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Abstract  
 

Direct numerical simulations are extended to see the effects of time-periodic blowing frequency 
from a spanwise slot on a turbulent boundary layer. The time-periodic blowing frequency is given in a 
range 0≤f+≤0.08 at a fixed blowing amplitude of A+=0.5. The effects of the blowing frequency are 
scrutinized by examining the phase- or time-averaged turbulent statistics. A most effective blowing 
frequency is obtained at f+=0.03, where the maximum increases of Reynolds shear stress, streamwise 
vorticity fluctuations and energy redistribution are made. The phase-averaged stretching and tilting 
terms are studied for analyzing the increase of streamwise vorticity fluctuations which is closely 
related to turbulent coherent structures. 
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1. Introduction 
 

Advances in the understanding the coherent structure of wall-bounded turbulent flow have 
intensified interest in controlling the near-wall turbulence. Recent direct numerical simulations have 
demonstrated a successful active control over the entire wall [1,2]. From a practical point of view, 
however, this active control over the entire wall is difficult to implement because it requires a dense 
population of sensors and actuators on the wall. Many attempts have been made to devise a practical 
method for controlling wall bounded flows. These include the modification of the wall surface by 
installing riblets [3], as well as the use of a compliant wall [4], a wall deformation [5] or a spanwise 
oscillating wall [6]. Among the approaches considered to date, the use of local suction/blowing [7,8] 
deserves more detailed study because it provides an efficient and simple means for locally actuating 
the wall-bounded flow. Moreover, the strength of the actuation can be controlled with relative ease by 
local suction/blowing.  

Most previous experimental and numerical studies of local suction/blowing have focused on 
steady actuation [9,10,11,12]. It is reported that the local steady blowing lifts up near-wall streamwise 
vortices, thereby reducing the interaction of the vortices with the wall. The steady blowing leads to a 
reduction in the skin friction near the wall, combined with an increase in the turbulent intensity and 
skin friction far downstream from the slot. In contrast to the previous studies that considered only 
steady blowing, a relatively few studies of unsteady suction/blowing were made experimentally and 
numerically [13,14,15,16,17]. Park et al. [13] performed experiments to probe the effects of periodic 
blowing and suction through a spanwise slot on a turbulent boundary layer. The higher forcing 
frequency induces greater changes in the turbulent structures of boundary layer. Rhee and Sung [14] 
performed unsteady Reynolds-Averaged-Navier-Stokes simulations and compared the simulation 
results with those of the experiments of Park et al. [13]. It is known that the near-wall streamwise 
vortices play a dominant role on the wall-bounded flows [18], however, the responses of near-wall 
vortices to the unsteady periodic blowing were not studied in detail.  
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Kim and Sung 

Recently, Kim and Sung [19] performed direct numerical simulations to analyze the effects of 
time-periodical blowing through a spanwise slot on a turbulent boundary layer. The blowing velocity 
was varied in a cyclic manner from 0 to 2A+ (A+=0.25, 0.50 and 1.00) at a fixed blowing frequency of 
f+=0.017. The effect of steady blowing (A+=0) was also examined, and the steady blowing results were 
compared with those of unsteady periodic blowing. The periodic blowing generates a spanwise 
vortical structure in the downstream of the slot. The energy redistribution is enhanced by the periodic 
blowing. However, it is expected that the turbulence structure is more sensitive to the blowing 
frequency than the blowing strength.  

In the present study, the effect of the blowing frequency on turbulent boundary layer is studied as 
a sequel to the previous study of Kim and Sung [19]. Main emphasis of this study is placed on the 
blowing frequency effect on near-wall turbulent flow structures downstream of the spanwise slot. The 
Reynolds number based on the momentum thickness at inlet is Reθ=300, and the slot width is 
approximately 100 wall units. The localized time-periodic blowing is given by changing the vertical 
velocity on the spanwsie slot. The blowing frequency is in a range of 0≤f+≤0.08 at a fixed blowing 
amplitude (A+=0.5). The frequency responses are scrutinized by examining the phase- or time-
averaged turbulent statistics. A most effective blowing frequency is observed at f+=0.03, where the 
maximum increases of Reynolds shear stress, streamwise vorticity fluctuations and energy 
redistribution are made. 

 
2. Computational details 

 
In the present study, the computational details are the same as those of the earlier work of Kim 

and Sung [19]. The flow configuration, boundary conditions and other numerical procedures are 
summarized in the following. As shown in Fig. 1, the domain size is 200θin×30θin×40θin in the 
streamwise, wall-normal and spanwise directions, where the corresponding mesh size is 257×65×129. 
The mesh is uniform in the streamwise and spanwise directions, but a hyperbolic tangent stretching is 
used in the normal direction to cluster points near the wall. The mesh resolutions are ∆x+≈12.40, 
∆y+

min≈0.17, ∆y+
max≈23.86, and ∆z+≈4.96, based on the friction velocity at the inlet. Realistic velocity 

fluctuations at the inlet are obtained using the method of Lund et al. [20]. The convective outflow 
condition (∂ui/∂t)+c(∂ui/∂x) = 0 is used at the exit, where c is taken to be the mean exit velocity. A no-
slip boundary condition is imposed at the solid wall. At the free-stream, the conditions u=U∞ and 
∂v/∂y=∂w/∂y=0 are imposed. Periodic boundary conditions are used in the spanwise direction. The 
spanwise slot for periodic blowing extents from x=75.8θin to x=82.0θin, where the location of the inlet 
is defined as x=0. The slot width is b+≈100 in wall units. The periodic blowing at the slot is generated 
by varying the wall-normal velocity according to the equation: 
 

( )ftAUvslot π2cos1/ +=∞  (1) 
 

vslot
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turbulent boundary layer
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Fig. 1. Schematic diagram of the computational domain 
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DNS of turbulent boundary layer with time-periodic blowing through a spanwise slot 
 

The maximum blowing velocity (vslot=2A) is imparted at t=0/4T and the minimum (vslot=0) at t=2/4T, 
where T is the blowing period. At t=1/4T and 3/4T, the blowing velocities are the same as that of 
steady blowing with decelerating and accelerating phase, respectively. The amplitude of periodic 
blowing is A+=0.5 in wall unit, which corresponds to the value of vrms at y+=15 without blowing. The 
blowing frequency (f+=fν/uτ,in

2) varies in a range 0≤f+≤0.08, where uτ,in is the friction velocity at the 
inlet. The governing Navier-Stokes and continuity equations are integrated in time by using a 
fractional step method with an implicit velocity decoupling procedure [21]. A second-order central 
difference scheme is used in space with a staggered mesh. The Reynolds number based on the 
momentum thickness at the inlet is Reθ=300. The computation time step is ∆tU∞/θin=0.3, which 
corresponds to ∆t+≈0.25 in wall units. The total time over which statistical averages are calculated is 
Tavg=18000θin/U∞, which corresponds to 150, 460 and 1250 periods for f+=0.01, 0.03 and 0.08, 
respectively.  The imposition of periodic blowing may lead to periodic variations in the global 
physical quantities of the flow. Hence, it is necessary to represent each flow quantity as a 
superposition of three components 
 

),,,(''),,(~),(),,,( tzyxqtyxqyxqtzyxq ++= , (2) 
 
where the instantaneous quantity q  is decomposed into a time-mean component q , an oscillating 
component q~  and a random fluctuating component q''. The time-average is 
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where Ttot=NT is the time over which the quantity is averaged and N is the total number of periods. 
The oscillating component q~  is obtained from the relation 
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where <q>(x,y,t) is the phase-average, which is defined as 
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Accordingly, the random fluctuation component q'' is expressed as 
 

),,(),,,(),,,('' tyxqtzyxqtzyxq ><−=  (6) 
 
 
3. Results and Discussion 
 

It is important to find the energy redistribution by the present unsteady blowing. The relative 
increase of turbulent intensity is defined as ∆η(%) = (ηmax-ηmax,o) /ηmax,o×100, where the subscript "o" 
denotes no blowing. As displayed in Fig. 2, the increases of cross-stream components ∆v"rms and 
∆w"rms are larger than that of streamwise component ∆u"rms. This means that the intercomponent 
energy transfer is enhanced by unsteady blowing. The behaviours of ∆v"rms and ∆w"rms indicate that 
they have a broad peak at around f+=0.03. Next, to see the relative contribution to the turbulent kinetic 
energy of streamwise turbulent intensity and intensities normal to the mean flow, the energy partition 
parameter K* is calculated, K*=2u"2/(v"2+w"2) [22]. The parameter K* is measured at which the 
increase of turbulent kinetic energy is maximum. It is obvious that K* has a local minimum at f+=0.03. 
The smaller value of K* means that the energy redistribution is more active. However, as the blowing 
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frequency increases further (f+=0.08), K* converges to that of f+=0. This suggests that the flow is not 
sensitive to the higher frequency blowing.  

Figure 3 shows the streamwise distributions of time-averaged skin friction cf, wall pressure wp  
and rms of wall pressure fluctuations p"w,rms. Three cases of the blowing frequency (f+=0.01, 0.03 and 
0.08) are chosen to distinguish the flow structures by unsteady blowing. The effective blowing 
frequency is chosen at f+=0.03, which gives the minimum value of K*. The lower and higher blowing 
frequencies are chosen at f+=0.01 and f+=0.08, respectively. f+=0 corresponds to 'steady blowing'  and 
A+=0 is 'no blowing'. For all blowing cases in Fig. 3(a), cf decreases rapidly near the slot and increases 
in the downstream. It is seen that the recovery of cf at f+=0.03 is faster than other two blowing cases. 

Fig. 2. Relative increases of turbulent intensities and the energy partition parameter K*

Fig. 3. Time-averaged values of (a) skin friction coefficient, (b) wall pressure,  
(c) wall pressure fluctuations. 
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DNS of turbulent boundary layer with time-periodic blowing through a spanwise slot 
 

However, the variations of wall pressure wp  in Fig. 3(b) are almost the same regardless of the 
blowing frequency. The adverse pressure gradient appears ahead and behind the slot, whereas the 
favourable pressure gradient occurs above the slot. As shown in Fig. 3(c), the wall pressure 
fluctuations p"w,rms are very sensitive to the effective blowing frequency (f+=0.03). 

Distributions of the time-averaged streamwise velocity at four locations (x/θin=80, 90, 100 and 
110) are displayed in Fig. 4. As compared to the case of 'no blowing', a region of retarded flow is 
observed near the wall. As the flow moves downstream, the region of retarded flow gradually shifts 
away from the wall and finally decays. However, the time-averaged streamwise velocity is invariant 
with the blowing frequency. This is consistent with the previous results [16,17]. 

Contours of the difference between the phase-averaged spanwise vorticity for periodic blowing 
<ωz> and the time-averaged spanwise vorticity for 'no blowing' oz ,ω  are shown in Fig. 5 during one 

period (1T). A negative region of <ωz>- oz ,ω , denoted by dashed line, appears above the slot for three 
cases. This is because a negative spanwise vorticity layer in the vicinity of the wall is shifted upward 
by blowing. Note that the negative (positive) value of <ωz>- oz ,ω  represents the increase (decrease) of 

the magnitude of spanwise vorticity |ωz|. This is caused by the fact that oz ,ω  is negative inside the 
boundary layer. For f+=0.01, it is clearly seen that a region of strong negative spanwise vorticity is 
formed above the slot and convects downstream as time goes by. During the accelerating phase 
(t=3/4T~0/4T), the formation of the strong negative spanwise vorticity occurs above the slot, which 

(above the slot)

Fig. 4. Time-averaged streamwise velocity profiles 

Fig. 5. Contours of <ωz>- oz ,ω . The contour levels are from -0.25 to 0.25 by increments 
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results from the lifted wall vorticity layer by blowing. The region of strong negative spanwise vorticity 
convects to downstream during the decelerating phase (t=1/4T~2/4T), when the adverse pressure 
gradient decreases above the slot. For f+=0.03, the lifted vorticity layer convects to lesser extent as 
compared with f+=0.01. This may be attributed to the fact that the time difference between the 
accelerating and decelerating phases becomes smaller with increasing the blowing frequency. Thus, a 
newly generated strong spanwise vorticity coexists with the weaker prior one which convected in the 
decelerating phase of the previous period. For f+=0.08, however, the time difference is so small that 
the afore-stated unsteady responses, such as the convection of the strong negative spanwise vorticity, 
are not found. 

Figure 6 shows contours of the difference between the time-averaged rms velocity fluctuations 
(u"rms, v"rms, w"rms and -u''v'') for blowing and the values of 'no blowing'. For three blowing cases, the 
turbulent intensities and Reynolds shear stress are significantly enhanced downstream of the slot. The 
maximum increase of u"rms is located closer to the slot than those of v"rms, w"rms and -u''v''. The general 
contour patterns for three blowing cases look similar. However, a closer inspection of the patterns 
reveals that the maximum increases of v"rms, w"rms and -u''v'' for f+=0.03 are located closer to the slot 
as compared with other blowing frequencies. This may be related to the rapid increase of cf behind the 
slot for f+=0.03, as mentioned earlier in Fig.3(a).  

Profiles of the time-averaged rms velocity fluctuations and Reynolds shear stress are shown in 
Fig. 7. The velocity fluctuations and Reynolds shear stress for blowing are increased downstream of 
the slot compared with the case of 'no blowing'. The maximum increase of u"rms is located at around 
x/θin=100. However, the maximum increases of v"rms, w"rms and -u''v'' are located in the farther 
downstream (x/θin=110). It is interesting to find that the increase of u"rms for f+=0.03 is smaller that 
those for other frequencies, whereas the increases of v"rms, w"rms and -u''v'' for f+=0.03 are larger than 
those for other frequencies. This suggests that f+=0.03 is the most effective blowing frequency in 
promoting the energy redistribution. Park et al. [13] reported that the transverse fluctuating 
components are more susceptible to disturbances than the streamwise component. On the other hand, 
the time-averaged turbulent intensities appear to be insensitive to the higher blowing frequency 
(f+=0.08).  

Figure 8 shows the time-averaged rms vorticity fluctuations (ωi''rms). All components of the 
vorticity fluctuations (ωx''rms, ωy''rms and ωz''rms) are enhanced downstream of the slot by periodic 

Fig. 6. Contours of the difference between the time-averaged turbulent intensities and 
Reynolds shear stress for periodic blowing and those for no blowing. 
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blowing. A closer examination of Fig. 8 indicates that ωy''rms and ωz''rms are enhanced by blowing 
regardless of the blowing frequency. However, ωx''rms is most enhanced at a particular blowing 
frequency (f+=0.03). Accordingly, the most effective blowing frequency is f+=0.03, at which the near-
wall vortical structure is most activated. It is known that the location of local maximum of ωx''rms 
corresponds to that of the center of the streamwise vortex in the wall region [23]. Recall that the 
maximum increases of wall pressure fluctuations and Reynolds shear stress are observed at f+=0.03 
(Figs. 3 and 7). 
 
Conclusion 
 

Detailed numerical analysis has been performed to see the effect of blowing frequency on a 
turbulent boundary layer. The slot width is b+≈100 in wall units and the blowing frequency varies in a 
range 0≤f+≤0.08 with a fixed blowing amplitude (A+=0.5). An effective blowing frequency is observed 
at f+=0.03, which gives the minimum value of K*. The time-averaged streamwise velocity and wall 
pressure are invariant with the blowing frequency. However, the time-averaged skin friction and rms 
of wall pressure fluctuations are sensitive to the blowing frequency. Furthermore, the recovery of  skin 
friction is fast at f+=0.03. The maximum increase of u"rms is located closer to the slot than those of 
v"rms, w"rms and -u''v''. The increase of u"rms for f+=0.03 is smaller than those for other frequencies, 
whereas the increases of v"rms, w"rms and -u''v'' for f+=0.03 are larger that those for other frequencies. 
The time-averaged streamwise vorticity fluctuations ωx''rms is most enhanced at f+=0.03, which 
activates the near-wall vortical structures. 
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(above the slot) (above the slot)

Fig. 7. Time-averaged  turbulent intensities 
and Reynolds shear stress. 

Fig. 8. Root time-mean square of vorticity 
fluctuations. 
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