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ABSTRACT  

Software systems often share common vulnerabilities that allow a single attack to compromise large numbers 
of machines (write once, exploit everywhere).  Borrowing from biology, several researchers have proposed 
the introduction of artificial diversity in systems as a means for countering this phenomenon.  The introduced 
differences affect the way code is constructed or executed, but retain the functionality of the original system. 
In this way, systems that exhibit the same functionality have unique characteristics that protect them from 
common mode attacks. Over the years, several such have been proposed. We examine some of the most 
significant techniques and draw conclusions on how they can be used to harden systems against attacks. 

1. INTRODUCTION 

The recent widespread disruptions of systems across the Internet underlined the inherent weakness of an 
infrastructure that relies on large numbers of effectively identical systems. Common elements in these systems 
include the operating system, the system architecture (e.g., Intel Pentium), particular applications (e.g., email, 
Word processing software), and the internal network architecture.  Common-mode attacks occur when an 
attacker exploits vulnerabilities in one of these common elements to strike large numbers of victim machines. 
If each of these systems were different, then the attacker would have to customize their technique to the 
peculiarities of each system, thus reducing the scope of the attack and the rate of its spread.  

However, running different systems in a network creates its own set of problems involving configuration, 
management and certification of each new platform. In certain cases, running such multi-platform 
environments can decrease the overall security of the network [1].  The premise of this paper is that by 
introducing randomness in existing systems we can vary their behavior sufficiently to prevent common mode 
attacks. Thus, our systems are similar enough to ease administration, but sufficiently different to resist 
common mode attacks. 

Randomization can be introduced in various parts of a system. Areas include the configuration of the network 
infrastructure so that remote attackers cannot target a specific host or service (e.g., the White House site or the 
Microsoft software update server), the implementation of specific protocols (e.g., changing some aspects of 
the TCP/IP engine to reduce the risk of fingerprinting), or even the processor architecture to guard against 
foreign code injections attacks.  In this paper, we describe various randomization techniques and examine how 
they can be used to strengthen the security of systems.  
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2. CLASSIFICATION 

The diversification techniques that have been proposed over the years can be broadly classified into three 
categories: those that modify the structure of the system, those that modify the execution environment, and 
those that affect the system behavior. For example, systems such as StackGuard insert code that verifies the 
integrity of the stack every time the code returns from a subroutine call, whereas the Instruction-Set 
Randomization technique changes the instruction set of the processor so that unauthorized code will not run 
successfully. 

2.1 Modifying the Structure 
Structure modification techniques insert special code that performs sanity or consistency checks at various 
points in the execution of the program. 

Perhaps the best-known of these techniques is StackGuard [2], a system that protects against buffer overflows. 
This is a patch to the popular gcc compiler that inserts a canary word right before the return address in a 
function’s activation record on the stack (Figure 1). The canary is checked just before the function returns, 
and execution is halted if it is not the correct value, which would be the case if a stack-smashing attack had 
overwritten it. This protects against simple stack-based attacks, although some attacks were demonstrated 
against the original approach [3], which has since been amended to address the problem. 
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Figure 1: Stack buffer overflow (left) and StackGuard-modified stack frame (right). 

Stack Guard is one of many similar systems such as MemGuard [2], FormatGuard [4], ProPolice [5], etc. 
Generally, these approaches have three limitations. First, the performance implications (at least for some of 
them) are non-trivial. Second, they do not seem to offer sufficient protection against stack-smashing attacks 
on their own, as shown in [3, 6] (although work-arounds exist against some of the attacks). Finally, they do 
not protect against other types of code-injection attacks, such as heap overflows [7].  For the purposes of our 
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discussion, however, these techniques have the problem that they make deterministic changes to the code, and 
thus cannot protect against monoculture threats. 

A system that is more applicable to this discussion is PointGuard [8] which encrypts all pointers while they 
reside in memory and decrypts them only before they are loaded to a CPU register. This is implemented as an 
extension to the gcc compiler, which injects the necessary instructions at compilation time, allowing a pure-
software implementation of the scheme. Another approach, address obfuscation [9], randomizes the absolute 
locations of all code and data, as well as the distances between different data items. Several transformations 
are used, such as randomizing the base addresses of memory regions (stack, heap, dynamically-linked 
libraries, routines, static data, etc.), permuting the order of variables/routines, and introducing random gaps 
between objects (e.g., randomly pad stack frames or malloc’ed regions). Although very effective against 
jump-into-libc attacks, it is less so against other common attacks, due to the fact that the amount of possible 
randomization is relatively small. However, address obfuscation can protect against attacks that aim to corrupt 
variables or other data. 

A persistent concern in employing techniques such as the ones described above, is to maintain the efficiency 
of the application. In other words, the overheads associated with the use of these mechanisms must be 
minimized. Naturally, this discourages the use of more exhaustive and hence more expensive techniques. If, 
however, we can identify the parts of the code where a bug has a higher probability of resulting in a security 
vulnerability, we can reserve the use of the more expensive mechanisms to these sensitive regions. 

Tools developed under the DARPA funded CHATS/CoSAK project facilitate the identification of such 
regions. This work is based on the assumption that a small percentage of functions near a source of input 
(such as file I/O), called Inputs, are the most likely to contain a security vulnerability [17].  The original 
hypothesis was confirmed by reviewing large numbers of bugs that have been posted in security forums such 
as the CERT. These reports also include the patches that correct the bugs, thus identifying the code that was 
responsible for the vulnerability (called Targets). The analysis of the existing systems revealed that Targets 
tend to be located “near” Inputs (where “near” is defined as a number of function calls). With this 
information, new systems can be analyzed by the CoSAK tools. The way they work is by examining the 
source code of a computer system in order to identify the Inputs. Then a call graph of the entire system is 
generated and the code appearing within a set number of function calls from the Inputs is pinpointed. Special 
mechanisms (e.g. code emulation, execution under a virtual environment, or limitations on privileges) can be 
activated when the flow of control strays into the sensitive regions. 

2.2 Modifying the Environment 
Systems do not exist in isolation but they need to interact with their environment (be it the processor 
architecture, the operating system, the network topology, etc.). To see how randomization techniques can be 
used to influence the execution environment let us look a bit closer at the problem of code-injection attacks. 

Code-injection attacks attempt to deposit executable code (typically machine code, but there are cases where 
intermediate or interpreted code has been used) within the address space of the victim process, and then pass 
control to this code. These attacks can only succeed if the injected code is compatible with the execution 
environment. For example, injecting x86 machine code to a process running on a SUN/SPARC system may 
crash the process (either by causing the CPU to execute an illegal op-code, or through an illegal memory 
reference), but will not cause a security breach. Notice that in this example, there may well exist sequences of 
bytes that will crash on neither processor. 
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The instruction randomization technique [11] leverages this observation by creating an execution environment 
that is unique to the running process, so that the attacker does not know the “language” used and hence cannot 
“speak” to the machine. This is achieved by applying a reversible transformation between the processor and 
main memory.  Effectively, new instruction sets are created for each process executing within the same 
system. Code-injection attacks against this system are unlikely to succeed as the attacker cannot guess the 
transformation that has been applied to the currently executing process. Of course, if the attackers had access 
to the machine and the randomized binaries through other means, they could easily mount a dictionary or 
known-plaintext attack against the transformation and thus “learn the language”. However, we are primarily 
concerned with attacks against remote services (e.g., http, dhcp, DNS, and so on). Vulnerabilities in this type 
of server allow external attacks (i.e., attacks that do not require a local account on the target system), and thus 
enable large-scale (automated) exploitation. Protecting against internal users is a much more difficult problem, 
which we do not address in this work. 

The power of the technique can be demonstrated by its applicability to other settings, such as SQL injection 
attacks. Such attacks target databases that are accessible through a web front-end, and take advantage of flaws 
in the input validation logic of Web components such as CGI scripts. The concept of instruction 
randomization has been applied to that setting, to create instances of the SQL language that are unpredictable 
to the attacker. Preliminary results indicate that the mechanism imposes negligible performance overhead to 
query processing, and can be easily retrofitted to existing systems. The same technique can easily be applied 
to any interpreted-language setting that is susceptible to code injection attacks. 

In a different context, randomization of a system’s environment has been used to combat network-based 
denial of service (DoS) attacks. The Secure Overlay Services (SOS) [18] approach addresses the problem of 
securing communication on top of today's existing IP infrastructure from DoS attacks, where the 
communication is between a predetermined location and users, located anywhere in the wide-area network, 
who have authorization to communicate with that location. The scheme was later extended to support 
unknown users, by using Graphic Turing Tests to discriminate between zombie machines and real humans 
[19]. 

In a nutshell, the portion of the network immediately surrounding the target (location to be protected) 
aggressively filters and blocks all incoming packets whose source addresses are not “approved”. The small set 
of source addresses that are “approved” at any particular time is kept secret so that attackers cannot use them 
to pass through the filter. These addresses are picked from among those within a distributed set of nodes 
throughout the wide area network, that form a secure overlay: any transmissions that wish to traverse the 
overlay must first be validated at entry points of the overlay. Once inside the overlay, the traffic is tunneled 
securely for several hops along the overlay to the “approved” (and secret from attackers) locations, which can 
then forward the validated traffic through the filtering routers to the target. The two main principles behind 
this design are: (i) elimination of communication “pinch” points, which constitute attractive DoS targets, via a 
combination of filtering and overlay routing to obscure the identities of the sites whose traffic is permitted to 
pass through the filter, and (ii) the ability to recover from random or induced failures within the forwarding 
infrastructure or among the overlay nodes. 

The overlays are secure with high probability, given attackers who have a large but finite set of resources to 
perform the attacks. The attackers also know the IP addresses of the nodes that participate in the overlay and 
of the target that is to be protected, as well as the details of the operation of protocols used to perform the 
forwarding.  However, the assumption is that the attacker does not have unobstructed access to the network 
core. That is, the model allows for the attacker to take over an arbitrary (but finite) number of hosts, but only a 
small number of core routers. It is more difficult (but not impossible) to take control of a router than an end-
host or server, due to the limited number of potentially exploitable services offered by the former. While 

20 - 4 RTO-MP-IST-041 

 

Dealing with System Monocultures 
 



 

 

routers offer very attractive targets to hackers, there have been very few confirmed cases where take-over 
attacks have been successful. Finally, SOS assumes that the attacker cannot acquire sufficient resources to 
severely disrupt large portions of the backbone itself (i.e., such that all paths to the target are congested). 

Under these assumptions, by periodically selecting a new “approved” overlay node at random, a site can allow 
only authorized clients to communicate with it. An attacker must either amass enough resources to subvert the 
infrastructure itself, or attempt to guess the identity of the current approved node. Effectively, SOS allows the 
creation and use of an arbitrary number of virtual topologies over the real network (which can, perhaps 
perversely, viewed as a monoculture), which only legitimate users can use. The performance impact of doing 
so is studied in [19]. To summarize, end-to-end latency is increased by a factor of 2, while remaining 
impervious to the effects of a DoS attack. 

2.3 Modifying the Behavior 
Computer systems are to a large extent deterministic and this can be used as a means of identification 
(fingerprinting), or, worse, as means of subverting a system by anticipating its response to various events. 

Fingerprinting is a technique that allows remote attackers to gather enough information about a system so that 
they can determine its type and software configuration (version of operating system, applications etc.) [14]. 
This information can then be used to determine what vulnerabilities may be present in that configuration and 
thus better plan an attack. 

Having a system with predictable behavior can have devastating consequences for its security. The most 
celebrated example is the attack that exploited easy to guess TCP/IP packet sequence numbers [15]. By being 
able to guess the sequence number of a TCP connection with a remote system, we can construct and transmit 
replies to packets that we never receive (perhaps because a firewall prevents the remote system from talking to 
us, or because we use a spoofed source address in our packets). 

More recently, a denial of service attack based on the TCP retransmission time-out [16], allowed an attacker 
to periodically send bursts of packets to the victim host, forcing the TCP subsystem on the victim host to 
repeatedly time-out causing near-zero throughput. In this case as well, by changing the behavior of the TCP 
implementation (randomizing the retransmission time-out), the attack can be mitigated. 

The general Internet philosophy of “being conservative in what you send and liberal in what you accept” 
(RFC1341), while enhancing interoperability, sometimes creates vulnerabilities by allowing greater ambiguity 
in what a networked application may accept. Especially in the case of the Internet Protocols these minor 
variations have been used as the basis of attacks (e.g. the overlapping fragment attacks and the small packet 
attacks of the early 90s), and more recently as a means to facilitate fingerprinting. 

OpenBSD's packet filter, pf (4), includes a “scrub” function that normalizes and defragments incoming 
packets. This allows applications and hosts on the internal network some form of protection against hand-
crafted packets designed to trigger vulnerabilities.  Another approach is to apply a similar technique to 
outgoing packets in order to hide identifying features of the IP stack implementation [20]. A key part of the 
process of the obfuscation process is protection against time-dependent probes. Different TCP 
implementations have variations in their time-out counters, congestion avoidance algorithms, etc. By 
monitoring the response of the host under inspection to simulated packet loss, the timing probe can determine 
the version of the TCP implementation and by extension that of the OS. Also the use of various techniques for 
rate limiting ICMP messages by the victim system, can provide hints to the attacker. The effectiveness of such 
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probes can be reduced, by homogenizing the rate of ICMP traffic going through the system that connects the 
trusted network to the outside world, or by introducing random delays to ICMP replies. 

3. SUMMARY AND CONCLUDING REMARKS 

The commoditization of computer systems has dramatically lowered the cost of ownership of large collections 
of computers. It is thus no longer economically feasible to have one-off configurations for individual 
computers or networks, which, in turn, leads to monocultures, vulnerable to common-mode attacks. There is a 
lively debate going on as to the effects of a diverse computing environment on security. One camp claims that 
diversity is not required as it distracts from the task of producing a single secure configuration that can then be 
widely deployed, thus spreading the development and security administration costs to a large number of 
machines. The other camp claims that by standardizing the interfaces between subsystems, multiple 
implementations can be deployed, thus reducing the risk of a single problem affecting all the deployed 
systems. Our view is that both sides are fundamentally wrong. Having potentially huge numbers of identically 
configured hosts invites disaster: no amount of effort can secure large software systems that have not been 
built with security in mind. Even in cases where formal methods have been used in the design, field upgrades 
and maintenance can weaken the security posture. On the other hand, attempting to introduce diversity 
through the development of different software systems is not viable. Designing, developing and maintaining a 
system is so expensive that once we have a working version we tend to use it widely. Even in critical systems 
such as avionics, the same software is used on multiple hardware platforms (creating redundancy only at the 
hardware level). The failure of the inaugural flight of the Ariane 5 launcher due to a software bug crashing 
both navigation computers is proof that having the same software running on redundant hardware does not 
provide true redundancy. 

Our intention has been to demonstrate that the effects of diversity can be introduced through automated means. 
The techniques described in this paper allow the introduction of small but critical variations to the these off-
the-shelf systems. While randomization is by no means the silver bullet that will solve the problem of generic 
software, or system exploits (these can only begin to be addressed if we abandon the current ad hoc design 
and development techniques) they do provide an effective method for mitigating attacks and exposing the 
bugs that make such attacks possible. 
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