THE NATIONAL SHIPBUILDING RESEARCH PROGRAM

Proceedings of the REAPS Technical Symposium

Paper No. 19: The SFI Coding and Classification System for Ship Information

U.S. DEPARTMENT OF THE NAVY
CARDEROCK DIVISION,
NAVAL SURFACE WARFARE CENTER

Naval Surface Warfare Center CD Code 2230 - Design Integration Tools Building 192, Room 128 9500 MacArthur Blvd Bethesda, MD 20817-5700

Approved for public release, distribution unlimited

<table>
<thead>
<tr>
<th>SECURITY CLASSIFICATION OF:</th>
<th>17. LIMITATION OF ABSTRACT</th>
<th>18. NUMBER OF PAGES</th>
<th>19a. NAME OF RESPONSIBLE PERSON</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. REPORT</td>
<td>SAR</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>unclassified</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. ABSTRACT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>unclassified</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. THIS PAGE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>unclassified</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DISCLAIMER

These reports were prepared as an account of government-sponsored work. Neither the United States, nor the United States Navy, nor any person acting on behalf of the United States Navy (A) makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness or usefulness of the information contained in this report/manual, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or (B) assumes any liabilities with respect to the use of or for damages resulting from the use of any information, apparatus, method, or process disclosed in the report. As used in the above, “Persons acting on behalf of the United States Navy” includes any employee, contractor, or subcontractor to the contractor of the United States Navy to the extent that such employee, contractor, or subcontractor to the contractor prepares, handles, or distributes, or provides access to any information pursuant to his employment or contract or subcontract to the contractor with the United States Navy. ANY POSSIBLE IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR PURPOSE ARE SPECIFICALLY DISCLAIMED.
Proceedings of the REAPS Technical Symposium
June 21-22, 1977
New Orleans, Louisiana
THE SFI CODING AND CLASSIFICATION SYSTEM
FOR SHIP INFORMATION

Antonio Manchinu
and
Frank McConnell
Shipping Research Services, Inc.
Alexandria, Virginia

Mr. Manchinu is General Manager of SRS, Inc. In the past he managed the Management and Control Section of SRS A/S in Norway; served as project leader for studies of shipyard modernization, cost estimation, construction scheduling, planning; and worked as a production engineer. He has a B.Sc. degree in Industrial Engineering and Economics from the Horten Institute of Technology in Norway.

Frank McConnell is a senior consultant. Before joining SRS he managed the Program Planning and Manufacturing Engineering groups at Ingalls Shipbuilding. He has a B.S.M.E. degree from Lehigh University and is a former member of the Ship Production Committee.
This paper is about a classification system, or group, account, charge or whatever you call it in your organization. What is different about this system is that it was developed by a group of shipbuilders and shipping companies under the leadership of their national, non-profit research association. When completed and field tested, it was adopted by all members of the maritime community, both public and private. This country was Norway.

Today no one in Norway uses any other system for ship breakdown. In addition, the system is gathering a worldwide following.

The system is called the SFI Group System.

The SFI Group System is a classification system for ship technical and cost information.

During the life cycle of a ship— from conceptual design through detailed design and construction to operation and maintenance— much information must be exchanged
within an organization and between organizations. During the sixties, Norwegian shipbuilding was booming. In addition, electronic data processing had come into its own. Naval architects, shipbuilders, ship owners, regulatory bodies and marine suppliers were looking for a common ground for specification indexing, drawing, numbering and cost accounting.

The Norwegian shipbuilders took the lead, primarily because they were subcontracting to each other, and asked their national research association to sponsor an effort to develop a common ship breakdown system. The SFI Group System was, thus, sponsored by the Ship Research Institute of Norway.

The system was developed primarily by shipyards. It was correctly assumed to be difficult enough to create unanimity among the yards without involving other parties. Several yards provided representatives to help in the development of the SFI Group System lending expertise in estimating, engineering, planning, purchasing, production and EDP. The shipyard representatives were from a broad spectrum of the industry with experience in building ships of all types and sizes. Among the major contributors was the Aker Group - with which my firm is proud to be associated - and which brought the world numerically controlled burning and computer-aided lofting.

During the development phase, ship owners provided input to the working committee and were, in fact, the first to test the system as a maintenance code on board different types of ships - from cargo liners to North Sea trawlers. The experience gained from ship owners was very valuable.

The SFI Group System development was completed and tested in a pilot yard in 1972. The test not only checked the comprehensiveness of the system but provided an...
opportunity to analyze routines associated with the use of the system. As might be expected, the routines and procedures in any particular shipyard might not accommodate a given system and it was important to check the system's flexibility.

At the end of the test period, minor changes were made and the SFI Group System was adopted by the Norwegian maritime community. Each user has a contact who stays in touch with the Ship Research Institute concerning changes in ship technology that might affect the system. The Norwegian Ship Research Institute, or NSFI, maintains and revises the system as necessary to accommodate new technology.

The basic criteria for designing the SFI Group System were:

1. that it must be applicable to all users
2. that it must be applicable to all types of ships
3. that it must be simple and easy to understand
4. that it must be capable of future expansion.

As shipbuilders had first crack at designing the system, the immediate argument that had to be resolved was whether the system was to be function oriented or production oriented. This argument, although interesting, is moot. Production methods change within a shipyard and certainly are different from shipyard to shipyard. Engineering and estimating simply cannot accommodate a production-oriented ship breakdown system whereas production can accommodate a function-oriented ship breakdown.

The SFI Group System is, thus, a function-oriented system. Classification societies, ship owners and naval architects would be lost with a production-oriented system.
In fact, it is rigorously functionally oriented. Components as well as piping are found under the same account number for a given ship’s system. Electric motors for pumps are not segregated but are grouped with the driven component. The SFI Group System is designed to conform to a logical ship’s specification, to accurately collect direct costs during the design, planning and production phases, and to organize the return costs in a way that they can easily be used as a basis for estimating the cost of similar ships in the future.

The SFI Group System is built up as a three-digit decimal classification system with ten main groups at the highest level. At this time only eight main groups are in use. Each of the main groups (one digit numbers) consist of ten groups (two digit numbers) and each group is further subdivided into ten subgroups (three digit numbers). Hence, the structure of the Group System numbers is as follows:

```
Main Groups  ___________ x x x (digits)
Groups       ___________
Subgroups    ______________
```

The main groups are used as follows:
0: **Reserved for a special purpose.**

1: **Ship General**
 Includes costs which cannot be charged to any specific function on board, such as launching, trial trips, guarantee work.

2: **Hull**
 Includes hull and superstructure as well as cleaning and painting of the ship.

3: **Equipment for Cargo**
 Includes equipment and systems concerning the ship’s cargo, such as hatches, cargo winches, cargo pumps and piping.

4: **Ship Equipment**
 Comprises equipment and systems which normally are peculiar to ships, such as navigation equipment, anchoring equipment. It also includes fishing equipment and weapon systems along with other working equipment for special types of ships.

5: **Equipment for Crew and Passengers**
 Includes equipment and systems which serve crew and passengers, such as furniture, elevators, hotel systems.

6: **Machinery Main Components**
 Comprises the primary components in the engine room, such as main engine, boilers, auxiliary engines.
7: Systems for Machinery Main Components

Includes main propulsion systems, such as fuel and lube oil systems, starting air system, exhaust systems.

8: Ship Systems

Comprises auxiliary systems, such as bilge and ballast systems, fire fighting and wash down systems, electrical distribution systems.

9:

Reserved for a special purpose.

As an example, the freezing system for dry cargo would be derived from:

Main Group 3 : Equipment for Cargo
Group 36 : Freezing, Refrigerating and Heating Systems for Cargo
Subgroup 362: Freezing and Refrigerating Systems for Dry Cargo

Illustrations of how this is presented in the SFI Group System book are:

- the main group 3 matrix (see Figure 1)
- the subgroup 362 description (see Figure 2)

Note that the description of each subgroup shows what that subgroup does not include as well as what it does include.

The SFI Group System book contains several parts. There is a six-page guide to use of the system followed by a matrix showing the 100 possible two-digit groups. This is followed by a chapter for each main group. These chapters begin with a
<table>
<thead>
<tr>
<th>PARTIAL MAIN GROUP 3 MATRIX</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>LOADING AND DISCHARGING SYSTEMS FOR LIQUID CARGO.</td>
<td>FREEZING, REFRIGERATING AND HEATING SYSTEMS FOR CARGO.</td>
<td>GAS/VENTILATION SYSTEMS FOR CARGO HOLDS/TANKS.</td>
<td>AUXILIARY SYSTEMS AND EQUIPMENT FOR CARGO.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loading and discharging pumps.</td>
<td>Insulation and sheathing of cargo holds and tanks.</td>
<td>Ventilation systems for refrigerated cargo holds.</td>
<td>Sounding, control and operating equipment for cargo systems.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loading and discharging systems on deck</td>
<td>Freezing and refrigerating systems for dry cargo.</td>
<td>Closed Cycle mechanical ventilation systems for cargo holds.</td>
<td>Tank cleaning systems and equipment.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loading and discharging systems in pump rooms.</td>
<td>Direct cooling systems for liquid cargo.</td>
<td>Open ventilation systems for cargo holds.</td>
<td>Lifting gear for cargo hoses.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loading and discharging systems for LPG, LNG, etc. in gaseous phase.</td>
<td>Indirect cooling heating systems for cargo (cargo oil heating, etc.).</td>
<td>Blow-off systems from safety valves (from pressure/vacuum valves and similar).</td>
<td>Insulation drying system for cargo holds and tanks.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Separate stripping system.</td>
<td>Inert gas systems with conditioning plant.</td>
<td>Equipment for addition/portioning of preservatives, smolling substances, inhibitors, spirits, etc.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuel gas systems with conditioning plant.</td>
<td>Special structures for loading/discharging over stern.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 1
36 Freezing, refrigerating and heating systems for cargo

362 FREEZING AND REFRIGERATING SYSTEMS FOR DRY CARGO

Freezing and refrigerating systems for dry cargo (e.g., fruit, vegetables, meat, etc.) and also for dry cargo and provisions combined, including such as:

- Refrigeration machinery with compressors including drive units, condensers, evaporators, cooling batteries, oil separators, dryers, etc.
- Circulation system (for brine, ammonia, Freon or similar) with circulation pumps, valves, insulation, pipes, etc.
- Fans for circulation by/through cooling batteries.
- Drip water trays with drain pipes.

Also included here is the refrigeration machinery (which follows the ship) for containers, with connection hoses and associated machinery as stated above, together with refrigeration machinery for plate freezers, for freezing tunnel, for ice production and for RSW plant. (Note! see also Ref.) with associated machinery as stated above.

Ref: Containers with separate refrigeration machinery (which follows the container)

- Insulation of cargo holds and tanks
- Ventilation plant with ozone generator, etc. for refrigerated cargo holds

Arrangement for remote measurement of temperature, CO₂, humidity, etc.

Supply lines from separate cooling water system for cargo equipment, for thawing (de-icing) of refrigeration machinery

- RSW plant (seawater part)
- Plate freezers, freezing tunnel (in factory plant for fish, etc.)
- Refrigeration machinery for provisions
- Supply lines from the ship’s main cooling water system for thawing (de-icing) of refrigeration machinery, etc.

Drain pipes from sink, including those in cargo holds

363 DIRECT COOLING SYSTEMS FOR LIQUID CARGO

Direct cooling systems (one or more stages) for recondensation of gas cargo, where the boil-off is extracted from the tanks, compressed and condensed directly by cooling water. The system includes such as:

- Suction pipes from tanks or loading/discharging pipes with valves, etc.
- Fluid separators with return pump, piping, etc.
- Compressors with drive units (low and high pressure compressors for multi-stage plant), filters, etc.
- Medium pressure vessels with equipment (for multi-stage plant).
- Fluid collectors.
- Cargo condensers.
- Return pipes for the condensed cargo to tanks or to the loading/discharging system.

Also included here is the arrangement for lubricating the compressors, with equipment for oil regeneration.

The cooling plant, or parts of it, can have subsidiary functions (but comes under this s.gp) and function as:

- Pumps for cargo heating.
- Producer of gas for transfer of cargo for discharging by means of pressure.

Continues
matrix showing the 100 possible three-digit **subgroups** within each **main group** followed by a detailed description of each **group** and **subgroup**. Finally, there is an alphabetical index ([Figure 3](#)) with more than 4,000 entries that should lead the searcher to the proper **subgroup** number. For our “freezing and refrigerating system for "dry cargo" example, the most obvious entry appears on page 32 of the index although it appears elsewhere as well.

The books are loose leaf to facilitate changes and are made of all water resistant materials. A condensed, pocket-sized version containing only the main group matrices and index is also available.

For those requiring even further breakdown than the three-digit system provides, NSFI has developed two sets of supplementary codes. Designed primarily for material, the first set is for direct purchased material and must be used in conjunction with the appropriate **subgroup** ([Figure 4](#)). Using our “freezing and refrigerating systems for dry cargo” example, the number 362 003 would always identify the freezing system compressor or compressors. The second, or section 2 detail code, is a listing of stock materials and does not necessarily need to be identified with the appropriate **subgroup** ([Figure 5](#)). Each of the detail codes contains three digits and is published in a supplementary booklet.

With its flexibility and functional orientation, the SFI Group System can be used for any shipyard classification problem. It can, and should, be used consistently in all of the following areas:

1. indexing of specifications
2. drawing identification
3. purchase requisition and order numbering
FLOWMETERS, see resp. system/component s.gp.

FOAM:
- apparatuses, loose (fire extinguishing) .. 505
- cannons (monitors) ... 816
- extinguishing system with tanks, etc. ... 816

FOG HORN .. 427

FOG WINDOW ... 513

FOOLS FOR HYDROFOIL BOATS ... 839

FOOD LIFT (ELEVATOR) .. 542

FOOT PLATES (GUARD), refer to resp. door s.gp in .. 583

FOOT WASHBASINS ... 583

FORE:
- peak .. 246
- peak tank ... 246
- stem ... 246

FORE-AND-AFT GANGAY .. 535

FORECASTLE DECK WITH STIFFENING .. 243

FOREMAN SUPERVISION ... 122

FORKLIFT TRUCKS .. 324

FOUNDATIONS:
- and brackets for spare parts .. 447
- bolts, see resp. system/component s.gp. .. 288
- (for) loose cargo tanks .. 554
- (for) spare anchor ... 431
- (for) spare propeller ... 636
- (for) spare shaft, see resp. s.gp in .. 636

FOUNTAINS IN:
- sanitary system .. 581
- separate drinking water system ... 584

FRAMES FOR WINDOWS/DOORS, see resp. s.gp in 511

FREEBOARD, see resp. s.gp in .. 122

FREEZE (GUARD) DECK WITH STIFFENING ... 243

FREEZE ROOM:
- doors (provision rooms) .. 525
- insulation and lining, cargo ... 355
- insulation and lining, provisions ... 355

FREEZING AND REFRIGERATION SYSTEM FOR:
- cargo, see resp. s.gp in ... 367
- plate freezers (factory plant) .. 162
- provisions ... 154

FREEZING ROOM:
- doors (provision rooms) .. 555
- insulation and lining, cargo ... 351
- insulation and lining, provisions ... 355

FREIGHT EXPENSES, see transport.

FREON, ETC., see resp. cooling system s.gp.

FRESH Cooling WATER (main cooling water):
- piping ... 722
- systems which only serve machinery/equipment in one s.gp. see resp. s.gp. 722

INDEX

Figure 3

329
Kjølte timer, leide timer, kjøpt ass., patentutg. etc. se Brukerorient.

DETAIL CODE, SECTION 1

Figure 4
INSULATION AND PACKING MATERIALS.

General.

Insulation and fire proof materials (excl. pipe insulating materials).

Pipe insulation materials.

Plate and box packings, cord and strip packings incl., packing material.

Flange packing rings, manhole and inspection hatch packing rings.

Moulded packings, packings for special applications.

Lip packings, U-packings, CUP and dome Packings, incl., sealing rings for rotating axles.

Diverse.

PIES AND HOSES INCL. PARTS FOR PLATE AND CAST IRON PIPES.

General.

Steel pipes.

Non ferrous metal pipes.

Plastic pipes and plastic hoses.

Other hoses and flexible pipes.

Plate pipes and associated parts.

Cast iron pipes and associated parts.

Discharge pipes and associated parts (sail pipes).

Diverse.

COMPONENTS FOR PLASTIC PIPES AND HOSES.

General.

Polyethylene components.

Styrene components (synthetic rubber).

Nylon based components.

PVC components.

Pipe components for plastic pipes with coupling, decoupling arrangements.

Hose clamps and junctions (not fire fittings/equipment).

Diverse.

PIPE COMPONENTS FOR STEEL AND METAL PIPES.

General.

Components for steel threaded pipes, Black steel.

Components for steel threaded pipes. Steam.

Components for steel threaded pipes Galvanized.

Components for brass threaded pipes.

Couplings etc., components for smooth (seamless) pipes.

Bends, Hanges, etc., components for smooth (seamless) pipes.

Unions, bulkhead flanges, deck penetrations etc.

Diverse.
4. work package identification
5. labor and material cost collection
6. test agenda identification
7. technical manual identification
8. recommended spare parts list identification
9. estimating
10. guarantee work identification
11. general filing index.

After several years of use, the information retrieval capabilities of the shipyard are greatly enhanced.

Now, carry the application of the SFI Group System one step further as the Norwegians have done. Have all shipyards, naval architects, marine suppliers, the ABS, MarAd, the Navy and ship owners use the same system. Communications become easy. Specifications for new construction, repair, material and subcontracting are more consistent in format. Design and testing criteria for each system can readily located. Cost and progress reporting do not need to be translated from one account system to another. Duplicate sets of financial books are eliminated. It is even possible that shipyard qualification to DOD Instruction 7000.2 can become understandable with a common frame of reference.

Is standardization possible? Norway has a far larger merchant fleet and an equivalent number of shipyards as the U.S. The answer, then, probably lies in the willingness of MarAd and the Navy to jointly agree to such a move.
With or without standardization, if your shipyard doesn’t have a functionally-oriented classification system similar to the SFI Group System, it should have. And if your system isn’t as good as the SFI Group System, it should be. The advantages of a well-designed classification system are too obvious.
Additional copies of this report can be obtained from the National Shipbuilding Research and Documentation Center:

http://www.nsnet.com/docctr/

Documentation Center
The University of Michigan
Transportation Research Institute
Marine Systems Division
2901 Baxter Road
Ann Arbor, MI 48109-2150

Phone: 734-763-2465
Fax: 734-763-4862
E-mail: Doc.Center@umich.edu