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Vision-Based UAV Flight Control and Obstacle Avoidance

Zhihai He

August 4, 2005

Abstract

In this work, we explore various ideas and approaches to deal with the inherent uncertainty and image

noise in motion analysis, and develop a low-complexity, accurate and reliable scheme to estimate the

motion fields from UAV navigation videos. The motion field information allows us to accurately estimate

ego-motion parameters of the UAV and refine (or correct) the motion measurements from other sensors.

Based on the motion field information, we also compute the range map for objects in the scene. Once we

have accurate knowledge about the vehicle motion and its navigation environment (range map), control

and guidence laws can be designed to navigate the UAV between way points and avoid obstacles.

I Introduction

In vision-based UAV navigation control, the video data captured from the on-board camera has two

major purposes: 1) It will be used to determine the ranges of scene objects. Based on the range information,

a guidance law can be designed for the UAV such that it is able to avoid obstacles during its navigation

between waypoints. 2) The angular velocity estimated from the gyroscope often has a significant amount

of noise, especially in the yaw angle or when the wind effect is strong. The vision information, as another

source of sensor information, is able to help us refine the estimation of angular velocity for flight control

purposes.

We assume that the UAV has a fairly good knowledge (from GPS data) about its linear velocity in the

inertial frame. The gyroscope on the UAV is able to give us a rough estimation of the vehicle’s orientation.

At this moment, we assume that the camera is located at the center of gravity of the UAV, and the camera

orientation is the same as the UAV’s body orientation, as illustrated in Fig. 1. We map the linear velocity

from the inertial frame into the camera coordinate system and denoted it by Vb = (Vb1, Vb2, Vb3).

Fig. 2 shows the block diagram of the proposed vision-based motion analysis and obstacle avoidance

system. We denote the video frame (also called an image) captured from the camera by It(x, y), 0 ≤ x ≤ W ,

0 ≤ y ≤ H , where t is the time index, W and H are the width and height of the frame. Using two

consecutive video frames, It−1(x, y) and It(x, y), we are going to determine the angular velocity Ω of the

camera and the range map dt(x, y). Here, dt(x, y) is the distance between camera and the scene object

represented by pixel (x, y). To determine Ω and dt(x, y), we need an accurate estimation of motion field

{Mt(x, y)|0 ≤ x ≤ W, 0 ≤ y ≤ H}, where Mt(x, y) represents the motion vector (or velocity vector)

of pixel (x, y). The major challenge in computer-based motion field estimation is uncertainty. To manage

the uncertainty and accurately estimate the camera motion, we equally partition the image It(x, y) into
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Figure 1: Coordinate systems in UAV navigation.

blocks and classify them into two groups: structural (e.g. buildings edges, corners, tree top, etc) and non-

structural blocks (e.g. texture). The structural blocks will have distinctive features for accurate motion

estimation. To obtain a reliable estimation of camera motion, we propose a new motion estimation scheme

called reliability-based motion field estimation (rMFE), which will be explained in Section II. Based on the

motion information of the structural blocks, we determine the angular motion of camera. Once we have a

complete knowledge about the camera motion, we can roughly predict the actual motion of each object in

the scene. In other words, for each non-structural block, we can determine a small image region where its

motion vector should lie within. Inside this small region, we find the best match for the block and determine

its motion vector. Once the motion vector is obtained for each block (both structural and non-structural

blocks), we can then compute the range for each block and obtain the range map dt(x, y). Based on the

range map, a guidance law can be designed to control the UAV such that is able to avoid the obstacle and

maintain a steady flight between waypoints.

Figure 2: Block diagram for vision-based ego-motion analysis and obstacle avoidance.

II Motion Field Analysis

Our objective is to develop a low-complexity and robust motion analysis scheme to accurately estimate

the camera motion and range map for UAV navigation. Several approaches have been developed in the liter-

ature, including feature tracking and structure from motion. The major problems with the existing methods

are: 1) High computational complexity. Feature tracking and structure analysis often involve computation-

intensive computer vision tasks, such as feature extraction and geometric modeling. Computation-intensive

motion analysis is not affordable on micro-UAV platforms which have limited on-board computation capa-
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bility. 2) Constrained navigation environments. Many existing algorithms are developed based on assump-

tions on the image content. For example, some algorithms assume that the image has buildings in it and

they try to look for building edges or corners for tracking and geometric modeling. This type of algorithms

work efficiently in constrained environments with desired image features, but may fail in other navigation

environments.

II-A Uncertainty in Motion Field Analysis

During UAV navigation, the dominant change in image data from time t − 1 to t is caused by camera

motion, such as location change, camera rotation, and camera zoom in/out. In addition to this dominant

motion, there could be moving objects, such as vehicles or persons on the ground, which cause local changes

in the image data. Another major source that cause image content change is noise, including video capture

noise, changes in lighting condition, etc. A typical approach to motion field estimation is to partition the

image It into blocks. For each block B, we find its best match A in the previous frame (also called reference

frame) It−1. To find the best match, we need to define a distance (or similarity) metric to measure how close

block A is to B. This distance metric is denoted by d(A,B). With this metric, we can then search in

the previous frame within a neighborhood of B to find the best-match block which minimizes the distance

metric. In block-based motion analysis, especially for images with noise and little distinctive features, it is

sometimes very hard to find out the exact motion based on only local information, even with human eyes.

For example, as shown in Fig. 3, the blocks on building edges, regions with flat colors, or texture areas,

such as grassland, are able to find a number of “best matches” within its neighborhood. In this case, there

is a lot of uncertainty and ambiguity in determining the exact motion of the block. If wrong motion vectors

are selected, the camera motion parameters and range map estimation will be inaccurate.

We propose three major ideas to deal with the uncertainty in motion field analysis. 1) We classify the

image blocks into two groups: structural and non-structural blocks. The structural blocks with distinctive

features will have reliable motion estimation. 2) We allow the motion estimation to find multiple “best”

motion vectors, instead of one single best motion vector for each block as in the conventional motion esti-

mation. We also define a reliability metric to measure how reliable is the motion estimation in each block.

3) We use the reliable motion information from the structural blocks to estimate the camera motion. Ac-

curate knowledge about the camera motion will help us to reduce and uncertainty in motion analysis for

non-structural blocks and find the true motion for them.

Figure 3: Sample video frames in UAV navigation.

II-B Classification of Structural and Non-Structural Blocks

Structural blocks, such as buildings edges, corners, road lines, and tree tops, have distinctive features

for accurate motion estimation. In the frequency domain, a structural block has a major portion of its

total energy in the low-to-medium frequency bands. The proposed classification algorithm has three major
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steps: Step 1) We apply discrete cosine transform (DCT) to the block and order the transform coefficients xi,

0 ≤ i ≤ S from low to high frequencies. Step 2) The first 20% of the coefficients, except the DC coefficient,

contains a significant amount of structural information, such as edges, corners, and other patterns. For each

block, we define an energy ratio for the structural coefficients:

r =

0.2S
∑

i=1

x2
i /

S
∑

i=1

x2
i . (1)

Step 3) We select the portion of blocks, for example top 15%, which have the highest structural energy

ratios, as the structural blocks, and with the rest being classified as non-structural ones. Fig. 4 shows the

classification results. The structural blocks are highlighted with white boxes.

Figure 4: Classification into structural (highlighted with white boxes) and non-structural blocks.

II-C Distance Metric for Motion Search

In motion field analysis for UAV navigation, a desired distance (or similarity) measure should be invari-

ant to camera motion, local object motion, and robust to image noise. To measure the similarity between

two blocks A and B, we need to take two steps: 1) First, we extract a set of features from each block. 2)

Second, we compute the distance between these two sets of features. In conventional motion estimation, the

pixel value is often used as the feature, and the distance measure is simply given by

d0(A,B) =
∑

ij

|aij − bij|, (2)

which is the SAD (sum of absolute difference) measure used in many video compression systems. The SAD

metric is invariant only under translational motion.

To handle other types of camera motions, such as rotation, zoom in/out, and perspective changes, we

introduce one additional feature, called intensity profile. The intensity profile aims to characterize the in-

tensity distribution in an image region. Let OB = (xB , yB) be the center position (pixel) of block B. Let

C(OB , r) be a circle centered at OB with a radius r, as illustrated in Fig. 5. The average intensity on this

circle is given by

m(OB , r) =
1

|C(OB , r)|

∮

C(OB ,r)
It(x, y)dxdy, 0 < r ≤ R, (3)

where R is the maximum radius to search. For example, we can set R to be the block width. The function

m(OB , r) is called the intensity profile for pixel OB or block B. Similarly, we can define the intensity
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profile for the center pixel of block A

m(OA, r) =
1

|C(OA, r)|

∮

C(OA,r)
It−1(x, y)dxdy. (4)

We can see that if pixel OA in frame It−1 moves to OB in frame It, the intensity profiles m(OB , r)

and m(OA, r) will be the same even with camera rotation. However, with camera zoom, m(OB , r) and

m(OA, r) will be different. For example, if the camera zooms out, m(OA, r) will match the first segment

of m(OB , r) after being scaled horizontally (either compressed or stretched), as illustrated in Fig. 5. Based

on this observation, we can define another distance measure as follows

d1(A,B) = min
1−δ≤λ≤1+δ

max
0≤r≤R/λ

|m(OA, λ · r) − m(OB , r)|, (5)

where λ is the scaling factor, and [1 − δ, 1 + δ] is the search range for λ. It can be seen that the distance (or

similarity) metric d1(A,B) is invariant under camera rotation and zoom. The distance metrics d0(A,B)

and d1(A,B) captures different information about the similarity between blocks. We form a comprehensive

distance metric for motion search as follows

d(A,B) = w · d0(A,B) + (1 − w) · d1(A,B), (6)

where w is the weighting factor which can be adjusted according to the amount of camera motion in rotation

and zoom. For example, if the angular velocity of the camera is relatively small, we can choose a smaller

value of w. Once the distance metric is established, we can then search the neighborhood of block B in the

previous frame It−1, denoted by N (B), to find the best block A
∗ which has the minimum distance to B,

A
∗ = arg min

A∈N (B)
d(A,B) (7)

The difference vector between the center positions of blocks A
∗ and B is the motion vector.

Figure 5: Definition of intensity profile for blocks.

II-D Reliability-Based Motion Field Estimation

As discussed in Section I, the image is equally partitioned into blocks, {Bn|1 ≤ n ≤ N}. Based on

the frequency-domain information, we classify these blocks into structural and non-structural blocks, as

discussed in Section II-B. We denote the structural blocks by {Bm|1 ≤ m ≤ M}, M ≤ N . As discussed in

Section II-A, because of the inherent uncertainty and ambiguity in motion analysis, each block may be able

to find multiple “best” matches according the distance metric in (7). In addition, because of image noise,

the true motion vector may even not have the minimum distance. To deal with this problem, we propose a

reliability-based motion field analysis scheme as explained in the following.
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For each structural block B
m, we find the top L best matches for B

m in the previous frame It−1 and

the estimation results are denoted by Λ = {(Vm
j , dm

j )|1 ≤ j ≤ L}, where V
m
j = (ẋm

j , ẏm
j ) represents the

motion vector and dm
j is the corresponding distance. Based on the data set {(Vm

j , dm
j )|1 ≤ j ≤ L}, we

extract a representative motion vector, denoted by V
m, and define a reliability measure γm. We assume

V
m is the “true” motion vector, which could be wrong. Our basic idea is as follows: if we choose V

m as

the representative motion vector, there will be a number of other motion vectors in the set whose distance

measurements are also very close to the one of V
m. Certainly, the larger the number is, the more uncertainty

we have, and the less reliability the motion estimation is. Let

dm
− = min

j
dm

j , dm
+ = max

j
dm

j . (8)

Let

dm
0 = dm

− + α · (dm
+ − dm

− ), (9)

where α is a threshold value between 0 and 1. By default, we set α = 0.1. The physical meaning of α = 0.1

is noise level. We pick out a subset of those motion vectors in Λ whose distance measurements are very

close to the minimum dm
− , and denote this subset by

Λ− = {(Vm
k , dm

k )|dm
k ≤ dm

0 }. (10)

Here, we re-lable the elements in the set Λ− by index k, 1 ≤ k ≤ Km < L. We choose the mean of those

motion vectors as their representative

V
m =

1

Km

Km
∑

k=1

V
m
k . (11)

We define the reliability measure as

γm =
1

1 +
Km
∑

k=1

||Vm
k − Vm||2

. (12)

Here, 0 < γm ≤ 1. If a motion search is reliable, either the value of Km will be small (close to one which

implies a single minimum) or the motion vectors V
m
k will be very close to each other. In this case, the

corresponding reliability measure γm will be very close to 1.

In camera motion parameter estimation as discussed in the next section, the reliability measure γm will

act as a weighting factor. Those motion vectors with lower reliability, i.e., higher uncertainty, will have less

influence when determining the camera motion.

III Camera Motion Parameter Estimation

From the motion field analysis, we have obtained a representative motion vector V
m (assumed to be the

true motion) and an associated reliability measure γm for each structural block B
m, 1 ≤ m ≤ M . (An

example value of M is 60.) Based on this data set, we are going to estimate the camera motion parameters.

The camera view geometry is analyzed in Dr. Iyer’s report. Let (X,Y,Z) be the coordinate of the object.

6



Let (x, y) be the pixel coordinate in the image, as illustrated in Fig. 1. We have

ẋ =
Vb1

Z
(x +

Vb3

Vb1
) + ΩXxy − ΩY (1 + x2) + ΩZy (13)

ẏ =
Vb1

Z
(y −

Vb2

Vb1
) + ΩX(1 + y2) − ΩY xy − ΩZx (14)

where Ω = (ΩX ,ΩY ,ΩZ) is the angular velocity; (ẋ, ẏ) is the motion vector of the object which is obtained

from the motion field analysis. The unknow variables are (ΩX ,ΩY ,ΩZ) and the range Z for each pixel

(x, y).

III-A Estimate the Angular Velocity

The angular velocity, denoted by Ω = (ΩX ,ΩY ,ΩZ) plays an important role in UAV navigation and

obstacle avoidance. From other sensors, such as gyroscope, we can get a rough estimation of body orienta-

tion, and the angular velocity Ω can be roughly estimated by taking the difference between body orientation

measurements at two time instances. Vision information, as another important source of information, is able

to help us refine the estimation of the angular velocity Ω. Combining Eqs. (13) and (14) and getting rid of

the pixel-dependent variable Z , we have

D1(x, y)ẋ − D2(x, y)ẏ = C1(x, y)ΩX + C1(x, y)ΩY + C3(x, y)ΩZ . (15)

where

D1(x, y) = (y −
Vb2

Vb1
), (16)

D2(x, y) = (x +
Vb3

Vb1
), (17)

C1(x, y) = xy(y −
Vb2

Vb1
) − (1 + y2)(x +

Vb3

Vb1
), (18)

C2(x, y) = −(1 + x2)(y −
Vb2

Vb1
) + xy(x +

Vb3

Vb1
), (19)

C3(x, y) = y(y −
Vb2

Vb1
) + x(x +

Vb3

Vb1
). (20)

The unknown variables (ΩX ,ΩY ,ΩZ) can be obtained with Least Mean Square Error (LMSE) fitting

weighted by the reliability. Let (xm, ym) be the pixel coordinate of the center of block B
m. From the

motion field analysis, we have obtained the motion vector (ẋm, ẏm) for this pixel and the associated relia-

bility measure γm. The weight LMS can be written into a matrix form as

ΓAΩ = Γb, (21)

where

A =











C1(x
1, y1) C2(x

1, y1) C3(x
1, y1)

C1(x
2, y2) C2(x

2, y2) C3(x
2, y2)

...
...

...

C1(x
M , yM ) C2(x

M , yM ) C3(x
M , yM )











(22)
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and

b =











D1(x
1, y1)ẋ1 + D2(x

1, y1)ẏ1

D1(x
2, y2)ẋ2 + D2(x

2, y2)ẏ2

...

D1(x
M , yM )ẋM + D2(x

M , yM )ẏM











, Γ =









γ1

γ2

. . .
γM









. (23)

The solution is given by

Ω = [(ΓA)t(ΓA)]−1(ΓA)t(Γb). (24)

III-B Range Estimation

Once the camera motion is known, we are able to determine the range (or depth) Z for each block

in the scene. As discussed in Section II, the image is partitioned into blocks, B
n, 1 ≤ n ≤ N . Let

Λ = {(ẋn
j , ẏn

j )|1 ≤ j ≤ L} be the top candidate motion vectors. If the block, which corresponds to

an object in the scene, is stationary, the true motion vector must satisfy Eqs. (13) and (14). Denote the

right-hand sides of (13) and (14) by

f(x, y, Z) =
Vb1

Z
(x +

Vb3

Vb1
) + ΩXxy − ΩY (1 + x2) + ΩZy, (25)

g(x, y, Z) =
Vb1

Z
(y −

Vb2

Vb1
) + ΩX(1 + y2) − ΩY xy − ΩZx. (26)

If the (ẋn
j , ẏn

j ) is the true motion, then the range of this block can be determined by least mean squared error

estimation

Zj = arg min
Z

[ẋn
j − f(x, y, Z)]2 + [ẏn

j − g(x, y, Z)]2. (27)

The corresponding fitting error is denoted by

Ej = [ẋn
j − f(x, y, Zj)]2 + [ẏn

j − g(x, y, Zj)]2. (28)

Certainly, the true motion must have the minimum fitting error. Let

j∗ = arg min
j

Ej . (29)

The range of the block is given by Zj∗ , and the associated motion vector is (ẋn
j∗ , ẏ

n
j∗).

IV Experimentation and Performance Analysis

The proposed motion field estimation, reliability analysis, camera motion estimation, and range map

computation have been implemented with C code. We take two major steps to evaluate this vision analysis

system. First, we are going to test the system using the multi-UAV simulator. The simulator is able to

generate a video sequence for the UAV camera view and the associated camera coordinate system and

orientation. In addition, since the simulator knows which point object in the world scene is mapped to

which pixel in a video frame, we have the ground truth for the motion fields, as well as the range map.

In simulator-based performance evaluation, the inputs to the vision analysis system, are the video frames,

the linear velocity, as well as the camera orientation. We add some level of noise to the camera orientation to
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simulate the sensor measurement noise. The output of the system will be the angular velocity estimation and

range map. We are going to check if the vision information is able to reduce the noise in angular velocity

and camera orientation measurement. We also compare the estimated range map again the ground truth.

In the second stage of evaluation, we will use the flight test data. The flight data has video from the UAV

camera, its GPS location, and orientation (with noise). It also has the GPS location of the targets. The vision

analysis system will estimate the range of the targets, and we will compare the estimate again the actual

measurement. In addition to the performance evaluation, we will also analyze the impact of noise in linear

velocity on the estimation accuracy.

V Concluding Remarks

We propose a hierachical framework to deal with uncertainty and noise in motion field analysis, so as

to develop a low-complexity and reliable vision analysis system for UAV navigation. First, we classify the

image data into structural and non-structural, and only use the reliable motion information from structural

blocks for camera motion estimation. Second, we introduce reliability analysis into motion field estimation

and let those motion vectors with higher reliability plays an influential role in camera motion estimation. In

this way, even if the local motion estimation could be wrong inside some image regions, the overall camera

motion estimation is still accurate and robust due to those highly reliable structural blocks. Third, we use

the accurate estimation of camera motion to constrain the motion search for non-structural blocks, and this

reduces the uncertainty, as well as computational complexity significantly.
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