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 1. Foreword    
 

This MURI grant has funded the pursuit of a fundamental research effort designed to aid 
United States combat forces in reducing their visibility to opposing forces over a broad 
electromagnetic spectrum extending from the millimeter wave range to the visible and near 
infrared. This work sought to enable the fulfillment of the Full Dimensional Protection strategy 
by providing new, robust technological solutions for achieving limited visibility operations across 
a significant portion of the electromagnetic spectrum. 

Metal Nanoshells, novel nanoparticles fabricated with ultrathin conductive shell layers, 
provide the scientific breakthrough at the heart of this proposal. By varying the relative 
thicknesses of the core and shell layers, the electromagnetic response of the nanoparticles can be 
sensitively tailored across the visible and infrared regions of the spectrum.  Simple variations of 
this basic core-shell structure extend the controlled electromagnetic response of these 
nanoparticles into the far-infrared and millimeter-wave regions. Chemical functionalization of 
these nanoparticle surfaces permits their attachment to a wide variety of surfaces by simple and 
robust chemical methods.  The addition of a voltage-tunable guided-wave structure beneath the 
nanoparticle surface layer or layers renders the nanoparticles adaptive in nature, that is, capable of 
a voltage-dependent optical response.  This simple planar geometry permits the detailed study and 
optimization of this device; it also permits scalability to cost-effective, large surface area 
structures and high volume production. 

Metal Nanoshells possess several distinct advantages over photonic bandgap structures- 
there is no need to fabricate large, defect-free periodic structures to achieve the predicted optical 
properties- the optical properties are designed into the individual nanoparticles themselves.  This 
is an overwhelming advantage, because it permits the straightforward development of both 
passive coatings and active devices with low observability signatures in multiple regions of the 
electromagnetic spectrum simultaneously, for example, the infrared and millimeter-wave regions. 
The nanoscale dimensions and easy chemical functionalization of metal nanoshell surfaces 
permits their incorporation into a wide variety of media: plastics, epoxies, liquids, aerosols, 
glasses, even fabrics. Metal nanoshells are remarkably strong optical scatterers as well as 
absorbers, and can be designed to scatter light with no backward scattering over specified 
frequency ranges. Metal nanoshells also demonstrate a highly sensitive chemical-specific optical 
response due to the enormous Raman Scattering enhancements available at their surfaces.  This 
property can be advantageously exploited in the development of new, all-optical in vivo 
biosensing and bioassaying strategies that can be tailored for military or commercial applications.  

To fulfill the goals of this grant we pursued a comprehensive research program that 
advanced the development of nanoshells and closely related nanoparticle structures for use as 
both passive and adaptive optical materials with highly controllable electromagnetic responses 
from the visible to the millimeter wave region of the spectrum. The effort is both 
multidisciplinary and multi-institutional, involving researchers at Rice University (Departments 
of Physics, Electrical and Computer Engineering, and Bioengineering), the University of Houston 
(Department of Chemistry), and Oklahoma State University (Department of Electrical and 
Computer Engineering).  The proposed research program was based on several successful current 
collaborations among the members of the research team previously and concurrently funded by 
the Department of Defense, the National Science Foundation, and the National Aeronautics and 
Space Administration.  Our research program constitutes a strong and coordinated integration of 
nanoparticle design and synthesis, film and device fabrication, characterization of optical and 
electromagnetic properties over the infrared and terahertz spectral regions, theoretical analysis, 
and commercializable applications.  
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4.  Statement of the problem studied 

 
The specifically stated goals of this project were: 

 
• The design and fabrication of nanoshell particles and closely related nanoparticle assemblies 

with a tailored and optimized optical/electromagnetic response in the near-, mid-, far-infrared 
and submillimeter-wave spectral regions; 

 
• The development of  films and thin-film device structures with passive and/or active control 

of electromagnetic properties in any region  or regions of choice from the visible to the 
millimeter-wave;  

 
• The characterization of the nanoshells and nanoparticles fabricated in this research, and the 

proposed films and devices, using a broad range of experimental techniques particularly 
suited to the study of their optical, electronic, electromagnetic, and photophysical properties.  
These methods include:  

 
(a) relevant optical spectroscopies, such as UV-vis, FTIR, FT-Raman, 

photoluminescence, light scattering and nonlinear optical characterization 
via degenerate four-wave mixing, transient absorption, and optical Kerr 
effect measurements,  

(b) terahertz time domain spectroscopy and ranging, to probe passive, optical, 
and voltage-dependent submillimeter-wave response of nanoshell-
constituent structures, 

(c) local probes for structural information on fabricated arrays, devices, and the 
constituent nanoparticles, such as atomic force microscopy, transmission 
electron microscopy, and X-Ray diffraction and scanning tunneling 
microscopy; 

• Theoretical investigations and interpretations of individual nanoshell properties, such as 
optical excitation and applied field response, electromagnetic wave scattering properties, 
collective effects and interparticle interactions in nanoshell arrays, films, and device 
structures; 

 
• The development of a nanoshell-based all-optical biosensor and bioassay based on the surface 

enhanced Raman response of molecules attached to the nanoparticle surfaces. 
 

We originally anticipated that this research grant would allow us to develop a breakthrough 
technology that would enable the control and manipulation of infrared to submillimeter-wave 
electromagnetic radiation with unprecedented precision, based on components that can be 
ultimately produced en masse and at moderate cost. We can state that we have achieved success 
in accomplishing these goals. 
 
5.  Summary of the most important results 
 
 



This grant supported the experimental development of metal-coated silica nanoparticles known as 
nanoshells.  The nanoparticle geometry consists of a dielectric core surrounded by a thin metallic 
shell of uniform thickness. In this geometry, the optical resonance, derived from the plasmon 
resonance of the metal which composes the film material, can be shifted in wavelength in a 
highly controlled manner.  By varying the relative size of the dielectric core and the metallic shell 
the optical absorption resonance can be shifted or tuned to any selected wavelength ranging from 
the visible region of the spectrum to the far infrared, providing a unique tunability of this 
nanostructure over an extremely broad region of the electromagnetic spectrum.  
 
Our major accomplishments in fabrication of this nanostructure involved the development of a 
reliable, solution based fabrication method that permits the growth of a gold layer of controlled 
thickness onto silica nanoparticles. This fabrication method was developed and extended to 
nanoparticles with resonances ranging from the visible region of the spectrum to the mid infrared 
range of the spectrum (2.9 microns). Silver nanoshell fabrication chemistry was also developed 
based on the same seeded growth method, but with less controlled growth than the gold 
electroless plating process due to the much more rapid kinetics of the silver electroless plating 
process. Encapsulating a gold nanoshell within a second silica layer and outer gold shell, a 
structure we called “nano-matryushka”, provided a particle with resonances that extended from 
the near infrared to the far infrared region of the spectrum (nominally 9 microns). The electroless 
plating method was also adapted to planar geometries using a combination of microcontact 
printing and electroless plating, to create patterned metallized surfaces that can be produced over 
large planar areas with submicron resolution by a simple mask-free stamping and developing 
process.  
 
One of the major contributions of this MURI effort was the development of a theory for the 
plasmon response in finite metallic nanostructures of complex geometries such as the nanoshell. 
The plasmons supported by this geometry arise by a hybridization of the plasmon states of 
simpler fixed frequency structures: in this case the plasmon of a solid sphere and that of a solid 
cavity.  The mixing of these two primitive plasmon states results in the formation of two 
nanoshell plasmon resonances, a low energy “bonding” plasmon and a higher energy “anti-
bonding” plasmon, in direct analogy with molecular orbital theory.  The lower energy “bonding” 
plasmon couples directly to light, and it is this plasmon that is used in virtually all experimental 
studies and applications.  The plasmon hybridization picture is a general and far-reaching 
principle (because it is rigorously quantum mechanical) and applies in general to virtually all 
plasmonic geometries. We used the plasmon hybridization formalism to explain the nano-
matryushka plasmon resonances as hybridized plasmon states form by mixing of the inner and 
outer nanoshell plasmons. This extremely powerful method is currently being used extensively by 
our group to determine the energy spectrum of a large variety of plasmonic geometries. 
 
Physical properties of nanoshells were studied by numerous methods.  Optical properties of 
nanoshells were studied both in the spectral domain and for their dynamical, time-dependent 
response. It was observed that the surface chemistry could modify the plasmon lifetime 
systematically, by the induced dipole moment of the adsorbate molecules. Although the plasmon 
can be tuned in this nanostructure, the nonlinear optical response was found to be controlled by 
the bulk density of states of the metal, which determine at which wavelengths one can observe 
photoinduced absorption vs. photobleaching. Studies of the nonlinear optical properties of 
nanoshells were found to be dominated primarily by photothermal effects. Under high intensity 
laser irradiation, the photoinduced destruction of the nanoparticle was examined, where 
nanosecond laser excitation resulted in a very different morphology than femtosecond excitation.  
Under nanosecond excitation the metallic shell layer reshaped to form small islands on the 
nanoparticle surface, a transformation accompanied by a dramatic color change due to the 



reshaping of the gold into spherical structures with higher energy plasmon resonances.  Under 
femtosecond laser excitation the gold shell layer was removed in a highly asymmetrical fashion, 
with the majority of the metallic shell being deposited on one side of the silica nanoparticle.  
These observations may prove relevant for fabrication of unusually shaped reduced symmetry 
nanoparticles.  The thermal stability of nanoshells was studied, and it was observed that the shell 
layer melted at nominally 300 degrees Celsius, far below the bulk melting temperature of gold.  
Growth of a silica stabilization layer around the nanoshells elevated the melting temperature by 
more than 200 degrees.  The growth of molecular layers on the surfaces of nanoshells was 
performed for the first time. Alkanethiol self-assembled monolayers (SAMs) were grown on gold 
nanoshells and dense films of the functionalized nanoshells were subsequently deposited on 
dielectric substrates. 
 
The very strong photothermal response of nanoshells was exploited in the development of a new 
and novel optomechanical material.  Nanoshells were dispersed into the photothermally 
responsive polymer co-N-isopropylacrylamide-acrylamide (NIPAAm-co-AAm). When this 
copolymer is heated above its lower critical solution temperature it undergoes a quasi-first order 
phase transition and a dramatic decrease in volume that is reversible upon cooling. The addition 
of nanoparticles to this material does not significantly change its thermal response, rather, it 
enables the triggering of this response by laser light when the laser wavelength corresponds to the 
resonant wavelength of the embedded nanoshells.  This results in an optomechanical material that 
can be useful for photo-assisted drug delivery and for phototriggered microfluidic valves.  We 
also demonstrated that plasmon resonant nanoparticles of differing wavelengths could be used to 
make this photoinduced collapse a wavelength specific response.   
 
Nanoshell dopants also proved to be useful in enhancing and modifying the properties of other 
polymer materials.  In conducting polymers, nanoshells were tuned to be resonant with the triplet 
exciton of the polymer, and proved to be an effective triplet state quencher in both MEH-PPV and 
P3OT. Quenching of the triplet state is extremely important in arresting the photodegradation of 
conducting polymers, and it was shown that extremely small quantities (0.1% by volume) of 
nanoshells could slow the oxidation of these polymers by a factor of ten in material lifetime 
without affecting the material’s photoluminescence efficiency. 
 
Since the optical absorption, or far field, optical response of nanoshells is controlled by 
nanoparticle geometry, the geometry must also control the near field optical response. Therefore 
the nanoparticle geometry controls the intensity of the field at the nanoparticle’s surface.  This 
field is responsible for the major enhancement mechanism of surface enhanced Raman scattering 
(SERS).  We examined how we can tune and optimize the SERS response of nanoshells. In 
particular, it was found that nanoshells can be used to enhance SERS at near infrared 
wavelengths. In a set of initial studies we showed that the SERS enhancement for nanoshells was 
maximal just before the shell layer was complete, suggesting that local nanoscale roughness may 
provide part of the enhancement needed for SERS on nanoshell substrates.  We examined both 
experimentally and theoretically how the core and shell dimensions of nanoshells could be 
optimized for the wavelengths 1.06 micron and 780 nm, and showed that the actual SERS 
response for nonresonant molecules agreed very well with electromagnetic theory for both of 
these wavelengths.  In collaboration with Thomas Huser’s research group at Lawrence Livermore 
National Laboratory, we performed a quantitative study comparing SERS on individual solid Au 
nanospheres, nanosphere dimers, nanoshells and nanoshell dimers all coated with a monolayer of 
nonresonant but SERS active molecules (paramercaptoaniline).  In this study we showed that the 
SERS signal from a monolayer of molecules on an individual nanoshell was approximately as 
strong as that from molecules in a single nanosphere junction or “hot spot”.  This was the first 



quantitative study on SERS substrates connecting theoretically calculated electromagnetic 
responses with the actual measured SERS intensities.   
 
A nanoshell based immunoassay was developed that can be utilized to measure physiologically 
relevant quantities of analyte within whole blood, in just a few minutes, with no sample 
preparation.  Nanoshells with plasmon resonances in the near infrared were conjugated with 
antibodies and dispersed in whole blood. In the presence of an analyte the nanoshells began to 
aggregate, giving rise to a strong redshift in their plasmon resonance due to the aggregate 
plasmon. This change in optical properties could be monitored using near infrared light at 
wavelengths where blood is transparent. 
 
A novel “texturing” chemistry for nanoshells was discovered, and used to prepare nanoshells with 
intentionally roughened surfaces. A simple chemical, cysteamine, that slowly etches solid Au 
nanocrystals, was found to preferentially etch nanoshells at the domain boundaries between the 
crystal grains on their surfaces. The plasmon resonant response of these structures were studied 
both experimentally and theoretically.  Remarkably, it was observed experimentally and verified 
theoretically that the plasmon resonant response is very robust with respect to surface roughness. 
The addition of surface roughness will damp out the higher order plasmon modes (such as the 
quadrupole or octupole modes when present due to particle size) but the nanoshell must be 
severely disrupted (i.e. deep fissures in the shell layer, or other major discontinuities) for the 
dipole plasmon to be affected. On a continuous but rough nanoshell the addition of roughness 
adds approximately a factor of 2 to 5 in field enhancement relative to a perfectly smooth 
nanoshell; this provides an increase in SERS enhancement of approximately 1 to 2 orders of 
magnitude. 
 
A detailed study of the relative contributions to the plasmon linewidth of metallic nanoshells was 
performed. In addition to inhomogeneous broadening effects due to size variations in both core 
and shell dimensions, other effects were investigated such as phase retardation (increase in 
particle size with respect to the incident wavelength of light) and also “electron scattering”, a 
controversial mechanism long thought to be responsible for the broad linewidth of the plasmon 
lineshape.  In a detailed study it was found that the predominant effect in determining lineshape 
for nanoshells was phase retardation.  Following our initial study we performed a single particle 
spectroscopic study of nanoshells and determined that the lineshape of individual nanoshells fit 
Mie scattering theory exactly, without the need to invoke an electron scattering mechanism to 
explain the linewidth.   Further study beyond these two investigations is warranted to explain the 
difference between the single particle plasmon lineshape and that observed in ensemble 
measurements. 
 
We also reported the fabrication and optical properties of reduced symmetry nanoshells, 
“nanocups” and “nanocaps”.  These were fabricated by depositing nanoshells onto a surface 
electrostatically, performing nanoshell metallization chemistry, and then removing the 
asymmetric nanoparticles using an ultrasonic probe.  The electromagnetic properties of these 
structures were determined and the optical response of the oriented nanoparticles was studied 
both experimentally and theoretically with good agreement. In a related experiment, it was 
discovered that exposure of nanoshells to the surfactant CTAB (cetylammonium bromide) could 
slowly reshape and remove the gold shell layer, morphing the nanostructure into unusual and 
highly regular shapes that cannot be fabricated by other methods. The CTAB is also etches the 
silica core slowly over time.  The structures that result are (1) cylindrical, beanlike structures, and 
(2) highly regular, “bagel”-like nanostructures. 
 



  We performed a comprehensive study of the sensitivity of the surface plasmon resonance (SPR) 
wavelength of nanoshells to changes in the dielectric function of their embedding medium 
(refractive index of solvent) both theoretically and experimentally. While the sensitivity of SPR 
shift to refractive index increases with total size of the nanoparticle it is not particularly sensitive 
to core-shell ratio. We measured the response of nanoshells as SPR sensors across a wide range 
of refractive index changes. These measurements were performed by dispersing nanoshells onto a 
dielectric support using polyvinylpyridine, a highly successful attachment strategy which 
produces films of nanoshells with virtually no aggregation, preserving the outstanding optical 
properties of nanoshells in solution.  These nanoshell films were quite robust to solvent changes 
and provide a practical strategy for making nanoshell SPR sensors that could be used for a wide 
variety of applications and that are cheaply and straightforwardly manufacturable. 
 
We also investigated nanoshells and other nanopatterned metallized structures in planar 
geometries.  We studied the light coupling of nanoshells with a planar metal substrate, and the 
variation of this coupling with distance between the nanoshell layer and the metallic plane.  We 
also studied the propagation characteristics of surface plasmons on metallodielectric grating 
structures fabricated by the microcontact printing-metallization method we developed.  The 
plasmonic band gap of these structures was sensitive to changes in dielectric environment and in 
chemical functionalization, and these studies were reported. 
 
Experimental efforts have focused on THz Time Domain Spectroscopy (THz-TDS) of systems 
where a small change in some externally controllable parameter can potentially yield a large 
change in far infrared optical properties, THz imaging systems, and development of spectroscopic 
measurement systems for thin films.   
 
These efforts include fundamental science of pulse propagation near the critical angle in 
dielectrics, and THz characterization of polymers and nanoshells.  These systems are of interest to 
the overall goals of this project as potential systems for metal insulator transitions in the THz 
spectral region.  Additionally the optical properties of nanoshells are dependent upon the bulk 
dielectric properties of the shell material, which can be sensitively measured with THz-TDS.   
 
We have made time-domain measurements with subpicosecond resolution of optical tunneling of 
THz electromagnetic pulses undergoing frustrated total internal reflection.  The transmission 
across a broad bandwidth is shown to be sensitive to small changes in incidence angle and optical 
barrier thickness. Measurements were additionally done over a range of incidence angles, through 
a new spectroscopic technique developed during this project. 

 
A variety of material systems have been investigated.  Since electrical characterization of 
conducting polymers requires fabricating ohmic contacts we have applied THz-TDS to directly 
measure both the absorption and dispersion of conducting polymer films.  These include various 
polymer systems:  polypyrrole with very high carrier concentrations, and polyaniline with much 
lower carrier concentrations.  We have also investigated protonated polyaniline systems grown at 
University of Houston and films of low conductivity poly-3-methylthiophene, prepared 
electrochemically at –40o C from low frequencies to beyond 4 THz.  The complex conductivity, 
determined over the full frequency range, was 30 times lower than previous THz-TDS 
measurements of the 215/(Ω cm) high conductivity polypyrrole.  Polypyrrole was well fit by 
Drude theory, however for poly-3-methylthiophene the measurements are fit by a localization-
modified Drude theory.   
 
Preliminary investigations of thin films of metal nanoshells on silicon substrates showed a 
strongly frequency dependent structure in the THz region.  While the real and imaginary parts of 



the refractive index show behavior qualitatively similar to conducting polymers as shown below, 
the measured index does not fit the Drude theory.  Use of the localization modified Drude theory 
provides better fits, however much behavior is still unexplained, including the sharp index feature 
at 250 GHz.   
 
To clarify the conduction processes in these materials as a function of external perturbation, we 
have focused on developing new measurement techniques.  This project developed a THz 
interferometer which is extremely sensitive to small changes in sample composition and 
additionally removes unwanted experimental artifacts particularly in the case the sample is very 
thin, or with low index and absorption when it is very difficult to distinguish changes in THz 
pulse caused by the sample from those caused by long term fluctuations in the driving laser 
source or experiment.  This instrument, the only one of its type in the world, has been used for 
characterization of numerous thin film materials.  This system automatically compensates for 
changes in the THz signal over the course of a measurement due to slow laser fluctuations 
allowing near real time measurements of the film thickness-index product with a resolution of 
under one micron. 
For typical values of thin films (d � 1 �m, nr � 2, � � 1%) the increase in measurement 
accuracy over THz-TDS is on the order of a factor of 50.  With the minimum detectable signal on 
the order of 0.2 pA, this corresponds to a time resolution of 1 fs or the ability to detect films of 
thickness on the order of 100 nm.  We are currently working to develop THz systems with higher 
bandwidth and correspondingly better sensitivity.  

A key problem in THz measurements, especially phase coherent imaging measurements is 
knowledge to the spatio-temporal distribution of electric field phase.  To determine the spatio-
temporal field distribution of freely propagating THz bandwidth pulses we have investigated the 
time resolved electric field in two spatial dimensions with high spatial and temporal resolution.  
We have compared field measurements favorably with theory using both a simple plane wave and 
FDTD methods.  The effects of both spherical aberration as well as surface wave coupling play 
important roles in phase front propagation, and are observed directly in the time domain.  
Measurements of the complex spatial amplitude distribution of optoelectronically generated THz 
beams indicate that the beam does not behave like a TEM00 Gaussian.  THz beams can exhibit 
complex spatial profiles, particularly in the near field or in image planes, which must be 
considered in applications of lens coupled THz sources where field patterns are important, such 
as ranging or coupling into waveguides.   

 
This grant supported the development of theoretical methods for description of the electronic and 
optical properties of metallic nanostructures. Our major accomplishments include the 
development of an ab initio TDLDA method for the quantum mechanical description of optical 
response of spherical nanoparticles, the development of an efficient method, “The plasmon 
hybridization method” for the direct calculation of plasmon energies of complex metallic 
nanoparticle structures, and the development of an efficient parallel Finite-Difference Time-
Domain (FDTD) method for simulation of the electromagnetic properties of arbitrary 
nanostructures. The methods developed have been used both to stimulate experiments as well as 
analyze experimental data in several joint theoretical-experimental studies.  
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