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Abstract 

Ultra wideband (UWB) signals typically occupy a very large spectral bandwidth 

resulting from extremely short duration pulses.  Direct sequence spread spectrum (DSSS) 

signals typically occupy a large spectral bandwidth resulting from spreading methods.  

Both signals can be difficult to detect without having prior knowledge of their structure 

and/or existence.   

This research develops and evaluates techniques for the non-cooperative (non-

matched filter) detection of such signals.  Impulse-like UWB and DSSS signals are 

received in an Additive White Gaussian Noise (AWGN) channel and are assessed using a 

bandpass filtered, down-converting (BPF-D/C) channelized receiver architecture.   

Modeling and simulation is conducted to characterize BPF-D/C channelized 

receiver detection performance, which is compared with the performance of two other 

non-cooperative detection receivers: a previously-introduced down-converting (D/C) 

channelized receiver and a conventional radiometer. 

The BPF-D/C channelized receiver detection performance for both signals of 

interest is shown to depend on the initial phase of the down-conversion mixers.  There are 

usually some combinations of signal-to-noise ratio (SNR) and channel bandwidth where 

the BPF-D/C channelized receiver outperforms the radiometer and D/C channelized 

receiver for a UWB pulse.  For a DSSS waveform, detection performance using the BPF-

D/C channelized receiver is consistently poorer than radiometric detection. 
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WIDEBAND SIGNAL DETECTION USING A DOWN-CONVERTING 
CHANNELIZED RECEIVER 

 
 

I. Introduction 

1.1 Introduction 

Non-cooperative communication channel assessment is perhaps the most 

challenging signal detection task.  The ability to monitor and characterize channel 

activity via non-cooperative and non-intrusive means has potential for a wide range of 

communication applications, which could prove especially significant for 4G (4th 

generation) deployment. 

1.2 Problem Statement 

Ultra wideband (UWB) signals typically occupy a very large spectral bandwidth 

resulting from extremely short duration pulses.  Direct sequence spread spectrum (DSSS) 

signals typically occupy a large spectral bandwidth resulting from spreading methods.  

Both signals are difficult to detect without prior knowledge of their structure and/or 

existence, and at times they may reside below the noise floor.  This research focuses upon 

developing techniques for the non-cooperative detection of UWB signals and WB signals 

using channelized receiver architecture techniques.  The ability to monitor and 

characterize channel activity using non-cooperative, non-synchronized mechanisms could 

greatly simplify network design by minimizing the amount of coordination and/or 

information exchange between users. 
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1.3 Research Assumption  

The following assumptions are made: 

• The channel of interest is modeled as Additive White Gaussian Noise (AWGN). 

• All Signal-to-Noise Ratio (SNR) measurements are made at the RF filter output. 

• All RF frequency responses are centered at the center frequency of the signal of 

interest.   

• Only one signal of interest is present at a given time in the RF environment.  The 

signal present is either the ultra wideband pulse or the direct sequence spread 

spectrum waveform.  Coexistence is not addressed. 

• The propagation path from transmitter to receiver is considered to be line-of-sight.  

Thus, multi-path signals and multi-path propagation are not present. 

• All signal detection is performed using test statistics generated under Constant 

False Alarm Rate (CFAR) conditions.  Thus, the detection threshold varies as a 

function of signal-to-noise ratio (SNR) to maintain a constant probability of false 

alarm of 210FAP −= .   

1.4 Research Scope 

Channelized receiver processing techniques are initially investigated for the 

purpose of detecting UWB signals.  Four distinct processing techniques are presented and 

modeled.  Detection performance simulations are conducted to (1) verify previously 

published results for a down-converting (D/C) channelized receiver and to (2) introduce 

new results for a bandpass filtered, down-converting (BPF-D/C) channelized receiver 

which incorporates additional bandpass filters relative to the original D/C channelized 
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receiver architecture.  The performance of each channelized receiver architecture is 

compared with radiometric detection in the presence of AWGN.  

1.5 Research Approach 

Initial research into the UWB signal provides temporal and power spectral density 

expressions for a uniform pulse train (UPT).  Research into the DSSS waveform provides 

temporal and power spectral density expressions for a signal employing Gold-coding 

spreading techniques.  The analytic results for both signals of interest are plotted to show 

structural characteristics of both signals.  

Three non-cooperative receiver models are considered, including (1) a 

conventional radiometer (energy detector), (2) a D/C channelized receiver and (3) a BPF-

D/C channelized receiver.  Simulated detection results for the radiometer provide 

baseline detection performance, which is compared with detection results obtained for 

both channelized methods. 

The research concludes with detection performance and filter characterization of 

the D/C channelized receiver models.  Both receivers spectrally separate (channelize) the 

received signal and employ mixers and low-pass filters to downconvert each channelized 

signal to baseband.  However, the BPF-D/C channelized receiver uses a set of additional 

bandpass filters to isolate spectral bands prior to mixing and low-pass filtering.  For both 

channelized receiver architectures considered, the final channelized signals are digitized 

following down-conversion for signal processing.  The digital processor uses data 

obtained over an observation interval which is stored in an M S×  matrix where M is the 

number of receiver channel filters and S is the number of time samples within the 



 

4 

observation interval.  The detection performance of each processing technique for both 

receivers is determined by simulation and compared with radiometric results.  

1.6 Materials and Equipment 

All work presented is simulated using MATLAB® Version 7.1.  Simulations are 

run on a 2.8 GHz Precision Workstation x86 Intel XP personal computer and an AFIT 

mainframe UNIX based system. 

1.7 Thesis Organization 

Chapter 2 provides background information on the UWB and DSSS signals.  Also 

provided are overviews of channelized receiver detection and down-converting 

channelized receiver detection and overviews of four channelized receiver processing 

techniques which are implemented using Fourier transformation and cross correlation.  

Chapter 3 presents the methodology, which focuses on BPF channelization with down-

conversion.  Chapter 4 provides simulated detection results and analysis for the D/C 

channelized receiver and the BPF-D/C channelized receiver, and filter characterization of 

both D/C receivers is also presented.  Chapter 5 presents conclusions and provides 

recommendations for possible future research.  Additional data is provided in the 

appendices: Appendix A contains simulated detection results for the BPF-D/C ChRx not 

included in Chapter 4; Appendix B contains MATLAB® code used in simulations. 



 

5 

II. Background 

2.1 Chapter Overview 

This chapter introduces the characteristics of the ultra wideband (UWB) pulse and 

direct sequence spread spectrum (DSSS) signals as used for this research.  A discussion 

on the channelized receiver architecture and channelized receiver processing techniques 

is provided as well.  Section 2.2 describes the uniform pulse train (UPT) UWB signal and 

its power spectral density, and also the Gold-coded DSSS waveform and its power 

spectral density.  Section 2.3 describes detection techniques, including matched filter, 

radiometric, and channelized receiver detection.  Section 2.4 further describes non-

cooperative detection techniques, and it presents down-converting (D/C) channelized 

receiver detection.  Section 2.5 presents the channelized receiver processing matrices, 

Section 2.6 describes threshold detection using the processing matrices, and Section 2.7 

provides concluding remarks.   

2.2 Received Signals Overview 

This section introduces the temporal and spectral characteristics of the UWB and 

the DSSS signals used here. 

2.2.1 Ultra Wideband Signal.  Impulse based UWB systems transmit data over a 

very large bandwidth using extremely short duration pulses.  The FCC First Report and 

Order was released in April 2002 [1], and it places strict emission limitations on UWB 

signaling for various applications, including radar, imaging and communication devices. 

The restrictions are imposed (1) to limit potential interference with narrow band systems 

coexisting in the same spectral region, and (2) to minimize collateral interference to 
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systems operating outside assigned spectral regions.  Indoor UWB system operation is 

limited to the unlicensed spectrum of 3.1 to 10.6 GHz (measured at -10 dB bandwidth 

points).  The FCC also specifies a maximum allowable Effective Isotropic Radiated 

Power (EIRP) of –41.4 dBm/MHz within the specified frequency range.  

As defined by the FCC [1], a system is considered UWB if it either has (1) a 

bandwidth greater than or equal to 500 MHz, or (2) a fractional bandwidth greater than 

20%, where fractional bandwidth fB  is  

2 H L
f

H L

f fB
f f

⎛ ⎞−= ⋅⎜ ⎟+⎝ ⎠
     (2.1) 

where Lf  and Hf  are the respective lower and upper –10 dB bandwidth frequencies. 

The analytic form chosen to represent the transmitted UWB pulse is the Gaussian 

monocycle.  Due to antenna derivative effects, propagation of the Gaussian monocycle 

results in a received second derivative Gaussian impulse 

   
2 2

( ) 1 4 exp 2
m m

t tw t π π
τ τ

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥ ⎢ ⎥= − ⋅ ⋅ − ⋅⎜ ⎟ ⎜ ⎟
⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

   (2.2) 

where the impulse width mτ  is approximately 0.4 times the pulse width wT  as shown in 

[2] and discussed in [3].  Fig. 2.1 represents a single UWB pulse in the time domain for 

0.4wT ns= .  Using the w(t) expression of (2.2), the general analytic expression for  a 

UWB signal is: 

( ) ( )k s k
k

s t A w t kT B
∞

=−∞

= ⋅ − − Δ∑    (2.3) 
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where kA  and kB  are specified according to modulation type, sT  is the symbol duration, 

and Δ is the relative position modulation offset.  The UWB signal modulation technique 

considered here is the Uniform Pulse Train (UPT), which is obtained using 1k kA B= =  in 

(2.3). 
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Figure 2.1     A single UWB, second derivative Gaussian impulse 

 

Overall, the parameters defining characteristics of the UWB pulse used in this work 

are: 

• UWB Pulse Width  –  0.4 ns 

• Total Observation Interval  –  5.2 ns 

• Time Sample Spacing  –  0.01 ns 

The general analytic expression for the power spectral density (PSD) of a UWB 

impulse is derived using methods similar to those presented in [4-7], and is summarized 

in [8].  The total UWB signal PSD is [8]: 

2( ) ( ) ( )UWB UPTS f S f W f= ⋅     (2.4)  
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where ( )W f  is the Fourier transform of the received UWB pulse and ( )w t  is given by 

(2.2).  The PSD for the UPT modulation process, ( )UPTS f  as in (2.4), is: 

2

1( )UPT
ls s

lS f f
T T

δ
∞

=−∞

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∑     (2.5) 

and the Fourier transform of the received UWB signal is: 

3 2 2 2

( ) exp
22

m mf fW f πτ πτ⎛ ⎞
= ⋅ −⎜ ⎟

⎝ ⎠
   (2.6)  

 Fig. 2.2 shows the analytic PSD for a uniform UWB pulse train which was 

generated using 0.4wT ns=  and 0.4 0.16m wT nsτ = = .  The pulse repetition interval for 

the pulse train is 2s wT T= . 
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Figure 2.2     Analytical PSD of a uniform UWB pulse train 
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2.2.2 Direct Sequence Spread Spectrum Signal.  Data modulated signals can be 

spectrally spread by modulating the signal a second time.  This spreading can be 

accomplished using either a very wideband spreading signal, or coding sequence.  This 

bandwidth spreading technique is commonly referred to as direct sequence spread 

spectrum (DSSS) [9]. 

The DSSS signal considered here employs binary shift keying (BPSK) for both 

the data and spreading modulations.   This technique features instantaneous phase 

changes of the carrier by 180 degrees.  Streaming bits of information, i.e., a series of 1’s 

and 0’s at data rate of bR , are mapped to antipodal waveforms, respectively, to produce 

the data modulated waveform ( )d t .  Within the BPSK format, a phase value of 0°  

corresponds to an assigned bit value of +1, whereas a phase value of 180°  represents an 

assigned bit value of -1.  Here, a Gold-coded spreading waveform ( )c t  is used to 

spectrally spread the data modulated waveform with a chip rate cR .  Typically, Gold-

coding is used for multiple-access spread spectrum systems so that as many users as 

possible can use a band of frequencies with as little mutual interference as possible.  The 

actual coding sequence is further discussed in [9].  Fig. 2.3 is a block diagram of DSSS 

signal modulation and transmission.  The input to the BPSK modulator is the information 

bit stream {b} at the bit rate bR , and the output is the data modulated waveform ( )m t .  

The Gold-coded spreading waveform ( )c t  is generated at the chip rate of cR  is applied to 

the data modulated waveform to produce the spectrally spread transmitted waveform 

( )s t . 
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Figure 2.3     Transmitter block diagram for DSSS signaling 

 

The basic signal structure for a DSSS signal is: 

( )0( ) 2 ( ) ( ) cos 2s t P d t c t f t iπ π= ⋅ ⋅ ⋅ −    (2.7) 

where i  is either 1 or 0 for BPSK modulation bits and P and 0f  are the average signal 

power and center frequency, respectively.  Fig. 2.4 shows a representative DSSS 

waveform in the time domain.  Overall, the parameters that define the DSSS signal used 

in this work include: 

• Data Rate ( bR )  –  12.5 kHz 

• Chip Rate ( cR )  –  1 GHz 

• Time Sample Spacing  –  0.01 ns 
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Figure 2.4     Representative DSSS waveform in the time domain 

(A symbol boundary / phase change is evident near 2.5 ns) 
 

The two-sided general analytic expression for the power spectral density (PSD) of 

a DSSS signal is derived using methods similar to those presented in [10-13].  As 

summarized in [9], the approximate DSSS signal PSD is: 

( ) ( ){ }2 21
0 02( ) sinc sinct c c cS f PT f f T f f T= − + +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦   (2.8) 

where the sinc2 function emerges from the Fourier transform of the spreading code 

autocorrelation function.  Fig. 2.5 shows the PSD for the simulated DSSS waveform. 
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Figure 2.5     PSD of simulated DSSS waveform 

 

2.3 Channelized Receiver Detection 

To understand the channelized receiver architecture and detection, a brief 

overview of detection techniques is provided.  Receiver detection can be classified as 

either cooperative or non-cooperative detection.  In cooperative detection, the form and 

arrival time of a received signal are known.  With these known parameters, a correlation 

implementation of a matched filter (MF) receiver [14] can be used to detect and estimate 

the presence of a particular signal of interest (SOI).  The block diagram for a MF with 

correlation is shown in Fig. 2.6.  In this figure the received signal is: 

( ) ( ) ( )r t s t n t= +       (2.9) 

where ( )s t  is the signal of interest (SOI) and ( )n t  is AWGN.  For all detection methods 

considered here, a test statistic Z  is produced and compared with a threshold  TZ , which 
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is established using various detection criteria [15].  For a matched filter detector signal 

“presence” is declared when TZ Z> . 

 
Figure 2.6     Matched filter detector with correlation implementation [3] 

 

Non-matched filter detection may be employed if the form and arrival time of 

received signals are unknown.  As with the MF detection method, non-cooperative 

detection methods produce a test statistic Z  for comparison with threshold TZ .  A signal 

is declared present if TZ Z≥  and not present if TZ Z< .  Two conditional probabilities 

exist when a signal is present, including: 

PD = P[ Z > TZ  | Signal Present] (Probability of Detection) 

PM = P[ Z < TZ  | Signal Present] (Probability of a Miss) 

When the signal is not present, only channel noise is present, which may or may 

not trigger signal declaration.  Two conditional probabilities exist when a signal is not 

present, including: 

PFA = P[ Z > TZ  | Signal Absent] (Probability of False Alarm) 

PND = P[ Z < TZ  | Signal Absent] (Probability of No Detection) 

Constant false alarm rate (CFAR) processing occurs when the threshold TZ  

adapts to changing channel conditions.  In this case, a constant FAP  is maintained [16].    
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The radiometer is one form of non-cooperative detector which detects signal 

energy in bandwidth RADW  by processing the received signal over time interval T [17].  

The resultant test statistic Z  is compared with threshold γ  and a detection decision is 

made.  As with previous detectors, if TZ Z>  a signal is declared present and if TZ Z<  

no signal is declared.  Fig. 2.7 is a block diagram of radiometric detection. 

 
Figure 2.7     Block diagram of radiometric detection process [3] 

  

“A channelized receiver architecture provides wide instantaneous bandwidth so 

that all signals present are received simultaneously without the necessity of tuning a 

receiver to a specified signal or band of interest.” [18].  According to Tsui in [18], the 

only practical implementation of a wideband receiver is channelization, involving parallel 

processing of outputs from a series of smaller bandwidth filters which span the larger 

desired bandwidth of interest.  As shown in Fig. 2.8 and further discussed in [2, 8], a 

channelized receiver consists of a bank of M  filters spanning the total bandwidth of 

interest.  The output of each bandpass filter is sent to a respective analog-to-digital (A/D) 

converter, and all outputs are processed collectively to exploit the power of 

channelization. 

Implementing this receiver architecture in hardware may not be practical, given 

that A/D converters must sample at least twice as fast as the highest frequency 

component appearing in the bandpass filters (Nyquist sampling criteria).  The frequency 
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range for signals of interest here (especially the UWB signals) extends much higher than 

current A/D technology can feasibly support. 

 

Figure 2.8     Channelized receiver block diagram [8] 

 

2.4 Down-Converting Channelized Receiver Detection  

One possible solution to the A/D limitation of the wideband channelized receiver, 

as presented in [8, 19], is to implement signal down-conversion prior to A/D conversion 

[20].  Fig. 2.9 illustrates one possible implementation for a down-converting channelized 

receiver.  In this case, M  mixers at equally spaced local oscillator frequencies and initial 

phase values are employed for down-conversion.  Each mixer essentially takes the input 

signal (the spectral response of which spans HRF) and translates it to a lower intermediate 

frequency.  This frequency translation reduces the A/D sampling rate necessary to 

reliably recreate a signal of interest.  The mixers are followed by M  low-pass filters.  

Each down-converted low-pass filtered signal is sent to an A/D converter, and the M  

outputs are processed collectively. 
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Figure 2.9     D/C channelized receiver block diagram [8] 

 

2.5 Channelized Receiver Processing 

The four detection methods for channelized receiver processing, as discussed in 

[2, 8, 19], are introduced in this section.  These processing techniques include the 

temporal-temporal matrix (TTM), cross-temporal matrix (CTM), spectral-spectral matrix 

(SSM), and cross-spectral matrix (CSM) methods. 

The A/D converted signals from both the channelized and down-converting 

channelized receiver architectures may be used to form the Channelized Data Matrix 

(CDM).  As illustrated in Fig. 2.10, the CDM is a M S× matrix, where M  is the number 

of receiver channels and S  is the number of time samples spanning the observation 

interval.  Thus, each row in the matrix is time-sampled data from a specific channel of the 

receiver being evaluated. 
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Figure 2.10   Channelized data matrix (CDM) structure 

 

2.5.1 Temporal-Temporal Matrix (TTM).  The TTM is formed by performing 

an inverse Fast Fourier Transform (IFFT) on each column of the CDM and taking the 

absolute value of each element in the resulting matrix.  Zero-padding is used if the 

number of IFFT points ifftN  is greater than the number of receiver channels M .  

Truncation of higher frequency samples occurs if ifftN M< . 

Fig. 2.11 and Fig. 2.12 show plots of representative TTM data for a received 

UWB pulse input to the channelized and down-converting channelized receivers, 

respectively.  Data for these TTM matrices are formed by applying a 64-point IFFT on 

the columns of the CDM. 
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Figure 2.11   UWB: Temporal-temporal matrix (TTM) from channelized receiver 
 

 
Figure 2.12   UWB: Temporal-temporal matrix (TTM) from D/C channelized receiver 
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2.5.2 Cross Temporal Matrix (CTM).  The CTM is formed by taking the 

absolute value of the correlation between all combinations of TTM columns.  CTM 

elements are: 

1 H

ifft

CTM TTM TTM
N

= ⋅      (2.10) 

where ifftN  is the number of IFFT points used to form the TTM and the ( )H⋅ operation is 

the Hermitian or complex transpose.  Representative CTM data for the channelized and 

down-converting channelized receivers for a received UWB pulse are shown in Fig. 2.13 

and Fig. 2.14, respectively.  The data in these plots are formed using (2.10) with the TTM 

data from Fig. 2.11 and Fig. 2.12.     

 
Figure 2.13   UWB: Cross temporal matrix (CTM) from channelized receiver 
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Figure 2.14   UWB: Cross temporal matrix (CTM) from D/C channelized receiver 

 

2.5.3 Spectral-Spectral Matrix (SSM). The SSM is formed by performing a 

Fast Fourier Transform (FFT) on each row of the CDM and taking the absolute value of 

each element in the resulting matrix.  The number of FFT points fftN  must be greater 

than the number of samples S  in the observation interval so that no time samples are 

truncated in the FFT process.  Zero-padding is used if fftN is greater than the number of 

samples in the observation interval.  Representative SSM data from the channelized and 

down-converting channelized receivers for a received UWB pulse are shown in Fig. 2.15 

and Fig. 2.16, respectively.  These matrices are formed by applying a 512-point FFT on 

the rows of the CDM.   
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Figure 2.15   UWB: Spectral-spectral matrix (SSM) from channelized receiver 

 

 
Figure 2.16   UWB: Spectral-spectral matrix (SSM) from D/C channelized receiver 

 

2.5.4 Cross Spectral Matrix (CSM).  The CSM is formed by taking the absolute 

value of the correlation between all combinations of SSM columns, and is simplified as: 

1 HCSM SSM SSM
M

= ⋅      (2.11) 
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where M is the number of receiver channels and the ( )H⋅ operation is the Hermitian 

complex transpose.  Representative CSM data from the channelized receiver and the 

down-converting channelized receiver for a received UWB pulse are shown in Fig. 2.17 

and Fig. 2.18, respectively.  The data in these plots are formed using (2.11) with the SSM 

data from Fig. 2.15 and Fig. 2.16. 

 
Figure 2.17   UWB: Cross spectral matrix (CSM) from channelized receiver 
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Figure 2.18   UWB: Cross spectral matrix (CSM) from D/C channelized receiver 

 

2.6 Threshold Detection 

 Two-dimensional threshold detection is performed using each of the four 

processing methods to characterize DP  performance for each method. 

 Once a given matrix of data is generated, the maximum value of the processed 

matrix is chosen as the test statistic NZ  for comparison with the threshold TZ .  The 

threshold value is determined by processing a number of matrices created using R  noise 

realizations for a given signal-to-noise ratio (SNR).  These R  noise realizations are set to 

achieve the desired probability of false alarm.  The threshold value TZ  is set as the lower 

bound of the 10 largest NZ  test statistics.  The number of R  realizations required is: 

10

FA

R
P

=       (2.12) 
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where FAP  is the desired probability of false alarm, which is maintained constant (CFAR 

conditions) as SNR is varied [16].  To achieve a FAP  = 10-2 the number of R realizations 

must equal 1000. 

 The R  matrices are regenerated with the R  noise realizations and signal of 

interest present.  The Z  test statistics from these signal present conditions are compared 

to threshold TZ  and DP  determined by 

T#
D

Z ZP
R
>=       (2.13) 

The procedure of threshold determination by noise realization and DP  determination is 

repeated for each desired SNR value.  Fig. 2.19 illustrates the overall process and data 

flow used for detection performance characterization. 

2.7 Summary 

This chapter introduces the UWB and DSSS waveforms considered here.  

Channelized and down-converting channelized receiver architectures are introduced 

along with various detection techniques.  Four processing techniques are addressed, 

including the temporal-temporal matrix (TTM), cross temporal matrix (CTM), spectral-

spectral matrix (SSM), and the cross spectral matrix (CSM).  Threshold detection for 

determining probability of detection ( )DP  under constant false alarm rate (CFAR) 

conditions is also discussed.  
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Figure 2.19   Process flow for channelized receiver detection 
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III.  Methodology 

3.1 Chapter Overview 

This chapter introduces the bandpass filtered down-converting channelized 

receiver (BPF-D/C ChRx) architecture considered for this research.  Section 3.2 

examines the BPF-D/C channelized receiver as one alternative to the D/C channelized 

receiver presented in [8, 19] and described in Chapter 2, and Section 3.3 provides 

conclusions.    

3.2 Bandpass Filtered, Down-Converting Channelized Receiver Architecture 

One alternative to the down-converting channelized receiver (D/C ChRx) 

presented in [8, 19] and described in Section 2.4 is the bandpass filtered down-converting 

channelized receiver (BPF-D/C ChRx) evaluated here.  One issue that may arise when 

using a down-converting channelized receiver architecture without bandpass filtering is 

aliasing. 

In the D/C ChRx architecture of [8, 19], the signal of interest is first filtered with 

a single RF bandpass filter and combined using M mixer frequencies which span the 

spectrum of interest.  This process produces a higher frequency and a lower frequency 

component in both the positive and negative frequency domains.  The low-pass filtering 

which follows the conversion process suppresses the high frequency components and 

passes the lower frequency components for subsequent processing.  For the first mixer 

frequency no aliasing is apparent.  However, for the second and all remaining mixer 

frequencies aliasing may occur as negative spectral responses are translated to positive 

frequency locations and vice versa.   
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One possible solution to minimizing aliasing effects involves modifying the D/C 

ChRx architecture to incorporate bandpass filters.  In this case bandpass filters are 

employed before the down-conversion process to isolate each spectral band of interest.  

Fig. 3.1 shows the BPF-D/C ChRx architecture, which includes a bank of M bandpass 

filters spanning the total bandwidth of interest.  The BPFs are followed by M mixers 

operating at equally spaced frequencies with initial phase values.  Each mixer is followed 

by one of M identical low-pass filters.  The bandpass filtered down-converted output of 

each low-pass filter is sent to a respective A/D converter, and all outputs are processed 

collectively. 

Figure 3.1     Bandpass filtered, D/C channelized receiver (BPF-D/C ChRx) 
 

The A/D converted signals are used to form the Channelized Data Matrix (CDM), 

as in the channelized [3, 4] and D/C ChRx [8, 19] architectures described in Section 2.3 

and Section 2.4, respectively.  The four detection techniques introduced in Section 2.5 are 

used for signal processing.  Fig. 3.2 shows a plot of representative temporal-temporal 

matrix data for a received UWB pulse input to the BPF-D/C ChRx.  Fig. 3.3 shows TTM 

data for a received DSSS waveform input to the BPF-D/C ChRx.  Data for both TTM 

matrices are formed by applying a 64-point IFFT on the columns of the CDM.   
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Figure 3.2     UWB temporal-temporal matrix (TTM) from a bandpass filtered, down- 
converting channelized receiver (BPF-D/C ChRx) 

  

 

Figure 3.3     DSSS temporal-temporal matrix (TTM) from a bandpass filtered,  
down-converting channelized receiver (BPF-D/C ChRx) 

 

A plot of representative cross temporal matrix data for a received UWB pulse 

input to the BPF-D/C ChRx  is shown in Fig. 3.4.  The plot is formed using (2.10) with 

the TTM data from Fig. 3.2.  Likewise, Fig. 3.5 shows CTM data for a received DSSS 
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waveform input to the BPF-D/C ChRx, formed using (2.10) with the TTM data from Fig. 

3.3.  The CDM yields the spectral-spectral matrix from a UWB received pulse as shown 

in Fig. 3.6, which is formed by applying a 512-point FFT on the rows of the CDM.  Fig. 

3.7 shows data for a received DSSS waveform input to the BPF-D/C ChRx, which is 

formed using the same number of FFT points as in Fig. 3.6.  Fig. 3.8 shows 

representative cross spectral matrix data from the BPF-D/C ChRx for a received UWB 

pulse.  Fig. 3.9 shows data from a received DSSS waveform input to the BPF-D/C ChRx.  

The data in Figs. 3.8 and 3.9 are formed using (2.11) with the SSM data from Figs. 3.6 

and 3.7, respectively. 

 

Figure 3.4     UWB cross temporal matrix (CTM) from a bandpass filtered, down- 
converting channelized receiver (BPF-D/C ChRx) 
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Figure 3.5     DSSS cross temporal matrix (CTM) from a bandpass filtered, down- 
converting channelized receiver (BPF-D/C ChRx) 

   

 

Figure 3.6     UWB spectral-spectral matrix (SSM) from a bandpass filtered, down- 
converting channelized receiver (BPF-D/C ChRx) 
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Figure 3.7     DSSS spectral-spectral matrix (SSM) from a bandpass filtered, down- 
converting channelized receiver (BPF-D/C ChRx) 

 

 

Figure 3.8     UWB cross spectral matrix (CSM) from a bandpass filtered, down- 
converting channelized receiver (BPF-D/C ChRx) 
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Figure 3.9     DSSS cross spectral matrix (CSM) from a bandpass filtered, down- 
converting channelized receiver (BPF-D/C ChRx) 

 

The method for determining the probability of detection (PD) from the processing 

techniques shown in Fig. 3.2 through Fig. 3.5 is the same as the threshold detection 

method discussed in Section 2.6. 

As in [8], various parameters are changed to generate results for different 

detection scenarios and arrangements, including 

• Received Signal-to-Noise (SNR), measured at the RF filter output 

• Number of IFFT (Nifft) and FFT (Nfft) points to create the four processing matrices 

(TTM, CTM, SSM, CSM) 

• Bandpass filtered, down-converting channelized receiver channel bandwidths 

• Down-conversion mixer starting phase 
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3.3 Summary 

This chapter introduces the bandpass filtered down-converting channelized 

receiver as one alternative to the architectures presented in Chapter 2.  Results for the 

threshold detection process with each of the four detection matrices generated for both 

the D/C ChRx and the BPF-D/C ChRx are presented in Chapter 4.
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IV.  Results and Analysis 

4.1 Chapter Overview 

This chapter provides filter characterization and detection performance results for 

the receivers and processing techniques introduced in Chapters 2 and 3.  First, Section 4.2 

characterizes the filter responses of both the down-converting channelized receiver (D/C 

ChRx) and the bandpass filtered down-converting channelized receiver (BPF-D/C ChRx).  

Next, Section 4.3 presents D/C ChRx detection performance results using the channelized 

matrix data and techniques introduced in Chapter 2, where the signal of interest is the 

UWB pulse.  Section 4.4 provides the BPF-D/C ChRx detection performance results 

using the channelized matrix data and techniques introduced in Chapter 2, where the 

signal of interest is the UWB pulse.  Finally, Section 4.5 presents the BPF-D/C ChRx 

detection performance results for the case where a DSSS waveform is introduced as the 

signal of interest.  Section 4.6 concludes the chapter.  

4.2 Filter Characterization 

This section provides characterization of the Butterworth filters used for both the 

D/C ChRx and BPF-D/C ChRx.  Channelized data using the ultra wideband signal shown 

in Fig. 2.1 is also presented. 

4.2.1 Down-Converting Channelized Receiver.  The D/C ChRx presented in [8, 

19] and described in Section 2.4 consists of RF filter HRF, M mixers, and M low-pass 

filters (LPF), followed by M analog-to-digital converters and digital signal processing.  

The filters employed in this work are 4th-order Butterworth filters.  The Butterworth filter 

is chosen because of its specific filtering characteristics; the Butterworth filter has a 
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magnitude response that is maximally flat without ripples in the passband [21].  A 4th-

order filter is chosen because the roll-off is steeper than for a lower order filter.  

Ultimately, roll-off steepness is sacrificed for smoothness in the band of interest. 

The received signal is first filtered by HRF, which spans 2.5 GHz to 7.5 GHz as 

measured between the -3 dB points.  The magnitude and phase responses of the 

Butterworth HRF  are shown in Fig. 4.1. 
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Figure 4.1     Magnitude and phase response of HRF spanning 2.5 to 7.5 GHz 
 

The filtered signal output (SRF) is passed to a bank of M mixers spanning the total 

bandwidth of interest.  The down-converted signal output of each mixer is then passed to 

a Butterworth LPF.  Figure 4.2 shows the magnitude and phase response of a 250 MHz 

Butterworth LPF. 

The output of each LPF is passed to its respective A/D converter, and all outputs 

are processed collectively.  Figure. 4.3 illustrates five channelized ultra wideband signal 
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responses sampled over an observation interval at the D/C ChRx output.  The data are 

shown for channel bandwidths of 1 GHz that span 5.0 GHz.   
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Figure 4.2     Magnitude and phase response of a 250 MHz LPF channel 
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Figure 4.3     Channelized data matrix (CDM) for a D/C channelized receiver 
with a channel bandwidth of 1 GHz and a received UWB signal 
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4.2.2 Bandpass Filtered, Down-Converting Channelized Receiver.  As 

presented in Section 3.2, the BPF-D/C ChRx is one alternative to the D/C ChRx 

architecture.  A bank of M bandpass filters spanning the total bandwidth of interest is 

employed before the down-conversion process.  The HRF and LPF filter responses of the 

BPF-D/C ChRx are identical to those illustrated in Fig. 4.1 and Fig. 4.2 for the D/C 

ChRx, respectively.  Figure 4.4 shows the magnitude and phase response of a 

representative 250 MHz BPF channel.  The signal characteristics of the ultra wideband 

signal at the output of the BPFs are illustrated in Fig. 4.5, where the bandwidth of each 

channel is 1 GHz. 
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Figure 4.4     Magnitude and phase response of a 250 MHz BPF channel 
 

The output of each LPF is passed to its respective A/D converter and all outputs 

are processed collectively.  Fig. 4.6 illustrates the channelized signal sampled over an 

observation interval at the D/C ChRx output.  Channel bandwidths of 1 GHz that span the 

total bandwidth of interest are shown. 
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Figure 4.5     Channelized data for BPF-D/C channelized receiver with a channel  
bandwidth of 1 GHz and a received UWB signal 
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Figure 4.6     Channelized data matrix (CDM) for a BPF-D/C channelized receiver with  
a channel bandwidth of 1 GHz and a received UWB signal 
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4.3 Down-Converting Channelized Receiver Detection Performance 

As stated in Chapter 2, D/C ChRx threshold detection is performed using each of 

the four processed channelized data matrices (TTM, CTM, SSM, and CSM) examined in 

Section 2.5.  In this section, detection results of each processed data matrix are set for 

210FAP −=  using the received UWB signal shown in Fig. 2.1.  These results are compared 

with probability of detection results from a radiometer.  Results observed in [8] were 

supported in [19] and are extended in this work.  

4.3.1 Down-Converting Temporal-Temporal Matrix (TTM) Detection.  

Probability of detection (PD) results are shown in Fig. 4.7 for a D/C ChRx with 20M = , 

250 MHz channels, and two different numbers of IFFT points ( ifftN ) used to form the 

TTM.  The initial mixer phase value is held constant at 0 degrees for these results.  As 

shown, detection performance remains approximately the same for all ifftN  values.  A 

limit for best performance is given in [8, 19] and supported by additional TTM D/C 

ChRx results in Appendix A.  Best performance is achieved when ifftN  is greater than 

twice the number of channelized receiver channels, or 2ifftN M> .  

Detection performance response due to variation in the initial down-conversion 

mixer phase value is considered next.  As in [8, 19], the initial phase values of all mixers 

are set equal at the start of the observation interval and are subsequently varied to 

generate the results in Fig. 4.8, where the signal-to-noise ratio (SNR) is held constant at 

0 SNR dB= .  Radiometric performance for the UWB pulse at 0 SNR dB=  is 

approximately 0.9DP =  as shown in Fig. 4.7.  Data shown in Fig. 4.8 suggest that 

detection using TTM data can outperform the radiometer using a 500 MHz channel 
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bandwidth and a few specific phase values. However, the TTM process outperforms the 

radiometer across all initial phase values using the 250 MHz channel bandwidth. 
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Figure 4.7     TTM detection performance for a down-converting channelized receiver 
(D/C ChRx) with M = 20, 250 MHz channels and varying number of IFFT points [19] 
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Figure 4.8     TTM detection performance versus mixer phase for a down- 
converting channelized receiver using SNR = 0 dB with varying channel bandwidth [19] 

 

4.3.2 Down-Converting Cross Temporal Matrix (CTM) Detection.  

Probability of detection (PD) results are shown in Fig. 4.9 for a D/C ChRx with 20M = , 

250 MHz channels, and two different number of IFFT points ( ifftN ) used to form the 

CTM from the corresponding TTM.  The initial mixer phase value was held constant at 0 

degrees for these results.  As shown, detection performance remains approximately the 

same for all ifftN  values considered.  As in the TTM, a limit for best performance is given 

in [8, 19] and supported by additional CTM D/C ChRx results in Appendix A. Best 

performance is achieved when ifftN  is greater than twice the number of channelized 

receiver channels, or 2ifftN M> .   
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Detection performance response due to variation in the initial down-conversion 

mixer phase value is considered next.  As in [8, 19], the initial phase values of all mixers 

are set equal at the start of the observation interval and subsequently varied to generate 

results shown in Fig. 4.10, and the signal-to-noise ratio (SNR) is held constant at 

0 SNR dB= .  The radiometric detection performance of the UWB pulse at 0 SNR dB=  

is approximately 0.9DP =  as shown in Fig. 4.9.  Data in Fig. 4.10 suggest that detection 

using CTM data outperforms the radiometer using both the 500 MHz and 250 MHz 

channel bandwidths across all initial phase values.   
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Figure 4.9     CTM detection performance for a down-converting channelized 
receiver (D/C ChRx) with M = 20, 250 MHz channels and varying number of 

IFFT points [19] 
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Figure 4.10   CTM detection performance versus mixer phase for a D/C 
            channelized receiver using SNR = 0 dB with varying channel bandwidth [19] 

 

4.3.3 Down-Converting Spectral-Spectral Matrix (SSM) Detection.  

Probability of detection (PD) results are shown in Fig. 4.11 for a D/C ChRx with 20M = , 

250 MHz channels, and two different number of FFT points ( fftN ) used to form the SSM.  

The initial mixer phase value is held constant at 0 degrees for these results.  As shown, 

detection performance remains approximately the same for all fftN  values considered.  

This conclusion is supported by results in Fig. 4.11 and additional SSM D/C ChRx results 

presented in Appendix A. 

Detection performance response due to variation in the initial down-conversion 

mixer phase value is considered next.  As in [8, 19], the initial phase values of all mixers 

are set equal at the start of the observation interval and are subsequently varied to 

generate results in Fig. 4.12, where the signal-to-noise ratio (SNR) is held constant at 

0 SNR dB= .  For the same SNR, radiometric performance is approximately 0.9DP =  as 
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shown in Fig. 4.11.  Data in Fig. 4.12 show that D/C SSM detection performance is much 

poorer than radiometric detection for all channel bandwidths considered.  
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Figure 4.11   SSM detection performance for a D/C channelized receiver  
            (D/C ChRx) with M = 20, 250 MHz channels and varying number of FFT points  

[19] 
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Figure 4.12   SSM detection performance versus mixer phase for a D/C  
channelized receiver using SNR = 0 dB with varying channel bandwidth [19] 
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4.3.4 Down-Converting Cross Spectral Matrix (CSM) Detection.  Probability 

of detection (PD) results are shown in Fig. 4.13 for a D/C ChRx with 20M = , 250 MHz 

channels, and two different number of FFT points ( fftN ) used to form the CSM from the 

corresponding SSM.  The initial mixer phase value is held constant at 0 degrees for these 

results.  As shown, detection performance remains approximately the same for all fftN  

values considered.  This conclusion is supported by results in Fig. 4.13 and additional 

CSM D/C ChRx results presented in Appendix A.  

Detection performance response due to variation in the initial down-conversion 

mixer phase value is considered next.  As in [8, 19], the initial phase values of all mixers 

are set equal at the start of the observation interval and subsequently varied to generate 

results in Fig. 4.14, and the signal-to-noise ratio (SNR) is held constant at 0 SNR dB= .  

Radiometric performance at 0 SNR dB=  is approximately 0.9DP =  as shown in Fig. 

4.13.  Data in Fig. 4.14 show that D/C SSM detection performance is poorer than 

radiometric detection for all channel bandwidths considered.  
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Figure 4.13   CSM detection performance for a D/C channelized receiver  
           (D/C ChRx) with M = 20, 250 MHz channels and varying number of FFT points 

[19] 
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Figure 4.14   CSM detection performance versus mixer phase for a D/C  
            channelized receiver using SNR = 0 dB with varying channel bandwidth [19] 
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4.4 Bandpass Filtered, Down-Converting Channelized Receiver Detection 

Performance – UWB Results 

 As stated in Chapter 3, BPF-D/C ChRx threshold detection is performed using 

each of the four processed channelized data matrices (TTM, CTM, SSM, and CSM) 

examined in Section 2.5.  For comparison between receiver architectures, the total 

observation interval ( obsT ) used for processing in the BPF-D/C ChRx is the same as that 

employed in D/C ChRx processing.  In this section, detection results of each processed 

data matrix are set for 210FAP −=  using the received UWB signal shown in Fig. 2.1.  

These results are compared with probability of detection results for a radiometer.   

4.4.1 BPF Down-Converting Temporal-Temporal Matrix (TTM) Detection.  

Probability of detection (PD) results are shown in Fig. 4.15 for a BPF-D/C ChRx with 

20M = , 250 MHz channels, and a varying number of IFFT points ( ifftN ) used to form 

the TTM.  The initial mixer phase value is held constant at 0 degrees.  As shown, 

detection performance remains approximately the same for all ifftN  values.  A limit for 

best performance is given in [8, 19] and supported by additional TTM BPF-D/C ChRx 

results in Appendix A.  Best performance is achieved when ifftN  becomes greater than 

twice the number of channelized receiver channels, or 2ifftN M> . 

Detection performance response due to variation in the initial down-conversion 

mixer phase value is considered next.  As in [8, 19], the initial phase values of all mixers 

are set equal at the start of the observation interval and subsequently varied to generate 

the results in Fig. 4.16.  The signal-to-noise ratio (SNR) is held constant at 0 SNR dB=  
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for these results, and the number of IFFT points is set at 64ifftN = .  For the same SNR, 

radiometric performance is approximately 0.9DP = , as shown in Fig. 4.15.  Data shown 

in Fig. 4.16 suggest that detection using TTM can outperform the radiometer when using 

the 250 MHz channel bandwidth.  The 100 MHz channel bandwidth performs much 

poorer than other channel bandwidths, which may be due to a ‘spreading effect’ found in 

TTM processing that is more evident in the BPF-D/C ChRx than in the D/C ChRx.  This 

‘spreading effect’ reduces the maximum value of the processed matrix, which may not be 

detected when compared with the threshold set for a constant false alarm rate (CFAR) of 

210− . 
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Figure 4.15   TTM detection performance for a BPF-D/C channelized receiver with  

M = 20, 250 MHz channels and varying number of IFFT points 
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Figure 4.16   TTM detection performance versus mixer phase for a BPF-D/C  
channelized receiver using SNR = 0 dB with varying channel bandwidth 

 

4.4.2 BPF Down-Converting Cross Temporal Matrix (CTM) Detection.  

Probability of detection (PD) results are shown in Fig. 4.17 for a BPF-D/C ChRx with 

20M = , 250 MHz channels, and  a varying number of IFFT points ( ifftN ) used to form 

the CTM from the corresponding TTM.  The initial mixer phase value was held constant 

at 0 degrees for these results.  As shown, detection performance remains approximately 

the same for all ifftN  values considered.  A limit for best performance is given in [8, 19] 

and supported by additional CTM BPF-D/C ChRx results presented in Appendix A.  Best 

performance is achieved when ifftN  is greater than twice the number of channelized 

receiver channels, or 2ifftN M> . 

Detection performance response due to variation in the initial down-conversion 

mixer phase value is considered next.  As in [8, 19], the initial phase values of all mixers 

are set equal at the start of the observation interval and subsequently varied to generate 
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results in Fig. 4.18.  The signal-to-noise ratio (SNR) is held constant at 0 SNR dB=  for 

these results, and the number of IFFT points is set at 64ifftN = .  Radiometric 

performance at 0 SNR dB=  is approximately 0.9DP =  as shown in Fig. 4.17.  Data in 

Fig. 4.18 suggest that detection using CTM processing outperforms the radiometer when 

employing the 500 MHz channel bandwidth.  The 100 MHz channel bandwidth performs 

much poorer than other channel bandwidths due to the ‘spreading effect’ in the 

observation interval briefly discussed in Section 4.4.1.  
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Figure 4.17   CTM detection performance for a BPF-D/C channelized receiver with  
M = 20, 250 MHz channels and varying number of IFFT points 
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Figure 4.18   CTM detection performance versus mixer phase for a BPF-D/C  
channelized receiver using SNR = 0 dB with varying channel bandwidth 

 

4.4.3 BPF Down-Converting Spectral-Spectral Matrix (SSM) Detection.  

Probability of detection (PD) results are shown in Fig. 4.19 for a BPF-D/C ChRx with 

20M = , 250 MHz channels, and two different number of FFT points ( fftN ) used to form 

the SSM.  The initial mixer phase value is held constant at 0 degrees for these results.  As 

shown, detection performance remains approximately the same for all fftN  values.  This 

conclusion is supported by results in Fig. 4.19 and additional SSM BPF-D/C ChRx 

results presented in Appendix A. 

Detection performance response due to variation in the initial down-conversion 

mixer phase value is considered next.  As in [8, 19], the initial phase values of all mixers 

are set equal at the start of the observation interval and subsequently varied to generate 

results in Fig. 4.20.  The signal-to-noise ratio (SNR) is held constant at 0 SNR dB=  for 

these results, and the number of FFT points is set at 512fftN = .  Radiometric 
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performance at 0 SNR dB=  is approximately 0.9DP =  as shown in Fig. 4.19.  Data in 

Fig. 4.20 show that BPF-D/C SSM detection performance is much poorer than 

radiometric detection for all channel bandwidths considered.  The 100 MHz channel 

bandwidth performs even poorer than the 250 and 500 MHz bandwidths due to the 

spreaded overall energy in the observation interval over 50 channels.  With a decrease in 

energy per channel, the maximum value of the processed matrix may not be detected 

when compared with the threshold set for a constant false alarm rate (CFAR) of 210− . 
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Figure 4.19   SSM detection performance for a BPF-D/C channelized receiver with  
M = 20, 250 MHz channels and varying number of FFT points 
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Figure 4.20   SSM detection performance versus mixer phase for a BPF-D/C 
channelized receiver using SNR = 0 dB with varying channel bandwidth 

 

4.4.4 BPF Down-Converting Cross Spectral Matrix (CSM) Detection.  

Probability of detection (PD) results are shown in Fig. 4.21 for a BPF-D/C ChRx with 

20M = , 250 MHz channels, and two different number of FFT points ( fftN ) used to form 

the CSM from the corresponding SSM.  The initial mixer phase value is held constant at 

0 degrees for these results.  As shown, detection performance improves slightly with an 

increase in fftN  values.  This conclusion is supported by results in Fig. 4.21 and 

additional CSM BPF-D/C ChRx results presented in Appendix A. 

Detection performance response due to variation in the initial down-conversion 

mixer phase value is considered next.  As in [8, 19], the initial phase values of all mixers 

are set equal at the start of the observation interval and subsequently varied to generate 

results in Fig. 4.22.  The signal-to-noise ratio (SNR) is held constant at 0 SNR dB=  for 

these results, and the number of FFT points is set at 512fftN = .  Radiometric 
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performance at 0 SNR dB=  is approximately 0.9DP =  as shown in Fig. 4.21.  Data in 

Fig. 4.22 shows that D/C SSM detection performance is poorer than radiometric detection 

for all channel bandwidths considered.  The 100 MHz channel bandwidth performs much 

poorer than other channel bandwidths, as explained briefly in Section 4.4.3. 
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Figure 4.21   CSM detection performance for a BPF-D/C channelized receiver with  
M = 20, 250 MHz channels and varying number of FFT points 
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Figure 4.22   CSM detection performance versus mixer phase for a BPF-D/C 
channelized receiver using SNR = 0 dB with varying channel bandwidth 

4.5 Comparative Performance Summary – UWB Results 

The detection performance results of the down-converting (D/C) and bandpass 

filtered down-converting (BPF-D/C) channelized receivers are now compared with a 

received UWB pulse.  Parameters compared for the different detection processes (TTM, 

CTM, SSM and CSM) include: 

• Number of IFFT (Nifft) and FFT (Nfft) points used to generate data 

• Channel bandwidth selection 

• Mixer initial phase value 

4.5.1 Temporal-Temporal matrix (TTM) Processing Results 

• Nfft / Nifft variation – Performance detection results are approximately the same for 

both receivers and all values of Nifft considered. 

• Channel bandwidth – Results in Fig. 4.8 (D/C) and Fig. 4.16 (BPF-D/C) indicate 

that the 250 MHz channel bandwidth outperforms the 500 and 100 MHz channel 
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bandwidths for both receivers.  The 250 MHz channel bandwidth for the D/C 

ChRx outperforms the radiometric detector for all phase values.  In addition, the 

D/C ChRx outperforms the BPF-D/C ChRx for both the 100 and 250 MHz 

channel bandwidths. 

• Mixer initial phase values – Results in Fig. 4.8 (D/C) show that the 250 MHz 

channel bandwidth case exceeds radiometric detection performance for all initial 

phase values considered.  By contrast, results in Fig. 4.16 (BPF-D/C) show that 

the 250 MHz channel bandwidth only outperforms radiometric detection at a few 

phase values.  Depending on mixer phase, the BPF-D/C ChRx can outperform the 

D/C ChRx when employing the 500 MHz bandwidth. 

4.5 2 Cross Temporal Matrix (CTM) Processing Results 

• Nfft / Nifft variation – Performance detection results are approximately the same for 

both receivers and all values of Nifft considered. 

• Channel bandwidth – Results in Fig. 4.10 (D/C) show that both the 250 and 500 

MHz channel bandwidths outperform the 100 MHz channel bandwidth.  In Fig. 

4.18 (BPF-D/C) the 500 MHz channel bandwidth outperforms both the 250 MHz 

and 100 MHz channel bandwidths.  Overall, the D/C ChRx outperforms the BPF-

D/C ChRx for all channel bandwidths considered. 

• Mixer initial phase value – Results in Fig. 4.10 (D/C) show that both the 250 

MHz and 500 MHz channel bandwidths outperform radiometric detection across 

all initial phase values.  Results in Fig. 4.18 (BPF-D/C) show that only the 500 

MHz channel bandwidth outperforms radiometric detection for all initial phase 
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values.  Overall, the D/C ChRx outperforms the BPF-D/C ChRx over all initial 

mixer phase values. 

4.5.3 Spectral-Spectral Matrix (SSM) Processing Results 

• Nfft / Nifft variation – Performance detection results are approximately the same for 

both receivers and all values of Nfft considered. 

• Channel bandwidth – Results in Fig. 4.12 (D/C) show that the 100 MHz channel 

bandwidth outperforms the 500 MHz channel bandwidth.  Results in Fig. 4.20 

(BPF-D/C) show that both the 250 MHz and 500 MHz channel bandwidths 

outperform the 100 MHz channel bandwidth.  Overall, the BPF-D/C ChRx 

outperforms the D/C ChRx for the 500 MHz channel bandwidth and performs 

poorer than the D/C ChRx for the 100 MHz channel bandwidth. 

• Mixer initial phase value – Results in Fig. 4.12 (D/C) and Fig. 4.20 (BPF-D/C) 

show that detection performance is much poorer than radiometric detection across 

all initial phase values.  Depending on mixer phase, the BPF-D/C ChRx can 

outperform the D/C ChRx when employing the 250 MHz channel bandwidth. 

4.5.4 Cross Spectral Matrix (CSM) Processing Results 

• Nfft / Nifft variation – Performance detection results for the D/C ChRx are 

approximately the same for all values of Nfft considered.  For the BPF-D/C ChRx, 

performance detection improves slightly with an increase in Nfft. 

• Channel bandwidth – Results in Fig. 4.14 (D/C) show that both the 100 MHz and 

250 MHz channel bandwidths outperform the 500 MHz channel bandwidth.  

Results in Fig. 4.22 (BPF-D/C) show that the 250 MHz and 500 MHz channel 

bandwidths outperform the 100 MHz channel bandwidth.  Overall, the BPF-D/C 
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ChRx outperforms the D/C ChRx for the 500 MHz channel bandwidth and 

performs poorer than the D/C ChRx when employing the 100 MHz channel 

bandwidth. 

• Mixer initial phase value – Results in Fig. 4.14 and Fig. 4.22 show that detection 

performance is much poorer than radiometric detection across all initial phase 

values.  Depending on mixer phase, the BPF-D/C ChRx can outperform the D/C 

ChRx when employing the 250 MHz channel bandwidth. 

4.6 Bandpass Filtered, Down-Converting Channelized Receiver Detection 

Performance – DSSS Waveform Results 

As stated in Chapter 3, BPF-D/C ChRx detection is implemented by performing 

threshold detection on the processed channelized data matrices (TTM, CTM, SSM, and 

CSM) examined in Section 2.5.  In this section, detection results of each processed data 

matrix are set for 210FAP −=  using the received DSSS signal shown in Fig. 2.4.  These 

results are compared with probability of detection results for a radiometer. 

4.6.1 BPF Down-Converting Temporal-Temporal Matrix (TTM) Detection.  

Probability of detection (PD) results are shown in Fig. 4.23 for a BPF-D/C ChRx with 

20M = , 250 MHz channels, and a varying number of IFFT points ( ifftN ) used to form 

the TTM.  The initial mixer phase value is held constant at 0 degrees for these results.  As 

shown, detection performance remains approximately the same for all ifftN  values.  A 

limit for best performance is given in [8, 19] and supported by additional TTM BPF-D/C 
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ChRx results presented in Appendix A.  Best performance is achieved when ifftN  is 

greater than twice the number of channelized receiver channels, or 2ifftN M> . 

 Detection performance response due to variation in the initial down-conversion 

mixer phase value is considered next.  As in [8, 19], the initial phase values of all mixers 

are set equal at the start of the observation interval and subsequently varied to generate 

results in Fig. 4.24.  The signal-to-noise ratio (SNR) is held constant at 0 SNR dB=  for 

these results, and the number of IFFT points is set at 64ifftN = .  Radiometric 

performance at 0 SNR dB=  is approximately 0.9DP =  as shown in Fig. 4.23.  Data in 

Fig. 4.24 show that detection using TTM is much poorer than with a radiometer.  

Detection performance varies most widely when implementing 250 MHz channel 

bandwidths, and varies minimally with 100 MHz channels.  

 

-10 -5 0 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SNR (dB)

P D

 

 

Nifft = 64

Nifft = 128

Nifft = 256

Radiometer

 

Figure 4.23   DSSS waveform:  TTM detection performance for a BPF-D/C    
channelized receiver with M = 20, 250 MHz channels and varying number of IFFT points 
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Figure 4.24   DSSS waveform:  TTM detection performance versus mixer phase for a  
BPF-D/C channelized receiver using SNR = 0 dB with varying channel bandwidth 

 

4.6.2 BPF Down-Converting Cross Temporal Matrix (CTM) Detection.  

Probability of detection (PD) results are shown in Fig. 4.25 for a BPF-D/C ChRx with 

20M = , 250 MHz channels, and  a varying number of IFFT points ( ifftN ) used to form 

the CTM from the corresponding TTM.  The initial mixer phase value is held constant at 

0 degrees for these results.  As shown, detection performance remains approximately the 

same for all ifftN  values.  A limit for best performance is given in [8, 19] and supported 

by additional CTM BPF-D/C ChRx results presented in Appendix A. Best performance is 

achieved when ifftN  is greater than twice the number of channelized receiver channels, or 

2ifftN M> . 

Detection performance response due to variation in the initial down-conversion 

mixer phase value is considered next.  As in [8, 19], the initial phase values of all mixers 

are set equal at the start of the observation interval and subsequently varied to generate 
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results in Fig. 4.26.  The signal-to-noise ratio (SNR) is held constant at 0 SNR dB=  for 

these results and the number of IFFT points was set at 64ifftN = .  For the same SNR, 

radiometric performance is approximately 0.9DP =  as shown in Fig. 4.25.  Data in Fig. 

4.26 show that detection using CTM is poorer than with a radiometer.  Detection 

performance varies widely in the CTM, with most variation occurring when 

implementing 250 MHz channel bandwidths.  Of the three channel bandwidths 

considered, the 100 MHz channel has the least variation across initial mixer phases.  
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Figure 4.25   DSSS waveform:  CTM detection performance for a BPF-D/C  
channelized receiver with M = 20, 250 MHz channels and varying number of IFFT points 
 



 

62 

0 10 20 30 40 50 60
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Phase (Deg)

P D

 

 

500 MHz ChRx - CTM
250 MHz ChRx - CTM
100 MHz ChRx - CTM

 

Figure 4.26   DSSS waveform:  CTM detection performance versus mixer phase for a  
BPF-D/C channelized receiver using SNR = 0 dB with varying channel bandwidth 

 

4.6.3 BPF Down-Converting Spectral-Spectral Matrix (SSM) Detection.  

Probability of detection (PD) results are shown in Fig. 4.19 for a BPF-D/C ChRx with 

20M = , 250 MHz channels, and two different number of FFT points ( fftN ) used to form 

the SSM.  The initial mixer phase value is held constant at 0 degrees.  As shown, 

detection performance improves slightly with an increase in fftN  values considered.  This 

conclusion is supported by results in Fig. 4.27 and additional SSM BPF-D/C ChRx 

results presented in Appendix A. 

Detection performance response due to variation in the initial down-conversion 

mixer phase value is considered next.  As in [8, 19], the initial phase values of all mixers 

are set equal at the start of the observation interval and subsequently varied to generate 

results in Fig. 4.28.  The signal-to-noise ratio (SNR) is held constant at 0 SNR dB=  and 

the number of FFT points is set at 512fftN = .  Radiometric performance at 0 SNR dB=  
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is approximately 0.9DP =  as shown in Fig. 4.27.  Data in Fig. 4.28 shows that BPF-D/C 

SSM detection performance is poorer than radiometric detection for all channel 

bandwidths.  Detection performance varies widely in SSM processing, with the most 

variation occurring in the 250 MHz channel case, followed by the 500 MHz and 100 

MHz channel bandwidths, respectively. 
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Figure 4.27   DSSS waveform:  SSM detection performance for a BPF-D/C 
channelized receiver with M = 20, 250 MHz channels and varying number of FFT points 
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Figure 4.28   DSSS waveform:  SSM detection performance versus mixer phase for a  
BPF-D/C channelized receiver using SNR = 0 dB with varying channel bandwidth 

 

4.6.4 BPF Down-Converting Cross Spectral Matrix (CSM) Detection.  

Probability of detection (PD) results are shown in Fig. 4.29 for a BPF-D/C ChRx with 

20M = , 250 MHz channels, and two different number of FFT points ( fftN ) used to form 

the CSM from the corresponding SSM.  The initial mixer phase value is held constant at 

0 degrees for these results.  As shown, detection performance improves slightly with an 

increase in fftN .  Other results for the 100 MHz and 500 MHz channel bandwidth cases 

are presented in Appendix A and show that detection performance remains approximately 

the same for both fftN values. 

 Detection performance response due to variation in the initial down-conversion 

mixer phase value is considered next.  As in [8, 19], the initial phase values of all mixers 

are set equal at the start of the observation interval and subsequently varied to generate 

results in Fig. 4.30.  The signal-to-noise ratio (SNR) is held constant at 0 SNR dB=  for 
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these results, and the number of FFT points is set at 512fftN = .  Radiometric 

performance at 0 SNR dB=  is approximately 0.9DP =  as shown in Fig. 4.29.  Data in 

Fig. 4.30 show that CSM detection performance is poorer than radiometric detection for 

all channel bandwidths considered.  Detection performance varies widely in the 250 MHz 

channel bandwidth case, with minimal variation in the 100 MHz and 500 MHz channel 

bandwidth cases.  

-10 -5 0 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SNR (dB)

P D

 

 

Nfft = 512

N
fft

 = 1024

Radiometer

 

Figure 4.29  DSSS waveform:  CSM detection performance for a BPF-D/C channelized 
receiver with M = 20, 250 MHz channels and varying number of FFT points 
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Figure 4.30   DSSS waveform:  CSM detection performance versus mixer phase for a  
BPF-D/C channelized receiver using SNR = 0 dB with varying channel bandwidth 

4.7 Summary 

Filter characterization and detection performance results are provided for the 

down-converting (D/C) and bandpass filtered down-converting (BPF-D/C) channelized 

receivers presented in Chapter 2 and Chapter 3.  First, the magnitude and phase responses 

of the Butterworth filters used in the D/C and BPF-D/C ChRx architectures are examined.  

Then detection performance results using the UWB channelized matrix data (TTM, 

CTM, SSM, CSM) and techniques introduced in Chapter 2 are presented for both the D/C 

and BPF-D/C channelized receivers.  Finally, detection performance results using the 

channelized matrix data and processing techniques are presented for the BPF-D/C 

channelized receiver, where the DSSS waveform is the signal of interest.   
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V.  Conclusions and Recommendations 

5.1 Research Summary 

The majority of this research involves the introduction and analysis of bandpass 

filtered down-converting (BPF-D/C) channelized receiver techniques for the detection of 

ultra wideband (UWB) and direct sequence spread spectrum (DSSS) signals.  Detection 

techniques established in [8] and considered in this work operated on data in the 

following signal processing matrices: Temporal-Temporal Matrix (TTM), Cross 

Temporal Matrix (CTM), Spectral-Spectral Matrix (SSM), and Cross Spectral Matrix 

(CSM).  The TTM data is created by implementing an IFFT on columns of the 

M S× Channelized Data Matrix (CDM), where M is the number of channel filters and S 

is the number of time samples.  The CTM is formed by performing a correlation between 

all combinations of TTM columns.  The SSM is created by implementing an FFT on the 

rows of the CDM.  Finally, the CSM is formed by performing a correlation between all 

combinations of SSM columns.  Threshold detection is performed using each signal 

processing matrix.  Probability of detection ( DP ) results are generated for the following 

varying parameters: received SNR, number of IFFT/FFT points used to form the signal 

processing matrices, receiver channel bandwidth, and initial phase values of down-

conversion mixers.  

Two other non-cooperative detection receivers, the down-converting (D/C) 

channelized and the radiometer, are included to permit comparative performance 

analysis.  The performance of the radiometer and D/C channelized receiver are 

representative of what can be achieved using non-cooperative techniques. 
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5.2 Research Conclusions 

5.2.1 BPF-D/C Channelized Receiver Performance – UWB Results.  

Detection performance of the BPF-D/C ChRx is compared with that of radiometric and 

D/C ChRx receiver architectures.  Detection performance of the BPF-D/C ChRx using 

any of the channelized receiver processing techniques is dependent on the initial phase of 

the down-conversion mixer.   

For detection using the TTM, detection performance for the 250 MHz channels 

outperforms radiometric detection at a few phase values considered.  Depending on mixer 

phase, the BPF-D/C ChRx can outperform the D/C ChRx when employing the 500 MHz 

bandwidth.  Detection performance for the CTM generated using 500 MHz channels 

surpassed radiometric detection for all initial mixer phase values.  Detection performance 

using the SSM is much poorer than radiometric detection across all initial phase values.  

Depending on initial mixer phase value, the BPF-D/C ChRx outperforms the D/C ChRx 

when employing the 500 MHz channel bandwidth.  The CSM detection performance is 

much poorer than radiometric detection across all initial phase values.  Depending on 

mixer phase, the BPF-D/C ChRx outperforms the D/C ChRx when employing the 500 

MHz channel bandwidth. 

Worst case UWB detection results are obtained using the spectrally-based SSM 

and CSM processing methods, consistent with UWB processing results in [2, 8, 19].  

Since UWB pulses are inherently ‘featureless’ in the spectral domain over a large 

bandwidth, temporal processing techniques seem to be most promising.    

5.2.2 BPF-D/C Channelized Receiver Performance – DSSS Waveform 

Results.  The BPF-D/C ChRx detection performance is compared with radiometric 
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performance.  Detection performance of the down-converting channelized receiver using 

any of the channelized receiver processing techniques is dependent on the initial phase of 

the down-conversion mixer. 

Using the TTM, detection performance varies most widely when implementing 

250 MHz channel bandwidths and varies minimally with 100 MHz channels.  Detection 

performance using TTM is much poorer than with a radiometer across all initial mixer 

phase values.  Detection performance using the CTM is poorer than radiometric detection 

for all initial mixer phase values.  Detection performance varies widely in the CTM, with 

most variation occurring when implementing 250 MHz channel bandwidths and the least 

when implementing the 100 MHz channel.  For detection using the SSM, detection 

performance variation varies widely, with the most variation occurring in the 250 MHz 

channel case, followed by the 500 MHz and 100 MHz channel bandwidths, respectively.  

Detection performance is poorer with the SSM than in radiometric detection for all initial 

mixer phase values.  Using the CSM, detection performance varies widely in the 250 

MHz channel bandwidth case, with minimal variation in the 100 MHz and 500 MHz 

channel bandwidth cases.  Detection performance is poorer in the CSM than in 

radiometric detection for all initial mixer phase values. 

Worst case DSSS detection results are obtained using the TTM processing 

method.  Spectral processing techniques seem to be promising, since spectral variation of 

the DSSS waveform may be distinguishable.  Correlation between columns of the TTM 

and SSM data matrices (CTM and CSM) also seem to be promising. 
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Table 1 shows the performance of the D/C ChRx (labeled as D/C) and the BPF-

D/C ChRx (labeled as BPF) for each processing technique, both UWB and DSSS signals, 

and several initial mixer phase values.  The D/C ChRx and BPF-D/C ChRx results are 

compared with the radiometer for SNR = 0 dB.  Green values indicate the ChRx 

outperforming radiometric detection and red values indicate ChRx detection performance 

poorer than the radiometer. 

    

Table 1.     Probability of detection of channelized receivers using 250 MHz channel 
bandwidths compared to radiometric detection operating at PFA = 10-2 and PD = 0.9 

(Green = Better, Red = Poorer) 
  θLO = 0 º θLO = 10 º θLO = 20 º θLO = 30º 

  UWB DSSS UWB DSSS UWB DSSS UWB DSSS 

D/C 0.94 N/A 0.94 N/A 0.95 N/A 0.94 N/A 
TTM 

BPF 0.91 0.09 0.87 0.17 0.90 0.32 0.91 0.07 

D/C 0.96 N/A 0.97 N/A 0.98 N/A 0.94 N/A 
CTM 

BPF 0.76 0.32 0.80 0.78 0.80 0.83 0.78 0.30 

D/C 0.23 N/A 0.25 N/A 0.34 N/A 0.17 N/A 
SSM 

BPF 0.20 0.13 0.30 0.46 0.33 0.75 0.19 0.11 

D/C 0.78 N/A 0.72 N/A 0.83 N/A 0.78 N/A 
CSM 

BPF 0.73 0.26 0.72 0.37 0.75 0.85 0.70 0.16 
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5.3 Recommendations for Future Research 

5.3.1 Detection Performance in Spectrally Coexistent Scenarios.  This research 

only considers either a single UWB pulse or DSSS waveform with or without additive 

white Gaussian noise.  As addressed in [2, 19], real-world environments can contain 

many different signals using different modulation configurations.  The down-converting 

channelized receiver processing techniques presented here could be analyzed in spectrally 

coexistent scenarios, which could prove to be especially significant as communication 

technology migrates toward 4G (4th generation) deployment.    

5.3.2 Channel Assessment and Pattern Recognition.  In some cases, it may be 

advantageous to perform channel assessment, i.e., identification of type and nature of 

signals present in an environment.  Visual inspection of the processing data matrices 

(TTM, CTM, SSM and CSM) suggests the possibility of using pattern recognition 

techniques along with the BPF-D/C channelized receiver processing techniques presented 

here to make this determination. 
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Appendix A. 

A1. BPF-D/C Channelized Receiver Filter Response 

 A1.1 Noise Response 
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Figure A.1     Received noise realization 
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Figure A.2     Received noise realization PSD 
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Figure A.3     Received noise realization filtered by HRF 
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Figure A.4     Received noise realization PSD filtered by HRF 
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Figure A.5     Received noise realization filtered by a 250 MHz BPF 
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Figure A.6     Received noise realization PSD filtered by a 250 MHz BPF 
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Figure A.7     Down-converted received noise realization 
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Figure A.8     Down-converted received noise realization PSD 
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Figure A.9     Noise power deviation over all initial mixer phase values 
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A1.2 UWB Response 
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A.10   Received UWB pulse filtered by HRF 
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A.11   Received UWB PSD filtered by HRF 
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A.12   Received UWB pulse filtered by a 250 MHz BPF 
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A.13   Received UWB PSD filtered by a 250 MHz BPF 
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A.14   Down-converted received UWB pulse 
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A.15   Down-converted received UWB PSD 
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A.16   UWB power deviation over all initial mixer phase values 
 

 

A.17   PSD comparison of HRF and BPF1-M for UWB using 1 GHz channels 
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A1.3 DSSS Response 
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A.18   Received DSSS waveform filtered by HRF 
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A.19   Received DSSS PSD filtered by HRF 
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A.20   Received DSSS waveform filtered by a 250 MHz BPF 
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A.21   Received DSSS PSD filtered by a 250 MHz BPF 
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A.22   Down-converted received DSSS waveform 
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A.23   Down-converted received DSSS PSD 
 



 

84 

 

A.24   PSD comparison of HRF and BPF1-M for DSSS using 1 GHz channels 
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A2.  BPF-D/C Channelized Receiver Performance – UWB Results 
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A.25   TTM detection performance for a BPF-D/C channelized receiver with 
M = 50, 100 MHz channels and varying number of IFFT points 
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A.26   TTM detection performance for a BPF-D/C channelized receiver with 
M = 10, 500 MHz channels and varying number of IFFT points 
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A.27   CTM detection performance for a BPF-D/C channelized receiver with 
M = 50, 100 MHz channels and varying number of IFFT points 
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A.28   CTM detection performance for a BPF-D/C channelized receiver with 
M = 10, 500 MHz channels and varying number of IFFT points 
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A.29   SSM detection performance for a BPF-D/C channelized receiver with 
M = 50, 100 MHz channels and varying number of FFT points 

 

-10 -5 0 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SNR (dB)

P D

 

 

Nfft = 512

Nfft = 1024

Radiometer

 

A.30   SSM detection performance for a BPF-D/C channelized receiver with  
M = 10, 500 MHz channels and varying number of FFT points 
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A.31   CSM detection performance for a BPF-D/C channelized receiver with 
M = 50, 100 MHz channels and varying number of FFT points 
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A.32   CSM detection performance for a BPF-D/C channelized receiver with  
M = 10, 500 MHz channels and varying number of FFT points 
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A3.  BPF-D/C Channelized Receiver Performance – DSSS Waveform Results 
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A.33   TTM detection performance for a BPF-D/C channelized receiver with 
M = 50, 100MHz channels and varying number of IFFT points 
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A.34   TTM detection performance for a BPF-D/C channelized receiver with 
M = 10, 500MHz channels and varying number of IFFT points 
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A.35   CTM detection performance for a BPF-D/C channelized receiver with 
M = 50, 100MHz channels and varying number of IFFT points 
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A.36   CTM detection performance for a BPF-D/C channelized receiver with 
M = 10, 500MHz channels and varying number of IFFT points 
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A.37   SSM detection performance for a BPF-D/C channelized receiver with 
M = 50, 100MHz channels and varying number of FFT points 
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A.38   SSM detection performance for a BPF-D/C channelized receiver with 
M = 10, 500MHz channels and varying number of FFT points 
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A.39   CSM detection performance for a BPF-D/C channelized receiver with 
M = 50, 100MHz channels and varying number of FFT points 
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A.40   CSM detection performance for a BPF-D/C channelized receiver with 
M = 10, 500MHz channels and varying number of IFFT points 
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A.41   TTM detection performance versus mixer phase for a BPF-D/C channelized 
receiver using SNR = 0 dB and 100 MHz channels 
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A.42   TTM detection performance versus mixer phase for a BPF-D/C channelized 
receiver using SNR = 0 dB and 250 MHz channels 

 



 

94 

0 50 100 150 200 250 300 350
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Phase (deg)

P D

 

 

500 MHz ChRx - TTM

 

A.43   TTM detection performance versus mixer phase for a BPF-D/C channelized 
receiver using SNR = 0 dB and 500 MHz channels 
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A.44   CTM detection performance versus mixer phase for a BPF-D/C channelized 
receiver using SNR = 0 dB and 100 MHz channels 
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A.45   CTM detection performance versus mixer phase for a BPF-D/C channelized 
receiver using SNR = 0 dB and 250 MHz channels 
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A.46   CTM detection performance versus mixer phase for a BPF-D/C channelized 
Rreceiver using SNR = 0 dB and 500 MHz channels 
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A.47   SSM detection performance versus mixer phase for a BPF-D/C channelized 
receiver using SNR = 0 dB and 100 MHz channels 

 

0 50 100 150 200 250 300 350
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Phase (deg)

P D

 

 

250 MHz ChRx - SSM

 

A.48   SSM detection performance versus mixer phase for a BPF-D/C channelized 
receiver using SNR = 0 dB and 250 MHz channels 
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A.49   SSM detection performance versus mixer phase for a BPF-D/C channelized 
receiver using SNR = 0 dB and 500 MHz channels 
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A.50   CSM detection performance versus mixer phase for a BPF-D/C channelized 
receiver using SNR = 0 dB and 100 MHz channels 
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A.51   CSM detection performance versus mixer phase for a BPF-D/C channelized 
receiver using SNR = 0 dB and 250 MHz channels 
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A.52   CSM detection performance versus mixer phase for a BPF-D/C channelized 
receiver using SNR = 0 dB and 500 MHz channels 
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A.53   TTM detection performance for a BPF-D/C channelized receiver with 
M = 20, 250MHz channels (initial mixer phase at 18º) 
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A.54   TTM detection performance for a BPF-D/C channelized receiver with 
M = 10, 500MHz channels (initial mixer phase at 18º) 
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A.55   CTM detection performance for a BPF-D/C channelized receiver with 
M = 20, 250MHz channels (initial mixer phase at 16º) 
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A.56   CTM detection performance for a BPF-D/C channelized receiver with 
M = 10, 500MHz channels (initial mixer phase at 16º) 
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A.57   SSM detection performance for a BPF-D/C channelized receiver with 
M = 20, 250MHz channels (initial mixer phase at 16º) 
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A.58   SSM detection performance for a BPF-D/C channelized receiver with 
M = 10, 500MHz channels (initial mixer phase at 16º) 
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A.59   CSM detection performance for a BPF-D/C channelized receiver with 
M = 20, 250MHz channels (initial mixer phase at 18º) 
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A.60   CSM detection performance for a BPF-D/C channelized receiver with 
M = 10, 500MHz channels (initial mixer phase at 18º) 
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Appendix B.  MATLAB Code 

B1. D/C ChRx – Nfft and Nifft 

% Brett D. Gronholz 
% EENG 799 -- Summer/Fall 2004 
% 
% Updated and modified by: 
% Willie H. Mims 
% EENG 799 -- Fall 2005/Winter 2006 
% 
% UWB Detection Probability (Pd) - D/C ChRx 
%   -- Varying Points in (I)FFT and SNR 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
clear all, close all, clc, format compact 
tic 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Simulation Parameters 
%%%%%%%%%%%%%%%%%%%%%%%%%%% 
Wrf = [250e6];              % channel bandwidth to simulate 
Nz = [200];                 % zero-padding length for 'Wrf' 
fl = 2.5e9;                 % lower ChRx frequency 
fh = 7.5e9;                 % upper ChRx frequency 
dc = 1;                     % downconvert? (1=yes,0=no) 
ph = 0;                     % DC mixer starting phase 
meth = 1;                   % processing method (1=TTM,2=SSM,3=CTM,4=CSM) 
Nfft = [64,128,256];        % FFT lengths to simulate (TTM/CTM) 
%Nfft = [512,1024,2048];    % FFT lengths to simulate (SSM/CSM) 
SNR = [-10:1:5];            % SNR to simulate 
Pfa = 10^-2;                % probability of false alarm 
R = 10/Pfa;                 % number of realizations 
  
  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% UWB Signal Parameters 
%%%%%%%%%%%%%%%%%%%%%%%%%%% 
fc = 5e9;       % center frequency 
Tw = 2/fc;      % pulse duration 
Ts = 2*Tw;      % symbol duration 
To = Ts/2;      % symbol repetition interval 
delt = 0.01e-9; % time resolution 
fs = 1/delt;    % sample frequency 
Ns = 1;         % number of symbols 
P = 1;          % signal power 
jtr = 0;        % jitter as percentage of Ts 
method = 'uni'; % UWB modulation method 
dly = 0;        % first pulse delay 
  
%%%%%%%%%%%%%%%%%%%%%% 
% Generate Signals 
%%%%%%%%%%%%%%%%%%%%%% 
x = uwb(Tw,To,delt,Ns,P,jtr,method,dly);    % UWB signal 
x = [zeros(1,240) x zeros(1,240)];          % add zeros 
Px = sum(x.^2)/length(x);                   % power in UWB signal 
t = [0:delt:(length(x)*delt-delt)];         % time vector (length of 'x') 
n1 = randn(1,length(x).*R);                 % matrix 'R' Noise realizations 
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for i = 1:R, 
    n(i,:) = n1((length(x).*(i-1))+1:length(x).*i); 
end 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Filter Input Signals (Hrf) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
N = 4;              % order of Hrf BPF 
NzRF = 200;         % one-sided zero padding length 
[b,a] = butter(N,[fl/(fs/2) fh/(fs/2)]);% Hrf filter coeffs 
  
xf = [zeros(1,NzRF) x zeros(1,NzRF)];   % zero-pad 
xf = real(filtfilt(b,a,xf));            % filter 
xf = xf(NzRF+1:end-NzRF);               % remove zeros 
Pxf = sum(xf.^2)/length(xf);            % power in filtered UWB signal 
  
nt = [zeros(R,NzRF) n zeros(R,NzRF)];   % zero-pad 
for i = 1:R, 
    nt(i,:) = filtfilt(b,a,nt(i,:));    % filter 
    nf(i,:) = nt(i,NzRF+1:end-NzRF);    % remove zeros 
end 
nf = nf/sqrt(var(nf(:)'));              % normalize filtered noise power 
  
%%%%%%%%%%%%%%%%% 
% ChRx Inputs 
%%%%%%%%%%%%%%%%% 
s_in = xf;      % input signal 
n_in = nf;      % input noise 
Ps_in = sum(s_in.^2)/length(s_in);  % power in input signal 
  
for c = 1:length(Nfft),                                           % Nfft loop 
     
    %%%%%%%%%%%%%%%%%%%%%%%%%% 
    % Channelized Receiver 
    %%%%%%%%%%%%%%%%%%%%%%%%%% 
    w = waitbar(0);             % create progress bar 
    for q = 1:length(SNR),      % SNR loop 
        nse = sqrt(Ps_in/10^(SNR(q)/10))*n_in;  % filtered noise matrix at  

% required SNR 
        for k = 1:R,            % realizations loop 
            waitbar(q/length(SNR),w,['ChRx Progress - ',num2str(c),'/'... 
                ,num2str(length(Nfft)),'; ',num2str(q),'/'... 
                ,num2str(length(SNR)),'; ',num2str(k),'/',num2str(R)]); 
            inpn = nse(k,:);                    % input N 
            inps = s_in;                        % input S 
            inpsn = s_in + nse(k,:);             % input S+N 
            outn = chrx(inpn,fs,Wrf,fl,fh,Nz,dc,ph); % output N 
            outs = chrx(inps,fs,Wrf,fl,fh,Nz,dc,ph); % output S 
            outsn = chrx(inpsn,fs,Wrf,fl,fh,Nz,dc,ph); % output S+N 
                                                  % 1 of 4 'detection' methods 
            if meth == 1, 
                outxn = ifftshift(ifft(outn,Nfft(c),1),1);% Temp-Temp Matrix, N 
                outxs = ifftshift(ifft(outs,Nfft(c),1),1);% Temp-Temp Matrix, S 
                outxsn = ifftshift(ifft(outsn,Nfft(c),1),1);  % Temp-Temp  

% Matrix, S+N 
            elseif meth == 2, 
                outxn = fftshift(fft(flipud(outn),Nfft(c),2),2);   % Spec-Spec  

%Matrix, N 
                outxs = fftshift(fft(flipud(outs),Nfft(c),2),2);  % Spec-Spec  

% Matrix, S 
                outxsn = fftshift(fft(flipud(outsn),Nfft(c),2),2);   % Spec- 
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% Spec Matrix, S+N 
            elseif meth == 3, 
                outxn = ctm(outn,Nfft(c),1,0); % Cross-Temporal Matrix, N 
                outxs = ctm(outs,Nfft(c),1,0);  % Cross-Temporal Matrix, S 
                outxsn = ctm(outsn,Nfft(c),1,0); % Cross-Temporal Matrix, S+N 
            elseif meth == 4, 
                outxn = fftshift(csm(outn,Nfft(c),1,0)); % Cross-Spectral  

% Matrix, N 
                outxs = fftshift(csm(outs,Nfft(c),1,0));  % Cross-Spectral  

% Matrix, S 
                outxsn = fftshift(csm(outsn,Nfft(c),1,0)); % Cross-Spectral  

% Matrix, S+N 
            else 
                error('Invalid value (meth)') 
            end 
            Zn(k) = max(abs(outxn(:)));      % max 'outxn' test statistic 
            Z(k) = max(abs(outxsn(:)));      % max 'outxsn' test statistic 
        end                                 % next k...next noise realization 
        Zs = fliplr(sort(Zn));              % sort 'outxn' test statistics 
        T = Zs(floor(Pfa*R)+1);             % find/set threshold 
        Pd(c,q) = length(find(Z > T))/R;    % probability of detection 
    end                                                    % next q...SNR value 
    close(w)  
     
end                                                             % next c...Nfft 
point 
  
%save CTM_Nfft       % save all data from workspace 
  
toc 
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B2. BPF-D/C ChRx – Nfft and Nifft 

% Brett D. Gronholz 
% EENG 799 -- Summer/Fall 2004 
% 
% Updated and modified by: 
% Willie H. Mims 
% EENG 799 -- Fall 2005/Winter 2006 
% 
% UWB Detection Probability (Pd) - BPF-D/C ChRx 
%   -- Varying Points in (I)FFT and SNR 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
clear; clc; close all hidden; 
load 31GoldParams   % Coding parameters for DS-SS 
tic 
  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Simulation Parameters 
%%%%%%%%%%%%%%%%%%%%%%%%%%% 
Wrf = [100e6];              % Channel bandwidth to simulate 
Nz = [200];                 % Zero-padding length for 'Wrf' 
fl = 2.5e9;                 % Lower ChRx frequency 
fh = 7.5e9;                 % Upper ChRx frequency 
ph = 0;                     % DC mixer starting phase 
meth = 4;                   % Processing method (1=TTM,2=SSM,3=CTM,4=CSM) 
Nfft = [64,128,256];        % FFT lengths to simulate (TTM/CTM) 
%Nfft = [512,1024];         % FFT lengths to simulate (SSM/CSM) 
SNR = [-10:1:5];            % SNR to simulate 
Pfa = 10^-2;                % Probability of false alarm 
R = 10/Pfa;                 % Number of realizations 
  
  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% UWB Signal Parameters 
%%%%%%%%%%%%%%%%%%%%%%%%%%% 
fc = 5e9;               % Center frequency 
Tw = 2/fc;              % Pulse duration 
Ts = 2*Tw;              % Symbol duration 
To = Ts/2;              % Symbol repetition interval 
delt = 0.01e-9;         % Time resolution 
fs = 1/delt;            % Sample frequency 
Ns = 1;                 % Number of symbols 
P = 1;                  % Signal power 
jtr = 0;                % Jitter as percentage of Ts 
method = 'uni';         % UWB modulation method 
dly = 0;                % First pulse delay 
  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% DS-SS Signal Parameters 
%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
fnot = 5e9;             % Center frequency (adjusted to 'snapshot' 5GHz) 
delt = 0.01e-9;         % Time resolution 
fsamp = 1/delt;         % Sampling frequency 
rsym = 12500;           % Symbol rate 
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tsym = 1/rsym;          % Symbol period 
rchip = rsym*31;        % Chip rate (adjusted to 'snapshot' 1GHz rate) 
  
K = [1];                % K = 1 user case 
rbits = 25;              
nplus = 0;              % No noise parameter in subfunction 
  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Generate Signals : UWB and DS-SS 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% UWB %% 
x = uwb(Tw,To,delt,Ns,P,jtr,method,dly);    % UWB signal 
x = [zeros(1,240) x zeros(1,240)];          % Add zeros 
Px = sum(x.^2)/length(x);                   % Power in UWB signal 
  
%% DS-SS %% 
c_wave(1,:) = FastSprdMod(GoldMatrix,3,nsamp,size(GoldMatrix,2),rbits); 
[bitsin(1,:) sigvec(1,:) timvec(1,:)] = Fast_Bpsk_ModPrj2(datsel,indata,... 
    rbits,ndelay,fnot,esym,nsamp,nplus,tsym); 
TSW(1,:) =  c_wave.*sigvec;                 % Full vector over time 
y(1,:) =    TSW(1,[1:length(x)]);           % Observation 'snapshot' 
  
%% Noise %% 
n1 = randn(1,length(x).*R);                 % Matrix 'R' noise realizations 
for i = 1:R, 
    n(i,:) = n1((length(x).*(i-1))+1:length(x).*i); 
end 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Filter Input Signals (Hrf) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
N = 4;                                  % Order of Hrf BPF 
NzRF = 200;                             % One-sided zero padding length 
[b,a] = butter(N,[fl/(fs/2) fh/(fs/2)]);% Hrf filter coeffs 
  
xf = [zeros(1,NzRF) x zeros(1,NzRF)];   % Zero-pad 
xf = real(filtfilt(b,a,xf));            % Filter 
xf = xf(NzRF+1:end-NzRF);               % Remove zeros 
Pxf = sum(xf.^2)/length(xf);            % Power in filtered UWB signal 
  
yf = [zeros(1,NzRF) y zeros(1,NzRF)];   % Zero-pad 
yf = real(filtfilt(b,a,yf));            % Filter 
yf = yf(NzRF+1:end-NzRF);               % Remove zeros 
yf = sqrt(Pxf/var(yf))*yf;              % Scale (power equal to 'Pxf') 
  
np = [zeros(R,NzRF) n zeros(R,NzRF)];   % Zero-pad 
for i = 1:R, 
    np1(i,:) = filtfilt(b,a,np(i,:));   % Filter 
    nf(i,:) = np1(i,NzRF+1:end-NzRF);   % Remove zeros 
end 
nf = nf/sqrt(var(nf(:)'));              % Normalize filtered noise power 
  
  
%%%%%%%%%%%%%%%%% 
% ChRx Inputs 
%%%%%%%%%%%%%%%%% 
s_in = xf;                              % Input signal (UWB or DS-SS) 
n_in = nf;                              % Input noise 
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Ps_in = sum(s_in.^2)/length(s_in);      % Power in input signal 
  
figure(1), hold on, grid 
  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Radiometric Detection 
%%%%%%%%%%%%%%%%%%%%%%%%%%% 
w = waitbar(0);                         % Create progress bar 
for i = 1:length(SNR),                  % SNR loop 
    waitbar(i/length(SNR),w,['Radiometer Progress - ',... 
        num2str(i),'/',num2str(length(SNR))]); 
    nser = sqrt(Ps_in/10^(SNR(i)/10))*n_in; % Noise at required SNR 
    Znr = sum(nser.^2,2);                   % Noise test statistic 
    Zsr = flipud(sort(Znr));                % Sort Zn (descending) 
    Tr = Zsr(floor(Pfa*R)+1);               % Find/set threshold  
    for k = 1:R, 
        Zr(k) = sum((s_in+nser(k,:)).^2);   % S+N test statistics 
    end 
    Pdr(i) = length(find(Zr > Tr))/R;       % Probability of detection 
end 
close(w) 
  
  
for c = 1:length(Nfft),                                            % Nfft loop 
     
    %%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    % Channelized Receiver II 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    w = waitbar(0);             % Create progress bar 
    for q = 1:length(SNR),                                        % SNR loop 
        nse = sqrt(Ps_in/10^(SNR(q)/10))*n_in;  % Filtered noise matrix at 
required SNR 
        for k = 1:R,                                       % Realizations loop 
            waitbar(q/length(SNR),w,['ChRx Progress - ',... 
                num2str(q),'/',num2str(length(SNR)),'; ',... 
                num2str(k),'/',num2str(R),'; ',num2str(c),'/',... 
                num2str(length(Nfft))]); 
            inpn = nse(k,:);                            % Input N 
            inps = s_in;                                % Input S 
            inpsn = s_in + nse(k,:);                    % Input S+N 
             
            %%%%%%%%%%%%%%%%%% 
            % Forming CDM RF  
            %%%%%%%%%%%%%%%%%% 
            CDM_RFn = chrx_RF(inpn,fs,Wrf,fl,fh,Nz); % Output N 
            CDM_RFs = chrx_RF(inps,fs,Wrf,fl,fh,Nz); % Output S 
            CDM_RFsn = chrx_RF(inpsn,fs,Wrf,fl,fh,Nz); % Output S+N 
             
            %%%%%%%%%%%%%%%%%% 
            % Forming CDM BB 
            %%%%%%%%%%%%%%%%%% 
            CDM_BBn = chrx_BB(CDM_RFn,fs,Wrf,fl,fh,Nz,ph);  % Output N 
            CDM_BBs = chrx_BB(CDM_RFs,fs,Wrf,fl,fh,Nz,ph);  % Output S 
            CDM_BBsn = chrx_BB(CDM_RFsn,fs,Wrf,fl,fh,Nz,ph); % Output S+N 
  
 
            %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
            % Processing Techniques (with appropriate shifting) 
            %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%             
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            if meth == 1, 
                outxn = ifftshift(ifft(CDM_BBn,Nfft(c),1),1);      % Temp-Temp  

% Matrix, N 
                outxs = ifftshift(ifft(CDM_BBs,Nfft(c),1),1);      % Temp-Temp  

% Matrix, S 
                outxsn = ifftshift(ifft(CDM_BBsn,Nfft(c),1),1);    % Temp-Temp  

% Matrix, S+N 
            elseif meth == 2, 
                outxn = fftshift(fft(flipud(CDM_BBn),Nfft(c),2),2);    % Spec- 

% Spec Matrix, N 
                outxs = fftshift(fft(flipud(CDM_BBs),Nfft(c),2),2);    % Spec- 

% Spec Matrix, S 
                outxsn = fftshift(fft(flipud(CDM_BBsn),Nfft(c),2),2);  % Spec- 

% Spec Matrix, S+N 
            elseif meth == 3, 
                outxn = ctm(CDM_BBn,Nfft(c),1,0);              % Cross-Temporal  

% Matrix, N 
                outxs = ctm(CDM_BBs,Nfft(c),1,0);              % Cross-Temporal  

% Matrix, S 
                outxsn = ctm(CDM_BBsn,Nfft(c),1,0);            % Cross-Temporal  

% Matrix, S+N 
            elseif meth == 4, 
                outxn = fftshift(csm(CDM_BBn,Nfft(c),1,0));    % Cross-Spectral  

% Matrix, N 
                outxs = fftshift(csm(CDM_BBs,Nfft(c),1,0));    % Cross-Spectral  

% Matrix, S 
                outxsn = fftshift(csm(CDM_BBsn,Nfft(c),1,0));  % Cross-Spectral  

% Matrix, S+N 
            else 
                error('Invalid value (meth)') 
            end    
             
            Zn(k) = max(abs(outxn(:)));      % Max 'outxn' test statistic 
            Z(k) = max(abs(outxsn(:)));      % Max 'outxsn' test statistic 
        end                                                    % Next k...next 
noise realization 
        Zs = fliplr(sort(Zn));              % Sort 'outxn' test statistics 
        T = Zs(floor(Pfa*R)+1);             % Find/set threshold 
        Pd(c,q) = length(find(Z > T))/R;    % Probability of detection 
    end                                                    % Next q...SNR value 
    close(w) 
end                                                      % Next c...Nfft point 
  
%save ChRx_Nfft       % save all data from workspace 
  
toc 
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B3. BPF-D/C ChRx – Initial Phase 

% Brett D. Gronholz 
% EENG 799 -- Summer/Fall 2004 
% 
% Updated and modified by: 
% Willie H. Mims 
% EENG 799 -- Fall 2005/Winter 2006 
% 
% UWB Detection Probability (Pd) - BPF-D/C ChRx 
%   -- Varying Initial Mixer Phase 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
clear; clc; close all hidden; 
load 31GoldParams   % Coding parameters for DSSS 
tic 
  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Simulation Parameters 
%%%%%%%%%%%%%%%%%%%%%%%%%%% 
Wrf = [250e6];              % Channel bandwidth to simulate 
Nz = [200];                 % Zero-padding length for 'Wrf' 
fl = 2.5e9;                 % Lower ChRx frequency 
fh = 7.5e9;                 % Upper ChRx frequency 
ph = [0:2:60];              % DC mixer starting phase to simulate 
meth = 1;                   % Processing method (1=TTM,2=SSM,3=CTM,4=CSM) 
Nfft = [64,128,256];        % FFT lengths to simulate (TTM/CTM) 
%Nfft = [512,1024];         % FFT lengths to simulate (SSM/CSM) 
SNR = [-10:1:5];            % SNR to simulate 
Pfa = 10^-2;                % Probability of false alarm 
R = 10/Pfa;                 % Number of realizations 
  
  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% UWB Signal Parameters 
%%%%%%%%%%%%%%%%%%%%%%%%%%% 
fc = 5e9;               % Center frequency 
Tw = 2/fc;              % Pulse duration 
Ts = 2*Tw;              % Symbol duration 
To = Ts/2;              % Symbol repetition interval 
delt = 0.01e-9;         % Time resolution 
fs = 1/delt;            % Sample frequency 
Ns = 1;                 % Number of symbols 
P = 1;                  % Signal power 
jtr = 0;                % Jitter as percentage of Ts 
method = 'uni';         % UWB modulation method 
dly = 0;                % First pulse delay 
  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% DS-SS Signal Parameters 
%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
fnot = 5e9;             % Center frequency (adjusted to 'snapshot' 5GHz) 
delt = 0.01e-9;         % Time resolution 
fsamp = 1/delt;         % Sampling frequency 
rsym = 12500;           % Symbol rate 
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tsym = 1/rsym;          % Symbol period 
rchip = rsym*31;        % Chip rate (adjusted to 'snapshot' 1GHz rate) 
  
K = [1];                % K = 1 user case 
rbits = 25; 
nplus = 0;              % No noise parameter in subfunction 
  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Generate Signals : UWB and DS-SS 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% UWB %% 
x = uwb(Tw,To,delt,Ns,P,jtr,method,dly);    % UWB signal 
x = [zeros(1,240) x zeros(1,240)];          % Add zeros 
Px = sum(x.^2)/length(x);                   % Power in UWB signal 
  
%% DS-SS %% 
c_wave(1,:) = FastSprdMod(GoldMatrix,3,nsamp,size(GoldMatrix,2),rbits); 
[bitsin(1,:) sigvec(1,:) timvec(1,:)] = Fast_Bpsk_ModPrj2(datsel,indata,... 
    rbits,ndelay,fnot,esym,nsamp,nplus,tsym); 
TSW(1,:) =  c_wave.*sigvec;                 % Full vector over time 
y(1,:) =    TSW(1,[1:length(x)]);           % Observation 'snapshot' 
  
%% Noise %% 
n1 = randn(1,length(x).*R);                 % Matrix 'R' Noise realizations 
for i = 1:R, 
    n(i,:) = n1((length(x).*(i-1))+1:length(x).*i); 
end 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Filter Input Signals (Hrf) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
N = 4;                                  % Order of Hrf BPF 
NzRF = 200;                             % One-sided zero padding length 
[b,a] = butter(N,[fl/(fs/2) fh/(fs/2)]);% Hrf filter coeffs 
  
xf = [zeros(1,NzRF) x zeros(1,NzRF)];   % Zero-pad 
xf = real(filtfilt(b,a,xf));            % Filter 
xf = xf(NzRF+1:end-NzRF);               % Remove zeros 
Pxf = sum(xf.^2)/length(xf);            % Power in filtered UWB signal 
  
yf = [zeros(1,NzRF) y zeros(1,NzRF)];   % Zero-pad 
yf = real(filtfilt(b,a,yf));            % Filter 
yf = yf(NzRF+1:end-NzRF);               % Remove zeros 
yf = sqrt(Pxf/var(yf))*yf;              % Scale (power equal to 'Pxf') 
  
np = [zeros(R,NzRF) n zeros(R,NzRF)];   % Zero-pad 
for i = 1:R, 
    np1(i,:) = filtfilt(b,a,np(i,:));   % Filter 
    nf(i,:) = np1(i,NzRF+1:end-NzRF);   % Remove zeros 
end 
nf = nf/sqrt(var(nf(:)'));              % Normalize filtered noise power 
  
  
%%%%%%%%%%%%%%%%% 
% ChRx Inputs 
%%%%%%%%%%%%%%%%% 
s_in = xf;                              % Input signal (UWB or DS-SS) 
n_in = nf;                              % Input noise 



 

112 

Ps_in = sum(s_in.^2)/length(s_in);      % Power in input signal 
  
figure(1), hold on, grid 
  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Radiometric Detection 
%%%%%%%%%%%%%%%%%%%%%%%%%%% 
w = waitbar(0);                         % Create progress bar 
for i = 1:length(SNR),                  % SNR loop 
    waitbar(i/length(SNR),w,['Radiometer Progress - ',... 
        num2str(i),'/',num2str(length(SNR))]); 
    nser = sqrt(Ps_in/10^(SNR(i)/10))*n_in; % Noise at required SNR 
    Znr = sum(nser.^2,2);                   % Noise test statistic 
    Zsr = flipud(sort(Znr));                % Sort Zn (descending) 
    Tr = Zsr(floor(Pfa*R)+1);               % Find/set threshold 
    for k = 1:R, 
        Zr(k) = sum((s_in+nser(k,:)).^2);   % S+N test statistics 
    end 
    Pdr(i) = length(find(Zr > Tr))/R;       % Probability of detection 
end 
close(w) 
  
  
for c = 1:length(Wrf),                                              % ChBW loop 
  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    % Channelized Receiver II 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    w = waitbar(0);             % Create progress bar 
    nse = sqrt(Ps_in/10^(SNR/10))*n_in;  % Filtered noise matrix at required 
SNR 
    for q = 1:length(ph),                                         % Phase loop 
        for k = 1:R,                                       % Realizations loop 
            waitbar(q/length(ph),w,['ChRx Progress - ',num2str(c),'/',... 
                num2str(length(Wrf)),'; ',num2str(q),'/',... 
                num2str(length(ph)),'; ',num2str(k),'/',num2str(R)]); 
            inpn = nse(k,:);                            % Input N 
            inps = s_in;                                % Input S 
            inpsn = s_in + nse(k,:);                    % Input S+N 
  
            %%%%%%%%%%%%%%%%%% 
            % Forming CDM RF 
            %%%%%%%%%%%%%%%%%% 
            CDM_RFn = chrx_RF(inpn,fs,Wrf(c),fl,fh,Nz); % Output N 
            CDM_RFs = chrx_RF(inps,fs,Wrf(c),fl,fh,Nz); % Output S 
            CDM_RFsn = chrx_RF(inpsn,fs,Wrf(c),fl,fh,Nz); % Output S+N 
  
            %%%%%%%%%%%%%%%%%% 
            % Forming CDM BB 
            %%%%%%%%%%%%%%%%%% 
            CDM_BBn = chrx_BB(CDM_RFn,fs,Wrf(c),fl,fh,Nz,ph(q));  % Output N 
            CDM_BBs = chrx_BB(CDM_RFs,fs,Wrf(c),fl,fh,Nz,ph(q));  % Output S 
            CDM_BBsn = chrx_BB(CDM_RFsn,fs,Wrf(c),fl,fh,Nz,ph(q)); % Output S+N 
  
             
 

     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
            % Processing Techniques (with appropriate shifting) 
            %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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            if meth == 1, 
                outxn = ifftshift(ifft(CDM_BBn,Nfft,1),1);      % Temp-Temp  

% Matrix, N 
                outxs = ifftshift(ifft(CDM_BBs,Nfft,1),1);      % Temp-Temp  

% Matrix, S 
                outxsn = ifftshift(ifft(CDM_BBsn,Nfft,1),1);    % Temp-Temp  

% Matrix, S+N 
            elseif meth == 2, 
                outxn = fftshift(fft(flipud(CDM_BBn),Nfft,2),2);    % Spec-Spec  

% Matrix, N 
                outxs = fftshift(fft(flipud(CDM_BBs),Nfft,2),2);    % Spec-Spec  

% Matrix, S 
                outxsn = fftshift(fft(flipud(CDM_BBsn),Nfft,2),2);  % Spec-Spec  

% Matrix, S+N 
            elseif meth == 3, 
                outxn = ctm(CDM_BBn,Nfft,1,0);              % Cross-Temporal  

% Matrix, N 
                outxs = ctm(CDM_BBs,Nfft,1,0);              % Cross-Temporal  

% Matrix, S 
                outxsn = ctm(CDM_BBsn,Nfft,1,0);            % Cross-Temporal  

% Matrix, S+N 
            elseif meth == 4, 
                outxn = fftshift(csm(CDM_BBn,Nfft,1,0));    % Cross-Spectral  

% Matrix, N 
   outxs = fftshift(csm(CDM_BBs,Nfft,1,0));    % Cross-Spectral  

% Matrix, S 
                outxsn = fftshift(csm(CDM_BBsn,Nfft,1,0));  % Cross-Spectral  

% Matrix, S+N 
            else 
                error('Invalid value (meth)') 
            end 
  
            Zn(k) = max(abs(outxn(:)));      % Max 'outxn' test statistic 
            Z(k) = max(abs(outxsn(:)));      % Max 'outxsn' test statistic 
        end                                                 % Next k...next  

noise realization 
        Zs = fliplr(sort(Zn));              % Sort 'outxn' test statistics 
        T = Zs(floor(Pfa*R)+1);             % Find/set threshold 
        Pd(c,q) = length(find(Z > T))/R;    % Probability of detection 
     
    powspec(q,:) = sum(CDM_BBs'.^2); 
    powspec(q,:) = 10*log10(powspec(q,:)/max(powspec(q,:))); 
    end                                                        % Next q...Phase 
increment 
    close(w) 
end                                                             % Next c...ChBW 
  
powspec_mean = mean(powspec,1); 
powspec_std = std(powspec); 
  
% save ChRx_ph       % save all data from workspace 
  
toc 
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B4. Subroutines 

function sig = uwb(Tw,To,delt,Ns,P,jtr,method,dly); 
  
%   Brett D. Gronholz 
%   EENG 799 -- Summer/Fall 2004 
% 
%   Updated and modified by: 
%   Willie H. Mims 
%   EENG 799 -- Fall 2005/Winter 2006 
% 
  
%   UWB  Ultra-Wideband Signal Generator 
%   SIG = UWB(Tw,To,delt,Ns,P,jtr,method,dly) 
%    
%   INPUTS 
%       Tw     - pulse duration 
%       To     - symbol repetition interval 
%       delt   - time resolution 
%       Ns     - number of symbols 
%       P      - signal power 
%       jtr    - jitter as percentage of Ts = 2*Tw 
%       method - 'uni', 'ppm', 'pam', or 'bppm' 
%       dly    - first pulse delay 
% 
%   OUTPUT 
%       sig    - UWB output signal 
  
rand('state',sum(100*clock)) 
  
% Variables 
Tm = 0.4*Tw;                    % pulse width parameter 
t = 0:delt:(2*Tw-delt);         % time vector for UWB pulse generation 
Nc = length(t);                 % number of samples/symbol 
Nr = length(0:delt:To-delt);    % number of samples/repetition interval 
  
% Generate UWB pulse (2nd derivative of Gaussian pulse) 
w = (1-4*pi*((t-1.2*Tm)/Tm).^2).*exp(-2*pi*((t-1.2*Tm)/Tm).^2); % UWB pulse 
Pw = (1/To)*sum(w.^2)*delt;         % power in w 
s = sqrt(P/Pw)*w;                   % received UWB waveform 
  
if strcmpi(method,'uni'), 
    sig = zeros(1,Ns*Nr); 
    r = round(2*(rand(1,Ns)-0.5)*jtr*Nc/2); 
    r(1) = 0; 
    for i = 1:Ns, 
        sig(Nr*(i-1)+1+r(i):Nr*(i-1)+Nc/2+r(i)) = s(1:Nc/2); 
    end 
     
elseif strcmpi(method,'ppm'), 
    ppm1 = s; 
    ppm0 = fliplr(ppm1); 
    sig = zeros(1,Ns*Nr); 
    r = round(2*(rand(1,Ns)-0.5)*jtr*Nc); 
    r(1) = 0; 
    bits = randint(1,Ns); 
    for i = 1:Ns, 
        if bits(i) == 0, 
            sig(Nr*(i-1)+1+r(i):Nr*(i-1)+Nc+r(i)) = ppm0; 
        else 
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            sig(Nr*(i-1)+1+r(i):Nr*(i-1)+Nc+r(i)) = ppm1; 
        end 
    end 
     
elseif strcmpi(method,'pam'), 
    pam1 = sqrt(0.5)*s(1:Nc/2); 
    pam0 = -pam1; 
    sig = zeros(1,Ns*Nr); 
    r = round(2*(rand(1,Ns)-0.5)*jtr*Nc/2); 
    r(1) = 0; 
    bits = randint(1,Ns); 
    for i = 1:Ns, 
        if bits(i) == 0, 
            sig(Nr*(i-1)+1+r(i):Nr*(i-1)+Nc/2+r(i)) = pam0; 
        else 
            sig(Nr*(i-1)+1+r(i):Nr*(i-1)+Nc/2+r(i)) = pam1; 
        end 
    end 
     
elseif strcmpi(method,'bppm'), 
    bppm10 = s; 
    bppm01 = -s; 
    bppm00 = fliplr(bppm01); 
    bppm11 = fliplr(bppm10); 
    sig = zeros(1,Ns*Nr); 
    r = round(2*(rand(1,Ns)-0.5)*jtr*Nc); 
    r(1) = 0; 
    bits = randint(1,2*Ns); 
    for i = 1:Ns, 
        switch bi2de([bits(2*i-1) bits(2*i)]) 
        case [0] 
            sig(Nr*(i-1)+1+r(i):Nr*(i-1)+Nc+r(i)) = bppm00; 
        case [1] 
            sig(Nr*(i-1)+1+r(i):Nr*(i-1)+Nc+r(i)) = bppm01; 
        case [2] 
            sig(Nr*(i-1)+1+r(i):Nr*(i-1)+Nc+r(i)) = bppm10; 
        case [3] 
            sig(Nr*(i-1)+1+r(i):Nr*(i-1)+Nc+r(i)) = bppm11; 
        end 
    end 
     
else 
    error('Modulation type error.'); 
end 
  
sig = [zeros(1,round(dly/delt)) sig]; 
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function Cout = csm(x,Nfft,dim,clr) 
  
%   Brett D. Gronholz 
%   EENG 799 -- Summer/Fall 2004 
% 
%   Updated and modified by: 
%   Willie H. Mims 
%   EENG 799 -- Fall 2005/Winter 2006 
% 
  
%   CSM   Cross-Spectral Matrix 
%   Cout = csm(x,Nfft,dim,clr) 
% 
%   INPUTS 
%       x    - input matrix 
%       Nfft - # of points in FFT (to form SSM) 
%       dim  - dimension (1==col-by-col, 2==row-by-row) 
%       clr  - set autocorrelation terms to zero if 1, normal if 0 
% 
%   OUTPUTS 
%       Cout - Cross-Spectral Matrix (CSM) 
% 
  
X = fft(x,Nfft,2);          % FFT of rows of input matrix 
  
ndim = size(X,mod(dim,2)+1);% input matrix length along specified dimension 
noth = size(X,dim);         % input matrix length along other dimension 
  
clear Cout 
  
if dim == 1, 
    % Column-by-Column Correlation 
    Cout = zeros(ndim,ndim);    % initialize matrix 
    Cout = X'*X/noth;           % C-by-C correlation 
elseif dim == 2, 
    % Row-by-Row Correlation 
    Cout = zeros(ndim,ndim);    % initialize matrix 
    Cout = X*X'/noth;           % R-by-R correlation 
end 
  
if clr == 1, 
    % Set Diagonal (Autocorrelation) Elements to Zero 
    for i = 1:ndim, 
        Cout(i,i) = 0; 
    end 
end 
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function Cout = ctm(x,Nfft,dim,clr) 
  
%   Brett D. Gronholz 
%   EENG 799 -- Summer/Fall 2004 
% 
%   Updated and modified by: 
%   Willie H. Mims 
%   EENG 799 -- Fall 2005/Winter 2006 
% 
  
%   CTM   Cross-Temporal Matrix 
%   Cout = ctm(x,Nfft,dim,clr) 
% 
%   INPUTS 
%       x    - input matrix 
%       Nfft - # of points in IFFT (to form TTM) 
%       dim  - dimension (1==col-by-col, 2==row-by-row) 
%       clr  - set autocorrelation terms to zero if 1, normal if 0 
% 
%   OUTPUTS 
%       Cout - Cross-Temporal Matrix (CTM) 
% 
  
X = ifft(x,Nfft,1);         % IFFT of columns of input matrix 
  
ndim = size(X,mod(dim,2)+1);% input matrix length along specified dimension 
noth = size(X,dim);         % input matrix length along other dimension 
  
clear Cout 
  
if dim == 1, 
    % Column-by-Column Correlation 
    Cout = zeros(ndim,ndim);    % initialize matrix 
    Cout = X'*X/noth;           % C-by-C correlation 
elseif dim == 2, 
    % Row-by-Row Correlation 
    Cout = zeros(ndim,ndim);    % initialize matrix 
    Cout = X*X'/noth;           % R-by-R correlation 
end 
  
if clr == 1, 
    % Set Diagonal (Autocorrelation) Elements to Zero 
    for i = 1:ndim, 
        Cout(i,i) = 0; 
    end 
end 
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function out = chrx(inp,fs,Wrf,fl,fh,Nz,dc,ph) 
  
%   Brett D. Gronholz 
%   EENG 799 -- Summer/Fall 2004 
% 
%   Updated and modified by: 
%   Willie H. Mims 
%   for the following class: 
%   EENG 673 Project -- Summer 2005 
  
%   EENG 799 -- Fall 2005/Winter 2006 
  
% CHRX Channelized Receiver 
%   out = chrx(inp,fs,Wrf,fl,fh,Nz,dc,ph) 
% 
%   INPUTS 
%       inp  - input signal - from RF filter output 
%       fs   - sample frequency of input signal 
%       Wrf  - channel bandwidth 
%       fl   - lower ChRx frequency 
%       fh   - upper ChRx frequency 
%       Nz   - one-sided zero padding length (for 'filtfilt') 
%       dc   - downconvert? (1==yes,0==no) 
%       ph   - downconversion starting phase 
% 
%   OUTPUT 
%       out  - channelized receiver output matrix 
% 
  
if nargin ~= 8, 
    error('Not enough input arguments!') 
end 
if fs <= 0, 
    error('Sample frequency (fs) must be positive and non-zero.') 
end 
if Wrf <= 0, 
    error('Channel bandwidth (Wrf) must be positive and non-zero.') 
end 
if fl <= 0, 
    error('Lower frequency (fl) must be positive and non-zero.') 
end 
if fh <= 0, 
    error('Upper frequency (fh) must be positive and non-zero.') 
end 
if mod((fh-fl)/Wrf,1) ~= 0, 
    error('"fh-fl" must be an integer multiple of "Wrf"') 
end 
if Nz < 0, 
    error('Zero padding length (Nz) must be positive or zero.') 
end 
if (dc ~= 1 & dc ~= 0), 
    error('Invalid parameter (dc)') 
end 
  
N = 4;              % filter order 
Nc = (fh-fl)/Wrf;    % number of channels - integer values 
delt = 1/fs;        % delta t 
  
inp = [zeros(1,Nz) inp zeros(1,Nz)];    % zero-pad 
tdc = [0:delt:(length(inp)*delt-delt)]; % time vector for downconversion 
for i = 1:Nc, 
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    if dc == 1, % downconvert 
        [b,a] = butter(N,Wrf/(fs/2));    % LPF coeffs 
        inpx = real(inp.*exp(-j*2*pi*((fl+(i-1)*Wrf)*tdc+pi/180*ph))); 
    elseif dc == 0, % don't downconvert 
        [b,a] = butter(N,[(fl+(i-1)*Wrf)/(fs/2) (fl+i*Wrf)/(fs/2)]);  % BPF  
                                                                      coeffs 
        inpx = inp; 
    end 
    outt(i,:) = real(filtfilt(b,a,inpx));   % filter input sig 
    out(i,:) = outt(i,Nz+1:end-Nz);         % remove zeros 
end 
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function [bitsin,sigvec,timvec] = 
Fast_Bpsk_ModPrj2(datsel,indata,rbits,ndelay,fnot... 
    ,esym,nsamp,nplus,tsym) 
  
%   Created: 16 May 2004 
%   Capt Ray Nelson 
% 
%   Updated and modified by: 
%   Willie H. Mims 
%   for the following class: 
%   EENG 673 Project -- Summer 2005 
  
%   EENG 799 -- Fall 2005/Winter 2006 
  
% ============================================================= 
% Fast_BPSK_MODPrj2 Function:  Binary Phase Shift Keying Modulator 
% ============================================================= 
%   Fast BPSK Modulator for EENG 670 Project#2: A fast implementation of the 
%   software modulator originally developed by Dr Michael A. Temple 
% 
%   INPUTS 
% 
%       datsel - Data control variable: 'user' --> User SUPPLIED Data  
%                                        ("indata") for Modulation 
%                                       'rand' --> Random Data GENERATED for  
%                                        Modulation 
%       indata - For "datsel" = 'user' ... User SUPPLIES "indata" vector for  
%                Modulation 
%       rbits - For "datsel" = 'rand' ... Number of "rbits" Randomly GENERATED  
%               for Modulation 
%       ndelay - Number of LEADING samples preceeding first valid sample of  
%                first Complete Symbol 
%       fnot - Modulator Output Frequency (Hertz) 
%       snr - Input Signal-to-Noise Ratio in Decibels (dB) 
%       tsym - SYMbol Time / Duration 
%       esym - Energy per putput SYMbol 
%       nsamp - Number of output waveform SAMPles per Symbol Period (tsym) 
%       nplus - Add noise to output signal to achieve desired SNR? 
%           nplus = 0 ... DO NOT add noise to output signal vector 
%           nplus = 1 ... ADD noise to output signal vector 
% 
%   OUTPUTS 
% 
%       bitsin - Actual BITS INto the Modulator 
%       sigvec - Modulated SIGnal VECtor 
%       timvec - Sample TIMe VECtor for one symbol 
% 
% This modulator produces a sampled BPSK output waveform with symbols generated 
% per Eq 4.31 of Sklar's Digital Communications text (2nd Ed.). 
% 
%       [1] => s1 => Phz = 180 Deg 
%       [0] => s2 => Phz =  0 Deg 
% 
  
% 
% tic % Start Subroutine Timer 
% 
wnot = 2*pi*fnot; % Radian frequency of Carrier 
%snrat = 10^(snr/10);  % Calculate Ratio form of Input SNR 
sigamp = sqrt(2*esym/tsym); % Signal Component Amplitude 
% 
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% IF datsel = "user" use "indata" vector as "rdata" vector 
% 
rdata = []; % Initialize Data Vector 
if datsel=='user' 
    rdata = indata; 
end 
% 
% IF datsel = "rand" generate a Random "rdata" vector of length "rbits" 
% 
if datsel=='rand' 
    rdata=round(rand(1,rbits)); 
end 
% 
bitsin = rdata; % Actual BITS INto the Modulator 
% 
% Calculate Number of Symbol Periods (nsym) in RDATA 
% 
bitsym = 1; % Number of bits/symbol = 1 for BPSK 
nsym = rbits/bitsym; 
tstep = tsym/nsamp; 
%tstep = 0.01e-9; 
  
  
  
% Create time vector 
timvec = tstep*(0:nsamp-1); 
  
% Create time matrix, T, from timvec 
T = repmat(timvec',1,nsym); 
  
% Create phase matrix, Phi, from bitsin 
Phi = repmat((pi*bitsin),nsamp,1); 
  
% Create Symbol matrix using T and Phi 
Arg = wnot*T + Phi; 
Symbol = sigamp*cos(Arg); 
  
% Create SIGnal VECtor 
sigvec = reshape(Symbol,1,(nsym*nsamp)); 
  
% Fill "LEADING" samples of "sigvec" with last symbol data 
% 
if ndelay > 0 
    sigvec=[sigvec((length(sigvec)-ndelay+1):length(sigvec)) sigvec]; 
end 
% 
% If desired (function of nplus), generate and add zero mean AWGN vector to   
% signal output 
% vector using noise amplitude (nosamp) calculated from inputs: snr, esym, tsym 
% 
% if nplus==1 
%     randn('state',sum(100*clock)); % Reset Random # Generator 
%     nosamp = sqrt(esym/(snrat*tsym)); 
%     noise = nosamp*randn(size(sigvec)); 
%     sigvec = sigvec + noise; 
% end 
% 
% sub_time = toc % Stop Subroutine Timer 
return 
% 
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function [FastSprdMod] = FastSprdMod(SprdMatrix,SRow,nsamp,NChips,NSyms) 
  
% 
%   Created: 16 May 2004 
%   Capt Ray Nelson 
% 
%   Updated and modified by: 
%   Willie H. Mims 
%   for the following class: 
%   EENG 673 Project -- Summer 2005 
  
%   EENG 799 -- Fall 2005/Winter 2006 
  
% Create Spreading Modulation Waveform with: 
%       - Total Duration = #Symbols X Tsym 
%       - One Code Period per Tsym 
%       - NChips = #Chips per Tsym (Input) 
%       - NSyms = Total #Symbols 
%       - nsamp = #Samples per Tsym (Input) 
%       - SprdMatrix = Spreading Code Matrix (Input) 
%         ... Rows of SprdMatrix are User Codes 
%       - SRow = Row # of Desired Code / User 
% 
% Fast Spreading Modulation Function:  A fast implementation of the 
% original SprdMod function developed by Dr Michael A. Temple 
  
%tic % Start Function Timer 
SprdSym=repmat(SprdMatrix(SRow,:),(nsamp/NChips),NSyms); 
FastSprdMod=reshape(SprdSym,1,(NSyms*nsamp)); 
  
%toc % Stop Function Timer 
return 
% END FUNCTION 
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function CDM_BB = chrx_BB(CDM_RF,fs,Wrf,fl,fh,Nz,ph) 
  
%   Brett D. Gronholz 
%   EENG 799 -- Summer/Fall 2004 
% 
%   Updated and modified by: 
%   Willie H. Mims 
%   for the following class: 
%   EENG 799 -- Fall 2005/Winter 2006 
% 
  
% CHRX Channelized Receiver II : Downconversion 
%   CDM_BB = chrx_BB(CDM_RF,fs,Wrf,fl,fh,Nz,ph) 
% 
%   INPUTS 
%       CDM_RF  - Input signal vector (CDM) - from RF to BPF output 
%       fs      - Sample frequency of input signal 
%       Wrf     - Channel bandwidth 
%       fl      - Lower ChRx frequency 
%       fh      - Upper ChRx frequency 
%       Nz      - One-sided zero padding length (for 'filtfilt') 
%       ph      - Downconversion starting phase 
% 
%   OUTPUT 
%       CDM_BB  - Channelized receiver output matrix, downconverted (stage 2) 
% 
  
N = 4;                  % Filter order 
Nc = (fh-fl)/Wrf;       % Number of channels - integer values 
delt = 1/fs;            % Delta t 
  
CDM_RF = [zeros(Nc,Nz) CDM_RF zeros(Nc,Nz)];    % Zero-pad 
tdc = [0:delt:(length(CDM_RF(1,:))*delt-delt)]; % Time vector for 
downconversion 
  
for i = 1:Nc, 
    [b,a] = butter(N,Wrf/(fs/2));    % LPF coeffs 
    inpx(i,:) = real(CDM_RF(i,:).*exp(-j*2*pi*((fl+(i-1)*Wrf)*tdc+pi/180*ph))); 
    outt(i,:) = real(filtfilt(b,a,inpx(i,:)));  % Filter input signal 
    CDM_BB(i,:) = outt(i,Nz+1:end-Nz);          % Remove zeros 
end 
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function CDM_RF = chrx_RF(inp,fs,Wrf,fl,fh,Nz) 
  
%   Brett D. Gronholz 
%   EENG 799 -- Summer/Fall 2004 
% 
%   Updated and modified by: 
%   Willie H. Mims 
%   for the following class: 
%   EENG 799 -- Fall 2005/Winter 2006 
% 
  
% CHRX Channelized Receiver II : RF BPF 
%   CDM_RF = chrx_RF(inp,fs,Wrf,fl,fh,Nz,ph) 
% 
%   INPUTS 
%       inp  - Input signal - from RF filter output 
%       fs   - Sample frequency of input signal 
%       Wrf  - Channel bandwidth 
%       fl   - Lower ChRx frequency 
%       fh   - Upper ChRx frequency 
%       Nz   - One-sided zero padding length (for 'filtfilt') 
% 
%   OUTPUT 
%       CDM_RF  - Channelized receiver output matrix, BPF (stage 1) 
% 
  
N = 4;                  % Filter order 
Nc = (fh-fl)/Wrf;       % Number of channels - integer values 
delt = 1/fs;            % Delta t 
  
inp = [zeros(1,Nz) inp zeros(1,Nz)];    % Zero-pad 
  
for i = 1:Nc,   % Band pass filtering 
     
    [b,a] = butter(N,[(fl+(i-1)*Wrf)/(fs/2) (fl+i*Wrf)/(fs/2)]);  % BPF coeffs 
    inpx = inp; 
    outt(i,:) = real(filtfilt(b,a,inpx));   % Filter input signal 
    CDM_RF(i,:) = outt(i,Nz+1:end-Nz);      % Remove zeros 
end 
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