
Visualizing Concordance of Sets
Bohyoung Kim1

Seoul National University
Bundang Hospital,

Gyeonggi, Korea, 463-707

Bongshin Lee2

Human-Computer Interaction Lab,
Department of Computer Science,

University of Maryland,
College Park, MD 20742, USA

Jinwook Seo3

Children’s Research Institute,
Children’s National Medical Center,

Washington, DC 20010, USA

ABSTRACT
When there is more than one perspective to interpret a dataset,
concordance (or discordance) between the result sets from the
different perspectives plays an important role in getting refined
results. For example, several clustering algorithms generate
different results for the same input. To get useful insights, users
need to combine different perspectives by checking concordance
between those results. In this paper, we present an interactive
visualization tool called ConSet, where users can effectively
examine multiple sets at once. It uses permutation matrix
visualization to enable users to easily identify similar sets. In
addition to a standard Venn diagram, we introduce a Fairy
diagram that allows users to compare two or three sets without
inconsistencies. We conducted a qualitative user study to evaluate
how our tool works in comparison with a traditional set
visualization tool based on a Venn diagram. We found that users
performed better with ConSet than with the traditional interface
for many tasks and most users preferred ConSet.

CR Categories and Subject Descriptors: I.6.9.c Information

visualization, H.5.2 User Interfaces, H.5.2.f Graphical user
interfaces, H.1.2.a Human factors, H.2.8.c Data and knowledge
visualization, H.2.8.h Interactive data exploration and discovery

Additional Keywords: set concordance, Venn diagram, Fairy

diagram, Treemap, permutation matrix, cluster comparison, gene
ontology

1 INTRODUCTION
When there is more than one way to approach a problem, it can

be useful to combine multiple perspectives. Visualization of the
concordance or discordance of those perspectives can help
integrate important knowledge. Scientific problem solving
usually involves concordance analysis among several perspectives.
This includes problems in information retrieval, bioinformatics,
data mining, and so on. For example, Google and MSN search
often return different search results. Users could have a more
judicious view on the search term by comparing those results.
Suppose scientists run an experiment and there are several semi-
standard methods to acquire numerical values from a
measurement device. The choice of a data acquisition method can
profoundly change the resulting data interpretation. Without
checking the concordance of different acquisition methods,
scientists might have high false positive rates. For example,

molecular biologists have to use a “probe set signal algorithm” to
acquire signal values of genes from Affymetrix GeneChips. They
get different sets of sufficiently powered genes in the subsequent
power analysis depending on the signal algorithm used. The
concordance of the results sets from different signal algorithms
can be checked using set operations in connection with various
concordance measures. This enables biologists to identify
concordant/discordant genes. Therefore, they can sometimes
significantly reduce the false positive rates by simply checking the
concordance of the results of different algorithms.

Similar problems occur afterwards. If the biologists decide to
use clustering algorithms to identify important patterns in the
acquired dataset, they have to decide what kind of clustering
algorithms to use. Resorting to only one clustering algorithm
could bias the result since different algorithms might come up
with completely different patterns depending on how the
algorithm detects clusters. Since most clustering algorithms
generate disjoint sets(=clusters), there are no similar sets in the
result of one clustering algorithm. If we combine all clusters from
two clustering algorithms, concordance between those algorithms
can be checked by seeing how many sets are similar to each other.

Another example would be when one data element can be
classified into multiple categories. For example, a gene product
can be related to many gene ontology terms, and a web resource
can be mapped to multiple categories in the Open Directory
(www.dmoz.org). Identifying the elements classified into
different categories helps users unveil the unknown features of the
element and of the dataset containing that element.

In existing information visualization tools, brushing and linking
techniques [4] were used to show some concordance.
Coordinated highlighting of many views for the same dataset can
reveal intersection of sets. For example, hierarchical clustering
results comparison using paired dendrogram views or phylogenic
trees comparison using paired tree views can be thought of as
showing concordance of two perspectives, or a group of terminal
nodes. Graph visualization can also be a candidate since we can
represent each set as a node and the relationship (similarity) of
sets as links. While graph drawing techniques combined with
clustering approach can show an overview of relationships, such
as similarities/dissimilarities among sets, it is not easy to
incorporate intuitive ways to support important set operations.

We thought that a more general set visualization tool was
necessary to support important tasks for concordance analysis of
sets: (1) to show an overview of relationships between sets, (2) to
aggregate and filter sets/elements according to users’ interests, (3)
to efficiently perform fundamental set operations such as
intersection and difference, and (4) to generate deeper insight into
the original problem from the concordance visualization.

In this paper, we present intuitive interfaces and interactions for
set concordance analysis built upon existing visualization
techniques such as permutation matrix [6]. The information
visualization mantra (overview first, zoom and filter, detail on
demand) is the underlying guideline of our ConSet (Figure 1)
design.

__

1 lemon@infinitt.com
2 bongshin@cs.umd.edu
3 jseo@cnmcresearch.org

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2006 2. REPORT TYPE

3. DATES COVERED
 00-00-2006 to 00-00-2006

4. TITLE AND SUBTITLE
Visualizing Concordance of Sets

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
human-Computer Interaction Lab,Department of Computer
Science,University of Maryland,College Park,MD,20742

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

8

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Figure 1. ConSet with 16 sets and 31 elements. The Permutation Matrix view shows an overview of the relationships among sets and
elements. The Dynamic Control view on the right enables users to filter sets and elements. It also allows users to select two or three sets to
show a diagram. The Diagram Ordering view at the bottom shows the top 10 diagrams of two or three sets.

Users can see an overview of relationships among sets and
elements in a permutation matrix. Aggregation of elements with
the same membership and filtering by dynamic query devices
enable users to narrow down to a handful of important sets and
elements. Users can also see the relationships between two or
among three sets in the conventional Venn diagram or our novel
Fairy diagram. We also ran a qualitative user study in comparison
with VennMaster (shown in Figure 2), a set visualization tool that
uses a generalized Venn diagram. The user study suggested that
ConSet supports more tasks with less errors compared to
VennMaster. The user study also enabled us to identify several
ways to improve the interface and design of ConSet.

2 RELATED WORK
Brushing and linking, powerful information visualization

techniques, can be used to reveal concordances between sets.
Coordinated multiple views provide users with ways to
understand relationships between datasets behind the views [3].
HCE shows two dendrograms at once, highlights the
corresponding terminal nodes in the two dendrograms, and shows
the mapping with connecting lines when users click on a branch
of a dendrogram [13]. TreeJuxtaposer [12] also applies the
brushing and linking techniques as well as Focus+Context
techniques [8] to compare two large phylogenic trees with
guaranteed visibility. Users can see the discordance of the two
hierarchical structures by examining the highlighting and/or
connections. Sometimes, the main purpose of selecting an
internal node on a tree visualization is to select a set of terminal
nodes reachable from the internal node. This problem can be

generalized as a set visualization and the main task can be
concordance checking among sets.

Figure 2. VennMaster with the same dataset as in Figure 1. We
manually placed labels of some sets using VennMaster.

MetaCrystal [17] is a visualization tool based on the InfoCrystal
layout [16] that helps users fuse together search results from
different search engines. It utilizes various visual features such as
shape, size, color, proximity, and orientation to show the degree
of overlap among different search results. Overlapping search
results are expected to provide more comprehensive, relevant, and
effective view on the subjects delivered by the search terms. Here
again, users’ tasks performed with MetaCrystal can also be
thought of as concordance checking among sets (i.e. search results
from different search engines).

When it comes to set visualization, Venn diagrams are the de
facto standard. A Venn diagram is a special case of an Euler
diagram. Venn diagrams should have areas to represent all
possible combinations of sets regardless of whether that area is
actually empty or not. This restriction is loosened in Euler
diagrams, where empty areas do not have to appear. These
diagrams are applied to various problems in bioinformatics,
information retrieval, and information visualization. New
applications sometimes require some additional restrictions on
how to draw Euler diagrams such as the one that the shape of
contour should be a circle and more information such as
cardinality is coded as size (area) and/or color of a contour. It is
important to mention that the terms Venn diagram and Euler
diagram are often confused. Euler diagrams, where each contour
is a circle, are often called Venn diagrams, even though
theoretically this is not correct. In this paper, we follow this
general perception of Euler diagram and use the term Venn
diagram for the Euler diagram with the constraint.

VennMaster is to our knowledge the only visualization tool that
shows an arbitrary number of sets in Venn diagrams, where each
set is represented as a polygon with a user-defined number of
edges [10]. When there are enough edges, each set appears almost
like a circle. The size of each polygon is proportional to the
cardinality of the corresponding set. All properly size-coded
polygons are placed in such a way that the size of each
intersection area is also proportional to the number of elements in
the intersection. Since the optimal size coding and layout
determination are too expensive to be solved in a pure analytical
way, they resort to genetic algorithm techniques.

VennMaster was developed to improve users’ interpretation and
visualization of the output of a famous bioinformatics tool, or
GoMiner. GoMiner enables researchers to query the gene
ontology database (www.geneontology.org; comprehensive
annotation of genes or gene products) for associated categories in
a cellular context [19]. Since one gene can be associated with
more than one gene ontology category, the interpretation of such
complex associations is a challenging task. VennMaster
translated this problem into a set relationship visualization
problem (i.e., treating a gene ontology category as a set and a
gene product as an element). Since the approach was very useful,
VennMaster was integrated into GoMiner.

While it is useful to have one more visualization approach
adopted to a well-known bioinformatics tool, this approach still
has a lot of drawbacks from an information visualization
perspective. First of all, there are three kinds of inconsistencies in
the VennMaster visualization: (1) it is not guaranteed that all
possible intersections are visible in the generalized Venn diagram
display, so those so-called inconsistent intersections are shown in
a separate list view, (2) since it uses regular convex polygons,
there will be intersections of polygons where no element is
mapped, which will be explained later in the next section, and (3)
the resulting layout of diagrams can be different in each run of the
program because it uses a genetic algorithm to optimize the layout.

A matrix-based representation was often used to show
relationships between items by using both rows and columns to
represent items and values in each cell to show the relationship.

For example, Abello and Korn presented matrix and color map
based techniques to visualize phone calls made between states [1].
Van Ham used multilevel call matrices in the management of
large software projects [18]. Kincaid applied an extended
permutation matrix to the task of exploratory data analysis of
multi-experiment microarray studies [11]. Ghoniem et al. used
adjacency matrices to interactively visualize and explore relations
between constraints and variables in constraint problems [9].

We thought that information visualization techniques could
improve users’ experience in interpreting such complex set
relationships. It can be accomplished without the overburden of
drawing a lot of circles in proper scale and location. Furthermore,
we can maintain the familiarity of simple diagrams such as Venn
diagrams. We applied the permutation matrix display to set
concordance visualization to provide a better overview of set
concordance without inconsistencies mentioned above.
Interactive selection and filtering methods enable users to narrow
down to a handful number of sets. The detail is shown as a
general Venn diagram or our new Fairy diagram after users select
two or three sets.

3 VISUALIZING CONCORDANCE OF SETS

3.1 Untangling Overlaps
While significant overlaps of many sets in the general Venn

diagram visualization tool clearly shows high similarities of sets,
those overlaps make it difficult to see the details on memberships
of elements to sets. In addition, non-overlapped areas are hard to
select when overlaps cover most of the elements. We thought that
a permutation matrix, a proven multidimensional visual structure,
could help untangle overlaps while carrying similarity information.
For the set concordance visualization, each column represents an
element and each row represents a set (Figure 3). If an element ej
belongs to a set Si, we fill the cell C(i, j) with gray, otherwise C(i,
j) is empty. Each set is given a distinctive color and the set name
is displayed at the end of its corresponding row in its own color.

Figure 3. Permutation matrix view for set concordance
visualization shows the concordance of three power analysis
results by three probe set signal algorithms with 7643 genes.
Aggregation drastically reduced the number of columns from
7643 to 7. The degree of aggregation is shown as histograms in
log scale.

We show information regarding elements at top three rows,
which we call “column header.” The column header includes,
from top to bottom, Element Name, Membership, and Degree of
Aggregation, each in a separate row. The membership row shows
pie chart-like glyphs, where each pie represents a set to which the
corresponding element belongs and is filled with the color of the
set. With the color-coded membership information, users can
easily grasp how many sets an element belongs to.

Since all elements are visible unlike Venn diagram
visualizations, it is necessary to implement a method to
accommodate a large number of columns. It is reasonable to

assume that many elements would share the same membership,
when the number of elements is significantly larger than the
number of sets. Thus, by aggregating those elements into a single
column, it is possible not only to save a significant amount of
screen space but also to have a clear overview in a compact form.
When several elements are aggregated to a single column, only
the representative element is shown in the permutation matrix, and
other aggregated elements are hidden. The name of the column is
the representative element that comes first in alphabetical order.
The number of aggregated elements is given in parentheses at the
end of the representative element’s name. In addition, the number
of aggregated elements is visualized as a blue bar in the Degree of
Aggregation row. The height of each bar is proportional to the
number of the aggregated elements, and users can show the bars
in log scale. The intensity of a cell in the permutation matrix is
also proportional to the number of aggregated elements.

3.2 Avoiding Inconsistencies
Venn diagrams are widely used to represent set relationships.

While they are intuitive and familiar to users, Venn diagrams have
the drawback of inconsistencies: missing valid intersection areas
and showing invalid intersection areas. First, let’s assume
relationships among three sets A, B and C, where A and B have
some common elements and C has elements in)(BA − and

)(AB − but not in)(BA∩ . If we represent this relationship in a
Venn diagram, an empty set)(φ=∩∩ CBA is shown as a
region in gray (Figure 4a). If we loosen the constraint that each
set should be a circle, this relationship can be represented in a
Venn diagram without such inconsistency (Figure 4b). Then,
however, the diagram loses the advantage that users are used to it.
The other inconsistency is incurred by the fact that it is very hard
to achieve a valid Venn diagram when the number of sets is large.
Furthermore, it is almost impossible to accurately size-code all
possible zones. Thus, it is common that some valid intersection
areas are missing in Venn diagrams especially when many sets
have intersections with many others.

(a) Venn Diagram with
inconsistency

(b) Euler Diagram without
inconsistency

Figure 4. Inconsistency of Venn Diagrams. (a) and (b) show the
same sets relationships. There is no element in the gray area at (a),
but there is no way to avoid this inconsistency in Venn Diagrams.
By allowing C to have a concave contour, it is possible to avoid
the inconsistency in Euler Diagrams (b).

To maintain users’ familiarity with Venn diagrams while
avoiding the two inconsistencies, we suggest applying the
information visualization mantra (overview first, zoom-and-filter,
detail on demand) [15]. We use a permutation matrix view to
show an overview. Dynamic queries, manual selections, and
ranking of sets allow users to narrow down to two or three sets to
have an easy-to-understand diagram. However, even with three
sets, Venn diagrams still suffer from the two inconsistencies
explained above. Thus, we propose a new diagram named Fairy
diagram shown in Figure 5. A Fairy diagram does not contain any
invalid intersection areas and all areas are accurately size-coded

by the number of elements in regions. It looks like a roulette
wheel, where each set is represented as a fan.

A B A∩B

(a) Two Sets

A A∩B A∩B∩C

(b) Three Sets

Figure 5. Fairy Diagram

For two sets A and B, a circle represents the union)(BA∪ .
The center angle of the fan for A is calculated as follows.

)(
)(2
BAn

An
A ∪

×= πθ ,

where)(An is the cardinality of set A. The center angle of the fan
for B is calculated in the same way. If the intersection)(BA∩ is
not empty, the two fans for A and B overlap. The center angle for
the overlapping fan is calculated as follows.

)(
)(2)(BAn

BAn
BA ∪

∩
×=∩ πθ

Therefore, all regions split by the fans of the sets A and B are
accurately size-coded.

For three sets A, B and C, a circle represents the union
)(CBA ∪∪ . The intersection)(CBA ∩∩ is represented as a

center circle. If the outer circle has the radius of R, the radius of
the center circle (r) is calculated as follows.

R
CBAn
CBAnr

R
r

CBAn
CBAn

×
∪∪
∩∩

=∴=
∪∪
∩∩

)(
)(

)(
)(

2

2

π
π

Thus, the area of the center circle for the set)(CBA ∩∩ is
exactly proportional to the cardinality of)(CBA ∩∩ . A
doughnut-shaped region between the center and outer circles
represents the set))()((CBACBA ∩∩−∪∪ . In the
doughnut-shaped region, there are three doughnut segments for
the three sets)(CBAA ∩∩− ,)(CBAB ∩∩− , and

)(CBAC ∩∩− . Each doughnut segment has a center angle in
proportion to the cardinality of the corresponding set. The center
angle of the doughnut segment for the set))((CBAA ∩∩− is
calculated as follows.

)()(
)()(2))((CBAnCBAn

CBAnAn
CBAA ∩∩−∪∪

∩∩−
×=∩∩− πθ

Thus, we can accurately size-code all regions split by the center
and outer circles and three doughnut segments.

While Fairy diagrams have advantages such as no
inconsistencies and accurate size-coding as shown above, there
are some problems with this approach. For example, circles and
doughnut-shape regions are, in theory, drawn within a circle and a
part of some outer arcs can overlap each other. Thus, sometimes
it is difficult to know the exact bounds of a region. This problem

A B

C

A B

C

can be attenuated by drawing region boundaries with a tiny
displacement as shown in Figure 5.

3.3 Ordering Sets and Elements
The ordering of columns and rows significantly influences the

pattern of a permutation matrix. Generally, the goal of reordering
in a permutation matrix is to move significant cells to the diagonal
of the matrix [7]. Since this is not eligible in our permutation
matrix for set concordance visualization, we propose three
different ordering methods. First, we suggest Minimum-Cost
Spanning Tree (MST) ordering, where elements of similar
membership are placed close to each other. To apply Prim’s
algorithm [2], one of the MST construction algorithms, each
element is represented as a vertex and the relationship between
every pair of elements is represented as an edge whose cost is
inversely proportional to how similar their memberships are. The
cost between two elements is calculated as follows.

sets) all of (#
) and both with sets of (#1),(nm

nm
eeeeCost −=

As the number of sets that have both em and en increases, the
cost becomes smaller (i.e., two elements are more similar). After
calculating costs of every pair of elements, Prim’s algorithm is
used to build a minimum cost spanning tree. The vertex
corresponding to an element that belongs to the most sets is
served as the start vertex. Next vertex to be added is the vertex
that is not in the current spanning tree and is closest to some
vertex in the tree. According to the sequence that vertices are
added in the algorithm, the corresponding elements are ordered.

Sets are ordered in the same way as elements except for the cost
function, which is defined as follows.

)(
)(

1),(
ji

ji
ji SSn

SSn
SSCost

∪

∩
−=

Since MST ordering of sets and elements significantly improve
the permutation matrix, concordance among sets and even among
elements can be examined more efficiently.

While MST ordering helps users identify similar elements and
sets, more ordering methods are useful to support other tasks such
as finding a specific element or the biggest set. For example, it is
easier to find an element when elements are in alphabetical order.
We provide three additional ordering methods for elements:
move a column to the right end, order by name, and order by the
number of memberships; and two more for sets: order by name
and cardinality.

4 CONSET INTERFACE
We developed a visualization tool named ConSet by applying

design ideas described in the previous section. ConSet enables
users to examine the concordance of sets visually and
interactively. ConSet consists of three views; Permutation Matrix,
Dynamic Control, and Diagram Ordering views (Figure 1). The
Permutation Matrix view shows an overview of all the visible sets.
The Dynamic Control view on the right contains the sets list, the
diagram area and the filter controls. The Diagram Ordering view
at the bottom has the ranked diagrams area and the elements list.

4.1.1 Easy Access of Sets and Elements
ConSet, by default, rearranges the sets by the MST ordering.

Since this places sets with more common elements closer to each
other, users can easily find similar sets. In addition, the sets can
also be ordered by their name and cardinality, which is available
on the sets list in the Dynamic Control view.

ConSet also provides four element re-ordering methods. When
users right-click the mouse on a column header, a pop-up menu

for element re-ordering shows up. Selecting a menu item, users
can move elements to the right end of the column. This enables
users to easily compare several elements of interest by putting
them side by side and right next to the set names. Similar to sets,
elements can also be sorted by three criteria; alphabetically, by the
number of memberships, and by MST ordering.

When users move the mouse over a column header of an
element, ConSet highlights the corresponding column with a
greenish-gray rectangle. In addition, the names of sets that do not
contain that element are grayed out. This helps users identify all
the sets that an element belongs to. The name of the element is
also shown in the elements list in the Diagram Ordering view
along with their membership information. If the column is
aggregated, the names of all the aggregated elements are shown.

Similarly, if users move the mouse over a set name, the
corresponding row is highlighted with a rectangle in the set’s own
color. The names of elements that do not belong to the selected
set are grayed out. The names of all the elements of the
highlighted set come in the elements list. If users move the
mouse over a gray-filled cell C(i, j) in the Permutation Matrix
view, the cell is highlighted by a red rectangle with the j-th
element’s name highlighted in red and the i-th set’s name
underlined in red. The name of the j-th element and the names of
its aggregated, if any, elements are shown in the elements list.

4.1.2 Dynamic Filtering of Sets and Elements
ConSet, by default, shows the names of all the sets in the sets

list in the Dynamic Control view. It allows users to change the
visibility of sets in the Permutation Matrix view. For example, if
users check (or uncheck) a check box right before a set name in
the sets list, ConSet shows (or hides) the set in the Permutation
Matrix view. This enables users to identify similar ones among
the sets of their interest. For example, the number of sets was
reduced from 21 (Figure 6a) to 10 (Figure 6b) when we hid the
sets whose cardinality is less than 30. The aggregation of
elements is based on their memberships to the visible sets, not to
all the sets. So, whenever the visibility of sets changes, ConSet
re-computes aggregation.

ConSet also enables users to filter elements to be shown in the
Permutation Matrix view. For example, the “Filter elements to
show” slider control with a value t filters to show only elements
that belong to at least t sets. Filtered elements or sets can either
be removed from or be grayed out in the Permutation Matrix view.
The number of elements was further reduced from 133 (Figure 6b)
to 24 (Figure 6c) when we filtered out the elements that do not
belong to at least 5 sets.

4.1.3 Showing Relationships between Sets
ConSet visualizes the relationship of two or three sets in the

diagram area in the Dynamic Control view. Users can add up to
three sets into the diagram area from the sets list. When users
select a set in the sets list, the corresponding set is highlighted in
the Permutation Matrix view while the names of all the elements
of the selected set are shown in the elements list in the Diagram
Ordering view. When they click the “Add” button at the bottom
of the sets list, selected sets are added to the diagram area. The
names of added sets are displayed in the upper window of the
diagram area and a diagram of their relationship is drawn in the
lower window of the diagram area. Users can remove sets from
the diagram area by clicking the “Delete” button after selecting
them from the upper window. They can also clear the diagram
area by clicking the “Clear” button.

When users move the mouse over a set in a Venn diagram or a
Fairy diagram, a tooltip appears to show its name and cardinality.
At the same time, the set is highlighted in the Permutation Matrix
view and the elements information in the set is shown in the

elements list. When users move the mouse over a region for an
intersection, the elements in the intersection are highlighted in the
Permutation Matrix view and their information appears in the
elements list. If users click on a region in a diagram, the
corresponding region is selected and the selection is toggled on
another click. This enables users to examine all elements in the
elements list when scrolling is required.

(a) Original data

(b) Filtering out sets whose cardinality is less than 30 from (a)

(c) Filtering out elements that belong to less than 5 sets from (b)

Figure 6. Sets and Elements Filtering with Human Muscular
Dystrophy Dataset of 21 sets and 163 elements.

4.1.4 Diagram Ordering using the Rank-by-Feature
Framework

We applied the Rank-by-Feature Framework [14] to ConSet.
The Diagram Ordering view shows the top 10 diagrams ranked by
some criteria. From the “Domain” combo-box at the top left
corner of the view, users can select the ordering of diagrams
between two or among three sets. Two ranking criteria are
provided in the “Ranking criteria” combo-box. The criterion
“intersection size” ranks diagrams by the size of the intersection,
and the criterion “overlap metric” orders diagrams by the ratio of
the intersection set size to the union set size. This helps users
easily capture a collection of important sets that meets the ranking
criteria. Users can see each of the top 10 ranked diagrams in two
ways; Venn diagram and Fairy diagram. They work the same as
in the diagram area of the Dynamic Control view.

5 OTHER APPLICATION EXAMPLES
We extended ConSet to help users compare clustering results

by adding special functionality. An output of a clustering
algorithm is in most cases a group of disjoint clusters(=sets), each
of which is a set of elements. ConSet arranges sets forming
several groups where a set from one clustering result is put
together with one or more similar sets from the other clustering
result. ConSet arranges these groups row by row and adds a
special row (Cluster Concordance) right before the first group,
where all matching elements within a group are projected and

color coded by the ratio of the cardinalities of two matching sets.
This color coding is intended to give proper penalty to the cases
where one big cluster from one clustering result overlaps with
several small clusters from the other clustering result, which is not
so interesting concordance.

Figure 7 and Figure 8 visualize the concordance between the
hierarchical clustering result and K-means clustering result with
Euclidean distance measure with 77 breakfast cereals data and
with Census data of 224 US eastern counties near MD,
respectively. Many dense red cells at the Cluster Concordance
row in Figure 7 indicate that those two results are very concordant
with each other despite an outlier, “Multigrain_Cheerios,” which
does not belong to any matching clusters pair. On the other hand,
Figure 8 shows that, overall, the two clustering results for the
census data set are not so concordant even though there are
several strong matching counties groups with dense red cells on
the Cluster Concordance row.

Figure 7. Clustering Results Comparison (HCLUSTER:
Hierarchical Clustering, KCLUSTER: K-means Clustering) with
77 breakfast cereals data

Figure 8. Clustering Results Comparison (HCLUSTER:
Hierarchical Clustering, KCLUSTER: K-means Clustering) with
Census data of 224 US eastern counties near MD

The same approach can also help users identify statistical
associations between categorical variables or between a clustering
result and a categorical variable. Users can partition a dataset into
disjoint sets according to a categorical variable. For example, the
census data for all US counties can be partitioned into disjoint sets
according to categorical variables, such as “poverty level” and
“education level.” Since an integer- or real-type variable can be
converted to a categorical variable by a simple binning, ConSet
can visualize statistical associations between a categorical
variable and an integer- or real-type variable.

6 CONSET EVALUATION
We conducted a qualitative study to understand how well

ConSet works and to identify any usability issues. We originally
wanted to compare three approaches – Treemap layout [5] (shown
in Figure 9), permutation matrix, and VennMaster. However,
from our own experience with ConSet, we suspected that Treemap
layout approach would work best only for identifying the biggest
sets. Since this task can be easily completed by other approaches
with a sorting feature, we decided to compare ConSet only with
permutation matrix to VennMaster. We measured the time to
complete each task using a stopwatch and counted the number of
wrong answers, time-outs, and give-ups. The experimenter also
took notes on usability issues participants experienced during the
walk through of the system.

Figure 9. ConSet with Strip Treemap Layout. Each box
represents a set, which has a unique border color. Set name and
its cardinality are shown at the top left corner of each box. The
box size is proportional to the number of elements in the set.

6.1 Data and Participants
We used two similar datasets exported from GoMiner for this

user study. One dataset had 16 sets 31 elements and the other had
23 sets and 28 elements. ConSet is implemented to import the
pair of GoMiner’s category summary file and gene summary by
category file. From the pair of files, ConSet builds a number of
sets of genes, each of which is a gene ontology category.

We recruited 8 biologists (5 males and 3 females) including 1
mail pilot subject. The pilot data is not included in the reporting
of the experimental task data because the interfaces and tasks
were improved after the pilot.

6.2 Procedure and Tasks
Each participant used both interfaces; interface order was

counterbalanced. Participants first received training on the first

interface and were allowed to play with the program to learn the
basic features. They were allowed to ask questions during the
training. For each interface, participants spent about 10 minutes
on average. Next, they were asked to conduct 9 tasks as quickly
as they were possible. Each task had a 3-minute time limit and
participants were allowed to give up a task at any time. After a
short break, the same procedure was repeated with the second
interface. Preferences, comments, and suggestions were collected
during debriefing. Each session lasted 38 minutes on average.
The list of tasks follows.

1. What are the top three biggest sets?
2. What is the size of the biggest set?
3. What are the top three elements that belong to the most sets?
4. Name the sets that have a given element.
5. Name the sets that have two given elements.
6. What are three sets that share the most elements?
7. Name the elements in the intersection of two sets?
8. Name the elements in the intersection of three sets?
9. Name the elements that are in A but not in B.

6.3 Results

6.3.1 Task times, Error, and Preferences
Out of 63 questions across participants, while there were only 6

time outs and 5 incorrect answers with ConSet, there were 30 time
outs and 10 incorrect answers with VennMaster. For task 6, two
participants forgot how to use diagram ordering in ConSet. Two
participants were not able to complete for task 9 and one for task
1 and 5. Task completion times for time outs were not included in
the task time analysis.

As can be seen from Figure 10, participants completed most
tasks faster with ConSet. In fact, with VennMaster no one could
complete task 3, 4, and 5 within the 3 minute time limit. However,
7, 6, and 5 participants answered correctly with ConSet for task 3,
4, and 5 respectively. We believe this is because ConSet provides
good support for showing the names of elements.

Average Completion Times

0

20

40

60

80

100

120

140

160

1 2 3 4 5 6 7 8 9

Task

Ti
m

e
(s

ec
on

ds
)

ConSet VennMaster

Figure 10. Average task completion times

When asked which interface they preferred overall, 6 out of 7
participants chose ConSet over VennMaster. The reasons from
participants include “I was able to complete all tasks,” “I like
interactive highlighting,” “more user-friendly,” and so on. One
participant who preferred VennMaster said that it is simple and
she got used to it. She also said that she might change her
preference if she gets comfortable with the Permutation Matrix
view by using it more. And one other participant who preferred
ConSet said that more training time is needed to get used to
ConSet.

6.3.2 Usability Issues
We observed several usability issues in ConSet that needed to

be addressed. There was clear user frustration around the selection
of sets in the Dynamic Control view on the right. Three
participants had a difficulty choosing sets to show in the diagram
view. Even though the check box in front of the set name is to
filter sets to show in the main Permutation Matrix view, some of
the participants thought that the checked sets would be added into
the diagram area.

Another issue is that there is no way to select the difference
area (A – B). This is because single click behaves differently
depending on where users select; click on the intersection area
selects the intersection but click on the difference selects the
entire set. To address this issue, we can introduce more consistent
interaction style to select areas in the Venn and Fairy diagrams.
First, single click selects the smallest containing area. So, if users
click on the difference or intersection area, the difference or
intersection will be selected. Second, users can combine two
areas by clicking an area with the control key. Lastly, double
click on an area selects all the sets that contain the area. So, users
can select an entire set by double clicking on the difference area.

There is no efficient way to find elements/sets with their name.
Even though ConSet enables users to sort elements/sets by their
name, four participants did not use the sort feature and
sequentially scan element names for task 4. This would be a
bigger problem when the number of elements is large. We can
address this issue by providing a simple search on the element and
set name.

The familiarity with the traditional Venn diagram makes it hard
for users to utilize a new Fairy diagram. In addition, the task used
in the study was easy enough to be completed with the Venn
diagrams. However, we believe that instantaneous highlighting of
the area on mouse-over along with informative tooltip text helped
users understand how to interpret the diagram. It was
encouraging to observe some users utilized the Fairy diagram
after a short tutorial.

7 CONCLUSION
We developed a general set visualization tool called ConSet

built upon the permutation matrix, which supports important tasks
for concordance analysis of sets and elements. ConSet shows an
overview of relationships among sets and helps users efficiently
perform fundamental set operations such as intersection and
difference. ConSet provides the top 10 collections of sets that are
most similar, measured either by the number of common items or
by the overlap metric. ConSet also enables users to aggregate and
filter sets/elements, which improves the scalability.

Our Fairy diagram addresses the two inconsistency problems
that may incur in Venn diagrams: missing valid intersection areas
and showing invalid intersection areas. It also provides exact size
coding of all areas. And intersection of three sets is clearly
visualized as a center circle. Permutation matrix display makes it
possible to avoid the problem that too many sets overlap in the
general Venn diagrams. Another strength of the permutation
matrix is that it provides better support for showing the names of
elements. ConSet performed much better when tasks required
users to access information through elements.

We conducted a qualitative user study to evaluate how our tool
works in comparison with a traditional set visualization tool based
on a Venn diagram. We found that users performed better with
ConSet than with the traditional interface for many tasks and most
users preferred ConSet.

Acknowledgement: We would like to thank Catherine Plaisant
and Aaron Clamage for their thoughtful comments. This work

was supported by Department of Defense W81XWH-04-01-0081
and NIH 1P30HD40677-01 (MRDDRC Genetics Core).

REFERERNCE
[1] J. Abello and J. Korn, "MGV: A System for Visualizing Massive

Multigraphs," IEEE Transactions on Visualization and Computer
Graphics, vol. 8, pp. 21-38, 2002.

[2] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, Data Structures and
Algorithms. Reading, MA: Addison-Wesley, 1983.

[3] M. Baldonado, A. Woodruff, and A. Kuchinsky, "Guidelines for Using
Multiple Views in Information Visualization," in Proceedings of
Advanced Visual Interfaces, pp. 110-119, 2000.

[4] R. A. Becker and W. S. Cleveland, "Brushing Scatterplots,"
Technometrics, vol. 29, pp. 127-142, 1987.

[5] B. B. Bederson, B. Shneiderman, and M. Wattenberg, "Ordered and
Quantum Treemaps: Making Effective Use of 2D Space to Display
Hierarchies," ACM Transactions on Graphics, vol. 21, pp. 833-854,
2002.

[6] J. Bertin, Graphics and Graphic Information-Processing. Berlin; New
York: de Gruyter, 1981.

[7] S. K. Card, J. D. Mackinlay, and B. Shneiderman, Readings in
Information Visualization: Using Vision to Think. San Francisco, CA:
Morgan-Kaufmann, 1999.

[8] G. W. Furnas, "Generalized Fisheye Views," in Proceedings of the
Conference on Human Factors in Computing Systems, pp. 18-23, 1986.

[9] M. Ghoniem, N. Jussien, and J.-D. Fekete, "VISEXP: Visualizing
Constraint Solver Dynamics Using Explanations," in Proceedings of
the Seventh International Florida Artificial Intelligence Research
Society Conference, 2004.

[10] H. A. Kestler, A. Muller, T. M. Gress, and M. Buchholz,
"Generalized Venn Diagrams: A New Method of Visualizing Complex
Genetic Set Relations," Bioinformatics, vol. 21, pp. 1592-1595, 2005.

[11] R. Kincaid, "VistaClara: An Interactive Visualization for Exploratory
Analysis of DNA Microarrays," in Proceedings of the Symposium on
Applied Computing, pp. 167-174, 2004.

[12] T. Munzner, F. Guimbretiere, S. Tasiran, L. Zhang, and Y. Zhou,
"TreeJuxtaposer: Scalable Tree Comparison using Focus+Context with
Guaranteed Visibility," ACM Transactions on Graphics, vol. 22, pp.
453-462, 2003.

[13] J. Seo and B. Shneiderman, "Interactively Exploring Hierarchical
Clustering Results," Computer, vol. 35, pp. 80-86, 2002.

[14] J. Seo and B. Shneiderman, "A Rank-by-Feature Framework for
Interactive Exploration of Multidimensional Data," Information
Visualization, vol. 4, pp. 99-113, 2005.

[15] B. Shneiderman, "The Eyes Have It: A Task by Data Type Taxonomy
for Information Visualizations," in Proceedings of IEEE Symposium
on Visual Languages, pp. 336-343, 1996.

[16] A. Spoerri, "InfoCrystal: a Visual Tool for Information Retrieval," in
Proceedings of the IEEE Visualization Conference, pp. 150-157, 1993.

[17] A. Spoerri, "MetaCrystal: Visualizing the Degree of Overlap Between
Search Engines," in Proceedings of the ACM International World
Wide Web Conference, pp. 378-379, 2004.

[18] F. van Ham, "Using Multilevel Call Matrices in Large Software
Projects," in Proceedings of IEEE Symposium on Information
Visualization, pp. 227-232, 2003.

[19] B. Zeeberg, W. Feng, G. Wang, M. Wang, A. Fojo, M. Sunshine, S.
Narasimhan, D. Kane, W. Reinhold, S. Lababidi, K. Bussey, J. Riss, J.
Barrett, and J. Weinstein, "GoMiner: A Resource for Biological
Interpretation of Genomic and Proteomic Data," Genome Biology, vol.
4, pp. R28, 2003.

