label,
usually with the objective of simplifying them and reducing the number of
t-rule applications. The most commonly used simplification, often called
Boolean Constraint Propagation(BCP) (Freeman, 1995), is derived from
SAT solvers, where it is usually used in conjunction with the Davis-Putnam
procedure. The basic idea is to identify a disjunctionC1 t . . . t Cn ∈ L(x)
such that the negations of all but one of theCj are already elements ofL(x);
when this is the case, the disjunction can be deterministically expanded by
adding the relevantCj to L(x). This amounts to applying the following
inference rule

¬C1, . . . ,¬Cn, C1 t . . . t Cn t C

C

to the concept in a node label.
Note that, as with the more sophisticated search techniques described

above, careful consideration needs to be given to the dependencies of con-
cepts added by such inference rules if they are to be used together with
backjumping.

4.4.2. Semantic Branching
Assume expansion of the following concept (for simplicity, let disjunctions
will be expanded before an existential; assume also, thatC would be the first
choice in all the disjunctions):

(C tD1) u . . . u (C tDn) u ∃R.∀R−.¬C.

On the 1st branching pointC was added to a label of a node. All other
disjunctions became expanded (expansion rule wouldn’t run because part of
a disjunction (namely,C) contains in a label of a node). Further expansion
lead to a clash, because¬C would be propagated to a node after application
of ∃-rule and∀-rule. After backtracking,D1 would be chosen from the 1st
disjunction. But thenC would be chosen from the 2nd disjunction, and the
story continues. In that case,3n expansion rules would be applied before
clash-free completion graph would be obtained.
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Semantic Branching(Giunchiglia and Sebastiani, 1996) allows algorithm
to avoid such situation. During expansion ofC t D concept in the nodex,
it first tries to addC to L(x). If this attempt fails, next try would be made
with adding{D,¬C} to L(x). This prevents following attempts to add the
(failing) conceptC to the label ofx.

In an example given in the beginning of a section, after failed expansion
of C, algorithm adds{¬C,D1} to the node label. All other disjunctions will
be expanded deterministically using BCP. In order to build completion graph,
n + 4 expansion rules would be applied.

4.4.3. Heuristics for Choosing Expansion Ordering

It is well known that different order of expanding non-deterministic rule
can result in huge (up to several orders of magnitude) difference in reason-
ing performance (Tsarkov and Horrocks, 2005b). Heuristics can be used to
choose a “good” order in which to try the different possible expansions of
such rules. In practise, this usually means using heuristics to select the way
in which thet-rule is applied to the disjunctions in a node label; a heuristic
function is used to compute the relative “goodness” of candidate concept.

When using the Davis-Putnam technique, the well known MOMS heuris-
tic (Freeman, 1995) is often used to select the concept on which to branch; it
tries to select concept that will maximise the effect of BCP and so minimise
the number of non-deterministic choices needed in order to complete the
completion graph (Horrocks, 2003). There is little evidence, however, that
(a suitably adapted form of) this heuristic is effective with concepts, and even
some evidence to suggest that interference with the backjumping optimisation
makes it counter productive (Horrocks, 2003).

An alternative heuristic, whose design was prompted by this observation,
tries to maximise the effect of backjumping by preferentially selecting con-
cepts with low valued dependencies (Horrocks, 2003; Hladik, 2002). This
heuristic has the added advantage that it can also be used to select the order
in which successor nodes are expanded.

Usually several possible expansion-ordering heuristics can be used to choose
the order in which to explore the different expansion choices offered by the
non-deterministict-rule. This ordering can be on the basis of the size, max-
imum quantifier depth, or frequency of usage of each of the concepts in the
disjunction, and the order can be either ascending (smallest size, minimum
depth and lowest frequency first) or descending. In order to avoid the cost of
repeatedly computing such values, all the relevant statistics for each concept
can be gathered as the knowledge base is loaded.

In (Sirin et al., 2005a) learning-based disjunct selection approach was pro-
posed. At the very beginning all disjuncts has the same priority. Later on, after
clash occurs because of disjunction expansion, the disjunct which was a cause
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of a clash is penaltised. During consequent expansions, penaltised disjuncts
got lower priority, according their penalty. This approach should work better
for disjunctions on nominal nodes, because they are expanded large amount
of time in similar manner, and wrong statically chosen ordering on them leads
to significant slowdown.

4.4.4. Combined Expansion Rule for Disjunction
The above optimisations for disjunction processing can be described as the
following complex rule for disjunctions:

− For the initial expansion of a disjunction, determine the type of the
disjunction, given by the concept expressionC1 t . . . t Cn.:

1. If Ci ∈ L(x) for somei, then there is no need to expand the dis-
junction.

2. Otherwise, determine the setC ′ = {Ci1 , . . . , Cik} ⊂ {C1, . . . , Cn}
such that¬Cij /∈ L(x) for all j. All elements of setC ′ could be
added to a label.

3. Choose the (heuristical) weight functionHeu(C) such that ifHeu(C) <
Heu(C ′) thenC should be chosen to expand earlier thanC ′.

4. Initialize the set of processed disjunctsCp = ∅.

− For the general expansion step:

1. Choose elementc from the ordered setC ′ such that∀c′ ∈ C ′ :
Heu(c) ≤ Heu(c′).

2. If semantic branching is in use, add¬c′ to L(x) for all c′ ∈ Cp.

3. SetCp = Cp ∪ {C} andC ′ = C ′\{C}.
4. If C ′ 6= ∅, then create a branching point.

5. AddC to L(x).

4.4.5. Save/restore optimisation
In order to perform backtracking a tableaux algorithm must be able to save
its internal state before branching and restore it in case of failure detection.
Besides other things, state of the completion graph (including node labels,
edges labels, etc) should be saved.

A naive approach would be to save everything after branching and restore
everything after backjumping. But in realistic applications, the completion
graph may contain hundreds or thousands of nodes, and only some of them
are changed between branching decisions.
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Moreover, when using the ToDo List approach, branching operations are
grouped together, and so they are often expanded in all a row. In this case,
operations usually change just a small part of the completion graph while
the rest of it is unchanged between different branching points. All this makes
naive approach inefficient in realistic applications.

4.4.5.1. Lazy saving The goal of thelazy savingoptimisation is to min-
imise saving of the nodes of the completion graph. Instead of saving the
whole completion graph on every branching point, lazy saving implements
a “save-on-demand” approach.

In this approach every node of the completion graph contains an additional
field—the branching level of the last change. Whenever a node would be
changed (this includes additions to node label, adding new incoming/outgoing
edges, merging nodes, changing blocked status, etc.) the algorithm checks the
last saved level of the node. If the current branching was made after the last
save of the node, then the node’s information is outdated. The algorithm saves
the state of the node, which now can be safely modified.

In addition to obvious gains, restoring of completion graph is also slightly
simplified. In case of restoring from leveln back to levelm, if the node wasn’t
changed sincem, there is nothing to do with respect to restore.

In large completion graphs usually only a small number of nodes is changed
at the same branching level. This is especially true in case where priority of
OR operation is the lowest. So, avoiding unnecessary saving of huge amounts
of nodes leads to increasing performance. However, the check of the necessity
of saving must be done on every updating. For lazy saving to be cost-effective
this check must should be cheap. In the KBs with a small number of branching
concepts this check may consume more time than would be gained as a result
of an optimisation.

4.4.5.2. Lazy restoring The similar idea, restore-on-demand, may come
to one’s mind. Instead of doing restoration once per backjumping for all
nodes of the completion graph, it is possible to check before accessing nodes
whether it is necessary to restore the state of the node. If the node appears to
be out of date, it is necessary to restore it before taking any information from
the node.

However, this approach is different from the lazy saving in the following:

− Lazy restoring is a check-on-read instead of a check-on-write technique.
As there are many more reads than writes to a completion graph (∀−rule
application, blocking checks etc), many more resources would be used
for these checks.

− In lazy saving, after backjumping new branching points can reuse old
labels of branching levels. This is because there is no one entry (after
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backjumping) which uses labels. This is not true in case of lazy restoring,
as there are nodes that still use the old branching labels. In some cases,
it might be necessary to keep and (probably) maintain the whole tree of
branching decisions.

− The number of restores is usually just a small fraction of the number of
saves. In our experiments on realistic KBs restores were between 0.5 to
5% as frequent as saves. This indicates that lazy saving would provide
at least 20 times more benefits than lazy restoring.

4.5. COMBINED GENERATING RULES

After creating a new node or changing role labels all universal restriction rules
must be re-applied. However, it is usually better to re-apply them immediately
during generating rule expansion.

For example, assume concept∃R.C was expanded in nodex and lead to
the creation of nodey with C ∈ L(y). As usually a∃-rule is expanded later
than a∀-rule, all∀-concepts appearing inL(x) were already expanded. But
now the newR-neighbour ofx immediately appears, so all∀-concepts in
L(x) must be expanded again. Some work can be saved if the algorithm can
ensure thatall such concepts were initially expanded beforeany∃-concept.
In this case, it is enough to re-expand only those∀S.D concepts, for which
R v∗ S.

4.6. CACHING SAT STATUS

4.6.0.3. Summary: Instead of creating new node using (combined) gener-
ating rule, it is possible to check SAT status of new node by trying to merge
(cached) models of concepts in new node. Is such models can be merged, then
there is no need to expand corresponding subtree.

Assume no inverse roles and no nominals are in KB and top-down tech-
nique is used. I.e., The expansion rules are sorted with generating rules have
the lowest priority.

In this case, all information from predecessors is added to a node label
before it is processed. This means that, when a given node has been fully
expanded (i.e., the expansion rules have been exhaustively applied to it), a
successor nodey with L(y) = {C1, . . . , Cn} can be treated as an independent
problem, equivalent to testing the satisfiability ofC1 u . . . u Cn.

A completion tree may contain many such nodes, and the labels of nodes
tend to be quite similar. For some concepts, this may result in the same sub-
problem being solved again and again. In order to avoid this, it is possible
to cache and re-use the results of such sub-problems. The usual technique is
to use a hash table to store the satisfiability status of node labels (i.e., sets of
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concepts treated as a conjunction). Before applying any expansion rules to a
new nodex, the cache is interrogated to determine if the satisfiability status
of L(x) is already known. If it is known, then the result can be used without
further expansion, i.e.,L(x) can be treated as though it were either{⊥} (for
unsatisfiable) or{>} (for satisfiable). If the satisfiability status ofL(x) is not
known, thenL(x) is added to the cache, and its status set to satisfiable if a
complete and open completion tree rooted inx can be constructed, and to
unsatisfiable otherwise. The procedure of determining satisfiability status for
given set of concepts is well-known and was described in a great details in
several papers (Horrocks, 2003; Haarslev and Möller, 2001a).

Since the satisfiability of a set of conceptsL implies the satisfiability of
each subset ofL, and the unsatisfiability of a set of conceptsL implies the
unsatisfiability of each superset ofL, this basic idea can be extended to check
for satisfiable supersets ofL(x) and unsatisfiable subsets ofL(x). However,
this requires a considerably more sophisticated data structure if cache op-
erations are to be efficient (Hoffmann and Koehler, 1999; Giunchiglia and
Tacchella, 2000).

Apart from the problem of the storage required for the cache, another more
subtle disadvantage of caching is that, in the case where the cache returns
“unsatisfiable” forL(x), there is no information about the cause of the unsat-
isfiability that can be used to derive the dependency information required for
backjumping. Backjumping can still be performed by combining the depen-
dency sets of all of the concepts inL(x), but this is likely to overestimate the
set of branching points on which the unsatisfiability depends.

In presence of inverse roles or nominals, however, this technique can not
be directly used. If SAT checking involves nominals, they can be referred
from different nodes of completion graph, so new concepts may be propa-
gated to already cached node. In case of inverse roles, information may be
propagated from the node label to it parent, so just checking SAT status of
the child is not enough. Latest publications (Yu Ding, 2005) propose some
directions to use of cache in presence of inverse roles but logic used there is
much weaker thanSHOIQ.

5. Optimisations in Classification

Classificationis the process of establishing partial order≤ on the set of
named concepts in KB w.r.t. subsumption relation, i.e.C ≤ D ⇐⇒ C v D.
This order is calledhierarchy, or taxonomyof concepts. Classification is
one of the main operations, performing by a reasoner for simplify following
subsumption queries.

Traditionally, this partial order relation is built iteratively. It is initialised
with trivial relation⊥ ≤ > and on every iteration one new concept nameC
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is added to a hierarchy. For every concept nameC to be added to hierarchy,
the set ofparents(i.e., already classified immediate subsumers) and the set of
children(i.e., already classified immediate subsumees) is being defined. Sets
of parents and children uniquely identify place ofC in the taxonomy.

Set of parents (children) is defined by a procedure calledtop-down(resp.
bottom-up) search. These two procedures are very similar, so we describe
only one of them in details.

Top-down search phase for conceptC involves breadth-first search of
subsumers ofC starting from>. Once it is determined thatC v D the algo-
rithms search subsumers between children ofD. Concepts that are subsumers
of C but none of its children is subsumer ofC became parents ofC.

This algorithm was first described in (Baader et al., 1994). This paper also
adds some optimisation that allows significantly reduce search space.

5.1. TAXONOMY CREATION ORDER

Concept nameC directly usesconcept nameD if D occurs in the definition
of C. The relationusesis a transitive closure of directly uses. IfC usesD then
D comes beforeC in so-calleddefinition order. Assume that KB is classified
in definition order, i.e. a concept name is not classified until all the named
concepts it uses are classified. In (Baader et al., 1994) it was shown, that in
this case bottom-up search phase can be omitted for primitive concepts (the
only child for such concept would be⊥ node). Easy to see that it is true for
SHOIQ TBox T = Tu ∪ Tr ∪ Tg with Tg = ∅, i.e. without GCIs. IfTg 6= ∅,
however, it is not true. Assume TBoxT = Tu ∪ Tg with

Tu = {C1 v D,C2 v D}, Tg = {> v C1 u C2}.

In this TBox conceptD should be classified equal to>, i.e. have> both
as a parent and children. If bottom-up phase would be omitted, however,
algorithm would be unable to find> v D subsumption and hence gives
wrong results.

In (Haarslev and M̈oller, 2001a) this approach was modified in order to
allow to skip bottom-up phase in more cases. Authors propose to usedirectly
refers torelation, which is similar to directly uses, but with references occur-
ring in scope of quantifiers are not considered. Againrefers tois transitive
closure of directly refers to, and this relation induces a partial order relation
on sets of concept names. Total order produced by this relation is called
quasi-definition order.

Usage of quasi-definition order instead of definition order suppose that
subsumption relation between primitive concepts can’t be derived via quanti-
fiers. This is not true in presence of inverse roles. For the KB

C v D,D v ∃R.∀R−.C
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quasi-definition order will setD ≤ C, while semanticallyC ≡ D, i.e. both
C andD should be classified into the same node of taxonomy.

5.2. TOLD SUBSUMERS ANDDISJOINTS

Various optimisations are used in order to minimise the number of subsump-
tion tests needed in each phase. For example, when adding a conceptC to
the hierarchy, a top-down breadth first traversal is used that only checks ifD
subsumesC when it has already been determined thatC is subsumed by all
the concepts in the hierarchy that subsumeD. The structure of TBox axioms
is also used to compute a set oftold subsumersof C (i.e., trivially obvious
subsumers). See Section 3.2.3 for the formal definition of a told subsumer. As
subsumption is immediate for told subsumers, no tests need to be performed
w.r.t. these concepts. In order to maximise the benefit of this optimisation, all
of the told subsumers of a conceptC are classifiedbeforeC itself is classified.

The told subsumer optimisation can be used to approximate the position of
C in the hierarchy: all of its told subsumers can be marked as subsumers ofC.
The most specific concepts in this set of marked concepts are then candidates
to be parents ofC. In the standard algorithm, however, it is necessary to check
(recursively) if the children of these concepts are also subsumers ofC. This
can be costly in the case where one of the told subsumers has a very large
number of children. When it has been determined for some subsumerD of C
that none of the children ofD subsumeC, then we know thatD is a parent
of C.

At the end of the top-down phase we will have computed the set of parents
of C; all of the concepts in this set, along with all their super-concepts, are
subsumers ofC; all other concepts are non-subsumers ofC. The next step is
to determine the set of children ofC (as mentioned above, this step can be
omitted for a primitive concept when concepts have been classified in defini-
tional order (Baader et al., 1994)). This phase is very similar to (the reverse
of) the top-down one, and we won’t describe it here—interested readers can
refer to (Baader et al., 2003) for full details.

In addition to use told subsumers to propagate positive subsumption infor-
mation, it is possible to usetold disjointsto propagate negative subsumption
information (Haarslev and M̈oller, 2001a). ConceptD is told disjoint with
conceptC if definition of C looks like C v ¬D u . . .. Having told dis-
joint information, it is possible to immediately state non-subsumption (and
propagate this information if necessary).

5.3. REDUCING NUMBER OF SUBSUMPTION TESTS

In some cases, it is possible to replace expensive subsumption test with an-
other (incomplete, but cheap) tests.
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As one of such methods pseudo-model merging technique described in
details in Section 4.6 can be used. If models forD and¬C can be merged,
then concept¬C u D is satisfiable and then subsumptionC v D does not
holds. Unfortunately, as noted in Section 4.6, this test can’t be applied directly
in presence of nominals in the TBox.

Other methods were developed to reduce number of checks while travers-
ing taxonomy during top-down or bottom-up phase. As these two phase are
very similar, we will talk about optimisations w.r.t. the top-down one.

Some labelling optimisations were proposed in (Baader et al., 1994) in ad-
dition to the told subsumer one. WhenD is going to be checked as a subsumer
of classifying conceptC, it is first checked whether all subsumers ofD are
subsumers ofC. The opposite one is non-subsumption propagation: ifC v D
subsumption does not holds, so doC v D′ for all D′ that are subsumees of
D. These two optimisations does not work well together; in (Baader et al.,
1994) it was shown that the former one is more efficient in general than the
latter.

In case of wide (and shallow) taxonomies, one taxonomy node (with label
D) may have tens and hundreds childrenDj . If such a node is labelled as a
subsumer of classifying conceptC, then large amount of subsumption tests
C v Dj should be made. In this case, in (Haarslev and Möller, 2001a) so-
calledclustering techniqueis proposed. For conceptsD1 . . . Dθ new virtual
conceptD′ ≡ D1 t . . . t Dθ is inserted into taxonomy. And instead of
checkingC v Dj first subsumptionD′ v C is checked. This check is done
using model merging technique, because model for¬D′ is just a union of
negated names for primitive conceptsD1, . . . , Dθ. In addition, it is possible
to have several virtual concepts associated with the same parent node.

Another way to reduce number of subsumption tests is to use notion of
completely defined concepts, that we are going to describe in more details
below.

5.4. COMPLETELY DEFINED CONCEPTS

Given a TBoxT , a primitive conceptC is said to becompletely definedw.r.t.
T when, for the definitionC v C1 u . . . u Cn in T , it holds that:

1. For all1 6 i 6 n, Ci is a primitive concept.

2. (minimality) There exist noi, j such that1 ≤ i, j ≤ n andCj is a told
subsumer ofCi.

When the TBox is obvious from the context we will talk about completely
defined concepts without reference to a TBox.

If we assume a cycle-free TBox containing only CD concepts and no
GCIs, then the classification process is very simple. In fact, we don’t need
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to perform any subsumption tests at all: the position of every concept in the
hierarchy iscompletely definedby its told subsumers. If concepts are pro-
cessed in definitional order, then when a conceptC is classified, whereC is
defined by the axiomC v C1 u . . . u Cn, the parents ofC areC1, . . . , Cn,
and the only child ofC is⊥. Note that every concept in such a taxonomy is
satisfiable, because there is no use of negation.

Correctness of the above method for classification of a cycle-free TBox
which contains only completely-defined concepts and no general axioms was
proved in (Tsarkov and Horrocks, 2005a).

This fact is, however, of very little practical value due to the very stringent
conditions on the structure of the TBox. In the following, we will show how
the basic technique can be made more useful by weakening some of these
conditions.

5.4.1. Primitivity
In general, a CD concept should not have non-primitive concepts in its def-
inition. This is because when the hierarchy already includes non-primitive
concepts (which will be the case given definitional order classification) the
bottom-up phase can not be omitted, and the CD method could therefore lead
to incorrect results. Assume, e.g., a TBox

{C v C1 u C2 u C3, C ′ ≡ C1 u C2}. (1)

Using the CD classification approach,C will be classified underC1, C2 and
C3, whereas it should be classified underC ′ andC3.

5.4.2. Minimality
Non-minimal concepts may occur as a result of badly designed KBs, im-
proper usage of Domain constraints and/or due to absorption of GCIs. The
minimality check may, however, be removed from the definition of CD con-
cepts provided that we check for any non-minimal concepts at classification
time, i.e., we check if eachCi in a definitionC v C1 u . . . u Cn is really
a parent ofC (i.e., has no children that are subsumers ofC). This check is
relatively cheap, and is already implemented as part of the standard classifi-
cation algorithm (see Section 5.4.5), where it is used to check which of the
told subsumers of a conceptC are possible parents ofC.

5.4.3. Non-CD Concepts
CD-classification would be of limited interest if its applicability were limited
to KBs consisting entirely of CD concepts. This is because most “interesting”
KBs, including most KBs designed using DL based ontology languages, will
contain concept constructors other than conjunction, and this will lead to
some concepts being non-CD; in its current form the CD approach would,
therefore, be useless.
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On the other hand, almost all TBoxes will containsomeCD concepts. In
this case, it may be possible to split the TBox into two parts—a CD part (i.e.,
containing only CD concepts) and a non-CD part—and use the CD algorithm
only for the CD part.

Note that such a split will not introduce any problems if the CD part of
the classification is performed first—in fact the classification of the CD part
is independent of the non-CD part of the TBox, because the definitions of CD
concepts only refer to other CD concepts.

In the TBox 1 above, for example, conceptsC1, C2, C3 andC will be in
the CD part, andC ′ in the non-CD part. After CD-classificationC will have 3
parents, and standard algorithm then insertC ′ with parentsC1, C2 and child
C.

5.4.4. General Axioms
It is easy to see that, in the general case, the CD approach cannot be used in
the presence of GCIs. Consider, for example, a TBoxT = Tu ∪ Tg with

Tu = {C v >, A v D,B v D}, Tg = {> v A tB}.

In this case, the CD algorithm classifiesC under>, whereas it should be
classified underD. The CD approach is, therefore, applicable only if all GCIs
in the TBox are absorbed (i.e.,Tg = ∅) using the techniques described in
Section 3.2.5.

5.4.5. Two-stage Approach Using CD
A two-stage CD classification algorithm has been implemented in ourFaCT++
reasoner. After preprocessing, as described in Section 3.1, the TBox is clas-
sified using the following procedure:

1. If the TBox does not contain any GCIs, mark some concepts as CD.
Namely,> is marked as CD; a primitive conceptC is marked as CD
if it has the definitionC v C1 u . . . u Cn and everyCi is marked CD; a
non-primitive conceptD is marked CD if it has definitionD = C andC
is marked CD.

2. If the TBox contains concepts marked as CD, then run the CD-classifier.
The CD classifier works only on those concepts that are marked CD,
processing them in definitional order. For each such conceptC, the steps
it performs are as follows:

a) If C is a synonym of some already classified conceptD, then insert
C at the same place asD.

b) If C has definitionC v C1 u . . . u Cn, conceptsC1, . . . , Cn are
candidates to be parents ofC.
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c) For every candidateCi, check whether it is redundant, i.e. whetherCi

has a child that is an ancestor of aC. This can be done by labelling
all ancestors of candidate concepts: labelled candidates will be re-
dundant. Remove redundant candidates from the list of candidates.

d) InsertC into the taxonomy with the remaining candidates as parents
and⊥ as the only child.

3. Classify the remaining concepts using the standard classification algo-
rithm.

6. Discussion

6.1. NOTES ONEVALUATION

We does not plan to put any evaluation on this paper. Most of optimisations
mentioned here are described in other papers, which usually contain some
empirical evaluation. In this section we just summarise all described optimi-
sations and mark them with respect to their influence on overall performance
of a DL reasoner.

6.1.1. Preprocessing Optimisations
Note that all preprocessing optimisation takes at most polynomial time to run,
while they hardly hurts performance of further reasoning. This makes them
good in almost any cases.

Lexical Normalisation. It helps a lot in founding clashes earlier, so lazy
unfolding optimisation performs much better.

Lexical Simplifications. Most of them are so simple, that takes literally no
time to apply. Some of simplifications, defined in Section 3.1 though are
more costly and gives effect only in very special cases. It makes sense
then to apply such transformation to concept expressions that areknown
to be complex and are likely to follow under this cases (like GCIs and
absorbed concept definitions).

Lazy Unfolding. Easy to see that use ofv-rule in realistic DL reasoners is a
nonsense due to huge amount of disjunctions it introduces. Thus there is
no reasons not to use lazy unfolding.

Synonym Replacement.This optimisation has linear complexity and works
well together with told cycle elimination and some special kind of KBs
(e.g. those which were obtained by merging several KBs together).
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Told Cycle Elimination. While not very useful by itself and rarely appli-
cable in a real-life KBs, this optimisation costs nothing (as told sub-
sumers are necessary for classification) and if applicable, allows more
optimisation (like absorption and definition-order classification) to run.

Redundant Subsumption Elimination. Again, it is hard to see any use of
such an optimisation for a nornal KB, but it is useful to run it after told
cycle elimination (and in general, in presence of cycles of length 1).

Absorption. As shown in all optimisation paper on this topic (see (Hor-
rocks and Tobies, 2000b; Tsarkov and Horrocks, 2004)), absorption is
crucial optimisation for DL reasoners. Is is though hard to define the
best absorption (and it is even hard to say what does it mean), butany
absorption, obtained from a TBox is better in terms of classification
time.

6.1.2. Core Satisfiability Optimisations
For expressive DLs likeSHOIQ reasoning is intractable. This means that
reasoning procedures have at least exponential complexity. The task of op-
timisations, thus, is to reduce complexity of a reasoning of a frequent tasks
(classes of tasks).

TODO List Architecture. Using such an optimisation makes reasoner more
flexible. In (Tsarkov and Horrocks, 2005a) we shows that in most cases
giving branching rules the lowest priority is better. Note that the stan-
dard top-down approach gives the lowest priority to generating rules.
Moreover, decision procedure forSHOIQ requires some ordering on
expansion rule application in order to ensure termination (Horrocks and
Sattler, 2005). This requirement is easily incorporated into TODO list
schema.

Note that TODO list-based reasoner (unlike the top-down approach) can
not stay in polynomial space anymore. Though, reasoning with inverse
roles required exponential space, so any reasoner forSHOIQ would
lost this ability.

BCP. This simple optimisation might transform non-deterministic operation
into a deterministic one. In any case, it does not harm reasoning process
as it prevents reasoner to choose disjuncts that immediately leads to
clash.

Semantic Branching. As mentioned in (Horrocks and Patel-Schneider, 1999),
using this optimisation gives significant increase of performance on arti-
ficial tests. Our experiments with real applications shows that using this
optimisations gives very small, but almost always positive effect.
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Heuristics for Disjunction. As shown in (Tsarkov and Horrocks, 2005a),
choosing improper heuristic might lead to completely impractical rea-
soning (the difference in some cases is more then three orders in mag-
nitude). Unfortunately, we don’t have stable way of choosing proper
heuristic, so it is a part of future research.

Note also, that some heuristics (like MOMS), interacts badly with back-
jumping (which is one of the most beneficial optimisation techniques in
SAT testing).

Backjumping. Another optimisation that is crucial for DL reasoning. Even
the necessarity to build and carefully maintains dependency sets is over-
powered by benefits that are obtained from this optimisation.

Lazy Saving. This optimisation works well in KBs that have complex struc-
ture (and, hence large completion graphs appears during SAT tests). This
is also very important if TBox contains large number of nominals, as
usually all (or large part) of them should always exists in a completion
graph (Sirin et al., 2005a).

Caching SAT Status.This optimisation is applicable only in absence of in-
verse roles. But in this case it shows amazing improvement in reasoning,
significantly reducing time of building completion graph.

6.1.3. Classification Optimisations
Note that, while all classification optimisations saves (at most) quadratic amount
of necessary subsumption tests, each test might take exponentially many op-
erations by itself, which lead to significant improvements.

Taxonomy Creation Order.

Told Subsumer and Disjoints.

Caching Subsumptions.All these optimisations works well when applica-
ble, reducing number of performed subsumption tests in the price of (at
most) polynomial actions. They should be used every time, as experi-
ments (Baader et al., 1994; Haarslev and Möller, 2001a) shows benefits
of them in both artificial and natural KBs.

Completely Defined Classification.This optimisation, as it shown in (Tsarkov
and Horrocks, 2005b), gives the best results on large KBs with very
simple structure. At the same time, it does not require any extra actions,
and does not hurts general KBs, as most of them contains (large or small)
part that can be dealt with more optimal than using standard algorithm.
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Dmitry Tsarkov and Ian Horrocks
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Abstract. This is a system description of the Description Logic reasoner
FaCT++ 1.0. The reasoner is modelled on the well-known FaCT reasoner, but
employs a different system architecture and has some new features and optimisa-
tions.

1 Introduction
Description Logics (DLs) are a family of logic based knowledge representation for-
malisms [1]. Although they have a range of applications, they are perhaps best known as
the basis for widely used ontology languages such as OIL, DAML+OIL and OWL [10].

A key motivation for basing ontology languages on DLs is that DL systems can
then be used to provide computational services for ontology tools and applications [12,
13]. The increasing use of ontologies, along with increases in their size and complexity,
brings with it a need for efficient DL reasoners. Given the high worst case complexity
of the satisfiability/subsumption problem for the DLs in question (at least ExpTime-
complete), optimisations that exploit the structure of typical ontologies are crucial to
the viability of such reasoners.

FaCT++ is a new DL reasoner designed as a platform for experimenting with new
tableaux algorithms and optimisation techniques.1 It incorporates most of the standard
optimisation techniques, including those introduced in the FaCT system [7], but em-
ploys a new “ToDo list” architecture that is better suited to more complex tableaux
algorithms (such as those used to reason with OWL ontologies), and allows for a wider
range of heuristic optimisations.

2 Tableaux Reasoning and Architecture
Most modern DL systems are based on tableaux algorithms. Such algorithms were first
introduced by Schmidt-Schauß and Smolka [15], and subsequently extended to deal
with ever more expressive logics [1]. Many systems now implement the SHIQ DL, a
tableaux algorithm for which was first presented in [11]; this logic is very expressive,
and corresponds closely to the OWL ontology language. In spite of the high worst
case complexity of the satisfiability/subsumption problem for this logic (ExpTime-
complete), highly optimised implementations have been shown to work well in many
realistic (ontology) applications [7].

Tableaux algorithms work by trying to construct a labelled graph (usually a tree)
representation of a model of a concept, the structure of which is determined by syntactic
decomposition of the concept. The decomposition and construction is usually carried

1 FaCT++ is avaliable at http://owl.man.ac.uk/factplusplus.



out by applying so called tableaux expansion rules to the concepts in node labels, with
one rule being defined for each of the syntactic constructs in the language (with the
exception of negation, which is pushed inwards, using re-writings such as de Morgan’s
laws, until it applies only to atomic concepts).

Most implementations use a top-down construction based on the so-called trace
technique [5]. The idea of this technique is to apply generating rules (rules which add
new leaf nodes to the tree) with the lowest priority (i.e., only apply these rules when no
other rules are applicable), and to discard fully expanded sub-trees, so that only a single
“trace” (i.e., a branch of the tree) is kept in memory at any one time. This allows (for
PSpace logics) tree structures that may be exponential in size (with respect to the size
of the input concept) to be delineated using only polynomial space. For the ExpTime
logics implemented in modern systems, however, guaranteeing polynomial space usage
is no longer an option. Moreover, for logics that support inverse roles (such as SHIQ),
a strictly top down approach is no longer practical as constraints may be propagated
both “up” and “down” the edges in the tree.

In spite of this, top-down construction is still widely used: it has the advantage
of being very simple and easy to implement—a procedure that exhaustively expands
a node label can be applied to the current node and then, recursively, to each of its
successors. It does, however, have some serious drawbacks. In the first place, for logics
with inverse roles, a strictly top-down construction would break down as it relies on
the fact that rules only ever add concepts to the label of the node to which they are
applied or to the label of one of its successor nodes. In the presence of inverse roles,
expansion rules may also add concepts to the labels of predecessor nodes, which could
then require further expansion. Moreover, discarding fully expanded sub-trees may no
longer be possible, as the expansion of a concept added to the label of a predecessor
may cause concepts to be added to the label of a sibling node that had previously been
fully expanded.

In the second place, the top down method forces non-deterministic rules (e.g., the
rule for expanding disjunctions) to be applied with a higher priority than generating
rules. As the size of the search space caused by non-deterministic rule expansions is,
in practice, by far the most serious problem for tableaux based systems [6], it may be
advantageous to apply non-deterministic rules with the lowest priority [4]. In fact, top-
down implementations typically apply non-deterministic rules with a priority that is
lower than that of all of the other rules except the generating rules [9].

ToDo List Architecture The FaCT++ system was designed with the intention of im-
plementing DLs that include inverse roles, and of investigating new optimisation tech-
niques, including new ordering heuristics. Currently, FaCT++ implements SHIF , a
slightly less expressive variant of SHIQ where the values in cardinality restrictions
can only be zero or one.2

Instead of the top-down approach, FaCT++ uses a ToDo list to control the appli-
cation of the expansion rules. The basic idea behind this approach is that rules may
become applicable whenever a concept is added to a node label. When this happens, a
note of the node/concept pair is added to the ToDo list. The ToDo list sorts all entries
according to some order, and gives access to the “first” element in the list. A given
tableaux algorithm takes an entry from the ToDo list and processes it according to the
expansion rule(s) relevant to the entry (if any). During the expansion process, new con-

2 SHIF corresponds to the OWL-Lite ontology language [10].



cepts may be added to node labels, and hence entries may be added to the ToDo list.
The process continues until either a clash occurs or the ToDo list become empty.

This architecture has a number of advantages when compared to the top-down ap-
proach. Firstly, it is applicable to a much wider range of logics, including the expres-
sive logics implemented in modern systems, because it makes no assumptions about
the structure of the graph (in particular, whether tree shaped or not), or the order in
which the graph will be constructed. Secondly, it allows for the use of more powerful
heuristics that try to improve typical case performance by varying the global order in
which different syntactic structures are decomposed; in a top-down construction, such
heuristics can only operate on a local region of the graph—typically a single node.

In FaCT++ the ToDo list architecture is implemented as a set of queues (FIFO
buffers). It is possible to set a priority for each rule type, and a separate queue is im-
plemented for each unique priority. Whenever the expansion algorithm asks for a new
entry, it is taken from the non-empty queue with the highest priority, and the algorithm
terminates when all the queues are empty. This means that if the ∃-rule (the generating
rule that expands existential restrictions) has a low priority (say 0), and all other rules
have the same priority (say 1), then the expansion will be (modulo inverse roles) top-
down and breadth first; if stacks (LIFO buffers) were used instead of queues with the
same priorities, then the expansion would simulate the standard top-down method.

3 Optimisations
Many of the optimisations used in FaCT++ were taken from the original FaCT. These
include lexical normalisation, boolean constraint propagation, dependency-directed
backjumping, caching, etc. [1].

The algorithm implemented in FaCT++ is extended to include native support for
role range and domain axioms, which leads to improved performance when reasoning
with realistic ontologies (which may contain many such axioms). This extension can
be also be exploited in order to add a new form of absorption optimisation called role
absorption [16].
Ordering Heuristics As discussed in Section 4, FaCT++’s ToDo list architecture al-
lows for a wide range of heuristics to be applied to choosing a “good” order in which to
apply inference rules (we will call these rule-ordering heuristics). Heuristics can also be
used to choose, for non-deterministic rules, the order in which to explore the different
expansion choices (we will call these expansion-ordering heuristics).

FaCT++ includes a range of different expansion-ordering heuristics that can be used
to choose the order in which to explore the different expansion choices offered by the
non-deterministic t-rule. This ordering can be on the basis of the size, maximum quan-
tifier depth, or frequency of usage of each of the concepts in the disjunction, and the
order can be either ascending (smallest size, minimum depth and lowest frequency first)
or descending. In order to avoid the cost of repeatedly computing such values, FaCT++
gathers all the relevant statistics for each concept as the knowledge base is loaded, and
caches them for later use.

FaCT++ separates the classification process into satisfiability testing (SAT) and sub-
sumption testing (SUB) phases; the results from the SAT phase are cached and used to
speed up subsequent tests via a standard “model-merging” optimisation [9]. It is possi-
ble to set different optimisation options for each phase of the reasoning process.

4 Empirical Evaluation
We have used several real-life ontologies, as well as artificial test suites, to evaluate
different optimisations, and compare FaCT++’s performance with that of other state-



of-the-art DL reasoners. Due to space restrictions, the results of only a small subset of
these tests can be presented here.

Ordering tests These tests illustrate how different expansion ordering heuristics can
influence the reasoner’s performance. Several realistic KBs were used in this test: Wine-
Food is a sample ontology that makes up part of the OWL test suite3 [2]; DOLCE
is a foundational (top-level) ontology, developed in the WonderWeb project [3]; and
GALEN is the anatomical part of the well-known medical terminology ontology [14].
The tests measured the time taken (in CPU seconds) to classify the ontologies.

Table 1. Ontology classification times (seconds) for ToDo (left) and OR (right) orderings

KB DOLCE WineFood GALEN
SAT SUB SAT SUB SAT SUB

a 0.74 0.74 0.22 2.44 99.44 1678.11
aO 0.64 0.68 0.14 1.64 29.80 569, 64

aEO 0.58 0.57 0.15 1.67 9.88 173.79
aE 0.60 0.58 0.27 2.87 13.35 205.32

aOE 0.61 0.59 0.27 2.93 13.22 201.40

SAT Sa Da Fa Sd Dd Fd
SUB 0.26 0.29 0.19 0.13 0.13 0.20
Sa 3.15 3.57 3.27 3.21 3.21 3.68
Da 3.54 3.57 3.44 3.20 3.40 3.47
Fa 3.67 3.57 2.32 2.12 2.41 2.35
Sd 1.77 1.80 1.71 1.80 1.80 1.83
Dd 1.69 1.77 1.87 1.66 1.78 1.78
Fd 2.30 2.26 2.75 3.14 3.54 2.76

In the rule-ordering tests (left-hand side of Table 1), each ordering strategy is shown
as a sequence of letters specifying the priorities (highest first) of the different rule types,
where “O” refers to the t-rule, “E” to the ∃-rule, and “a” to any other rule type. E.g.,
“aO” describes the strategy where the t-rule has the lowest priority, and all other rules
have an equal higher priority.

In most cases the best result is given by the “aEO” strategy (i.e., by assigning the
lowest priority to the t-rule and the next lowest priority to the ∃-rule), and even when
“aEO” is not the best strategy, the difference between it and the best strategy is very
small. Note, that such a strategy is impossible to implement in a top-down approach,
because it is necessary to give the lowest priority to the ∃-rule.

Table 1 presents the results of expansion-ordering tests using the WineFood ontol-
ogy. Each strategy is denoted by two letters, the first of which indicates whether the
ordering is based on concept size (“S”), maximum depth (“D”) or frequency of usage
(“F”), and the second of which indicates ascending (“a”) or descending (“d”) order.
When using the best strategy (“Sd” for SAT and “Dd” for SUB), classification takes
less than half the time taken when using the worst strategy.

InstanceStore query answering The instanceStore (iS) is a technique used to deal
with ontologies containing a very large number of individuals. It combines terminolog-
ical reasoning with database approaches to answer a limited form of instance-retrieval
query against such ontologies. A more detailed description of the iS can be found in [8].

Here we compare the performance of FaCT and FaCT++ in iS query answering.
The test used the 40,000 concept Gene Ontology, with roughly 500,000 individuals
mined from the GO database [8]. In some cases, query answering may require many
subsumption tests to be performed w.r.t. the classified ontology.

Figure 2 shows the results of these tests, including the classification time (in sec-
onds) for the ontology, the answer size (number of instances) and the time taken (in
seconds) for each query. It is easy to see that FaCT++ is significantly better than FaCT

3 This ontology therefore has a much weaker claim to being “realistic”.



Table 2. instanceStore classification and query answering times (seconds)
Query Classification Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11
Ans. size — 6,527 0 0 96,105 27 13,449 11,820 12 19 4,563 1
FaCT 247 3.1 37.1 30.1 61.2 0.7 16.9 3.2 87.8 8.8 2.1 2.4
FaCT++ 84 3.9 10.6 6.1 38.5 0.5 14.4 1.9 31.4 7.4 1.3 0.1

both in classifying the (large but relatively simply structured) ontology, and in perform-
ing large numbers of (relatively easy) subsumption tests.

5 Discussion and Future Directions
We have presented FaCT++, an OWL Lite DL reasoner which uses a new ToDo list
architecture and incorporates new optimisations.

Future directions for FaCT++ include both algorithmic and technological improve-
ments. The next version of FaCT++ will support the more expressive SHOIQ DL
needed by the OWL DL ontology language. Some new optimisations, including dy-
namic backjumping and more elaborate heuristics are also planned. Regarding techno-
logical improvements, we plan to add direct support for OWL’s RDF syntax, and to
implement FaCT++ as a standalone HTTP server.
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Benchmarking DL Reasoners Using Realistic

Ontologies

Zhengxiang Pan

Bell Labs Research and Lehigh University
zhp2@lehigh.edu

Abstract. We did a preliminary benchmark on DL reasoners using real
world OWL ontologies. First hand experiences on OWL ontologies and
reasoning services available to OWL are described and discussed.

1 Introduction

We developed a benchmark to evaluate the performances of state-of-the-art ex-
pressive Description Logic reasoners using an empirical approach. The outcomes
are expected to illustrate the effectiveness of DL reasoners that vary in opti-
mization techniques and implementation strategies. Some observations on the
deployment of OWL language are also made and discussed.

We conducted the benchmark toward three well-known DL reasoners: Racer,
FaCT++ and Pellet. The benchmark data consists of more than one hundred
most deployed OWL ontologies across many domains, from life science [1] to
geographic [2], from food and wines [3] to stock exchange [4].

Because of the heterogeneous interfaces (DIG and HTTP etc.) being used
in the different systems, this benchmark should be regarded as more qualitative
than quantitative, i.e. precise time counting is of little interests here. Instead,
we will try to analyze the detailed outputs and logs of those reasoning systems
and extract useful informations.

2 Background

Due to the correspondence between OWL and description logics, reasoning sup-
port to OWL applications heavily relies on description logic reasoners. Bench-
marks and evaluations on DL reasoners thus become an important task that
concerns with OWL.

A number of efforts have been made on benchmarking DL reasoner. Some
of them take the road of generating synthetic formulas randomly [5] [6] [7].
Although this approach could lead to a more comprehensive benchmark on rea-
soners, the parameters of those generators need to be fine tuned by sampling
the realistic KBs. In contrast, using the real world KBs as test data would be
more feasible and efficient, the results would be more easily interpreted and used
by end users. Part of the test in [8] was using realistic TBoxes, but only 8 KBs



were included at that time. An analysis of a DAML+OIL ontology collection
in [9] characterized and categorized the real-world ontologies but the depicted
benchmark was not implemented and conducted.

3 Experiments

3.1 Target Systems

Three DL reasoners were chosen to run the benchmark: Racer, Pellet and FaCT++.
Certainly there are other DL reasoners worth benchmarking but were not tested
due to various constraints.

According to [10], Racer implementation employed tableaux calculus for
SHIQ as well as the following optimization techniques: dependency-directed
backtracking and DPLL-style semantic branching, transformation of axioms
(GCIs), model caching and model merging.

Pellet is claimed to be sound and complete on SHIN (D) and SHON (D)
[11]. It implements TBox partitioning, absorption and lazy unfolding plus depen-
dency directed backjumping, semantic branching and early blocking strategies.
It also supports datatype reasoning and uses some optimizations in Abox query
answering.

Not quite similar to FaCT, FaCT++ implemented a new tableaux decision
procedure for SHOIQ [12]. Being under its early stage of development, FaCT++
has very limited user interface and no API is available.

3.2 Test Data

Our test data consists of 135 real world OWL ontologies. They were submitted
by the ontology authors and users from different domains.

Our original plan was to use an OWL-aware crawler to crawl OWL ontologies
available on the web. However, we did not find such a tool. Hence we turned
to finding a large collection of OWL ontologies. Among handful candidates,
Schemaweb [13] which is a RDF schemas directory became our choice. A java
program was developed then to read and identify those schemas.

We fed 250 urls indexed on Schemaweb into our program and we identified
135 OWL ontologies among them. Totally 5897 classes and 2601 relations were
recorded out of these OWL ontologies.

Having their subjects distributed in a broad range of domains, these OWL
ontologies also vary in size, constructs being used and complexity. Thus, we
argue these 135 OWL ontologies largely represent the current usage of OWL
language in practical despite that they are just a small portion of existing OWL
documents.

3.3 Experiment Configurations

The experiments were done on a Linux box featuring an Intel(R) Pentium(R) 4
CPU at 2.6GHz and 1 giga bytes main memory.



For each target system, script or special handling program were written to
direct the benchmark. No matter how it was being executed, the benchmark is
the iteration of the following steps:

1. Clear the memory and cache in the application.
2. Read in the next ontology in the test set.
3. Do classification.

A time limit of one hour (3600 seconds) was set for each ontology, meaning
that any processes regarding a particular ontology will be aborted if aggregated
CPU time exceeds 3600 seconds.
Racer:

RacerPro 1.8.1 has recently released as a commercial software; however in
this paper we used the last free-for-research version Racer 1.7. A racer in-
struction file was created to run the benchmark. Each ontology corresponds
to four commands in that file. First two commands (DELETE-ALL-ABOXES)
and (DELETE-ALL-TBOXES) cleaned up the memory. Then (OWL-READ-
DOCUMENT ”url”) command asked Racer to read in the specified ontology. At
the end, (TBOX-COHERENT-P) and (ABOX-CONSISTENT-P) invoked the
classifications in the Reasoner.
Pellet:

We used the Pellet 1.1.0 released on 05/07/2004. A script file was created to
manage the benchmark. Each parameterized execution of Pellet would read one
ontology and do the classification. Since each ontology was processed by a fresh
start of the Pellet, no need to clean the memory and cache in this case.
FaCT++:

As part of the aforementioned limitations, FaCT++ doesn’t take OWL doc-
uments directly nor any remote files. A utility program digFaCT++ takes local
files in DIG [14]. In order to make the benchmark working, we developed a java
program to translate the OWL ontologies into DIG format and store them lo-
cally. In the benchmark script, each execution of digFaCT++ was supplied two
parameters. One is a tell-document in DIG corresponding to one ontology, the
other is a simple query file that only ask if TOP is satisfiable. This simple query
was used here to invoke the classification in FaCT++.

4 Results

Racer finished the benchmark in about 15 minutes. It successfully made TBox
classifications on 108 ontologies, 101 of which were found to be consistent. It
also made successful consistency check on ABox for 92 ontologies, 83 of which
were found to be consistent. For those aborted tasks and inconsistent ontologies,
Racer reported 117 errors, about one third of which is due to the syntax errors
or usages beyond the scope of OWL DL.

Pellet had done classifications on 103 ontologies within the time limit. It spent
almost 2 hours (6814 seconds) on these ontologies. Interestingly, all these finished
ontologies were classified to be consistent. However, Pellet automatically did



somethings more than just classification. It validates the species of the ontologies
and tries to repair OWL Full ontologies if they are missing type triples [11]. In
our benchmark result, 70 out of 103 ontologies were validated as OWL Full, 23
and 10 for DL and Lite respectively.

Except timed out for 3 ontologies, FaCT++ had done the remaining in nearly
30 seconds. Its log recorded that it only spent 2.6 seconds on classifications of
the 121 ontologies, which were all successfully classified. Note the time of parsing
and I/O was not included, nor was the time spent on translating OWL into DIG.
Nevertheless, this kind of performance was very impressive.

System Consistent Inconsistent Timed out Aborted

Racer(Tbox) 101 7 0 27

Pellet 103 0 17 15

Fact++ 121 0 3 11

Table 1. The Results of Classification: Performed on 135 ontologies

5 Discussion

Here we summarize some interesting observations from our benchmark results.
They could potentially give us some helpful hints on ontology authoring as well
as the design and implementation of reasoners.

Firstly, the test data and the output of reasoners gave us a good chance
to characterize the current usage of OWL language. Based on the result from
Pellet, more than 70% of the classified ontologies are OWL Full, more than three
quarters of these OWL Full ones can be validated as OWL DL just by adding
some statements, like type triples. Racer also found out 22 cases where transitive
properties were used in cardinality restrictions, legitimate only in OWL Full.

In addition, we used the WonderWeb validator [15] to validate the species
of the rest ontologies. By adding these up we get figure 1, showing that the
majority of the test KBs are OWL Full. Note the ”unknown” category was for
those ontologies that caused errors on the validator.

We assume that only few authors intended to create an ontology in OWL
Full, because of the extreme difficulties in finding reasoning support. Thus, an
ontology editor with built-in validator and heuristic non-DL finder is highly
desired and should be widely adopted. Some efforts has been made toward this
direction, such as [16].

Secondly, the performances of the reasoners varied a lot. Although they are
not directly comparable due to the different input formats (OWL v.s. DIG) and
side-functionalities (species checking etc.), the results implies the effectiveness of
some optimization techniques being deployed. Apparently, FaCT++ completed
the most testing ontologies using the least time. Within the scope of classifica-
tion, FaCT++ significantly pushed the baseline of DL reasoners to a new high.



Fig. 1. Percentages of Each Species of OWL in Test Data

However, FaCT++ provides very limited services compare to other rivals. So
far it only supports queries through DIG, which is not very expressive in ABox
retrieving.

Pellet, on the other hand, done least TBox classifications with most time.
Unfortunately, we have no way to figure out how much time was actually spent
on those extra functionalities such as species checking. Figure 2 shows that clas-
sification time in Pellet increased nearly exponentially, no wonder 17 testing
ontologies were timed out. Interestingly, we found out that some of the ontolo-
gies that Pellet spent a huge amount of time on (but finished) were the ones
timed out or failed by FaCT++. This suggests that to some extent, Pellet is
more resilient to non-trivial ontologies.

For most of the testing documents, Racer was not as fast as FaCT++, but
it never timed out. This intrigues a dilemma on the implementation strategies:
give time or give up? Guaranteed termination is a nice property but sometimes
resilience is also desired. One possible solution is to allow users to customize the
time-out settings for each execution.

Above all, the performance of a DL reasoner is affected by the following
factors:

– The quality of inputs. DL reasoners are not intended to perform on non-DL
ontologies. Reasoner should be able to identify its capability on the given
knowledge base before long deliberations.

– The optimization techniques. Other experiences [17] show that cyclic axioms,
inverse roles and nominals are ”killer” constructs for DL reasoners. New
optimizations should target these cases.



Fig. 2. Performance degradation of Pellet

– The feasibility for customization. Different applications have different con-
straints or preferences on speed and/or expressiveness. They require different
side-functionalities even just for classification.

6 Conclusion

We performed a preliminary benchmark on three state-of-the-art DL reasoners:
Racer, Pellet and FaCT++. They vary from each other in many aspects, even
in programming languages: Lisp, Java and C++ respectively. Real world OWL
ontologies across various domains were used as test KBs. Observations on the
characteristics of those OWL ontologies as well as the performances of the rea-
soners were reported and discussed. We do not intend to use the results as direct
reflection of those systems’ overall performances, for that this simple benchmark
is not systematic enough and only focus on TBox classification at this time.

There are a couple of future directions on this work. Firstly we should iden-
tify and study case by case on these non-trivial KBs, i.e. the ones timed out,
failed or spent a lot of time. These will intrigue research directions on DL rea-
soner optimizations. Secondly we need to formalize our benchmark by making
the targeting reasoners more comparable, probably wrapping them in the same
API. Furthermore, the detailed relationship between optimization techniques
and performances should be analyzed.
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1 Introduction

Reasoning for expressive DLs implemented in state-of-the-art systems has high
worst case complexity. The hope/claim is, however, that these systems perform
well in “realistic” applications. In practice, this means in ontology applications.
To check the validity of this claim it is necessary to test the performance of these
systems with (the widest possible range of) ontologies derived from applications.

In addition, testing is useful in order to check the correctness of implementa-
tions. In small examples, it may be easy to check the correctness of a system’s
reasoning. However, for typical real-world examples, manual checking is not fea-
sible. In these instances, the best (perhaps the only) way to check correctness is
often by checking for consistency with the reasoning of other existing systems.

Real-world ontologies vary considerably in their size and expressivity. While
they are all valuable test cases, it is still important to understand each ontology’s
properties in order to provide efficient and relevant testing.

System developers find this particularly useful, as it helps them to identify
weaknesses in their systems and to devise and test new optimisations. Finally,
testing is also useful for the developers and users of applications as they can
use benchmarking results to determine if (the performance of) a DL reasoner is
likely to satisfy their requirements, and if so which reasoner is likely to perform
best in their application.

2 Background and Related Work

For the above mentioned reasons, there is extensive existing work on benchmark-
ing DL (as well as modal logic) reasoners. E.g., TANCS comparisons and bench-

1



mark suites [10], DL comparisons and benchmark suite [1], work on M-SPASS [8],
work on FaCT and DLP [7, 6], the OWL benchmark suite and test results, and
various test results from papers describing systems such as FaCT++ (http:
//owl.man.ac.uk/factplusplus), Pellet (http://www.mindswap.org/2003/
pellet/), Racer [5], KAON2 (http://kaon2.semanticweb.org/), Vampire [12],
etc.

Due to the fact that relatively few (large and/or interesting) ontologies were
available, earlier tests often used artificially generated test data. The Lehigh
University Benchmark [4], for example, used a synthetic ontology and randomly
generated data to test the capabilities of knowledge base systems using specific
weightings to compare systems on characteristics of interest. Results from such
tests are, however, of doubtful relevance when gauging performance on ontolo-
gies. The popularity of OWL has meant that many more ontologies are now
available, and recent benchmarking work has focused on testing performance
with such ontologies.

One such example [11] involved benchmarking a number of reasoners against
a broad range of realistic ontologies. However, not all reasoners used in that
comparison supports OWL as an input language, so quantitative comparison of
performance would have been difficult/un-justified. From the other hand, the
DIG interface [2] is recognised as a preferred choice by application developers
and thus is implemented into a wide range of DL Reasoners.

Our work builds on these earlier efforts, taking advantage of the DIG stan-
dard to provide a generic benchmarking suite that allows the automatic quan-
titative testing and comparison of DL Reasoners on real-world examples with
relevant properties. We aim to make the testing process as autonomous as possi-
ble, taking care, for example, of (re)starting and stopping reasoners as necessary,
and the analysis of results be as flexible as possible, by allowing for arbitrary
SQL queries against the collected data. We also aim to provide, as a publicly
available resource, a library of test ontologies where each ontology has been
checked for expressivity and syntactic conformance, translated into DIG syntax
(which is much easier to work with that OWL’s RDF/XML syntax), and in-
cludes (where possible) results (such as the concept hierarchy) that can be used
for testing the correctness of reasoning systems.

3 Methodology

The system has two main functions. The first is to process ontologies and add
them to the library, and the second is to benchmark one or more reasoners using
the ontology library.

When processing ontologies, the system takes as input a list of OWL-ontology
URI’s. Before they can be used in testing, some preprocessing of these ontologies
is required. The process involves generating valuable meta-data about each



ontology, as well as converting each of the OWL-ontologies to DIG.
The meta-data is generated by code written for SWOOP [9], and provides the

details of the expressivity (i.e. the constructs present in the ontology) together
with the number of classes, object properties, data properties, individuals, class
axioms, property axioms and individual axioms present. The OWL-to-DIG con-
version uses the OWL-API (http://owlapi.sourceforge.net). This process
is far from trivial as OWL’s RDF syntax is extremely complex, and it is easy
to (inadvertently) cause ontologies to be outside of OWL DL, e.g., by simply
forgetting to explicitly type every object. Moreover, the DIG interface supports
only the most basic of data types, such as Strings and Integers. The result is
that many of the available OWL Ontologies we found could not be successfully
converted to DIG.

Local copies are stored of both the OWL Ontology and the DIG version.
This is not only for efficiency during the testing, but also to ensure consistency
(as online ontologies rarely remain static). Moreover, this allows us to fix trivial
errors in the OWL ontologies so that they can be used for testing purposes. The
locations of these files, together with their properties/meta-data, are stored as
database entries for easy access and manipulation.

The main function of the benchmark suite itself is timing the classification
of each ontology by each Reasoner. CPU time is the measure used as it elimi-
nates external factors such as background threads, and to promote fairness, each
Reasoner is terminated and then restarted for every test.

A problem with trying to compare different Reasoners is that they may
perform tasks in different ways. For example, they may vary in the way in
which they perform each part of the reasoning: some may take an “eager”
approach, fully classifying the whole ontology and caching the results as soon
as it is received; others may take a “lazy” approach, only performing reasoning
tasks as required in order to answer queries. To try to get around this problem,
we use a five step test that forces every reasoners to fully classify each ontology.
The tests are as follows:

1. TELLS the reasoner the full ontology
2. ASK for all the concepts in the ontology
3. ASK for the satisfiability of the TOP concept
4. ASK for the satisfiability of all the concepts in the ontology
5. ASK for the ontology taxonomy (parents and children of all concepts)

Each of these individual tests are then timed, providing interesting information
about when different reasoners do most their work. It is, however, the total time
for this complete classification that we are most interested in.

Each classification will then end in one of three ways. It will either complete
successfully, fail due to lack of time or fail for some other reasons. The latter
may include fail due to lack of run-time memory, fail because the reasoner could
not parse the ontology successfully, etc.

The benchmark suite is fully automatic, dealing with most errors autonomously,



meaning that the testing can be left to run over-night or over a week-end (which
may be necessary when using a large time-out). All data is recorded in a MySQL
database, making it easy to the user to view and analyse the data in a variety
of ways.

As discussed in Section 1, in order to get a clearer indication of how DL
Reasoners perform in the real world, we aim to build a large library of OWL
ontologies from those that are publicly available. Currently, our library contains
a little over 300 OWL-RDF Ontologies, but only 172 of these could successfully
be converted to DIG. This has, however, provided us with a total of just under
72,000 classes and over 30,000 individuals in a DIG format. Only 18% of the
ontologies were at least ALC, which suggests that the majority of real-world
ontologies aren’t in fact very complex, but it also means we have a comfortable
number of “interesting” examples too.

4 Testing

Our system is currently fully automatic and runs the classification tests success-
fully through our whole library. It does not, however, at this stage verify the
correctness of each Reasoner’s answers to the queries and how they compare to
the answers given by other Reasoners. This means that our measure of success
is, for now, merely an indication that the Reasoner received and parsed the
DIG successfully and returned a valid DIG response. This is generally a good
indication, but should only be considered a preliminary result.

We have performed some tests on our system, as it stands, and we provide
here some examples of the kinds of information that our system can produce.

FaCT++ v1.1.2, KAON2, Pellet v2.2 and RacerPro v1.9 are four of the most
widely used OWL/DIG reasoners, and we therefore decided to use these to test
the current capabilities of our system. The tests were performed using an Intel
Pentium M Processor 1.60 GHz and 1Gb of Main Memory on Windows XP.
The time-out period was set to one hour (in real time). Pellet and KAON2 are
java applications, and for these tests were run with a maximum heap space of
200Mb. RacerPro and FaCT++ were left to run on their default settings.

Table 1 shows how the individual Reasoners performed firstly on all our
ontologies and then on Ontologies which have particular characteristics. Finally,
it shows their performance on OWL-Lite ontologies, which includes all those with
expressivity up to SHIF.

In order to determine which were the most “challenging” ontologies (w.r.t.
reasoning), we tried to order ontologies according to the difficulty of reasoning
with them. To do this, we used all the ontologies that were successfully classified
by at least two Reasoners and then ordered these by their average classification
time. Figure 1 shows the amount of time each Reasoner took to classify the
10 most challenging ontologies according to this measure (where negative time



Type Status FaCT++ KAON2 Pellet RacerPro

All Success 127 59 167 128
All Failed 40 113 4 44
All TimedOut 5 0 1 0
Nominals Success 10 3 9 12
Nominals Failed 2 9 3 0
Nominals TimedOut 0 0 0 0
TransRoles Success 17 10 20 16
TransRoles Failed 3 12 2 6
TransRoles TimedOut 2 2 0 0
Datatypes Success 90 21 123 87
Datatypes Failed 35 106 4 40
Datatypes TimedOut 2 0 0 0
OWL-Lite Success 32 36 39 39
OWL-Lite Failed 5 4 0 1
OWL-Lite TimedOut 3 0 1 0

Table 1: Sample of Overall Performance

Figure 1: Comparison of Reasoners on the Top 10 Most Challenging Ontologies



Ontology Expressivity nClass nIndiv URL

1 DLLite 27652 0 http://...logy/nciOncology.owl
2 ALR+ 20526 0 http://archive.godatabase.org/
3 SHIN 395 0 http://...gies/tambis-full.owl
4 RDFS(DL) 1108 3635 http://...world-fact-book.daml
5 RDFS(DL) 4 1900 http://...nt/AirportCodes.daml
6 SHF 3097 0 http://...ibrary/not-galen.owl
7 SHF 2749 0 http://...Ontologies/galen.owl
8 ALR+HI(D) 5 2744 http://...ogicUnits/2003/09/hu
9 RDFS(DL) 1514 0 http://...logy/data center.owl

10 SI(D) 35 2765 http://...w/HydrologicUnits/hu

Table 2: Properties of Top 10 Most Time-consuming Ontologies

Reasoner Tells ConceptList SatOfTop SatOfClasses Hierarchy

FaCT++ 6% 16% 16% 11% 51%
KAON2 13% 9% 8% 26% 44%
Pellet 24% 14% 12% 18% 33%
RacerPro 33% 7% 11% 13% 36%

Table 3: Average Division of Task Time

represents a failure to classify). Please note that the times are given in CPU
time and are considerably lower than the real time taken for classification (as a
Windows machine will typically have hundreds of threads running concurrently).
Table 2 then shows some of the interesting information that is available on these
“Top 10” Ontologies.

This table is useful in helping us understand what makes these particular
Ontologies so time-consuming to reason over. In the case of the NCI and Gene
Ontology’s (1st and 2nd), it can be clearly seen that it is their shear size that
provides the challenge. The 4th and 5th (world-fact-book and AirportCodes)
make up for their number of classes with an extensive array of individuals.
Whereas Tambis (3rd) simply uses some very complicated constructs.

Our final table, Table 3, shows the average proportion of each classification
test that each Reasoner spent on the separate tasks. This shows, for example,
that RacerPro performs a lot of caching on receiving the Ontology (TELLS),
while FaCT++ does nothing until the first ASK query.

5 Discussion

As we mentioned in the introduction, testing is useful for reasoner and tool
developers as well as for users. Building on existing work, we have developed



a system for testing reasoners with available ontologies. The benefits of our
approach include autonomous testing, flexible analysis of results and the devel-
opment of a test library that should be a valuable resource for both the DL
and ontology community. We will continue to extend the library, and will add
classification results from tested reasoners so that correctness testing can also
be performed.

While there are an increasingly large array of OWL-Ontologies available for
public use, other Ontology formats (e.g. OBO: the Open Biomedical Ontologies,
http://obo.sourceforge.net) are still widely in use and would make for valu-
able test examples. It is also the case, as describe in [3], that a large proportion
of the available OWL-Full Ontologies, could in fact be validated as OWL-DL,
just by adding a few extra clarifying statements. This means that of the 162
Ontologies that we had to throw away, many could be useful examples with a
little work. In the future we hope to use these observations, together with any
external contributions, to considerably increase the size of our ontology library.

The results produced by our tests provide an interesting insight into the vari-
ety and depth of information that can be extracted from such testing/benchmarking.
However, for the system and it’s results to become a valuable resource, we need
to test their correctness. We are currently assuming that both the OWL-to-DIG
conversions and the Reasoner’s responses are all valid and correct.

With regard to the OWL-API’s conversions, this was the utility built along-
side the original DIG specification. We therefore argue that this is the best
conversion available and that our assumption is justified.

Regarding the responses, as discussed earlier, they can be almost impossible
to check for correctness. Our best option is therefore to analyse the difference in
responses received from different reasoners, and this route is thus one we aim to
explore further. It will be interesting to see if reasoners (that should, in theory,
all produce the same inferences to the same problems) will actually agree on the
test ontologies.

So far we have focused on testing Tbox reasoning (classification). Although
the use of nominals in SHOIQ blurs the separation between Tbox and Abox,
it would still be useful to explicitly test Abox reasoning, e.g., by asking for
the instances of some query class. This functionality will be added in a future
version of the system.

Apart from the future work described above, there are a number of exten-
sions to our benchmarking system that would enhance its utility. Allowing users
to define their own customised test, rather than the 5 step classification we are
using, is one example that would allow Reasoner developers to test specific op-
timisations and implementations as they are developed. Other relevant tests
would include testing how multiple concurrent tests on a Reasoner affects per-
formance, as well as simply not restarting a Reasoner between tests.

We intend for the whole system, including the ontology library, to be available
for open-source use in the near future.
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Abstract

We describe an extension of the description logic under-
lying OWL-DL, SHOIN , with a number of expressive
means that we believe will make it more useful in prac-
tice. Roughly speaking, we extend SHOIN with all
expressive means that were suggested to us by ontology
developers as useful additions to OWL-DL, and which,
additionally, do not affect its decidability and practica-
bility. We consider complex role inclusion axioms of
the form R ◦ S v̇ R or S ◦ R v̇ R to express prop-
agation of one property along another one, which have
proven useful in medical terminologies. Furthermore,
we extend SHOIN with reflexive, antisymmetric, and
irreflexive roles, disjoint roles, a universal role, and con-
structs ∃R.Self, allowing, for instance, the definition
of concepts such as a “narcist”. Finally, we consider
negated role assertions in Aboxes and qualified number
restrictions. The resulting logic is called SROIQ.
We present a rather elegant tableau-based reasoning al-
gorithm: it combines the use of automata to keep track
of universal value restrictions with the techniques de-
veloped for SHOIQ. The logic SROIQ has been
adopted as the logical basis for the next iteration of
OWL, OWL 1.1.

Introduction
We describe an extension, called SROIQ, of the descrip-
tion logics (DLs) SHOIN (Horrocks, Sattler, & Tobies,
1999) underlying OWL-DL (Horrocks, Patel-Schneider, &
van Harmelen, 2003)1 andRIQ (Horrocks & Sattler, 2004).
SHOIN provides most expressive means that one could
reasonably expect from the description-logical basis of an
ontology language, and was designed to constitute a good
compromise between expressive power and computational
complexity/practicability of reasoning. It lacks, however,
e.g. qualified number restrictions which are present in the
DL considered here since they are required in various appli-
cations (Wolstencroft et al., 2005) and do not pose problems

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

1OWL also includes datatypes, a simple form of concrete do-
main (Baader & Hanschke, 1991). These can, however, be treated
exactly as in SHOQ(D)/SHOQ(Dn) (Horrocks & Sattler, 2001;
Pan & Horrocks, 2003), so we will not complicate our presentation
by considering them here.

(Horrocks & Sattler, 2005). That is, we extend SHOIQ—
which is SHOIN with qualified number restrictions—and
extend the work begun in Horrocks, Kutz, & Sattler (2005).

Since OWL-DL is becoming more widely used, it turns
out that it lacks a number of expressive means which—
when considered carefully—can be added without causing
too much difficulties for automated reasoning. We extend
SHOIQ with these expressive means and, although they
are not completely independent in that some of them can
be expressed using others, first present them together with
some examples. Recall that, in SHOIQ, we can already
state that a role is transitive or the subrole or the inverse of
another one (and therefore also that it is symmetric).

In addition, SROIQ allows for the following:
1. disjoint roles. Most DLs can be said to be “unbalanced”

since they allow to express disjointness on concepts but
not on roles, despite the fact that role disjointness is quite
natural and can generate new subsumptions or inconsis-
tencies in the presence of role hierarchies and number re-
strictions. E.g., the roles sister and mother should be
declared as being disjoint.

2. reflexive, irreflexive, and antisymmetric roles. These fea-
tures are of minor interest when considering only TBoxes
not using nominals, yet they add some useful constraints
if we also refer to individuals, either by using nominals or
ABoxes, especially in the presence of number restrictions.
E.g., the roles knows, hasSibling, and properPartOf,
should be declared as, respectively, reflexive, irreflexive,
and antisymmetric.

3. negated role assertions. Most Abox formalisms only al-
low for positive role assertions (with few exceptions (Are-
ces et al., 2003; Baader et al., 2005)), whereas SROIQ
also allows for statements like (John, Mary) : ¬likes.
In the presence of complex role inclusions, negated role
assertions can be quite useful and, like disjoint roles, they
overcome a certain asymmetry in expressivity.

4. SROIQ provides complex role inclusion axioms of the
form R ◦ S v̇ R and S ◦ R v̇ R that were first intro-
duced in RIQ. For example, w.r.t. the axiom owns ◦
hasPart v̇ owns, and the fact that each car contains an
engine Car v̇ ∃hasPart.Engine, an owner of a car is
also an owner of an engine, i.e., the following subsump-
tion holds: ∃owns.Car v ∃owns.Engine.



5. SROIQ provides the universal role U . Together with
nominals (which are also provided by SHOIQ), this
role is a prominent feature of hybrid logics (Blackburn &
Seligman, 1995). Nominals can be viewed as a powerful
generalisation of ABox individuals (Schaerf, 1994; Hor-
rocks & Sattler, 2001), and they occur naturally in ontolo-
gies, e.g., when describing a class such as EUCountries
by enumerating its members.

6. Finally, SROIQ allows for concepts of the form ∃R.Self
which can be used to express “local reflexivity” of a role
R, e.g., to define the concept “narcist” as ∃likes.Self.

Besides a Tbox and an Abox, SROIQ provides a so-called
Rbox to gather all statements concerning roles.
SROIQ is designed to be of similar practicability as

SHOIQ. The tableau algorithm for SROIQ presented
here is essentially a combination of the algorithms for RIQ
and SHOIQ. In particular, it employs the same technique
using finite automata as in Horrocks & Sattler (2004) to han-
dle role inclusions R ◦ S v̇ R and S ◦ R v̇ R. Even
though the additional expressive means require certain ad-
justments, these adjustments do not add new sources of non-
determinism and, subject to empirical verification, are be-
lieved to be “harmless” in the sense of not significantly de-
grading typical performance as compared with the SHOIQ
algorithm. Moreover, the algorithm for SROIQ has, simi-
lar to the one for SHOIQ, excellent “pay as you go” char-
acteristics. For instance, in case only expressive means of
SHIQ are used, the new algorithm will behave just like the
algorithm for SHIQ.

We believe that the combination of properties described
above makes SROIQ a very useful basis for future exten-
sions of OWL DL.

The Logic SROIQ
In this section, we introduce the DL SROIQ. This includes
the definition of syntax, semantics, and inference problems.

Roles, Role Hierarchies, and Role Assertions
Definition 1 Let C be a set of concept names including a
subset N of nominals, R a set of role names including the
universal role U , and I = {a, b, c . . .} a set of individual
names. The set of roles is R∪ {R− | R ∈ R}, where a role
R− is called the inverse role of R.

As usual, an interpretation I = (∆I , ·I) consists of a
set ∆I , called the domain of I, and a valuation ·I which
associates, with each role name R, a binary relation RI ⊆
∆I × ∆I , with the universal role U the universal relation
∆I × ∆I , with each concept name C a subset CI ⊆ ∆I ,
where CI is a singleton set if C ∈ N, and, with each in-
dividual name a, an element aI ∈ ∆I . Inverse roles are
interpreted as usual, i.e., for each role R ∈ R, we have

(R−)I = {〈y, x〉 | 〈x, y〉 ∈ RI}.

Obviously, (U−)I = (U)I . Note that, unlike in the cases
of SHIQ or SHOIQ, we did not introduce transitive role
names. This is because, as will become apparent below, role
box assertions can be used to force roles to be transitive.

To avoid considering roles such as R−−, we define a func-
tion Inv on roles such that Inv(R) = R− if R ∈ R is a role
name, and Inv(R) = S ∈ R if R = S−.

Since we will often work with finite strings of roles it is
convenient to extend both ·I and Inv(·) to such strings: if
w = R1 . . . Rn is a string of roles Ri (1 ≤ i ≤ n), we set
Inv(w) = Inv(Rn) . . . Inv(R1) and wI = RI

1 ◦ . . . ◦ RI
n,

where ◦ denotes composition of binary relations.
A role box R consists of two components. The first com-

ponent is a role hierarchy Rh which consists of (gener-
alised) role inclusion axioms. The second component is a
set Ra of role assertions stating, for instance, that a role R
must be interpreted as an irreflexive relation.

We start with the definition of a (regular) role hierarchy
whose definition involves a certain ordering on roles, called
regular. A strict partial order ≺ on a set A is an irreflexive
and transitive relation on A. A strict partial order ≺ on the
set of roles R ∪ {R− | R ∈ R} is called a regular order
if ≺ satisfies, additionally, S ≺ R ⇐⇒ S− ≺ R, for all
roles R and S. Note, in particular, that the irreflexivity of ≺
ensures that neither S− ≺ S nor S ≺ S− hold.

Definition 2 ((Regular) Role Inclusion Axioms) Let ≺ be
a regular order on roles. A role inclusion axiom (RIA for
short) is an expression of the form w v̇ R, where w is a
finite string of roles not including the universal role U , and
R 6= U is a role name. A role hierarchy Rh is a finite set
of RIAs. An interpretation I satisfies a role inclusion axiom
w v̇ R, written I |= w v̇ R, if wI ⊆ RI . An interpretation
is a model of a role hierarchy Rh if it satisfies all RIAs in
Rh, written I |= Rh.

A RIA w v̇ R is ≺-regular if R is a role name, and

1. w = RR, or
2. w = R−, or
3. w = S1 . . . Sn and Si ≺ R, for all 1 ≤ i ≤ n, or
4. w = RS1 . . . Sn and Si ≺ R, for all 1 ≤ i ≤ n, or
5. w = S1 . . . SnR and Si ≺ R, for all 1 ≤ i ≤ n.

Finally, a role hierarchy Rh is regular if there exists a reg-
ular order ≺ such that each RIA in Rh is ≺-regular.

Regularity prevents a role hierarchy from containing
cyclic dependencies. For instance, the role hierarchy

{RS v̇ S, RT v̇ R, V T v̇ T, V S v̇ V }

is not regular because it would require≺ to satisfy S ≺ V ≺
T ≺ R ≺ S, which would imply S ≺ S, thus contradicting
the irreflexivity of ≺. Such cyclic dependencies are known
to lead to undecidability (Horrocks & Sattler, 2004).

Also, note that RIAs of the form RR− v̇ R, which would
imply (a weak form of) reflexivity of R, are not regular
according to the definition of regular orderings. However,
the same condition on R can be imposed by using the GCI
∃R.> v̇ ∃R.Self; see below.

From the definition of the semantics of inverse roles, it
follows immediately that 〈x, y〉 ∈ wI iff 〈y, x〉 ∈ Inv(w)I .
Hence, each model satisfying w v̇ S also satisfies Inv(w) v̇
Inv(S) (and vice versa), and thus the restriction to those



RIAs with only role names on their right hand side does not
have any effect on expressivity.

Given a role hierarchyRh, we define the relation v* to be
the transitive-reflexive closure of v̇ over {R v̇ S, Inv(R) v̇
Inv(S) | R v̇ S ∈ Rh}. A role R is called a sub-role
(super-role) of a role S if R v* S (S v* R). Two roles R and
S are equivalent (R ≡ S) if R v* S and S v* R.

Note that, due to restriction (3) in the definition of ≺-
regularity, we also restrict v* to be acyclic, and thus regular
role hierarchies never contain two equivalent roles.2

Next, let us turn to the second component of Rboxes, the
role assertions. For an interpretation I, we define DiagI

to be the set {〈x, x〉 | x ∈ ∆I}. Note that, since the
interpretation of the universal role U is fixed in any given
model (as the universal relation on ∆I × ∆I which is, by
definition, reflexive, symmetric, and transitive), we disallow
the universal role to appear in role assertions.

Definition 3 (Role Assertions) For roles R,S 6= U , we
call the assertions Ref(R), Irr(R), Sym(R), Asy(R),
Tra(R), and Dis(R,S), role assertions, where, for each in-
terpretation I and all x, y, z ∈ ∆I , we have:

I |= Sym(R) if 〈x, y〉 ∈ RI implies 〈y, x〉 ∈ RI ;
I |= Asy(R) if 〈x, y〉 ∈ RI implies 〈y, x〉 /∈ RI

I |= Tra(R) if 〈x, y〉 ∈ RI and 〈y, z〉 ∈ RI

imply 〈x, z〉 ∈ RI ;
I |= Ref(R) if DiagI ⊆ RI ;
I |= Irr(R) if RI ∩DiagI = ∅;
I |= Dis(R,S) if RI ∩ SI = ∅.

Adding symmetric and transitive role assertions is a trivial
move since both of these expressive means can be replaced
with complex role inclusion axioms as follows: Sym(R) is
equivalent to R− v̇ R and Tra(R) is equivalent to RR v̇ R.

Thus, as far as expressivity is concerned, we can assume,
for convenience, that no role assertions of the form Tra(R)
or Sym(R) appear in Ra, but that transitive and/or symmet-
ric roles will be handled by the RIAs alone. In particular,
notice that regularity of a role hierarchy is preserved when
replacing such role assertions with the corresponding RIAs.

The situation is different, however, for the other Rbox as-
sertions. None of reflexivity, irreflexivity, antisymmetry or
disjointness of roles can be enforced by role inclusion ax-
ioms. However, as we shall see later, reflexivity and irreflex-
ivity of roles are closely related to the new concept ∃R.Self.

Note that the version of antisymmetry introduced above is
strict in the sense that it also implies irreflexivity as opposed
to the more widely used notion of antisymmetry which al-
lows for reflexive points. For instance, in mereology, the
relation PartOf is usually assumed to be ‘reflexive antisym-
metric’ (i.e., reflexivity, plus xRy and yRx implies x = y),
while the relation properPartOf is assumed to be ‘irreflex-
ive antisymmetric’ (defined just as antisymmetry above) (Si-
mons, 1987; Casati & Varzi, 1999). The more general ver-

2This is not a serious restriction for, if R contains v* cycles,
we can simply choose one role R from each cycle and replace all
other roles in this cycle with R in the input Rbox, Tbox, and Abox.

sion of antisymmetry is more difficult to handle algorithmi-
cally, and we leave this to future work.

In SHIQ (and SHOIQ), the application of qualified
number restrictions has to be restricted to certain roles,
called simple roles, to preserve decidability (Horrocks, Sat-
tler, & Tobies, 1999). In the context of SROIQ, the defi-
nition of simple role has to be slightly modified, and simple
roles figure not only in qualified number restrictions, but in
several other constructs as well. Intuitively, non-simple roles
are those that are implied by the composition of roles.

Given a role hierarchy Rh and a set of role assertions Ra

(without transitivity or symmetry assertions), the set of roles
that are simple in R = Rh ∪ Ra is inductively defined as
follows:

• a role name is simple if it does not occur on the right hand
side of a RIA in Rh,

• an inverse role R− is simple if R is, and

• if R occurs on the right hand side of a RIA in Rh, then R
is simple if, for each w v̇ R ∈ Rh, w = S for a simple
role S.

A set of role assertions Ra is called simple if all roles R,S
appearing in role assertions of the form Irr(R), Asy(R), or
Dis(R,S), are simple in R. If R is clear from the context,
we often use “simple” instead of “simple in R”.

Definition 4 (Role Box) A SROIQ-role box (Rbox for
short) is a set R = Rh ∪ Ra, where Rh is a regular role
hierarchy and Ra is a finite, simple set of role assertions.

An interpretation satisfies a role box R (written I |= R)
if I |= Rh and I |= φ for all role assertions φ ∈ Ra. Such
an interpretation is called a model of R.

Concepts and Inference Problems for SROIQ
Definition 5 (SROIQ Concepts, Tboxes, and Aboxes)
The set of SROIQ-concepts is the smallest set such that

• every concept name (including nominals) and >,⊥ are
concepts, and,

• if C, D are concepts, R is a role (possibly inverse), S is
a simple role (possibly inverse), and n is a non-negative
integer, then C uD, C tD, ¬C, ∀R.C, ∃R.C, ∃S.Self,
(>nS.C), and (6nS.C) are also concepts.

A general concept inclusion axiom (GCI) is an expres-
sion of the form C v̇ D for two SROIQ-concepts C and
D. A Tbox T is a finite set of GCIs.

An individual assertion is of one of the following forms:
a : C, (a, b) : R, (a, b) : ¬R, or a 6 .= b, for a, b ∈ I (the
set of individual names), a (possibly inverse) role R, and a
SROIQ-concept C. A SROIQ-Abox A is a finite set of
individual assertions.

It is part of future work to determine which of the restric-
tions to simple roles in role assertions Dis(R,S), Asy(R),
and Irr(R), as well as the concept expression ∃S.Self, are
strictly necessary in order to preserve decidability or practi-
cability. These restrictions, however, allow a rather smooth
integration of the new constructs into existing algorithms.



Definition 6 (Semantics and Inference Problems) Given
an interpretation I = (∆I , ·I), concepts C, D, roles R,
S, and non-negative integers n, the extension of complex
concepts is defined inductively by the following equa-
tions, where ]M denotes the cardinality of a set M , and
concept names, roles, and nominals are interpreted as in
Definition 1:

>I = ∆I , ⊥I = ∅, (¬C)I = ∆I \ CI

(C uD)I = CI ∩DI , (C tD)I = CI ∪DI

(∃R.C)I = {x | ∃y.〈x, y〉 ∈ RI and y ∈ CI}
(∃R.Self)I = {x | 〈x, x〉 ∈ RI}

(∀R.C)I = {x | ∀y.〈x, y〉 ∈ RI implies y ∈ CI}
(>nR.C)I = {x | ]{y.〈x, y〉 ∈ RI and y ∈ CI} > n}
(6nR.C)I = {x | ]{y.〈x, y〉 ∈ RI and y ∈ CI} 6 n}
I is a model of a Tbox T (written I |= T ) if CI ⊆ DI

for each GCI C v̇ D in T . A concept C is called satisfiable
if there is an interpretation I with CI 6= ∅. A concept D
subsumes a concept C (written C v D) if CI ⊆ DI holds
for each interpretation. For an interpretation I, an element
x ∈ ∆I is called an instance of a concept C if x ∈ CI .
I satisfies (is a model of) an Abox A (I |= A) if for all

individual assertions φ ∈ A we have I |= φ, where

I |= a :C if aI ∈ CI ;
I |= a 6 .= b if aI 6= bI ;
I |= (a, b) :R if 〈aI , bI〉 ∈ RI ;
I |= (a, b) :¬R if 〈aI , bI〉 /∈ RI .

An Abox A is consistent with respect to an Rbox R and a
Tbox T if there is a model I for R and T such that I |= A.

The above inference problems can be defined w.r.t. a role
box R and/or a Tbox T in the usual way, i.e., by replacing
interpretation with model of R and/or T .

Reduction of Inference Problems
For DLs that are closed under negation, subsumption and
(un)satisfiability of concepts can be mutually reduced: C v
D iff C u¬D is unsatisfiable, and C is unsatisfiable iff C v
⊥. Furthermore, a concept C is satisfiable iff the Abox {a :
C} (a a ‘new’ individual name) is consistent.

It is straightforward to extend these reductions to Rboxes
and Tboxes. In contrast, the reduction of inference prob-
lems w.r.t. a Tbox to pure concept inference problems (pos-
sibly w.r.t. a role hierarchy), deserves special care: in Baader
(1991); Schild (1991); Baader et al. (1993), the internalisa-
tion of GCIs is introduced, a technique that realises exactly
this reduction. For SROIQ, this technique only needs to
be slightly modified. We will show in a series of steps that,
in SROIQ, satisfiability of a concept C with respect to a
triple 〈A,R, T 〉 of, respectively, a SROIQ Abox, Rbox,
and Tbox, can be reduced to concept satisfiability of a con-
cept C ′ with respect to an Rbox R′, where the Rbox R′

only contains role assertions of the form Dis(R,S), Ref(R),
or Asy(R), and the universal role U does not appear in C ′.

While nominals can be used to ‘internalise’ the Abox, in
order to eliminate the universal role, we use a ‘simulated’
universal role U ′, i.e., a reflexive, symmetric, and transi-
tive super-role of all roles and their inverses appearing in

〈A,R, T 〉, and which, additionally, connects all nominals
appearing in the input.

Thus, let C and 〈A,R, T 〉 be a SROIQ concept and
Abox, Rbox, and Tbox, respectively. In a first step, we re-
place the Abox A with an Abox A′ such that A′ only con-
tains individual assertions of the form a :C. To this purpose,
we associate with every individual a ∈ I appearing in A a
new nominal oa not appearing in T or C. Next, A′ is the re-
sult of replacing every individual assertion in A of the form
(a, b) : R with a : ∃R.ob, every (a, b) :¬R with a : ∀R.¬ob,
and every a 6 .= b with a : ¬ob. Now, given C and A′, define
C ′ as follows:

C ′ := C u u
a:D∈A′

∃U.(oa uD),

where U is the universal role. It should be clear that C is
satisfiable with respect to 〈A,R, T 〉 if and only if C ′ is sat-
isfiable with respect to 〈R, T 〉.

Lemma 7 (Abox Elimination) SROIQ concept satisfia-
bility with respect to Aboxes, Rboxes, and Tboxes is poly-
nomially reducible to SROIQ concept satisfiability with
respect to Rboxes and Tboxes only.

Hence, in the following we will assume that Aboxes have
been eliminated. Next, although we have the ‘real’ universal
role U present in the language, the following lemma shows
how general concept inclusion axioms can be internalised
while at the same time eliminating occurrences of the uni-
versal role U , using a simulated “universal” role U ′, that is,
a transitive super-role of all roles (except U ) occurring in T
or R and their respective inverses. Recall that the universal
role U is not allowed to appear in Rboxes.

Lemma 8 (Tbox and Universal Role Elimination) Let C,
D be concepts, T a Tbox, and R = Rh ∪ Ra an Rbox. Let
U ′ 6= U be a role that does not occur in C, D, T , orR, and,
for X a Tbox or a concept, let X ′ result from X by replacing
every occurrence of U with U ′. We define

CT ′ := ∀U ′.
( u
C′

iv̇D′
i∈T ′

¬C ′
i tD′

i

)
u

( u
N3o∈T ∪C∪D

∃U ′.o
)
,

RU ′

h := Rh ∪ {R v̇ U ′ | R occurs in C ′, D′, T ′, or R},

RU ′

a := Ra ∪ {Tra(U ′),Sym(U ′),Ref(U ′)}, and

RU ′ := RU ′

h ∪RU ′

a . Then

• C is satisfiable w.r.t. T and R iff C ′ u CT ′ is satisfiable
w.r.t. RU ′ .

• D subsumes C with respect to T andR iff C ′u¬D′uCT ′

is unsatisfiable w.r.t. RU ′ .

The proof of Lemma 8 is similar to the ones that can be
found in Schild (1991) and Baader (1991). Most impor-
tantly, it must be shown that (a): if a SROIQ-concept C
is satisfiable with respect to a Tbox T and an Rbox R, then
C, T ,R have a nominal connected model, i.e., a model
which is a union of connected components, where each such
component contains a nominal, and where any two elements



of a connected component are connected by a role path over
those roles occurring in C, T orR, and (b): if y is reachable
from x via a role path (possibly involving inverse roles), then
〈x, y〉 ∈ U ′I . These are easy consequences of the semantics
and the definition of U ′ and CT ′ , which guarantees that all
nominals are connected by U ′ links.

Now, note also that, instead of having a role assertion
Irr(R) ∈ Ra, we can add, equivalently, the GCI > v̇
¬∃R.Self to T , which can in turn be internalised. Likewise,
instead of asserting Ref(R), we can, equivalently, add the
GCI > v̇ ∃R.Self to T . However, in the case of Ref(R)
this replacement is only admissible for simple roles R and
thus not possible (syntactically) in general.

Thus, using these equivalences (including the replace-
ment of Rbox assertions of the form Sym(R) and Tra(R))
and Lemmas 7 and 8, we arrive at the following theorem:

Theorem 9 (Reduction)
1. Satisfiability and subsumption of SROIQ-concepts w.r.t.

Tboxes, Aboxes, and Rboxes, are polynomially reducible
to (un)satisfiability of SROIQ-concepts w.r.t. Rboxes.

2. W.l.o.g., we can assume that Rboxes do not contain role
assertions of the form Irr(R), Tra(R), or Sym(R), and
that the universal role is not used.

With Theorem 9, all standard inference problems for
SROIQ-concepts and Aboxes can be reduced to the prob-
lem of determining the consistency of a SROIQ-concept
w.r.t. to an Rbox (both not containing the universal role),
where we can assume w.l.o.g. that all role assertions in the
Rbox are of the form Ref(R), Asy(R), or Dis(R,S)—we
call such an Rbox reduced.

SROIQ is Decidable
In this section, we show that SROIQ is decidable. We
present a tableau-based algorithm that decides the consis-
tency of a SROIQ concept w.r.t. a reduced Rbox, and
therefore also all standard inference problems as discussed
above, see Theorem 9. Therefore, in the following, by Rbox
we always mean reduced Rbox.

The algorithm tries to construct, for a SROIQ-concept
C and an RboxR, a tableau for C andR, that is, an abstrac-
tion of a model of C and R.

For a regular role hierarchy Rh and a (possibly inverse)
role S occurring inRh, a non-deterministic finite automaton
(NFA) BS is defined. The construction of these automata is
identical to the one presented in Horrocks & Sattler (2004),
and we therefore refer to this paper for detailed definitions
and proofs of the automata related results below.

The following proposition states that BS indeed captures
all implications between (paths of) roles and S that are con-
sequences of the role hierarchy Rh, where L(BS) denotes
the language (a set of strings of roles) accepted by BS .

Proposition 10 I is a model of Rh if and only if, for each
(possibly inverse) role S occurring in Rh, each word w ∈
L(BS), and each 〈x, y〉 ∈ wI , we have 〈x, y〉 ∈ SI .

Unfortunately, as shown in Horrocks & Sattler (2004), the
size of BR can be exponential in the size of R. Horrocks &
Sattler (2004) consider certain further syntactic restrictions
of role hierarchies (there called simple role hierarchies) that
avoid this exponential blow-up. We conjecture that, without
some such further restriction, this blow-up is unavoidable.
The following technical Lemma from Horrocks & Sattler
(2004) will be needed later on.

Lemma 11
1. S ∈ L(BS) and, if w v̇ S ∈ R, then w ∈ L(BS).
2. If S is a simple role, then L(BS) = {R | R v* S}.
3. L(BInv(S)) = {Inv(w) | w ∈ L(BS)}.

A Tableau for SROIQ
In the following, if not stated otherwise, C,D (possibly
with subscripts) denote SROIQ-concepts (not using the
universal role), R,S (possibly with subscripts) roles, R =
Rh ∪ Ra an Rbox, and RC the set of roles occurring in C
and R together with their inverses. Furthermore, as noted in
Theorem 9, we can (and will from now on) assume w.l.o.g.
that all role assertions appearing in Ra are of the form
Dis(R,S), Asy(R), or Ref(R).

We start by defining fclos(C0,R), the closure of a concept
C0 w.r.t. a regular role hierarchyR. Intuitively, this contains
all relevant sub-concepts of C0 together with universal value
restrictions over sets of role paths described by an NFA. We
use NFAs in universal value restrictions to memorise the
path between an object that has to satisfy a value restriction
and other objects. To do this, we “push” this NFA-value re-
striction along all paths while the NFA gets “updated” with
the path taken so far. For this “update”, we use the following
definition.

Definition 12 For B an NFA and q a state of B, B(q) de-
notes the NFA obtained from B by making q the (only) initial
state of B, and we use q

S→ q′ ∈ B to denote that B has a
transition q

S→ q′.

Without loss of generality, we assume all concepts to be
in negation normal form (NNF), that is, negation occurs
only in front of concept names or in front of ∃R.Self. Any
SROIQ-concept can easily be transformed into an equiv-
alent one in NNF by pushing negations inwards using a
combination of De Morgan’s laws and equivalences such as
¬(∃R.C) ≡ (∀R.¬C), ¬(6nR.C) ≡ (>(n + 1)R.C), etc.
We use ¬̇C for the NNF of ¬C. Obviously, the length of
¬̇C is linear in the length of C.

For a concept C0, clos(C0) is the smallest set that contains
C0 and that is closed under sub-concepts and ¬̇. The set
fclos(C0,R) is then defined as follows:

fclos(C0,R) := clos(C0) ∪ {∀BS(q).D |
∀S.D ∈ clos(C0) and BS has a state q}.

It is not hard to show and well-known that the size of
clos(C0) is linear in the size of C0. For the size of
fclos(C0,R), we have mentioned above that, for a role S,



the size of BS can be exponential in the depth of R. Since
there are at most linearly many concepts ∀S.D, this yields a
bound for the cardinality of fclos(C0,R) that is exponential
in the depth of R and linear in the size of C0.

Definition 13 (Tableau) T = (S,L,E) is a tableau for C0

w.r.t. R if
• S is a non-empty set;
• L : S → 2fclos(C0,R) maps each element in S to a set of

concepts;
• E : RC0 → 2S×S maps each role to a set of pairs of

elements in S;
• C0 ∈ L(s) for some s ∈ S.

Furthermore, for all s, t ∈ S, C,C1, C2 ∈ fclos(C0,R),
o ∈ N ∩ fclos(C0,R), R,S ∈ RC0 , and

ST (s, C) := {r ∈ S | 〈s, r〉 ∈ E(S) and C ∈ L(r)},

the tableau T satisfies:

(P1) C ∈ L(s) =⇒ ¬C /∈ L(s),
(C atomic or ∃R.Self);

(P2) > ∈ L(s), and ⊥ /∈ L(s);
(P3) ∃R.Self ∈ L(s) =⇒ 〈s, s〉 ∈ E(R);
(P4) ¬∃R.Self ∈ L(s) =⇒ 〈s, s〉 /∈ E(R);
(P5) C1 u C2 ∈ L(s) =⇒ C1, C2 ∈ L(s);
(P6) C1tC2 ∈ L(s) =⇒ C1 ∈ L(s) or C2 ∈ L(s);
(P7) ∀B(p).C ∈ L(s), 〈s, t〉 ∈ E(S),

and p
S→ q ∈ B(p) =⇒ ∀B(q).C ∈ L(t);

(P8) ∀B.C ∈ L(s) and ε ∈ L(B) =⇒ C ∈ L(s);
(P9) ∀S.C ∈ L(s) =⇒ ∀BS .C ∈ L(s);

(P10) ∃S.C ∈ L(s) =⇒ there is some r ∈ S with
〈s, r〉 ∈ E(S) and C ∈ L(r);

(P11) 〈s, t〉 ∈ E(R) ⇐⇒ 〈t, s〉 ∈ E(Inv(R));
(P12) 〈s, t〉 ∈ E(R) and R v* S =⇒ 〈s, t〉 ∈ E(S);
(P13) (6nS.C) ∈ L(s) =⇒ ]ST (s, C) 6 n;
(P14) (>nS.C) ∈ L(s) =⇒ ]ST (s, C) > n;
(P15) (6nS.C) ∈ L(s) and 〈s, t〉 ∈ E(S) =⇒

C ∈ L(t) or ¬̇C ∈ L(t);
(P16) Dis(R,S) ∈ Ra =⇒ E(R) ∩ E(S) = ∅;
(P17) Ref(R) ∈ Ra =⇒ 〈s, s〉 ∈ E(R);
(P18) Asy(R) ∈ Ra =⇒ 〈s, t〉 ∈ E(R)

implies 〈t, s〉 /∈ E(R);
(P19) o ∈ L(r) for some r ∈ S;
(P20) o ∈ L(s) ∩ L(t) =⇒ s = t.

Theorem 14 (Tableau) A SROIQ-concept C0 is satisfi-
able w.r.t. a reduced Rbox R iff there exists a tableau for
C0 w.r.t. R.

Proof: For the if direction, let T = (S,L,E) be a tableau
for C0 w.r.t. R. We extend the relational structure of T and
then prove that this indeed gives a model.

More precisely, a model I = (∆I , ·I) of C0 and R can
be defined as follows: we set ∆I := S, CI := {s | C ∈
L(s)} for concept names C in fclos(C0,R), where (P19)

and (P20) guarantee that nominals are indeed interpreted as
singleton sets, and, for roles names R ∈ RC0 , we set

RI := {〈s0, sn〉 ∈ (∆I)2 | exists s1, . . . , sn−1 with
〈si, si+1〉 ∈ E(Si+1) and S1 · · ·Sn ∈ L(BR)}

The semantics of complex concepts is given through the def-
inition of the SROIQ-semantics. Due to Lemma 11.3 and
(P11), the semantics of inverse roles can either be given di-
rectly as for role names, or by setting (R−)I := {〈y, x〉 |
〈x, y〉 ∈ RI}. Moreover, we have, by definition of I,
Lemma 11.2, (P11), and (P12) that, for T a simple role,
T I = E(T ).

We have to show that I is a model ofR and C0. We begin
by showing that I |= R. Since R is reduced, we only have
to deal with role assertions of the form Dis(R,S), Ref(R),
and Asy(R).

Consider an assertion Dis(R,S) ∈ R. By definition of
SROIQ-Rboxes, both R and S are simple roles, and thus
RI = E(R) and SI = E(S). Moreover, (P16) implies
E(R)∩E(S) = ∅, and thus RI ∩SI = ∅. Next, if Ref(R) ∈
Ra, (P17) and R ∈ L(BR) (Lemma 11.1) imply DiagI ⊆
RI . Finally, if Asy(R) ∈ Ra then RI = E(R) since R
is simple, and so 〈s, t〉 ∈ RI implies 〈s, t〉 ∈ E(R) and
so 〈t, s〉 /∈ E(R) by (P18), whence 〈t, s〉 /∈ RI . Thus I
satisfies each role assertion in Ra.

Next, we have to show that I |= Rh. Due to Proposi-
tion 10, it suffices to prove that, for each (possibly inverse)
role S, each word w ∈ L(BS), and each 〈x, y〉 ∈ wI , we
have 〈x, y〉 ∈ SI . The proof of this is identical to the case
of RIQ and can be found in Horrocks & Sattler (2004).

Secondly, we prove that I is a model of C0. We show
that C ∈ L(s) implies s ∈ CI for each s ∈ S and each
C ∈ fclos(A,R). This proof can be given by induction on
the length of concepts, where we count neither negation nor
integers in number restrictions. The only interesting cases
are C = (6nS.E), C = ∀S.E, and C = (¬)∃R.Self (for
the other cases, see Horrocks, Sattler, & Tobies (2000); Hor-
rocks & Sattler (2002)):

• If (6nS.E) ∈ L(s), then (P13) implies that
#ST (s,E) ≤ n. Moreover, since S is simple,
Lemma 11.2 implies that L(BS) = {S′ | S′ v* S},
and (P12) implies that SI = E(S). Hence (P15) im-
plies that, for all t, if 〈s, t〉 ∈ SI , then E ∈ L(t) or
¬̇E ∈ L(t). By induction EI = {t | E ∈ L(t)}, and
thus s ∈ (6nS.E)I .

• Let ∀S.E ∈ L(s) and 〈s, t〉 ∈ SI . From (P9) we
have that ∀BS .E ∈ L(s). By definition of SI , there are
S1 . . . Sn ∈ L(BS) and si with s = s0, t = sn, and
〈si−1, si〉 ∈ E(Si). Applying (P7) n times, this yields
∀BS(q).E ∈ L(t) for q a final state of BS . Thus (P8)
implies that E ∈ L(t). By induction, t ∈ EI , and thus
s ∈ (∀S.E)I .

• Let ∃R.Self ∈ L(s). Then, by (P3), 〈s, s〉 ∈ E(R) and,
since R ∈ L(BR) and by definition of I, we have 〈s, s〉 ∈
RI . It follows that s ∈ (∃R.Self)I .



• Let ¬∃R.Self ∈ L(s). Then, by (P4), 〈s, s〉 /∈ E(R).
Since R is a simple role, RI = E(R). Hence 〈s, s〉 /∈ RI ,
and so s ∈ (¬∃R.Self)I .

For the converse, suppose I = (∆I , ·I) is a model of C0

w.r.t. R. We define a tableau T = (S,L,E) for C0 and R as
follows:

S := ∆I ;

E(R) := RI ; and

L(s) := {C ∈ fclos(C0,R) | s ∈ CI}
∪ {∀BS .C | ∀S.C ∈ fclos(C0,R) and s ∈ (∀S.C)I}
∪ {∀BR(q).C ∈ fclos(C0,R) | S1 · · ·Sn ∈ L(BR(q)) ⇒
s ∈ (∀S1.∀S2. · · · ∀Sn.C)I , ε ∈ L(BR(q)) ⇒ s ∈ CI}

We have to show that T satisfies (P1)–(P20), and restrict
our attention to the only new cases.

For (P9), if ∀S.C ∈ L(s), then s ∈ (∀S.C)I and thus
∀BS .C ∈ L(s) by definition of T .

For (P7), let ∀B(p).C ∈ L(s) and 〈s, t〉 ∈ E(S). Assume
that there is a transition p

S→ q in B(p) and ∀B(q).C 6∈ L(t).
By definition of T , this can have two reasons:

1. there is a word S2 . . . Sn ∈ L(B(q)) and
t 6∈ (∀S2. . . .∀Sn.C)I . However, this implies
that SS2 . . . Sn ∈ L(B(p)) and thus that we have
s ∈ (∀S.∀S2. . . .∀Sn.C)I , which contradicts, together
with 〈s, t〉 ∈ SI , the definition of the semantics of
SROIQ concepts.

2. ε ∈ L(B(q)) and t 6∈ CI . This implies that S ∈ L(B(p))
and thus contradicts s ∈ (∀S.C)I .

For (P8), ε ∈ L(B(p)) implies s ∈ CI by definition of
T , and thus C ∈ L(s).

Finally, (P16)–(P20) follow immediately from the defi-
nition of the semantics.

�

The Tableau Algorithm
In this section, we present a terminating, sound, and
complete tableau algorithm that decides consistency of
SROIQ-concepts not using the universal role w.r.t. reduced
Rboxes, and thus, using Theorem 9, also concept satisfiabil-
ity w.r.t. Rboxes, Tboxes and Aboxes.

We first define the underlying data structures and corre-
sponding operations. For more detailed explanations con-
cerning the intuitions underlying these definitions, consult
Horrocks & Sattler (2005).

The algorithm generates a completion graph, a structure
that, if complete and clash-free, can be unravelled to a (pos-
sibly infinite) tableau for the input concept and Rbox. More-
over, it is shown that the algorithm returns a complete and
clash-free completion graph for C0 andR if and only if there
exists a tableau for C0 and R, and thus with Lemma 14, if
and only if the concept C0 is satisfiable w.r.t. R.

As usual, in the presence of transitive roles, blocking is
employed to ensure termination of the algorithm (Horrocks,
Sattler, & Tobies, 2000).

Definition 15 (Completion Graph) Let R be a reduced
Rbox, let C0 be a SROIQ-concept in NNF not using the
universal role, and let N be the set of nominals. A com-
pletion graph for C0 with respect to R is a directed graph
G = (V,E,L, 6 .=) where each node x ∈ V is labelled with
a set

L(x) ⊆ fclos(C0,R) ∪N ∪ {(6mR.C) |
(6nR.C) ∈ fclos(C0,R) and m ≤ n}

and each edge 〈x, y〉 ∈ E is labelled with a set of role
names L(〈x, y〉) containing (possibly inverse) roles occur-
ring in C0 or R. Additionally, we keep track of inequalities
between nodes of the graph with a symmetric binary relation
6 .= between the nodes of G.

In the following, we often use R ∈ L(〈x, y〉) as an abbre-
viation for 〈x, y〉 ∈ E and R ∈ L(〈x, y〉).

If 〈x, y〉 ∈ E, then y is called a successor of x and x is
called a predecessor of y. Ancestor is the transitive closure
of predecessor, and descendant is the transitive closure of
successor. A node y is called an R-successor of a node x if,
for some R′ with R′ v* R, R′ ∈ L(〈x, y〉). A node y is called
a neighbour (R-neighbour) of a node x if y is a successor
(R-successor) of x or if x is a successor (Inv(R)-successor)
of y.

For a role S and a node x in G, we define the set of x’s
S-neighbours with C in their label, SG(x,C), as follows:

SG(x, C) := {y | y is an S-neighbour of x and C ∈ L(y)}.

G is said to contain a clash if there are nodes x and y
such that

1. ⊥ ∈ L(x), or
2. for some concept name A, {A,¬A} ⊆ L(x), or
3. x is an S-neighbour of x and ¬∃S.Self ∈ L(x), or
4. there is some Dis(R,S) ∈ Ra and y is an R- and an

S-neighbour of x, or
5. there is some Asy(R) ∈ Ra and y is an R-neighbour of x

and x is an R-neighbour of y, or
6. there is some concept (6nS.C) ∈ L(x) and
{y0, . . . , yn} ⊆ SG(x, C) with yi 6

.= yj for all 0 ≤ i <
j ≤ n, or

7. for some o ∈ N, x 6 .= y and o ∈ L(x) ∩ L(y).

If o1, . . . , o` are all the nominals occurring in C0 then the
tableau algorithm is initialised with the completion graph
G = ({r0, r1 . . . , r`}, ∅,L, ∅) with L(r0) = {C0} and
L(ri) = {oi} for 1 ≤ i ≤ `. G is then expanded by
repeatedly applying the expansion rules given in Figure 1,
stopping if a clash occurs.

Before describing the tableau algorithm in more detail, we
define some terms and operations used in the (application of
the) expansion rules:

Nominal Nodes and Blockable Nodes A node x is a
nominal node if L(x) contains a nominal. A node that is
not a nominal node is a blockable node. A nominal o ∈ N
is said to be new in G if no node in G has o in its label.



Blocking A node x is label blocked if it has ancestors x′,
y and y′ such that

1. x is a successor of x′ and y is a successor of y′,
2. y, x and all nodes on the path from y to x are blockable,
3. L(x) = L(y) and L(x′) = L(y′), and
4. L(〈x′, x〉) = L(〈y′, y〉).
In this case, we say that y blocks x. A node is blocked if
either it is label blocked or it is blockable and its predeces-
sor is blocked; if the predecessor of a blockable node x is
blocked, then we say that x is indirectly blocked.
Generating and Shrinking Rules and Safe Neighbours
The >-, ∃- and NN-rules are called generating rules, and
the 6- and the o-rule are called shrinking rules. An R-
neighbour y of a node x is safe if (i) x is blockable or if (ii)
x is a nominal node and y is not blocked.
Pruning When a node y is merged into a node x, we
“prune” the completion graph by removing y and, recur-
sively, all blockable successors of y. More precisely, prun-
ing a node y (written Prune(y)) in G = (V,E,L, 6 .=) yields
a graph that is obtained from G as follows:

1. for all successors z of y, remove 〈y, z〉 from E and, if z is
blockable, Prune(z);

2. remove y from V .

Merging In some rules, we “merge” one node into another
node. Intuitively, when we merge a node y into a node x, we
add L(y) to L(x), “move” all the edges leading to y so that
they lead to x and “move” all the edges leading from y to
nominal nodes so that they lead from x to the same nominal
nodes; we then remove y (and blockable sub-trees below y)
from the completion graph. More precisely, merging a node
y into a node x (written Merge(y, x)) in G = (V,E,L, 6 .=)
yields a graph that is obtained from G as follows:

1. for all nodes z such that 〈z, y〉 ∈ E

(a) if {〈x, z〉, 〈z, x〉}∩E = ∅, then add 〈z, x〉 to E and set
L(〈z, x〉) = L(〈z, y〉),

(b) if 〈z, x〉 ∈ E, then set L(〈z, x〉) = L(〈z, x〉) ∪
L(〈z, y〉),

(c) if 〈x, z〉 ∈ E, then set L(〈x, z〉) = L(〈x, z〉) ∪
{Inv(S) | S ∈ L(〈z, y〉)}, and

(d) remove 〈z, y〉 from E;
2. for all nominal nodes z such that 〈y, z〉 ∈ E

(a) if {〈x, z〉, 〈z, x〉}∩E = ∅, then add 〈x, z〉 to E and set
L(〈x, z〉) = L(〈y, z〉),

(b) if 〈x, z〉 ∈ E, then set L(〈x, z〉) = L(〈x, z〉) ∪
L(〈y, z〉),

(c) if 〈z, x〉 ∈ E, then set L(〈z, x〉) = L(〈z, x〉) ∪
{Inv(S) | S ∈ L(〈y, z〉)}, and

(d) remove 〈y, z〉 from E;
3. set L(x) = L(x) ∪ L(y);
4. add x 6 .= z for all z such that y 6 .= z; and
5. Prune(y).
If y was merged into x, we call x a direct heir of y, and we
use being an heir of another node for the transitive closure
of being a “direct heir”.

Level (of Nominal Nodes) Let o1, . . . , o` be all the nom-
inals occurring in the input concept D. We define the level
of a node inductively as follows:

• each (nominal) node x with an oi ∈ L(x), 1 ≤ i ≤ `, is
of level 0, and

• a nominal node x is of level i if x is not of some level
j < i and x has a neighbour that is of level i− 1.

Strategy (of Rule Application) The expansion rules in
Figure 1 are applied according to the following strategy:

1. the o-rule is applied with highest priority,

2. next, the 6- and the NN-rule are applied, and they are ap-
plied first to nominal nodes with lower levels (before they
are applied to nodes with higher levels). In case they are
both applicable to the same node, the NN-rule is applied
first.

3. all other rules are applied with a lower priority.

We are now ready to finish the description of the tableau
algorithm. A completion graph is complete if it contains a
clash, or when none of the rules is applicable. If the expan-
sion rules can be applied to C0 and R in such a way that
they yield a complete, clash-free completion graph, then the
algorithm returns “C0 is satisfiable w.r.t. R”, and “C0 is un-
satisfiable w.r.t. R” otherwise.

Termination, Soundness, and Completeness
All but the Self–Ref-rule have been used before for frag-
ments of SROIQ, see Horrocks, Sattler, & Tobies (1999);
Horrocks & Sattler (2002, 2004), and the three ∀i-rules are
the obvious counterparts to the tableau conditions (P7)–
(P9).

As usual, we prove termination, soundness, and complete-
ness of the tableau algorithm to show that it indeed decides
satisfiability of SROIQ-concepts w.r.t. Rboxes.

Theorem 16 (Termination, Soundness, and Completeness)

Let C0 be a SROIQ-concept in NNF and R a reduced
Rbox.

1. The tableau algorithm terminates when started with C0

and R.
2. The expansion rules can be applied to C0 andR such that

they yield a complete and clash-free completion graph if
and only if there is a tableau for C0 w.r.t. R.

Proof: (1): The algorithm constructs a graph that consists of
a set of arbitrarily interconnected nominal nodes, and “trees”
of blockable nodes with each tree rooted in r0 or in a nomi-
nal node, and where branches of these trees might end in an
edge leading to a nominal node.

Termination is a consequence of the usual SHIQ condi-
tions with respect to the blockable tree parts of the graph,
plus the fact that there is a bound on the number of new
nominal nodes that can be added to G by the NN-rule.

The termination proof for the SROIQ tableaux is virtu-
ally identical to the one for SHOIQ, whence we omit the



u-rule: if C1 u C2 ∈ L(x), x is not indirectly blocked,
and {C1, C2} 6⊆ L(x),

then L(x) −→ L(x) ∪ {C1, C2}
t-rule: if C1 t C2 ∈ L(x), x is not indirectly blocked,

and {C1, C2} ∩ L(x) = ∅
then L(x) −→ L(x) ∪ {E} for some E ∈ {C1, C2}

∃-rule: if ∃S.C ∈ L(x), x is not blocked, and
x has no S-neighbour y with C ∈ L(y)

then create a new node y with
L(〈x, y〉) := {S} and L(y) := {C}

Self–Ref-rule: if ∃S.Self ∈ L(x) or Ref(S) ∈ Ra,
x is not blocked, and S /∈ L(〈x, x〉)

then add an edge 〈x, x〉 if it does not yet exist, and
set L(〈x, x〉) −→ L(〈x, x〉) ∪ {S}

∀1-rule: if ∀S.C ∈ L(x), x is not indirectly blocked,
and ∀BS .C 6∈ L(x)

then L(x) −→ L(x) ∪ {∀BS .C}
∀2-rule: if ∀B(p).C ∈ L(x), x is not indirectly blocked,

p
S→ q in B(p), and there is an S-neighbour

y of x with ∀B(q).C /∈ L(y),
then L(y) −→ L(y) ∪ {∀B(q).C}

∀3-rule: if ∀B.C ∈ L(x), x is not indirectly blocked,
ε ∈ L(B) and C 6∈ L(x)

then L(x) −→ L(x) ∪ {C}
choose-rule: if (6nS.C) ∈ L(x), x is not indirectly blocked,

and there is an S-neighbour y of x
with {C, ¬̇C} ∩ L(y) = ∅

then L(y) −→ L(y) ∪ {E} for some E ∈ {C, ¬̇C}
>-rule: if 1. (>nS.C) ∈ L(x), x is not blocked

2. there are not n safe S-neighbours
y1, . . . , yn of x with C ∈ L(yi)
and yi 6

.
= yj for 1 ≤ i < j ≤ n

then create n new nodes y1, . . . , yn with
L(〈x, yi〉) = {S}, L(yi) = {C},
and yi 6

.
= yj for 1 ≤ i < j ≤ n.

6-rule: if 1. (6nS.C) ∈ L(z), z is not indirectly blocked
2. ]SG(z, C) > n and there are two S-neighbours

x, y of z with C ∈ L(x) ∩ L(y), and not x 6 .= y
then 1. if x is a nominal node then Merge(y, x)

2. else, if y is a nominal node or an
ancestor of x then Merge(x, y)
3. else Merge(y, x)

o-rule: if for some o ∈ NI there are 2 nodes x, y
with o ∈ L(x) ∩ L(y) and not x 6 .= y

then Merge(x, y)
NN-rule: if 1. (6nS.C) ∈ L(x), x is a nominal node, and

there is a blockable S-neighbour y of x such
that C ∈ L(y) and x is a successor of y,

2. there is no m such that 1 6 m 6 n,
(6mS.C) ∈ L(x), and there exist m nominal
S-neighbours z1, . . . , zm of x with C ∈ L(zi)
and zi 6

.
= zj for all 1 ≤ i < j ≤ m.

then 1. guess m with 1 6 m 6 n,
and set L(x) = L(x) ∪ {(6mS.C)}

2. create m new nodes y1, . . . , ym with
L(〈x, yi〉) = {S}, L(yi) = {C, oi},
for each oi ∈ NI new in G,
and yi 6

.
= yj for 1 ≤ i < j ≤ m.

Figure 1: The Expansion Rules for the SROIQ Tableau
Algorithm.

details and refer the reader to Horrocks & Sattler (2005).
To see this, note first that the blocking technique employed
for SROIQ is identical to the one for SHOIQ. Next,
the closure fclos(C0,R) is defined differently, comprising
concepts of the form ∀BS(q).C, generally yielding a size of
fclos(C0,R) that can be exponential in the depth of the role
hierarchy. However, the construction of the automata can
also be considered a pre-processing step and part of the in-
put, in that case keeping the polynomial bound on the size
of the closure relative to the input. Furthermore, it should be
clear that the new Self–Ref-rule (only adding new reflexive
edges) as well as the new clash conditions do not affect the
termination of the algorithm.
(2): For the “if” direction, we can obtain a tableau T =
(S,L′,E) from a complete and clash-free completion graph
G by unravelling blockable “tree” parts of the graph as usual
(these are the only parts where blocking can apply).

More precisely, paths are defined as follows. For a label
blocked node x, let b(x) denote a node that blocks x.

A path is a sequence of pairs of blockable nodes of
G of the form p = 〈(x0, x

′
0), . . . , (xn, x′n)〉. For such a

path, we define Tail(p) := xn and Tail′(p) := x′n. With
〈p|(xn+1, x

′
n+1)〉 we denote the path

〈(x0, x
′
0), . . . , (xn, x′n), (xn+1, x

′
n+1)〉.

The set Paths(G) is defined inductively as follows:
• For each blockable node x of G that is a successor of a

nominal node or a root node, 〈(x, x)〉 ∈ Paths(G), and
• For a path p ∈ Paths(G) and a blockable node y in G:

– if y is a successor of Tail(p) and y is not blocked, then
〈p|(y, y)〉 ∈ Paths(G), and

– if y is a successor of Tail(p) and y is blocked, then
〈p|(b(y), y)〉 ∈ Paths(G).

Please note that, due to the construction of Paths, all nodes
occurring in a path are blockable and, for p ∈ Paths(G)
with p = 〈p′|(x, x′)〉, x is not blocked, x′ is blocked iff
x 6= x′, and x′ is never indirectly blocked. Furthermore, the
blocking condition implies L(x) = L(x′).

Next, we use Nom(G) for the set of nominal nodes in G,
and define a tableau T = (S,L′,E) from G as follows.

S=Nom(G) ∪ Paths(G)

L′(p) =
{

L(Tail(p)) if p ∈ Paths(G)
L(p) if p ∈ Nom(G)

E(R) =E1 ∪ E2 ∪ E3 ∪ E4, where

E1 = {〈p, q〉 ∈ Paths(G)× Paths(G) |
q = 〈p|(x, x′)〉 and x′ is an R-successor of Tail(p), or

p = 〈q|(x, x′)〉 and x′ is an Inv(R)-successor of Tail(q)}
E2 = {〈p, x〉 ∈ Paths(G)× Nom(G) |

x is an R-neighbour of Tail(p)}
E3 = {〈x, p〉 ∈ Nom(G)× Paths(G) |

Tail(p) is an R-neighbour of x}
E4 = {〈x, y〉 ∈ Nom(G)× Nom(G) |

y is an R-neighbour of x}



We already commented above on S, and L′ is straightfor-
ward. Unfortunately, E is slightly cumbersome because we
must distinguish between blockable and nominal nodes.
CLAIM: T is a tableau for C0 with respect to R.

Firstly, by definition of the algorithm, there is an heir x0

of r0 with C0 ∈ L(x0). By the 6-rule, x0 is either a root
node or a nominal node, and thus cannot be blocked. Hence
there is some s ∈ S with C0 ∈ L′(s). Next, we prove that
T satisfies each (Pi).
• (P1), (P2), (P5) and (P6) are trivially implied by the def-

inition of L′ and completeness of G.
• (P3) and (P17) follow from the construction of E and

completeness of G, and (P4) follows from clash-freeness.
• for (P7), consider a tuple 〈s, t〉 ∈ E(R) with ∀B(p).C ∈

L′(s) and p
R→ q ∈ B(p). We have to show that

∀B(q).C ∈ L′(t) and distinguish four different cases:
– if 〈s, t〉 ∈ Paths(G) × Paths(G), then ∀B(p).C ∈

L(Tail(s)) and
∗ either Tail′(t) is an R-successor of Tail(s). Hence

completeness implies ∀B(q).C ∈ L(Tail′(t)), and by
definition of Paths(G), either Tail′(t) = Tail(t), or
Tail(t) blocks Tail′(t) and the blocking condition im-
plies L(Tail′(t)) = L(Tail(t)).

∗ or Tail′(s) is an Inv(R)-successor of Tail(t). Again,
either Tail′(s) = Tail(s), or Tail(s) blocks Tail′(s)
in which case the blocking condition implies that
∀B(p).C ∈ L(Tail′(s)), and thus completeness im-
plies that ∀B(q).C ∈ L(Tail(t)).

– if 〈s, t〉 ∈ Nom(G)×Nom(G), then ∀B(p).C ∈ L(s)
and t is an R-neighbour of s. Hence completeness im-
plies ∀B(q).C ∈ L(t).

– if 〈s, t〉 ∈ Nom(G)×Paths(G), then ∀B(p).C ∈ L(s)
and Tail(t) is an R-neighbour of s. Hence complete-
ness implies ∀B(q).C ∈ L(Tail(t)).

– if 〈s, t〉 ∈ Paths(G) × Nom(G), then ∀B(p).C ∈
L(Tail(s)) and t is an R-neighbour of Tail(s). Hence
completeness implies ∀B(q).C ∈ L(t).

In all four cases, by definition of L′, we have ∀B(q).C ∈
L′(t).

• (P8) and (P9) follow from completeness of G.
• for (P10), consider some s ∈ S with ∃R.C ∈ L′(s).

– If s ∈ Paths(G), then ∃R.C ∈ L(Tail(s)), Tail(s) is
not blocked, and completeness of T implies the exis-
tence of an R-neighbour y of Tail(s) with C ∈ L(y).
∗ If y is a nominal node, then y ∈ S, C ∈ L′(y), and
〈s, y〉 ∈ E(R).

∗ If y is blockable and a successor of Tail(s), then
〈s|(ỹ, y)〉 ∈ S, for ỹ = y or ỹ = b(y), C ∈
L′(〈s|(ỹ, y)〉), and 〈s, 〈s|(ỹ, y)〉〉 ∈ E(R).

∗ If y is blockable and a predecessor of Tail(s), then
s = 〈p|(y, y)|(Tail(s),Tail′(s))〉, C ∈ L′(〈p|(y, y)〉),
and
〈s, 〈p|(y, y)〉〉 ∈ E(R).

– If s ∈ Nom(G), then completeness implies the exis-
tence of some R-successor x of s with C ∈ L(x).

∗ If x is a nominal node, then 〈s, x〉 ∈ E(R) and C ∈
L′(x).

∗ If x is a blockable node, then x is a safe R-neighbour
of s and thus not blocked. Hence there is a path p ∈
Paths(G) with Tail(p) = x, 〈s, p〉 ∈ E(R) and C ∈
L′(p).

• (P11) and (P12) are immediate consequences of the def-
inition of “R-successor” and “R-neighbour”, as well as
the definition of E.

• for (P13), consider some s ∈ S with (6nR.C) ∈ L′(s).
Clash-freeness implies the existence of at most n R-
neighbours yi of s with C ∈ L(yi). By construction, each
t ∈ S with 〈s, t〉 ∈ E(R) corresponds to an R-neighbour
yi of s or Tail(s), and none of these R-neighbours gives
rise to more than one such yi. Moreover, since L′(t) =
L(yi), (P13) is satisfied.

• for (P14), consider some s ∈ S with (>nR.C) ∈ L′(s).

– if s ∈ Nom(G), then completeness implies the exis-
tence of n safe R-neighbours y1, . . . , yn of s with and
yj 6= yj , for each i 6= j, and C ∈ L(yi), for each
1 ≤ i ≤ n. By construction, each yi corresponds to a
ti ∈ S with ti 6= tj , for each i 6= j:
∗ if yi is blockable, then it cannot be blocked since it

is a safe R-neighbour of s. Hence there is a path
〈p|(yi, yi)〉 ∈ S and 〈s, 〈p|(yi, yi)〉〉 ∈ E(R).

∗ if yi is a nominal node, then 〈s, yi〉 ∈ E(R).
– if s ∈ Paths(G), then completeness implies the ex-

istence of n R-neighbours y1, . . . , yn of Tail(s) with
yj 6= yj , for each i 6= j, and C ∈ L(yi), for each
1 ≤ i ≤ n. By construction, each yi corresponds to a
ti ∈ S with ti 6= tj , for each i 6= j:
∗ if yi is safe, then it can be blocked if it is a succes-

sor of Tail(s). In this case, the “pair” construction
in our definition of paths ensure that, even if b(yi) =
b(yj), for some i 6= j, we still have 〈p|(b(yi), yi)〉 6=
〈p|(b(yj), bj)〉.

∗ if yi is unsafe, then 〈s, yi〉 ∈ E(R).
Hence all ti are different and, by construction, C ∈
L′(ti), for each 1 ≤ i ≤ n.

• (P15) is satisfied due to completeness of G and the fact
that each t ∈ S with 〈s, t〉 ∈ E(R) corresponds to an R-
neighbour of s (in case s ∈ Nom(G)) or of Tail(s) (in
case s ∈ Paths(G)).

• (P16) and (P18) follow from clash-freeness and defini-
tion of E, (P19) follows trivially from the initialisation of
G, and (P20) is due to completeness of G and the fact
that nominal nodes are not “unravelled”.

For the “only if” direction, given a tableau T = (S,L′,E)
for C0 w.r.t. R, we can apply the non-deterministic rules,
i.e., the t-, choose-, 6-, and NN-rule, in such a way that we
obtain a complete and clash-free graph: inductively with the
generation of new nodes, we define a mapping π from nodes
in the completion graph to individuals in S of the tableau in
such a way that,



1. for each node x, L(x) ⊆ L′(π(x)),
2. for each pair of nodes x, y and each role R, if y is an R-

successor of x, then 〈π(x), π(y)〉 ∈ E(R), and
3. x 6 .= y implies π(x) 6= π(y).

This is analogous to the proof in Horrocks, Sattler, &
Tobies (1999) with the additional observation that, due to
(P20), application of the o-rule does not lead to a clash of
the form (7) as given in Definition 15. Similarly, an appli-
cation of the Self–Ref-rule does not lead to a clash of the
form (3) due to Condition (P4), a clash of the form (4) can
not occur due to (P16), and a clash of the form (5) can not
occur due to (P18).

�

From Theorems 9, 14 and 16, we thus arrive at the fol-
lowing theorem:

Theorem 17 (Decidability) The tableau algorithm decides
satisfiability and subsumption of SROIQ-concepts with re-
spect to Aboxes, Rboxes, and Tboxes.

Outlook and Future Work
We introduced a description logic, SROIQ, that overcomes
certain shortcomings in expressiveness of other DLs. We
have used SHOIQ and RIQ as a starting point, extended
them with “useful-yet-harmless” expressive means, and ex-
tended the tableau algorithm accordingly. SROIQ is in-
tended to be a basis for future extensions of OWL, and has
already been adopted as the logical basis of OWL 1.1.

It is left for future work to determine whether the restric-
tions to simple roles can be relaxed, to pinpoint the exact
computational complexity of SROIQ, and to include fur-
ther role assertions such as the more general version of an-
tisymmetry to allow a better modeling of mereological no-
tions (Goodwin, 2005).

A further line of investigation concerns concrete datatypes
with inverse functional datatype properties: these are of in-
terest since they allow to express simple key constraints. For
instance, we might want to use a datatype property SSN for
social security number as a key for US citizen.
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Appendix M:  

FaCT++ source code as of 21 April 2006.  Enclosed with the full electronic version of this report 
as the file FaCT++src.tar.
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