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ABSTRACT 
When there is more than one perspective to interpret a dataset, 
concordance (or discordance) between the result sets from the 
different perspectives plays an important role in getting refined 
results.  For example, several clustering algorithms generate 
different results for the same input.  To get useful insights, users 
need to combine different perspectives by checking concordance 
between those results.  In this paper, we present an interactive 
visualization tool called ConSet, where users can effectively 
examine multiple sets at once.  It uses permutation matrix 
visualization to enable users to easily identify similar sets.  In 
addition to a standard Venn diagram, we introduce a Fairy 
diagram that allows users to compare two or three sets without 
inconsistencies.  We conducted a qualitative user study to evaluate 
how our tool works in comparison with a traditional set 
visualization tool based on a Venn diagram.  We found that users 
performed better with ConSet than with the traditional interface 
for many tasks and most users preferred ConSet. 

 
CR Categories and Subject Descriptors: I.6.9.c Information 

visualization, H.5.2 User Interfaces, H.5.2.f Graphical user 
interfaces, H.1.2.a Human factors, H.2.8.c Data and knowledge 
visualization, H.2.8.h Interactive data exploration and discovery 
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1 INTRODUCTION 
When there is more than one way to approach a problem, it can 

be useful to combine multiple perspectives.  Visualization of the 
concordance or discordance of those perspectives can help 
integrate important knowledge.  Scientific problem solving 
usually involves concordance analysis among several perspectives.  
This includes problems in information retrieval, bioinformatics, 
data mining, and so on.  For example, Google and MSN search 
often return different search results.  Users could have a more 
judicious view on the search term by comparing those results.  
Suppose scientists run an experiment and there are several semi-
standard methods to acquire numerical values from a 
measurement device.  The choice of a data acquisition method can 
profoundly change the resulting data interpretation.  Without 
checking the concordance of different acquisition methods, 
scientists might have high false positive rates.  For example, 

molecular biologists have to use a “probe set signal algorithm” to 
acquire signal values of genes from Affymetrix GeneChips.  They 
get different sets of sufficiently powered genes in the subsequent 
power analysis depending on the signal algorithm used.  The 
concordance of the results sets from different signal algorithms 
can be checked using set operations in connection with various 
concordance measures.  This enables biologists to identify 
concordant/discordant genes. Therefore, they can sometimes 
significantly reduce the false positive rates by simply checking the 
concordance of the results of different algorithms. 

Similar problems occur afterwards.  If the biologists decide to 
use clustering algorithms to identify important patterns in the 
acquired dataset, they have to decide what kind of clustering 
algorithms to use.  Resorting to only one clustering algorithm 
could bias the result since different algorithms might come up 
with completely different patterns depending on how the 
algorithm detects clusters.  Since most clustering algorithms 
generate disjoint sets(=clusters), there are no similar sets in the 
result of one clustering algorithm.  If we combine all clusters from 
two clustering algorithms, concordance between those algorithms 
can be checked by seeing how many sets are similar to each other. 

Another example would be when one data element can be 
classified into multiple categories.  For example, a gene product 
can be related to many gene ontology terms, and a web resource 
can be mapped to multiple categories in the Open Directory 
(www.dmoz.org).  Identifying the elements classified into 
different categories helps users unveil the unknown features of the 
element and of the dataset containing that element. 

In existing information visualization tools, brushing and linking 
techniques [4] were used to show some concordance.  
Coordinated highlighting of many views for the same dataset can 
reveal intersection of sets.  For example, hierarchical clustering 
results comparison using paired dendrogram views or phylogenic 
trees comparison using paired tree views can be thought of as 
showing concordance of two perspectives, or a group of terminal 
nodes.  Graph visualization can also be a candidate since we can 
represent each set as a node and the relationship (similarity) of 
sets as links.  While graph drawing techniques combined with 
clustering approach can show an overview of relationships, such 
as similarities/dissimilarities among sets, it is not easy to 
incorporate intuitive ways to support important set operations.  

We thought that a more general set visualization tool was 
necessary to support important tasks for concordance analysis of 
sets: (1) to show an overview of relationships between sets, (2) to 
aggregate and filter sets/elements according to users’ interests, (3) 
to efficiently perform fundamental set operations such as 
intersection and difference, and (4) to generate deeper insight into 
the original problem from the concordance visualization. 

In this paper, we present intuitive interfaces and interactions for 
set concordance analysis built upon existing visualization 
techniques such as permutation matrix [6].  The information 
visualization mantra (overview first, zoom and filter, detail on 
demand) is the underlying guideline of our ConSet (Figure 1) 
design.
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Figure 1. ConSet with 16 sets and 31 elements.  The Permutation Matrix view shows an overview of the relationships among sets and 
elements.  The Dynamic Control view on the right enables users to filter sets and elements.  It also allows users to select two or three sets to 
show a diagram.  The Diagram Ordering view at the bottom shows the top 10 diagrams of two or three sets. 

Users can see an overview of relationships among sets and 
elements in a permutation matrix.  Aggregation of elements with 
the same membership and filtering by dynamic query devices 
enable users to narrow down to a handful of important sets and 
elements.  Users can also see the relationships between two or 
among three sets in the conventional Venn diagram or our novel 
Fairy diagram.  We also ran a qualitative user study in comparison 
with VennMaster (shown in Figure 2), a set visualization tool that 
uses a generalized Venn diagram.  The user study suggested that 
ConSet supports more tasks with less errors compared to 
VennMaster.  The user study also enabled us to identify several 
ways to improve the interface and design of ConSet. 

2 RELATED WORK 
Brushing and linking, powerful information visualization 

techniques, can be used to reveal concordances between sets.  
Coordinated multiple views provide users with ways to 
understand relationships between datasets behind the views [3].  
HCE shows two dendrograms at once, highlights the 
corresponding terminal nodes in the two dendrograms, and shows 
the mapping with connecting lines when users click on a branch 
of a dendrogram [13].  TreeJuxtaposer [12] also applies the 
brushing and linking techniques as well as Focus+Context 
techniques [8] to compare two large phylogenic trees with 
guaranteed visibility.  Users can see the discordance of the two 
hierarchical structures by examining the highlighting and/or 
connections.  Sometimes, the main purpose of selecting an 
internal node on a tree visualization is to select a set of terminal 
nodes reachable from the internal node.  This problem can be 

generalized as a set visualization and the main task can be 
concordance checking among sets. 

 
Figure 2. VennMaster with the same dataset as in Figure 1.  We 
manually placed labels of some sets using VennMaster. 



MetaCrystal [17] is a visualization tool based on the InfoCrystal 
layout [16] that helps users fuse together search results from 
different search engines.  It utilizes various visual features such as 
shape, size, color, proximity, and orientation to show the degree 
of overlap among different search results.  Overlapping search 
results are expected to provide more comprehensive, relevant, and 
effective view on the subjects delivered by the search terms.  Here 
again, users’ tasks performed with MetaCrystal can also be 
thought of as concordance checking among sets (i.e. search results 
from different search engines). 

When it comes to set visualization, Venn diagrams are the de 
facto standard.  A Venn diagram is a special case of an Euler 
diagram.  Venn diagrams should have areas to represent all 
possible combinations of sets regardless of whether that area is 
actually empty or not.  This restriction is loosened in Euler 
diagrams, where empty areas do not have to appear.  These 
diagrams are applied to various problems in bioinformatics, 
information retrieval, and information visualization.  New 
applications sometimes require some additional restrictions on 
how to draw Euler diagrams such as the one that the shape of 
contour should be a circle and more information such as 
cardinality is coded as size (area) and/or color of a contour.  It is 
important to mention that the terms Venn diagram and Euler 
diagram are often confused.  Euler diagrams, where each contour 
is a circle, are often called Venn diagrams, even though 
theoretically this is not correct.  In this paper, we follow this 
general perception of Euler diagram and use the term Venn 
diagram for the Euler diagram with the constraint. 

VennMaster is to our knowledge the only visualization tool that 
shows an arbitrary number of sets in Venn diagrams, where each 
set is represented as a polygon with a user-defined number of 
edges [10]. When there are enough edges, each set appears almost 
like a circle.  The size of each polygon is proportional to the 
cardinality of the corresponding set.  All properly size-coded 
polygons are placed in such a way that the size of each 
intersection area is also proportional to the number of elements in 
the intersection. Since the optimal size coding and layout 
determination are too expensive to be solved in a pure analytical 
way, they resort to genetic algorithm techniques.  

VennMaster was developed to improve users’ interpretation and 
visualization of the output of a famous bioinformatics tool, or 
GoMiner.  GoMiner enables researchers to query the gene 
ontology database (www.geneontology.org; comprehensive 
annotation of genes or gene products) for associated categories in 
a cellular context [19].  Since one gene can be associated with 
more than one gene ontology category, the interpretation of such 
complex associations is a challenging task.  VennMaster 
translated this problem into a set relationship visualization 
problem (i.e., treating a gene ontology category as a set and a 
gene product as an element).  Since the approach was very useful, 
VennMaster was integrated into GoMiner. 

While it is useful to have one more visualization approach 
adopted to a well-known bioinformatics tool, this approach still 
has a lot of drawbacks from an information visualization 
perspective.  First of all, there are three kinds of inconsistencies in 
the VennMaster visualization: (1) it is not guaranteed that all 
possible intersections are visible in the generalized Venn diagram 
display, so those so-called inconsistent intersections are shown in 
a separate list view, (2) since it uses regular convex polygons, 
there will be intersections of polygons where no element is 
mapped, which will be explained later in the next section, and (3) 
the resulting layout of diagrams can be different in each run of the 
program because it uses a genetic algorithm to optimize the layout. 

A matrix-based representation was often used to show 
relationships between items by using both rows and columns to 
represent items and values in each cell to show the relationship. 

For example, Abello and Korn presented matrix and color map 
based techniques to visualize phone calls made between states [1]. 
Van Ham used multilevel call matrices in the management of 
large software projects [18]. Kincaid applied an extended 
permutation matrix to the task of exploratory data analysis of 
multi-experiment microarray studies [11].  Ghoniem et al. used 
adjacency matrices to interactively visualize and explore relations 
between constraints and variables in constraint problems [9]. 

We thought that information visualization techniques could 
improve users’ experience in interpreting such complex set 
relationships.  It can be accomplished without the overburden of 
drawing a lot of circles in proper scale and location.  Furthermore, 
we can maintain the familiarity of simple diagrams such as Venn 
diagrams.  We applied the permutation matrix display to set 
concordance visualization to provide a better overview of set 
concordance without inconsistencies mentioned above.  
Interactive selection and filtering methods enable users to narrow 
down to a handful number of sets.  The detail is shown as a 
general Venn diagram or our new Fairy diagram after users select 
two or three sets. 

3 VISUALIZING CONCORDANCE OF SETS 

3.1 Untangling Overlaps 
While significant overlaps of many sets in the general Venn 

diagram visualization tool clearly shows high similarities of sets, 
those overlaps make it difficult to see the details on memberships 
of elements to sets.  In addition, non-overlapped areas are hard to 
select when overlaps cover most of the elements.  We thought that 
a permutation matrix, a proven multidimensional visual structure, 
could help untangle overlaps while carrying similarity information.  
For the set concordance visualization, each column represents an 
element and each row represents a set (Figure 3).  If an element ej 
belongs to a set Si, we fill the cell C(i, j) with gray, otherwise C(i, 
j) is empty.  Each set is given a distinctive color and the set name 
is displayed at the end of its corresponding row in its own color.   

 
Figure 3. Permutation matrix view for set concordance 
visualization shows the concordance of three power analysis 
results by three probe set signal algorithms with 7643 genes.  
Aggregation drastically reduced the number of columns from 
7643 to 7.  The degree of aggregation is shown as histograms in 
log scale. 

We show information regarding elements at top three rows, 
which we call “column header.”  The column header includes, 
from top to bottom, Element Name, Membership, and Degree of 
Aggregation, each in a separate row.  The membership row shows 
pie chart-like glyphs, where each pie represents a set to which the 
corresponding element belongs and is filled with the color of the 
set.  With the color-coded membership information, users can 
easily grasp how many sets an element belongs to. 

Since all elements are visible unlike Venn diagram 
visualizations, it is necessary to implement a method to 
accommodate a large number of columns.  It is reasonable to 



assume that many elements would share the same membership, 
when the number of elements is significantly larger than the 
number of sets.  Thus, by aggregating those elements into a single 
column, it is possible not only to save a significant amount of 
screen space but also to have a clear overview in a compact form.  
When several elements are aggregated to a single column, only 
the representative element is shown in the permutation matrix, and 
other aggregated elements are hidden.  The name of the column is 
the representative element that comes first in alphabetical order.  
The number of aggregated elements is given in parentheses at the 
end of the representative element’s name.  In addition, the number 
of aggregated elements is visualized as a blue bar in the Degree of 
Aggregation row.  The height of each bar is proportional to the 
number of the aggregated elements, and users can show the bars 
in log scale.  The intensity of a cell in the permutation matrix is 
also proportional to the number of aggregated elements. 

3.2 Avoiding Inconsistencies  
Venn diagrams are widely used to represent set relationships.  

While they are intuitive and familiar to users, Venn diagrams have 
the drawback of inconsistencies: missing valid intersection areas 
and showing invalid intersection areas.  First, let’s assume 
relationships among three sets A, B and C, where A and B have 
some common elements and C has elements in )( BA − and 

)( AB − but not in )( BA∩ .  If we represent this relationship in a 
Venn diagram, an empty set )( φ=∩∩ CBA  is shown as a 
region in gray (Figure 4a).  If we loosen the constraint that each 
set should be a circle, this relationship can be represented in a 
Venn diagram without such inconsistency (Figure 4b).  Then, 
however, the diagram loses the advantage that users are used to it.  
The other inconsistency is incurred by the fact that it is very hard 
to achieve a valid Venn diagram when the number of sets is large.  
Furthermore, it is almost impossible to accurately size-code all 
possible zones.  Thus, it is common that some valid intersection 
areas are missing in Venn diagrams especially when many sets 
have intersections with many others.   

 
 

(a) Venn Diagram with 
inconsistency 

(b) Euler Diagram without 
inconsistency 

Figure 4. Inconsistency of Venn Diagrams. (a) and (b) show the 
same sets relationships.  There is no element in the gray area at (a), 
but there is no way to avoid this inconsistency in Venn Diagrams.  
By allowing C to have a concave contour, it is possible to avoid 
the inconsistency in Euler Diagrams (b). 

To maintain users’ familiarity with Venn diagrams while 
avoiding the two inconsistencies, we suggest applying the 
information visualization mantra (overview first, zoom-and-filter, 
detail on demand) [15].  We use a permutation matrix view to 
show an overview.  Dynamic queries, manual selections, and 
ranking of sets allow users to narrow down to two or three sets to 
have an easy-to-understand diagram.  However, even with three 
sets, Venn diagrams still suffer from the two inconsistencies 
explained above.  Thus, we propose a new diagram named Fairy 
diagram shown in Figure 5.  A Fairy diagram does not contain any 
invalid intersection areas and all areas are accurately size-coded 

by the number of elements in regions. It looks like a roulette 
wheel, where each set is represented as a fan.   

   
A B A∩B 

(a) Two Sets 

   
A A∩B A∩B∩C 

(b) Three Sets 

Figure 5. Fairy Diagram 

For two sets A and B, a circle represents the union )( BA∪ . 
The center angle of the fan for A is calculated as follows. 

)(
)(2
BAn

An
A ∪

×= πθ , 

where )(An  is the cardinality of set A.  The center angle of the fan 
for B is calculated in the same way.  If the intersection )( BA∩ is 
not empty, the two fans for A and B overlap.  The center angle for 
the overlapping fan is calculated as follows. 

)(
)(2)( BAn

BAn
BA ∪

∩
×=∩ πθ  

Therefore, all regions split by the fans of the sets A and B are 
accurately size-coded. 

For three sets A, B and C, a circle represents the union 
)( CBA ∪∪ .  The intersection )( CBA ∩∩ is represented as a 

center circle.  If the outer circle has the radius of R, the radius of 
the center circle (r) is calculated as follows. 

R
CBAn
CBAnr

R
r

CBAn
CBAn

×
∪∪
∩∩

=∴=
∪∪
∩∩

)(
)(       

)(
)(

2

2

π
π  

Thus, the area of the center circle for the set )( CBA ∩∩ is 
exactly proportional to the cardinality of )( CBA ∩∩ .  A 
doughnut-shaped region between the center and outer circles 
represents the set ))()(( CBACBA ∩∩−∪∪ .  In the 
doughnut-shaped region, there are three doughnut segments for 
the three sets )( CBAA ∩∩− , )( CBAB ∩∩− , and 

)( CBAC ∩∩− .  Each doughnut segment has a center angle in 
proportion to the cardinality of the corresponding set.  The center 
angle of the doughnut segment for the set ))(( CBAA ∩∩−  is 
calculated as follows. 

)()(
)()(2))(( CBAnCBAn

CBAnAn
CBAA ∩∩−∪∪

∩∩−
×=∩∩− πθ  

Thus, we can accurately size-code all regions split by the center 
and outer circles and three doughnut segments.  

While Fairy diagrams have advantages such as no 
inconsistencies and accurate size-coding as shown above, there 
are some problems with this approach.  For example, circles and 
doughnut-shape regions are, in theory, drawn within a circle and a 
part of some outer arcs can overlap each other.  Thus, sometimes 
it is difficult to know the exact bounds of a region.  This problem 

A B 

C 

A B 

C 



can be attenuated by drawing region boundaries with a tiny 
displacement as shown in Figure 5.  

3.3 Ordering Sets and Elements 
The ordering of columns and rows significantly influences the 

pattern of a permutation matrix.  Generally, the goal of reordering 
in a permutation matrix is to move significant cells to the diagonal 
of the matrix [7].  Since this is not eligible in our permutation 
matrix for set concordance visualization, we propose three 
different ordering methods.  First, we suggest Minimum-Cost 
Spanning Tree (MST) ordering, where elements of similar 
membership are placed close to each other.  To apply Prim’s 
algorithm [2], one of the MST construction algorithms, each 
element is represented as a vertex and the relationship between 
every pair of elements is represented as an edge whose cost is 
inversely proportional to how similar their memberships are.  The 
cost between two elements is calculated as follows.  

sets) all of (#
) and both  with sets of (#1),( nm

nm
eeeeCost −=  

As the number of sets that have both em and en increases, the 
cost becomes smaller (i.e., two elements are more similar).  After 
calculating costs of every pair of elements, Prim’s algorithm is 
used to build a minimum cost spanning tree.  The vertex 
corresponding to an element that belongs to the most sets is 
served as the start vertex.  Next vertex to be added is the vertex 
that is not in the current spanning tree and is closest to some 
vertex in the tree.  According to the sequence that vertices are 
added in the algorithm, the corresponding elements are ordered.   

Sets are ordered in the same way as elements except for the cost 
function, which is defined as follows.  

)(
)(

1),(
ji

ji
ji SSn

SSn
SSCost

∪

∩
−=  

Since MST ordering of sets and elements significantly improve 
the permutation matrix, concordance among sets and even among 
elements can be examined more efficiently.  

While MST ordering helps users identify similar elements and 
sets, more ordering methods are useful to support other tasks such 
as finding a specific element or the biggest set.  For example, it is 
easier to find an element when elements are in alphabetical order. 
We provide three additional ordering methods for elements:  
move a column to the right end, order by name, and order by the 
number of memberships; and two more for sets: order by name 
and cardinality.  

4 CONSET INTERFACE 
We developed a visualization tool named ConSet by applying 

design ideas described in the previous section.  ConSet enables 
users to examine the concordance of sets visually and 
interactively.  ConSet consists of three views; Permutation Matrix, 
Dynamic Control, and Diagram Ordering views (Figure 1).  The 
Permutation Matrix view shows an overview of all the visible sets.  
The Dynamic Control view on the right contains the sets list, the 
diagram area and the filter controls.  The Diagram Ordering view 
at the bottom has the ranked diagrams area and the elements list.  

4.1.1 Easy Access of Sets and Elements 
ConSet, by default, rearranges the sets by the MST ordering.  

Since this places sets with more common elements closer to each 
other, users can easily find similar sets.  In addition, the sets can 
also be ordered by their name and cardinality, which is available 
on the sets list in the Dynamic Control view.  

ConSet also provides four element re-ordering methods.  When 
users right-click the mouse on a column header, a pop-up menu 

for element re-ordering shows up.  Selecting a menu item, users 
can move elements to the right end of the column.  This enables 
users to easily compare several elements of interest by putting 
them side by side and right next to the set names.  Similar to sets, 
elements can also be sorted by three criteria; alphabetically, by the 
number of memberships, and by MST ordering. 

When users move the mouse over a column header of an 
element, ConSet highlights the corresponding column with a 
greenish-gray rectangle.  In addition, the names of sets that do not 
contain that element are grayed out.  This helps users identify all 
the sets that an element belongs to.  The name of the element is 
also shown in the elements list in the Diagram Ordering view 
along with their membership information.  If the column is 
aggregated, the names of all the aggregated elements are shown. 

Similarly, if users move the mouse over a set name, the 
corresponding row is highlighted with a rectangle in the set’s own 
color.  The names of elements that do not belong to the selected 
set are grayed out.  The names of all the elements of the 
highlighted set come in the elements list.   If users move the 
mouse over a gray-filled cell C(i, j) in the Permutation Matrix 
view, the cell is highlighted by a red rectangle with the j-th 
element’s name highlighted in red and the i-th set’s name 
underlined in red.  The name of the j-th element and the names of 
its aggregated, if any, elements are shown in the elements list. 

4.1.2 Dynamic Filtering of Sets and Elements 
ConSet, by default, shows the names of all the sets in the sets 

list in the Dynamic Control view.  It allows users to change the 
visibility of sets in the Permutation Matrix view.  For example, if 
users check (or uncheck) a check box right before a set name in 
the sets list, ConSet shows (or hides) the set in the Permutation 
Matrix view.  This enables users to identify similar ones among 
the sets of their interest.  For example, the number of sets was 
reduced from 21 (Figure 6a) to 10 (Figure 6b) when we hid the 
sets whose cardinality is less than 30.  The aggregation of 
elements is based on their memberships to the visible sets, not to 
all the sets.  So, whenever the visibility of sets changes, ConSet 
re-computes aggregation. 

ConSet also enables users to filter elements to be shown in the 
Permutation Matrix view.  For example, the “Filter elements to 
show” slider control with a value t filters to show only elements 
that belong to at least t sets.  Filtered elements or sets can either 
be removed from or be grayed out in the Permutation Matrix view.  
The number of elements was further reduced from 133 (Figure 6b) 
to 24 (Figure 6c) when we filtered out the elements that do not 
belong to at least 5 sets. 

4.1.3 Showing Relationships between Sets 
ConSet visualizes the relationship of two or three sets in the 

diagram area in the Dynamic Control view.  Users can add up to 
three sets into the diagram area from the sets list.  When users 
select a set in the sets list, the corresponding set is highlighted in 
the Permutation Matrix view while the names of all the elements 
of the selected set are shown in the elements list in the Diagram 
Ordering view.  When they click the “Add” button at the bottom 
of the sets list, selected sets are added to the diagram area.  The 
names of added sets are displayed in the upper window of the 
diagram area and a diagram of their relationship is drawn in the 
lower window of the diagram area.  Users can remove sets from 
the diagram area by clicking the “Delete” button after selecting 
them from the upper window.  They can also clear the diagram 
area by clicking the “Clear” button. 

When users move the mouse over a set in a Venn diagram or a 
Fairy diagram, a tooltip appears to show its name and cardinality.  
At the same time, the set is highlighted in the Permutation Matrix 
view and the elements information in the set is shown in the 



elements list.  When users move the mouse over a region for an 
intersection, the elements in the intersection are highlighted in the 
Permutation Matrix view and their information appears in the 
elements list.  If users click on a region in a diagram, the 
corresponding region is selected and the selection is toggled on 
another click.  This enables users to examine all elements in the 
elements list when scrolling is required. 

 
(a) Original data 

 
(b) Filtering out sets whose cardinality is less than 30 from (a) 

 
(c) Filtering out elements that belong to less than 5 sets from (b) 

Figure 6. Sets and Elements Filtering with Human Muscular 
Dystrophy Dataset of 21 sets and 163 elements. 

4.1.4 Diagram Ordering using the Rank-by-Feature 
Framework 

We applied the Rank-by-Feature Framework [14] to ConSet.  
The Diagram Ordering view shows the top 10 diagrams ranked by 
some criteria.  From the “Domain” combo-box at the top left 
corner of the view, users can select the ordering of diagrams 
between two or among three sets.  Two ranking criteria are 
provided in the “Ranking criteria” combo-box.  The criterion 
“intersection size” ranks diagrams by the size of the intersection, 
and the criterion “overlap metric” orders diagrams by the ratio of 
the intersection set size to the union set size.  This helps users 
easily capture a collection of important sets that meets the ranking 
criteria.  Users can see each of the top 10 ranked diagrams in two 
ways; Venn diagram and Fairy diagram.  They work the same as 
in the diagram area of the Dynamic Control view. 

5 OTHER APPLICATION EXAMPLES 
We extended ConSet to help users compare clustering results 

by adding special functionality.  An output of a clustering 
algorithm is in most cases a group of disjoint clusters(=sets), each 
of which is a set of elements.  ConSet arranges sets forming 
several groups where a set from one clustering result is put 
together with one or more similar sets from the other clustering 
result.  ConSet arranges these groups row by row and adds a 
special row (Cluster Concordance) right before the first group, 
where all matching elements within a group are projected and 

color coded by the ratio of the cardinalities of two matching sets.  
This color coding is intended to give proper penalty to the cases 
where one big cluster from one clustering result overlaps with 
several small clusters from the other clustering result, which is not 
so interesting concordance.  

Figure 7 and Figure 8 visualize the concordance between the 
hierarchical clustering result and K-means clustering result with 
Euclidean distance measure with 77 breakfast cereals data and 
with Census data of 224 US eastern counties near MD, 
respectively.  Many dense red cells at the Cluster Concordance 
row in Figure 7 indicate that those two results are very concordant 
with each other despite an outlier, “Multigrain_Cheerios,” which 
does not belong to any matching clusters pair.  On the other hand, 
Figure 8 shows that, overall, the two clustering results for the 
census data set are not so concordant even though there are 
several strong matching counties groups with dense red cells on 
the Cluster Concordance row. 

 
Figure 7. Clustering Results Comparison (HCLUSTER: 
Hierarchical Clustering, KCLUSTER: K-means Clustering) with 
77 breakfast cereals data 

 
Figure 8. Clustering Results Comparison (HCLUSTER: 
Hierarchical Clustering, KCLUSTER: K-means Clustering) with 
Census data of 224 US eastern counties near MD 



The same approach can also help users identify statistical 
associations between categorical variables or between a clustering 
result and a categorical variable.  Users can partition a dataset into 
disjoint sets according to a categorical variable.  For example, the 
census data for all US counties can be partitioned into disjoint sets 
according to categorical variables, such as “poverty level” and 
“education level.”  Since an integer- or real-type variable can be 
converted to a categorical variable by a simple binning, ConSet 
can visualize statistical associations between a categorical 
variable and an integer- or real-type variable. 

6 CONSET EVALUATION 
We conducted a qualitative study to understand how well 

ConSet works and to identify any usability issues.  We originally 
wanted to compare three approaches – Treemap layout [5] (shown 
in Figure 9), permutation matrix, and VennMaster.  However, 
from our own experience with ConSet, we suspected that Treemap 
layout approach would work best only for identifying the biggest 
sets.  Since this task can be easily completed by other approaches 
with a sorting feature, we decided to compare ConSet only with 
permutation matrix to VennMaster.  We measured the time to 
complete each task using a stopwatch and counted the number of 
wrong answers, time-outs, and give-ups.  The experimenter also 
took notes on usability issues participants experienced during the 
walk through of the system. 

 
Figure 9. ConSet with Strip Treemap Layout.  Each box 
represents a set, which has a unique border color.  Set name and 
its cardinality are shown at the top left corner of each box.  The 
box size is proportional to the number of elements in the set. 

6.1 Data and Participants 
We used two similar datasets exported from GoMiner for this 

user study.  One dataset had 16 sets 31 elements and the other had 
23 sets and 28 elements.  ConSet is implemented to import the 
pair of GoMiner’s category summary file and gene summary by 
category file.   From the pair of files, ConSet builds a number of 
sets of genes, each of which is a gene ontology category.   

We recruited 8 biologists (5 males and 3 females) including 1 
mail pilot subject.  The pilot data is not included in the reporting 
of the experimental task data because the interfaces and tasks 
were improved after the pilot. 

6.2 Procedure and Tasks 
Each participant used both interfaces; interface order was 

counterbalanced.  Participants first received training on the first 

interface and were allowed to play with the program to learn the 
basic features.  They were allowed to ask questions during the 
training.  For each interface, participants spent about 10 minutes 
on average.  Next, they were asked to conduct 9 tasks as quickly 
as they were possible.  Each task had a 3-minute time limit and 
participants were allowed to give up a task at any time.  After a 
short break, the same procedure was repeated with the second 
interface.  Preferences, comments, and suggestions were collected 
during debriefing.  Each session lasted 38 minutes on average.  
The list of tasks follows. 

1. What are the top three biggest sets? 
2. What is the size of the biggest set? 
3. What are the top three elements that belong to the most sets? 
4. Name the sets that have a given element. 
5. Name the sets that have two given elements. 
6. What are three sets that share the most elements? 
7. Name the elements in the intersection of two sets? 
8. Name the elements in the intersection of three sets? 
9. Name the elements that are in A but not in B. 

6.3 Results 

6.3.1 Task times, Error, and Preferences 
Out of 63 questions across participants, while there were only 6 

time outs and 5 incorrect answers with ConSet, there were 30 time 
outs and 10 incorrect answers with VennMaster.  For task 6, two 
participants forgot how to use diagram ordering in ConSet.  Two 
participants were not able to complete for task 9 and one for task 
1 and 5.  Task completion times for time outs were not included in 
the task time analysis. 

As can be seen from Figure 10, participants completed most 
tasks faster with ConSet.  In fact, with VennMaster no one could 
complete task 3, 4, and 5 within the 3 minute time limit.  However, 
7, 6, and 5 participants answered correctly with ConSet for task 3, 
4, and 5 respectively.  We believe this is because ConSet provides 
good support for showing the names of elements. 
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Figure 10. Average task completion times 

When asked which interface they preferred overall, 6 out of 7 
participants chose ConSet over VennMaster.  The reasons from 
participants include “I was able to complete all tasks,” “I like 
interactive highlighting,” “more user-friendly,” and so on.  One 
participant who preferred VennMaster said that it is simple and 
she got used to it.  She also said that she might change her 
preference if she gets comfortable with the Permutation Matrix 
view by using it more.  And one other participant who preferred 
ConSet said that more training time is needed to get used to 
ConSet. 

 



6.3.2 Usability Issues 
We observed several usability issues in ConSet that needed to 

be addressed. There was clear user frustration around the selection 
of sets in the Dynamic Control view on the right.  Three 
participants had a difficulty choosing sets to show in the diagram 
view.  Even though the check box in front of the set name is to 
filter sets to show in the main Permutation Matrix view, some of 
the participants thought that the checked sets would be added into 
the diagram area.  

Another issue is that there is no way to select the difference 
area (A – B).  This is because single click behaves differently 
depending on where users select; click on the intersection area 
selects the intersection but click on the difference selects the 
entire set.  To address this issue, we can introduce more consistent 
interaction style to select areas in the Venn and Fairy diagrams. 
First, single click selects the smallest containing area.  So, if users 
click on the difference or intersection area, the difference or 
intersection will be selected.  Second, users can combine two 
areas by clicking an area with the control key.  Lastly, double 
click on an area selects all the sets that contain the area.  So, users 
can select an entire set by double clicking on the difference area. 

There is no efficient way to find elements/sets with their name.  
Even though ConSet enables users to sort elements/sets by their 
name, four participants did not use the sort feature and 
sequentially scan element names for task 4.  This would be a 
bigger problem when the number of elements is large.  We can 
address this issue by providing a simple search on the element and 
set name. 

The familiarity with the traditional Venn diagram makes it hard 
for users to utilize a new Fairy diagram.  In addition, the task used 
in the study was easy enough to be completed with the Venn 
diagrams.  However, we believe that instantaneous highlighting of 
the area on mouse-over along with informative tooltip text helped 
users understand how to interpret the diagram.  It was 
encouraging to observe some users utilized the Fairy diagram 
after a short tutorial. 

7 CONCLUSION 
We developed a general set visualization tool called ConSet 

built upon the permutation matrix, which supports important tasks 
for concordance analysis of sets and elements.  ConSet shows an 
overview of relationships among sets and helps users efficiently 
perform fundamental set operations such as intersection and 
difference.  ConSet provides the top 10 collections of sets that are 
most similar, measured either by the number of common items or 
by the overlap metric.  ConSet also enables users to aggregate and 
filter sets/elements, which improves the scalability. 

Our Fairy diagram addresses the two inconsistency problems 
that may incur in Venn diagrams: missing valid intersection areas 
and showing invalid intersection areas.  It also provides exact size 
coding of all areas.  And intersection of three sets is clearly 
visualized as a center circle.  Permutation matrix display makes it 
possible to avoid the problem that too many sets overlap in the 
general Venn diagrams.  Another strength of the permutation 
matrix is that it provides better support for showing the names of 
elements.  ConSet performed much better when tasks required 
users to access information through elements. 

We conducted a qualitative user study to evaluate how our tool 
works in comparison with a traditional set visualization tool based 
on a Venn diagram.  We found that users performed better with 
ConSet than with the traditional interface for many tasks and most 
users preferred ConSet. 
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