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Abstract

Stationary subdivision is an important tool for generating smooth free-form surfaces used
in CAGD and computer graphics. One of the challenges in the construction of subdivision
schemes for arbitrary meshes is to guarantee that the surfaces produced by the algorithm
are C''-continuous. First results in this direction were obtained only recently. In this thesis
we derive necessary and sufficient criteria for C*-continuity that generalize and extend most
known conditions.

We present a new method for analysis of smoothness of subdivision which allows us to
analyze subdivision schemes which do not generate surfaces admitting closed-form parame-
terization on regular meshes, such as the Butterfly scheme and schemes with modified rules
for tagged edges.

The theoretical basis for analysis of subdivision that we develop allows us to suggest
methods for constructing new subdivision schemes with improved behavior. We present
a new interpolating subdivision scheme based on the Butterfly scheme, which generates
C'-continuous surfaces from arbitrary meshes.

We describe a multiresolution representation for meshes based on subdivision. Com-
bining subdivision and the smoothing algorithms of Taubin [61] allows us to construct a
set of algorithms for interactive multiresolution editing of complex hierarchical meshes of

arbitrary topology.
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Chapter 1 Introduction

Subdivision is a method for generating smooth surfaces, which first appeared as an ex-
tension of splines to arbitrary topology control nets. Efficiency of subdivision algorithms,
their flexibility and simplicity make them suitable for many interactive computer graphics
applications.

Although the basic subdivision algorithms are simple, the properties of limit surfaces
generated by subdivision may be quite complicated and difficult to analyze. In this thesis
our main focus is on the analysis of C''-continuity and construction of stationary subdivision
algorithms. This class of algorithms is particularly important because all classical subdi-
vision schemes [13, 5, 20, 40] are stationary. Understanding the algorithms in this class is
essential for understanding more general forms of subdivision.

Although subdivision was introduced as a generalization of knot insertion algorithms for
splines, it is much more general and allows considerable freedom in the choice of subdivision
rules. These degrees of freedom can be used to obtain surfaces with specific properties
(varying degree of smoothness, interpolation) or with features such as creases and cusps.
To take advantage of this flexibility we have to understand the dependence between the
subdivision rules and the behavior of the limit surface. Because these dependences are
difficult to analyze, most of the work on subdivision on meshes of arbitrary topology was
centered on analysis of spline-based schemes, which constrained the variety of surfaces that
could be generated.

One of the goals of this work is to develop a framework for analysis of general sub-
division. We prove general necessary and sufficient conditions for tangent plane and C*-
continuity of subdivision and describe practical methods for analyzing C''-continuity. We
have implemented algorithms that allow us to perform C'-continuity analysis automati-
cally, potentially for whole families of subdivision schemes and prove C'-continuity for all
valences of extraordinary vertices.

Another goal was to design practical algorithms for manipulation of subdivision sur-
faces. We have chosen a particularly challenging application, multiresolution editing, to

demonstrate how theoretical properties of subdivision lead to efficient adaptive and local



algorithms.

In the next sections we introduce the subject of this thesis and discuss the related work.

1.1 Subdivision

Given an initial mesh, subdivision computes a sequence of refined meshes converging to a
limit surface. The refined meshes are obtained by adding new vertices to the mesh and
connecting them with old vertices. The positions of new vertices are computed as functions
of positions of the old vertices; the positions of old vertices in the refined mesh can be
modified. To specify a subdivision scheme, we need to describe two rules: a topological rule
for obtaining the graph of the refined mesh from the graph of the initial mesh and a rule

for computing the positions of new vertices and modifying positions of the old vertices.

Figure 1.1: Insertion of new vertices for a triangular mesh.

The topological rule has primary importance; only several rules where ever used for
construction of subdivision schemes for surfaces. We will mostly consider the schemes that
use probably the simplest possible rule that works on arbitrary triangular meshes: one new
vertex is added for each old edge, all old edges are replaced by a pair of edges and the new
vertices for each old face are connected (Figure 1.1).

This rule is general enough to serve as a basis for a variety of subdivision algorithms.
An important property of this rule is that all new vertices, unless they are on the boundary
of the mesh, have valence 6.

The new vertices on the boundary have valence four. The number of extraordinary
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vertices, which have valence other than 6 (4 on the boundary), remains constant on all
subdivision levels. For the type of schemes that we consider, this fact means that almost
everywhere a small part of the mesh is in one-to-one correspondence with a piece of the
regular three-directional grid (Figure 1.1).

Analysis for other types of rules, such as topological rules used in Catmull-Clark and
Doo-Sabin schemes, is similar (see Chapter 8 for discussion) and only minor adjustments
are needed in the derivations. We choose to concentrate on the triangle-based schemes
because the initial formalization (Chapter 2) is more transparent for these schemes. Once
the triangular case is understood, it is relatively easy to adapt the derivations for the
quadrilateral schemes.

Powerful tools exist for analysis and construction of subdivision schemes on regular

grids (see [6]). We concentrate on the analysis of the behavior of subdivision near the

extraordinary vertices.
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Figure 1.2: The dark lines partition the mesh into 3 pieces. Fach piece of the subdivided
mesh, except for the shaded ones, can be mapped to the regular grid with a boundary.

To specify a complete subdivision scheme, we need a set of functions for computing the
positions of vertices on successive approximation levels. For the scheme to be practical,
these functions should be as simple as possible, yet capable of generating a smooth limit
surface. We will consider subdivision schemes for which all refinement functions are linear.
Moreover, we will assume that the choice of function that is used to compute a value at a
vertex depends only on the local topology of the mesh around this vertex, and the function

itself depends only on a finite number of neighbors (locality and finite support.)

Linear and finitely supported functions can be computed very efficiently, which makes
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the schemes of this type particularly promising for computer graphics applications.

We consider primarily stationary schemes, which implies that the choice of the refine-
ment functions does not depend on the subdivision level. Once a mesh is refined, we “forget”
about the old mesh and base our choice of functions for the next subdivision step only on
the topology of the current mesh. This restriction makes the implementation highly efficient
and also makes the analysis of the schemes much simpler. Following the pattern that was
established in the analysis of subdivision on regular grids [19], one may hope to extend this

analysis to the case of non-stationary subdivision.

1.2 Multiresolution Representations and Editing

An important part of this thesis is dedicated to the applications of subdivision.

Subdivision in its pure form is useful for generating smooth surfaces. However, applica-
tions such as special effects and animation require creation and manipulation of complex ge-
ometric models, which, like real world geometry, carry detail at many scales (cf. Figure 1.3).
We extend subdivision to a more general multiresolution representation for surfaces. The
advantage of our approach is that it allows us to implement level-of-detail rendering, mul-
tiresolution editing and animation using highly efficient subdivision algorithms.

We focus on interactive multiresolution editing of complex models, a particularly chal-
lenging application. Complex geometric models might be constructed from scratch (ab
initio design) in an interactive modeling environment or be scanned-in either by hand or
with automatic digitizing methods. The latter is a common source of data. If a model is
obtained using a laser range scanners it is often composed of high resolution meshes with
hundreds of thousands to millions of triangles.

Manipulating such fine meshes can be difficult, especially when they are to be edited
or animated. Interactivity, which is crucial in these cases, is challenging to achieve. Even
without accounting for any computation on the mesh itself, available rendering resources
alone may not be able to cope with the sheer size of the data. Possible approaches include
mesh optimization [33, 31] to reduce the size of the meshes and using hierarchical represen-
tations, such as the subdivision-based representation that we propose. Our representation
is more suitable for editing and animation applications: different levels of resolution can be

extracted on the fly, even if the geometry changes. In addition, our representation provides



Figure 1.3: An edit of a complex mesh. The original is on the right (courtesy Venkat
Krischnamurthy). The edited version on the left illustrates large scale edits, such as his
belly, and smaller scale edits such as his double chin; all edits were performed at about 5
frames per second on an Indigo R10000 Solid Impact.

multiresolution editing semantics: it is possible to control the geometry at a large scale; at

the same time, minute features of the model can be modified if necessary.

1.3 Contributions

In this section we summarize the contributions of the thesis. Our results are compared to

the previous work is discussed in Section 1.6.1.

1.3.1 Theory of Subdivision

The goal of this thesis is to build a systematic theory of stationary subdivision surfaces on
arbitrary meshes. We find necessary and sufficient conditions for tangent plane continuity
and C*-continuity of subdivision schemes. These conditions can be used to determine
smoothness of particular schemes; more importantly, they provide us with a more explicit
description of whole classes of tangent plane continuous and C*-continuous schemes; it is
our hope that such description can be used for finding schemes in the class that are optimal
in other senses, for example, schemes that produce surfaces with improved fairness.

Our analysis of stationary subdivision around extraordinary vertices builds on the ideas

from the work of Warren [63, 62], Reif [55, 54, 56] and Cavaretta, Dahmen and Miccelli [6].



Our main results include

e A formalism for description of subdivision schemes on arbitrary meshes in terms of
graph neighborhoods (Section 2.2), which allows us to define such crucial concepts
as control sets (extension to the case of general subdivision of the idea of the set of

control points of a spline patch).

e An approach to analysis of local properties of subdivision schemes near extraordinary
points based on the idea of the universal surface (Section 3.4). This approach is crucial

for developing geometric intuition about the behavior of subdivision surfaces.

e Necessary and sufficient conditions for tangent plane continuity given by Theorem 3.4

and under additional nondegeneracy assumptions by Corrolary 3.5 and equivalent

Theorem 3.7.

e Necessary and sufficient conditions for C*-continuity of subdivision schemes at ex-

traordinary vertices (Section 3.10).

e Practical sufficient criteria for C''-continuity of a subdivision scheme at an extraordi-

nary vertex (Chapter 4);

e Algorithms for verifying C'-continuity of general subdivision schemes (Chapter 5);

the same algorithms can also be used for stability analysis.

e Construction and analysis of several specific schemes; we present a complete analysis
of the Butterfly scheme and propose a new scheme based on the Butterfly which we
prove to be C'-continuous for vertices of arbitrary valence. We also present analysis
of the Loop scheme for arbitrary valence and propose a way of introducing soft creases

into the Loop scheme.

The sufficient conditions of Chapter 4 do not require knowledge of the explicit formula
for the limit surface, which makes it useful for analysis of interpolating subdivision schemes,
such as the Butterfly scheme [20].

The connection to the singularity theory, briefly discussed in Appendix B, suggests that
some results from that area can be applied to the study of subdivision surfaces, stationary

as well as non-stationary.
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1.3.2 Multiresolution Representations

We propose a multiresolution representation for surfaces based on subdivision and describe
algorithms for fast update and rendering of subdivision and multiresolution surfaces. Effi-
ciency is achieved by using adaptive and local algorithms whenever possible.

We present an editing system which possesses the following properties

e Multiresolution control: Both broad and general handles, as well as small knobs

to tweak minute detail, are available.

e Speed/fidelity tradeoff: All algorithms dynamically adapt to available resources

to maintain interactivity.

e Simplicity /uniformity: A single primitive, triangular mesh is used to represent the

surface across all levels of resolution.

It should be noted that our methods rely on the finest-level mesh having subdivision
connectivity. This requires a remeshing step before external high resolution geometry can be
imported into the editor. Eck et al. [22], have described a possible approach to remeshing
arbitrary finest level input meshes fully automatically. A method that relies on a user’s

expertise was developed by Krishnamurthy and Levoy [37].

1.4 Related Work: Construction of Subdivision Schemes

In this section we briefly review a number of subdivision algorithms. These come in two
principal varieties, approximating and interpolating. The former are typically based on
generalizations of spline patch-based schemes, while the latter are related to 1D interpolating

schemes [9, 10, 11, 14, 16].

1.4.1 Approximating Subdivision Schemes

The first subdivision algorithms for meshes of arbitrary topology were given by Doo and
Sabin [12, 13, 57] and Catmull and Clark [5]. These were based on generalizations of
quadratic and cubic B-spline subdivision for meshes consisting of quadrilaterals. The be-

havior around extraordinary vertices was first analyzed by Doo and Sabin [13] using Fourier
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transforms and an analysis of the eigenvalues and eigenvectors of a matrix associated with
the subdivision process.

A first scheme for arbitrary meshes consisting of triangles was given by Loop [40]. It is
based on a generalization of quartic triangular B-splines.

Another class of approaches to generating smooth surfaces from arbitrary topology
meshes attempts to directly derive a set of spline patches which globally achieve some
order of continuity. Most of these approaches are based on some number of initial “corner
cuttings” to regularize the topology, or alternatively place some restrictions on the mesh
connectivity [8, 41, 47, 48]. The output of these algorithms is a set of patches of varying,
at times rather high, polynomial order and varying shape, typically triangles and quadri-
laterals. Once these patches have been generated, the surface can be built by subdivision

through the de Casteljau algorithm.

1.4.2 Interpolating Subdivision Schemes

Since the ability to control the resulting surface exactly is very important in many practical
applications, a number of modifications of approximating schemes have been developed to
force the limit surface to interpolate particular points. Nasri [45] gives modifications to the
quadratic scheme of Doo-Sabin to enforce interpolation of vertices and normals by solving
a linear system which is global but sparse. Similarly, Halstead, Kass and DeRose [29]
give an algorithm modifying the cubic scheme of Catmull-Clark to enforce positional and
normal constraints, again by solving a global and sparse linear system. In both cases there
are a number of limitations. For example, it is unclear under what conditions the linear
system to be solved for the interpolation constraints can become singular. Additionally,
the interpolation conditions are only satisfied in the limit. Among the patch-based schemes
only Peters [47] recently gave one which can incorporate interpolation constraints without
requiring the solution of a global linear system.

Until recently the only known interpolating scheme was the Butterfly scheme of Dyn,
Gregory and Levin [20] and a later variant [17]. These schemes are interpolating by design,
local, and simple in terms of the required data structures and algorithms. They are also
known to be smooth in the regular setting, where they lead to C''-continuous limit func-
tions [17, 21]. Topological regularity, however, is a rather severe restriction since all vertices

must be of valence six for these results to be applicable. The failure to be C'-continuous
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for vertices of valence other than six is easily observed in practice as can be seen in the ex-
ample of Figure 1.4. Simultaneously with this work a new quadrilateral-based interpolating

scheme was developed by Kobbelt [35].
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Figure 1.4: On the left a control mesh with a vertex of valence 3. In the middle the
result after several levels of subdivision using the Butterfly scheme. The surface loses C'l-
continuity around the vertex of valence 3. On the right the result achieved in the same
situation with our modified scheme. The behavior around the extraordinary vertex remains
C'-continuous and no cusp is formed.

1.5 Related Work: Analysis

The subdivision literature is quite extensive, but until recently, surprisingly little was known
about subdivision surfaces built on meshes with arbitrary topology. Already in the work of
Doo and Sabin [12, 13] and Catmull and Clark [5] attempts were made to analyze smoothness
properties of the subdivision surfaces around extraordinary vertices. A more systematic
approach was taken by Ball and Storry [2], who established conditions for tangent plane
continuity of Catmull-Clark subdivision. A similar analysis was performed by Loop [41].
Most recently, important results were obtained by Reif [54, 55, 56]. In [55] Reif points out
that tangent plane continuity does not adequately reflect the intuitive idea of smoothness
and establishes sufficient conditions for a stronger notion of smoothness (C!-continuity)
which requires existence of a local regular parameterization. The important concept of a
characteristic map is introduced. Reif [56] demonstrates that polynomial patches of order 6
are required to achieve C%-continuity of a surface — an important result showing limitations
of stationary subdivision. The result requires establishing a necessary condition for C?-
continuity in a special case. In [54] asymmetric schemes are considered and somewhat more
general sufficient conditions are proposed. Our work extends and generalizes the work of

Reif. Another important source of ideas for this work was the manuscript by Warren [63],
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where he noted the importance of scaling relations for understanding behavior of subdivision
schemes around extraordinary vertices.

Reif’s criterion was used to analyze C'-continuity of subdivision schemes by Habib and
Warren [28], Schweitzer [59], Peters and Reif [49].

Prautzsch [50] presents sufficient, conditions for C*-continuity that form a subset of our
conditions. The differences between our work and the work of Prautzsch are discussed in
Section 1.6.1. A degree estimate for C*-continuous polynomial schemes was published by
Prautzsch and Reif [51].

Reif’s sufficient conditions for C''-continuity of subdivision schemes requires establishing
injectivity and regularity of the characteristic map. In [28] and [49] this was achieved using
explicit representation of the surface with polynomial patches. Techniques developed by
Schweitzer [59] are more subtle, but still rely on closed-form expressions. These approaches
cannot be used to analyze schemes that do not have explicit formulas for parameterizations

in the regular case.

1.6 Related Work: Surface Editing

Our system is inspired by a number of earlier approaches. We mention multiresolution
editing [23, 25, 27|, arbitrary topology subdivision [5, 13, 20, 35, 40, 66], wavelet represen-
tations [7, 22, 42, 58], and mesh simplification [31, 37]. Independently, an approach similar
to ours was developed by Pulli and Lounsbery [52].

H-splines were presented in pioneering work on hierarchical editing by Forsey and Bar-
tels [25]. Briefly, H-splines are obtained by adding finer resolution B-splines onto an existing
coarser resolution B-spline patch relative to the coordinate frame induced by the coarser
patch. Repeating this process, one can build very complicated shapes which are entirely
parameterized over the unit square. Forsey and Bartels observed that the hierarchy induced
coordinate frame for the offsets is essential to achieve correct editing semantics.

H-splines provide a uniform framework for representing both the coarse and fine level
details. Note, however, that as more detail is added to such a model, the internal control
mesh data structures more and more resemble a fine polyhedral mesh.

Forsey and Bartels’ original work focused on ab initio design. The user’s help is enlisted
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in defining what is meant by different levels of resolution. The levels of the hierarchy are
hand built by a human user and the representation of the final object is a function of its
editing history.

To edit a given model, it is important to have a general procedure to define coarser levels
and compute details between levels. We refer to this as the analysis algorithm. An H-spline
analysis algorithm based on weighted least squares was introduced [24], but is too expensive
to run interactively. Note that even in for ab initio design online analysis is needed, since
after a long sequence of editing steps the H-spline is likely to be overly refined and needs to

be consolidated.

Wavelets provide a framework in which multiresolution approximations can be rigor-
ously defined. Finkelstein and Salesin [23], for example, used B-spline wavelets to describe
multiresolution editing of curves. As in H-splines, parameterization of details with respect
to a coordinate frame induced by the coarser level approximation is required to get cor-
rect editing semantics. Gortler and Cohen [27] pointed out that wavelet representations of
detail tend to behave in undesirable ways during editing and returned to a pure B-spline
representation as used in H-splines.

Carrying these constructions over into the arbitrary topology surface framework is not
straightforward. In the work by Lounsbery et al. [42] the connection between wavelets and
subdivision was used to define the different levels of resolution. The original constructions
were limited to piecewise linear subdivision, but smoother constructions are possible [58, 66].

An approach to surface modeling based on variational methods was proposed by Welch
and Witkin [64]. An attractive characteristic of their method is flexibility in the choice of
control points. However, they use a global optimization procedure to compute the surface

which is not suitable for interactive manipulation of complex surfaces.

1.6.1 Comparison with Previous Work

Subdivision Theory. Our criteria generalize and unify most of the known smoothness
conditions at extraordinary points. Our main result is a set of necessary and sufficient
conditions for tangent plane continuity and C'-continuity. While various conditions were
known before [2, 29, 55|, they typically required some strong additional assumptions on the

structure of the subdivision matrix, which we eliminate. We prove two sets of necessary and
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sufficient conditions: Theorem 3.4, and Corollary 3.5 with equivalent Theorem 3.7. Theo-
rem 3.4) gives necessary and sufficient conditions with minimal assumptions. Corollary 3.5
identifies a broad class of schemes for which more explicit conditions can be stated.

Reif [55] proved a sufficient condition for C-continuity of subdivision surfaces and intro-
duced the characteristic maps for a restricted type of subdivision matrices. We generalize
the definition to arbitrary matrices and introduce the parametric map, which coincides with
the characteristic map given Reif’s assumptions on eigenvalues, and defines singular (regu-
lar away from the extraordinary vertex) parameterizations for any tangent plane continuous
scheme.

Some of the conditions for C*-continuity proved in this thesis are similar to the con-
ditions of Prautzsch [50], which were unknown to us when this work was done. However,
our work improves the results obtained by [50] in a significant way. Prautzsch formulates
sufficient and partial necessary conditions for C*-continuity assuming that the scheme is
C'-continuous. We do not assume C'-continuity. Our conditions are simultaneously nec-
essary and sufficient. We consider the third possible type of characteristic map which was
not considered by Prautzsch.

Prautzsch and Reif [51] consider conditions similar to the degree estimate of Sec-
tion 3.10.2 in greater detail and provide better degree estimates. It is important to keep in
mind that they assume that the characteristic map of the scheme is regular and injective,
which makes the results slightly less general: in principle, there could be a scheme with
non-injective or singular characteristic map for which the estimate does not hold. We show

that this is not the case under weaker assumptions.

Analysis of specific schemes. Smoothness of Catmull-Clark and Doo-Sabin subdivision
schemes was analyzed in [49]. Unfortunately, the analysis was based on several theorems
that are not formally correct; this does not invalidate the proof of C''-continuity, as these
theorems can be proved under certain additional assumptions which hold for the schemes
considered in [49]. C!-continuity of Loop scheme was analyzed by Schweitzer [59]. Both
approaches ([49] and [59]) rely on the closed form expression for the limit surface on the
regular grid and symbolic calculation of the Jacobian of the characteristic map. Both [59]
and [49] prove smoothness only for a finite number of valences, although this number is

sufficiently large for practical purposes. In contrast, our approach is more general and
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allows us to prove smoothness of schemes which do not generate surfaces with closed form

parameterization on regular grids and for arbitrary valence.

Multiresolution surface representations. Our work extends H-splines of Forsey and
Bartels to arbitrary topology meshes. Similar work was independently done by Pulli and
Lounsbery [52]; our work also bears similarity to an earlier paper of Kurihara [38]. Most
of the previous work focused on ab initio design with the exception of [24]. We introduce
efficient algorithms for analysis based on Taubin’s smoothing, which are essential for ma-
nipulating high-resolution meshes. All our algorithms are local and adaptive, which allows

us to achieve interactive performance even with low-end graphics hardware.

1.7 Overview

In Chapters 2 and 3 we present the theory of smoothness of stationary subdivision near
extraordinary vertices.

In Chapter 2 we discuss the structure of the complexes generated by subdivision and
prove some basic facts about dependencies of vertices generated by subdivision on the
vertices on coarser levels.

Section 2.3 introduces topology on the complexes and defines convergence of subdivision.
In the same section we show that the analysis of any local and finitely supported stationary
scheme on arbitrary complexes can be reduced to the analysis of that scheme on k-regular
complexes, which have only one extraordinary vertex.

Section 2.4 introduces the subdivision matriz. It is shown that the limit functions gen-
erated by the eigenvectors of the matrix satisfy scaling relations.

In Section 3.4 we introduce the universal surfaces, and show that analysis of subdivision
schemes can be reduced to analysis of the corresponding universal surfaces.

Some of the main results are contained in Sections 3.5 and Sections 3.10. We formu-
late criteria for tangent plane continuity, C''-continuity and C*-continuity of a subdivision
scheme.

Section 3.13 contains a discussion of the properties of the functions satisfying scaling
relations.

In Chapters 4 and 5 we develop practical algorithms for analysis of C''-continuity of
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subdivision schemes. In Chapter 4 we derive expressions for convergence rates for certain
general types of schemes, including schemes that we call “crease schemes.” We show how
one can use these estimates to prove regularity of the characteristic map using linear ap-
proximations to this map. We show that under certain assumptions the characteristic map
is a covering if it is a local homeomorophism and thus the question of injectivity of the
characteristic map can be reduced to computation of the winding number for a curve.

In Chapter 5 we use facts proven in Chapter 4 to describe algorithms for verification of
smoothness of subdivision schemes based on interval arithmetic.

Specific schemes are analyzed in Chapter 6. We also prove some general results on
symmetric schemes; for this types of schemes injectivity is necessary for smoothness under
certain assumptions. This result corrects the results reported by Peters and Reif [49] by
adding several assumptions.

Finally, in Chapter 7 we describe a multiresolution representation based on subdivi-
sion, and a number of efficient algorithms for manipulating and rendering subdivision and

multiresolution surfaces.
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Chapter 2 Basic Properties of Stationary

Subdivision

In this chapter we introduce a formalism for describing general subdivision on simplicial
complex. Our notation is similar to the notation of Warren [63]. Exposition in the chapter
is rather detailed; some of the constructions are more general than it is required in the
rest of the thesis. We have chosen this level of generality to clarify the relations between
different properties of subdivision schemes such as finite support, local definition, invariance,
stationarity etc. For example, the basis function decomposition requires only finiteness of
the stencil for each vertex, but does not require finite support or local definition. These
basic questions were mostly ignored in the literature, and we find it necessary to describe
all these concepts in considerable detail.

For readers interested primarily in smoothness results described in Chapter 3, we provide
a brief summary of this chapter in Section 2.1. This section contains all definitions and fact

that are necessary for understanding the rest of the thesis.

2.1 Summary

2.1.1 Subdivision on Complexes.

Simplicial complexes. Subdivision surfaces are naturally defined as functions on two-
dimensional simplicial complexes. Recall that a simplicial complex K is a set of vertices,
edges and triangles in RY, such that for any triangle all its edges are in K, and for any edge
its vertices are in K. We assume that there are no isolated vertices or edges. |K| denotes
the union of triangles of the complex regarded as a subset of RV with induced metric. We
say that two complexes K7 and Ky are isomorphic if there is a homeomorphism between
|K1| and |K3| that maps vertices to vertices, edges to edges and triangles to triangles.

A subcomplex of a complex K is a subset of K that is a complex. A 1-neighborhood
Ni(v, K) of a vertex v in a complex K is the subcomplex formed by all triangles that have v

as a vertex. An m-neighborhood is defined recursively as a union of all 1-neighborhoods of
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vertices in (m — 1)-neighborhood. We will omit K in the notation for neighborhoods when
it is clear what complex we refer to.

Recall that a link of a vertex is the set of edges of Nj(v, K) that do not contain v.
We will consider only complexes with all vertices having links that are connected simple
polygonal lines, open or closed. If the link of a vertex is an open polygonal line, this vertex
is a boundary vertex, otherwise it is an internal vertex.

Most of our constructions will use two special types of complexes — k-reqular complexes
Ry and the reqular complex R. Each complex is simply a triangulation of the plane consisting
of identical triangles. In the regular complex each vertex has exactly 6 neighbors. In a k-
regular complex all vertices have 6 neighbors, except one vertex C', which has k neighbors.
We will call C the central vertex of a k-regular complex and identify it with zero in the

plane.

Subdivision of simplicial complexes. We can construct a new complex D(K) from
a complex K by subdivision, adding a new vertex for each edge of the complex and re-
placing each old triangle with four new triangles. Let m,,, be the midpoint of the edge
(v,w); if (u,v,w) is a triangle of K, then (u, Myy, My )s (U, Mayws M), (W, My, Moy ) and
(Moyys My, My ) are triangles of D(K). Note that k-regular complexes are self-similar, that
is, D(Ry) and Ry are isomorphic.

We will use notation K7 for j times subdivided complex D’(K) and V7 for the set of
vertices of K7. Note that the sets of vertices are nested: VO Cc V! c .... We will call the

elements of the union N,V the dyadic points of K.

Subdivision schemes. Next, we attach values to the vertices of the complex; in other
words, we consider the space of functions V' — B, where B is a vector space over R. The
range B is typically R! or C! for some I. We denote this space P(V, B), or P(V), if the
choice of B is not important.

A subdivision scheme for any function p/(v) on vertices V7 of the complex K7 computes
a function p/*1(v) on the vertices of the subdivided complex D(K) = K!. More formally, a
subdivision scheme is a collection of operators S[K] defined for every complex K, mapping
P(K) to P(K1). We consider only subdivision schemes that are linear, that is, the operators

S[K] are linear functions on P(K). In this case, each component of a subdivision operator
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computing the value at a fixed vertex v is a linear function P(V)) — B, and is defined by

equations

p'(v) = ayup(w)

for allv € V1. We restrict our attention to subdivision schemes which are finitely supported,
locally defined, invariant with respect to a set of isomorphisms of complexes and affinely
invariant.

A subdivision scheme is finitely supported if there is an integer M such that a,, # 0
only if w € Nys(v, K') (note that the neighborhood is taken in the complex K!) for any
complex K. It is possible to show that the values p’(v) on all dyadic points of a subcomplex
K' C K depend only on the values p°(v) on the vertices of Na(K’, K). We call Np(K', K)
the control set of K'. This set is similar to the control set of a patch.

We assume our schemes to be locally defined and invariant with respect to a set G of
1somorphisms of compleres. This means that there is an integerL, such that if for two
complexes K7 and K5 and two vertices v1 € V7 and vy € V5 there is an isomorphism
p: Np(vi, K1) — Np(ve,K2), p € G such that p(v1) = va, then a,,, = Ay p(w)- 1f for
subcomplexes K| C K; and K} C Kj there is a isomorphism p mapping N (K], K1) to
Np (K}, Ks) and p is from G, then the values computed by subdivision on all dyadic points
of K7 are identical to the values computed by subdivision on corresponding points of KJ.

We assume that the set G contains isomorphisms of 1-neighborhoods of any vertex of
any complex with a subcomplex of a k-regular complex or the regular complex, possibly
with boundary. In addition, if it contains an isomorphism p : K1 — Ko, it also contains the
induced isomorphism of D(K;) — D(K3), as well as the restrictions of p to subcomplexes
of Kj.

An example of a nontrivial set GG is the set of isomorphisms of tagged complexes: we
can tag some edges of the complex, and propagate the tags to the edges of the subdivided
complex. We can allow only isomorphisms that map tagged edges to tagged edges. Analysis
of quadrilateral-based schemes, such as Catmull-Clark and Doo-Sabin, can be reduced to
analysis of subdivision schemes on complexes introducing auxiliary vertices into complexes
and tagging certain edges. Schemes on tagged complexes also can be used to create surfaces

with creases. The requirement that we impose on the set G guarantees that the surfaces gen-
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erated by subdivision on arbitrary complexes are locally identical to the surfaces generated
by subdivision on a k-regular complex, possibly with boundary (see below).
The final requirement that we impose on subdivision schemes is affine invariance: if
T is a linear transformation B — B, then for any v Tp/Tt(v) = 3" au,Tp’(v). This is

equivalent to requiring that all coefficients a,,, for a fixed v sum up to 1.

Limit functions. For each vertex v € UX,V* there is a sequence of values p’(v), p/ ™! (v),

. where j is the minimal number such that V7 contains v.

Definition 2.1. A subdivision scheme is called convergent on a complex K, if for any
function p € P(K, B) there is a continuous function f defined on |K| with values in B, such
that

lim sup Hp’(v) — f)][,—0

1—00 ’UGVZ

The function f is called the limit function of subdivision.

Notation: f[p] is the limit function generated by subdivision from the initial values
p € P(K).

It is easy to show that if a limit function exists, it is unique. A subdivision surface is
the limit function of subdivision on a complex K with values in R3. In this case we will
call the initial values p°(v) the control points of the surface.

Similar to Theorem 2.1 of [6] we can represent any limit function of subdivision as a
linear combination of basis functions. A basis function ¢,(y) : |[K| — R at vertex v is
obtained from the initial values J, € P(K,R), 6,(v) = 1, §,(w) = 0 if w # 0. Let p' be

some initial values on a complex K. If subdivision converges,

10w) = P(0)eu(y) (2.1)

veVo

Reduction to k-regular complexes. Locally any surface generated by a subdivision
scheme on an arbitrary complex can be thought of as a part of a subdivision surface defined
on a k-regular complex, if the set of isomorphisms G, with respect to which the scheme is
invariant, satisfies the requirements above. The reason for this can be easily understood

from Figure 2.3.3. More formally this can be proved by establishing isomorphisms between
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neighborhoods Ny (v, K7) of any vertex of K/ for sufficiently large j and neighborhoods
N7, (0,Rg) of the central vertex of the k-regular complex or regular complex and proving
that they are in G.
Note that this fact alone does not guarantee that it is sufficient to study subdivision

schemes only on k-regular complexes (see Section 3.1).

S==1=

Figure 2.1: Neighborhoods of vertices A, B and C' isomorphic to neighborhoods in regular
(A and C) and k-regular complexes; L = 2.

If the complex has boundary, we also need to consider regular and k-regular complexes
with boundaries. We mostly concentrate on the analysis for closed surfaces, and do not
consider the boundary case.

The schemes for subdivision surfaces are typically constructed from schemes that gen-
erate C*-continuous limit functions f[p] on a regular complex. We will assume that this is

the case, and focus on C*-continuity near extraordinary points.

2.1.2 Subdivision Matrices

We have already observed that we have to consider primarily k-regular complexes, which
are just triangulations of the plane. Consider the part of a subdivision surface f[y] with
y € Ul = |Ny(0, Ri)|, defined on the k-gon formed by triangles of the subdivided complex
Ri adjacent to the central vertex. It is straightforward to show that the values at all dyadic
points in this k-gon can be computed given the initial values p’(v) for v € NL(O,fRi). In
particular, the control points p/*1(v) for v € N L(O,R{jl) can be computed using only
control points p/(w) for w € NL(O,fRi_). Let p/ be the vector of control points p’(v) for
v E NL(O,iRi). Let p 4+ 1 be the number of vertices in N (0,Rg).

As the subdivision operators are linear, 5! can be computed from #’ using a (p+ 1) x
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(p+ 1) matrix S7:

pH = sip

If for some m and for all j > m, S/ = §™ = S, we say that the subdivision scheme is
stationary on the k-reqular complex, or simply stationary, and call S the subdivision matriz
of the scheme. Note that in the case k = 6 (regular complex) our definition is weaker than
the standard definition of stationary subdivision on regular complexes [6].

As we will see, eigenvalues and eigenvectors of the matrix have fundamental importance for

smoothness of subdivision.

Eigenbasis functions. let A\g, \;,... \s be different eigenvalues of the subdivision matrix.

The following lemma can be easily proved

Lemma 2.1. If a subdivision scheme converges on the reqular complex, it is necessary
and sufficient for convergence on a k-reqular complex that the subdivision matrixz S has
etgenvalue 1 with a single cyclic subspace of size 1 and all other eigenvalues have magnitude

less than 1.

Let A\g = 1. For any \; let J;, 7 =1...P; be the complex cyclic subspaces corresponding
to this eigenvalue.

Let n} be the orders of these cyclic subspaces; the order of a cyclic subspace is equal to
its dimension minus one.

Let b;r, r=0... n; be the complex generalized eigenvectors corresponding to the cyclic

subspace .]]Z The vectors b;'-r satisfy

Sbl, = A, + b,y ifr >0
Sbly = Aiblg
We use the following rules for enumerating the cyclic subspaces of S:
e All eigenvalues are enumerated in the order of nonincreasing magnitude.

e If the magnitudes of eigenvalues are equal, they are enumerated in the order of non-

increasing order of the largest cyclic subspace.
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e If the eigenvalues have equal magnitudes, and equal orders of highest-order cyclic sub-
space, real eigenvalues have smaller numbers than complex; the real positive eigenvalue
if there is one, has number less than real negative; two complex-conjugate eigenval-
ues have sequential numbers; the order of complex-conjugate pairs of eigenvalues is

insignificant for our purposes.

e For each eigenvalue the cyclic subspaces are enumerated in nonincreasing order, i.e.,

ny=Mng >ng>...Np.

k2

The complex eigenbasis functions are the limit functions defined by f;:r = f[bé-r] Uy —
C
It immediately follows from (2.13) that any subdivision surface f[p] : U; — R? can be

represented as

i) =Y B fin() (2.3)

’L’]’T

where ﬂ;T € C3, and if b;r = b_ﬁ, JZ'.T = ﬂ_ﬁ7 where the bar denotes complex conjugation.

One can show using the definition of limit functions of subdivision and (2.17) that the

eigenbasis functions satisfy the following set of scaling relations:

L/2) = ML) + fL ) >0

;0(3//2) = )\iffo(y)

(2.4)

Real eigenbasis functions. As we consider real surfaces, it is often convenient to use
real Jordan normal form of the matrix rather than the complex Jordan normal form. For
any pair of the complex conjugate eigenvalues \;, A\, we can choose the complex cyclic
subspaces in such a way that they can be arranged into pairs J;, J]]-“, and b;r = @ for

all 7 and r. Then we can introduce a single real subspace for each pair, with the basis

cé-r, cﬁ?T, r=20... n;'-, where cé-r = §Rb§-r, and cé?r = \S‘bé-r. We will call such subspaces Jordan
subspaces. Then we can introduce real eigenbasis functions g}, (y) = f},(y) for real \;, and

g;-r(y) = %f;T(y), gﬁ(y) = %f;r(y) for a pair of complex conjugate eigenvalues (\;, \g). For

a Jordan subspace corresponding to pairs of complex eigenvalues the order is the same as
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the order of one of the pair of cyclic subspaces corresponding to it. We will follow the same
rules for enumerating Jordan spaces, with one alteration: instead of two sequences of cyclic
subspaces corresponding to a pair of complex Jordan eigenvalues we have a single sequence
of Jordan subspaces.

Similar to (2.18) we can write for any surface generated by subdivision on Uy:

foly) = algh(y) (2.5)
LT
Now all coefficients oz}'-T are real. Eigenbasis functions corresponding to the eigenvalue
0 have no effect on tangent plane continuity or C*-continuity of the surface at zero. From

now on we assume that \; # 0 for all 7.

2.2 Subdivision of Abstract Simplicial Complexes

In this section we define subdivision schemes on abstract simplicial complexes; abstract
simplicial complexes are simply a class of graphs with values attached to the vertices — no
topology or metrics is defined. While it is possible to define subdivision directly on sim-
plicial complexes described in the next section, starting with abstract simplicial complexes
allows us to separate discrete and continuous aspects of subdivision. Abstract complexes
closely match data structures used for implementation of subdivision, and in this sense
our somewhat more abstract approach turns out to be more practical. Our definitions are
similar to those found in introductory algebraic topology texts such as Giblin [26].

The only non-trivial restriction that we impose on the complex is that the triangles of
the complex adjacent to a vertex should form one ring. It is easy to see that any mesh can
be converted to a mesh of this type by replicating some vertices and triangles.

We define a formal language for describing local parts of a simplicial complex (neigh-
borhoods) and derive their elementary properties.

Subdivision schemes that we consider are finitely supported, locally defined and affine-
tnwariant. Informally, finite support means that only a finite number of vertices are used to
compute the value at a new vertex. Local definition means that coefficients used to compute

the new value depend only on the structure of a finite part of the complex. Stationarity
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means that the rules do not change from one level to the next.

We show that if a scheme is finitely supported, then all new values that are computed
as the result of subdivision of a triangle depend only on the values at the original vertices
in a finite neighborhood of the triangle.

This neighborhood is called control set of the triangle and is similar to the set of control
points of a spline patch. Similarly, a localization set is the neighborhood of the triangle
whose topology influences the choice of functions for subdivision on all levels.

The distinction between localization and control sets is subtle; the rest of the material
presented in this thesis would not loose much generality if this distinction is ignored and
control and localization sets are identified. We make the distinction because these properties
are in fact different and potentially there are useful subdivision schemes for which the

difference is important.

2.2.1 Definitions

Definition 2.2. An abstract simplicial 2D complex K = (V, E, F) is a set of vertices
V', a set of abstract edges, which are unordered pairs of vertices, E C {(v,w)| v,w € V'} and
a set of abstract triangles which are unordered triples of vertices, F' C {(u,v,w)| u,v,w €

V'}, satisfying the conditions below.

In this section we omit the word “abstract” in the terms “abstract edge,” abstract
triangle” and “abstract simplicial complex”.

The first three conditions formalize the intuitive idea of the complex consisting of trian-
gles that are glued together. The last two conditions ensure that the neighborhood of any

vertex has simple structure.
1. All edges of a triangle are in E: if (u,v,w) € F, then (u,v), (v,w), (w,u) € E.

2. No “dangling” edges: if (v,w) € E, then there is u € V such that (u,v,w) € F. If an
edge is shared by two triangles, it is called an internal edge. Otherwise, it is called

a boundary edge.
3. No isolated vertices: If v € V, there is w € V such that (v,w) € E.

4. No more than two triangles share an edge: If (v, w) € E, there are no more than two

vertices uq, ug such that (u1,v,w) € F and (ug,v,w) € F.
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5. Consider the set of all triangles containing the vertex v. Consider the set of all edges
of these triangles not containing v itself: N(v) = {eg, e1,...ex—_1}; this set is called the
link of v. We assume that this set is finite and there is a permutation 7 such that e;
and e;41 share a vertex and no non-consecutive edges do not share a vertex except
possibly eg and er_1. If eg and e;_; share a vertex, the vertex v is called a boundary

vertex; otherwise, the vertex is called an internal vertex (Figure 2.2).

HeP DR

boundary internal

YES

Figure 2.2: Left: FExcluded configurations of triangles around a vertex. Right: These
configurations are allowed.

A simplicial map K1 — Ks is a map V4 — V5 which maps edges to edges and triangles

to triangles.

Definition 2.3. We call two simplicial complezes K1 and Ko isomorphic if there is there

18 a byective simplicial map K1 — Ks.

A subcompler K' = (V',E', F') of a complex K is a complex that satisfies V' C V',
ECFE,FCF.

A complex is closed if all edges are internal. It is easy to show that all vertices are also
internal in this case.

If for a pair of complexes K7 and Ky there are subcomplexes K| C K; and K} C K»

such that K7 is isomorphic to K}, K; and Ky are called locally isomorphic on (K}, K}).

Definition 2.4. A 1-neighborhood N1 (W) of a set of vertices W € V is the subcomplex
of K consisting of all triangles with at least one vertex in W, their edges and vertices.
An m-neighborhood N,,(W) is defined recursively as a I1-neighborhood of the (m —
1)-neighborhood. We also use notation Ny (W, K) when the want to emphasize in which

complex: we find the neighborhoods.
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Nij (A) where A is a subcomplex of K7 denotes the i-neighborhood of the set of vertices
of A; N/ (A) = N;(A, KY).

k-regular complexes. Most of our constructions use special types of complexes — regular

and k-regular.

(-32) \/(-22) \/(-1.2) \f(02) \(12)
(3) \/(21) MD\ (L1 \ (@21
(-30) \/(-20) \ /(-10) \/(0,0) \ A10) (20) _\(30) I
(-ZMMD (1-1) \2-1) /G
(-LW—Z) (2-2) \/(3-2)
AAA 3-3

Figure 2.3: Left: enumeration of vertices of the regular complex. Right: enumeration of
vertices of a k-regular complex for k£ = 5.

The standard k-regular complex Ry, is shown in Figure 2.3. To specify the complex ex-
actly, we need to enumerate its vertices and faces — all edges of each face are automatically
included into the set of edges.

The set of vertices can be enumerated using three indices (i, 7, 1): the first index indicates
the “sector,” and the other two define the position of the vertex in the sector. Indices satisfy
i=0...k—=1,7>0,0l=0...5 —1. There is also a special central vertex vg 0. A pair of

faces is defined for each vertex v; j; except v (Figure 2.4): for [ < j — 1 the triangles
{(Uz',j,lavi,j+1,l+17Ui,j,l-{—l)a (Ui,j,laUi,jfl,lavi,j,l+1)} EF
are in F; for [ = j — 1, the triangles

{(Ui,j,j—lavi,j+1,jav1ﬁ+1,j,0)7 (Ui,j,j—laUi+1,j_1,0avi+1,j,0)} er

are in F.

Index i is incremented modulo &, i.e., v j; = v ;.
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(i+1,5,0) (i, j+1,7)
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Figure 2.4: 2 faces corresponding to each vertex in a k-regular complex.

A standard k-regular complex with boundary iRE is defined in a similar way: the vertices
of the complex are numbered using the same three-index scheme, but the last sector with
i = k — 1 contains only vertices with [ = 0.

The faces of the k-regular complex with boundary are defined exactly in the same way,
but ¢ varies in the range 0... %k — 2.

If £ = 6, there is a simpler way to enumerate the vertices of complex: they can be
identified with the vertices of an integer grid on the plane. The vertex v; ; corresponds to
the point (4, j) (Figure 2.3).

We use this numbering for the 6-regular complex; we call a 6-regular complex simply
regular.

Similar numbering can be introduced for the 4-regular complex with boundary: the
vertices are v; j, where ¢ is any integer, j is non-negative. We call a 4-regular complex with

boundary a regular complex with boundary.

Complex refinement. First we introduce complez refinement which describes how new
vertices are added to a complex (this part of the subdivision process was called “topological
rule” in the introduction).

The procedure is an abstraction of the midpoint subdivision: insert a new vertex at the
middle of each edge and connect the midpoints for each triangle. We call this procedure
complex refinement.

Let D(K) be a new complex obtained in the following way: The new set of vertices
V' = VUV(FE) where V(E) is a set of vertices which has one vertex per edge of the
complex K; let my,, be the vertex in V(F) corresponding to the edge (v, w).

The new set of edges E' is defined as {(v,my,)|(v,w) € E}. For each old edge (v, w)
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there are two new edges (v, Myy) and (w, My,,) in E'.
The new set of triangles F’ consists of four new triangles for each triangle in F: if
(u,v,w) € F, then (u, Myy, Myw)s (Vs My, Myw)s (W, My M) and (Mg My M) are

in F’ (Figure 2.5).

muv

m’U’LU
Figure 2.5: Insertion of new vertices for a triangle (u, v, w).

The new triangles are called children of the original triangle (u,v,w). The triangles of
the complexes DI(K), j = 0,1... form a quadtree with no terminal nodes.
We use K7 as a notation for D’(K). The vertices of K7 are also vertices of K7+1.

Notation for sets of vertices:

VTj is the set of vertices of all children of a triangle 7" in K7.
Vp° is the union of VYZ for all j.

VJI(A) is the union of V% for all triangles T" of a subcomplex A of K7 For i < j, Vi(A)

means V/(A) NV the set of vertices of A that are vertices of K.

An simplicial map p: K7 — K> can be extended to K{ and Kg inductively:

pw)=p " v) forve V™

P (Mmyy) = My, if p7(u) =’ and p7(v) =,

(2.6)

where V7 is the set of vertices of Ki. We denote the extension of p to D(K7) by pP.
A complex K is self-similar, if the complexes K and D(K) are isomorphic. k-regular
complexes and k-regular complexes with boundary are all self-similar. Recall that the set

of vertices of D(Ry) by definition consists of all vertices v; j; of Ry and vertices my, for
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all edges (u,v) of Ry. For each vertex v;;; there are 3 new vertices in D(Ry), shown in

Figure 2.6.

—_ (4, 25, A1)

/\/\/ (4,241, 2141)

(7'32]_1320 (Za2j 21)

Figure 2.6: Refinement of k-regular complexes.

An isomorphism pY : D(Ry) — Ry, is given by

0
P, (Vi 1) =v2i2j21

szk (m(vi,j,la vi,j,l-i—l) V;,24,21+1

)
)

PR, (Vi 50, Vi ji41)) =Vi25,2041
)

0
PRy, (m(vi,j,l, Ui,j+1,l+1) =V;,25+41,21+1

where [ is incremented modulo j as above.

Isomorphisms p%‘zk : IR%H — iR;c are derived from p using formulas (2.6).

Functions on complexes. Next we attach values to the vertices of the complex. A set
of values defined at each vertex of the complex can be regarded as a function on the set of
vertices of this complex.

For a fixed complex K, the linear vector space P(V, B) is defined as the space of functions
on the set of vertices of the complex V with values in a vector space B over R, with
operations defined in the natural way. We are interested in the cases when B is R"™ or C"
forn =1,2,3. If p: K1 — K> is a simplicial map, it induces a homomorphism of linear
spaces psx : P(Ky) — P(K;) defined by (p«(p)) (v) = p(p(v)) for p € P(Ks), and v € V. If

p is injective, then p, is surjective. If p is an isomorphism, then p, is an isomorphism.

p«(p)€P(V1) ‘/ A?(%)

If two complexes are isomorphic, an isomorphism p : Vi — V5 induces an isomorphism

p* of linear spaces P(V1, B) and P(Va, B) via p*(p)(v) = p(p~t(v)) for v € Va.
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Typically we omit B in P(V, B), as the range is often obvious from the context.

Categories of complexes. In addition to abstract complexes described above, we would
like to consider other types of complexes such as tagged complexes. For example, a set of
edges can be designated as tagged, and two complexes are considered as isomorphic only if
there is an isomorphism that maps tagged edges to tagged edges. Tagging can be viewed
as a constraint on the set of simplicial maps of complexes. Let Ob(X) be the class of all
abstract simplicial complexes and let Mor(K7, K2) be the set of simplicial maps from the
complex K to the complex Ky for any K; and Ks, and Ar(X) the class of all simplicial
maps. This defines the category of simplicial complexes. We consider various subcategories
X" of K with Ob(X') = Ob(X), and G = Ar(X’) C Ar(X). We call the elements of G the
admissible simplicial maps of X’. If p € G is an isomorphism of complexes K; and Ky we
call K1 and K5 G-isomorphic. Locally G-isomorphic complexes are defined in a similar way.

Of course, not all possible sets G are useful. We consider sets G that in addition to the
maps required by the category axioms (the identity map K — K, for any K, compositions

of maps) also contains the following maps:

e if K5 is a subcomplex of K7, G contains the inclusion map Ko — Kj;
e for any p: K; — Ko, G contains p” : D(K;) — D(K>).

e If two complexes K7 and Kj are locally isomorphic on (K7, K}), Ki C K1, K C Ko
then there is a complex K3 with subcomplex K% such that K3 is isomorphic to K,

and K; and K3 are locally G-isomorphic on (K7, K3).

The first two requirements are obvious. To understand the last requirement, note that
the whole class of complexes can be separated into nonintersecting equivalence classes of
isomorphic complexes. If we eliminate those isomorphisms that are not in G, then each
equivalence class is separated into subclasses of G-isomorphic complexes. Suppose we know
that we can analyze invariant subdivision locally, using only certain equivalence classes of
complexes (specifically, regular and k-regular). Then the third requirement ensures that
subclasses of these classes produced by G can be used for the same purpose.

For example, for some G there may be more than one nonisomorphic class of k-regular

complexes in X’: we can tag one, two three etc. edges in a k-regular complex and if G
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contains only isomorphisms that map tagged edges to tagged edges, all these complexes are
not isomorphic in X’. The requirement is a formal way of saying that if some complex K
is locally isomorphic to a k-regular complex, then no matter how we tag complex K, it is
locally isomorphic to a tagged k-regular complex.
Tagged complexes can be used to define schemes with creases such as the one described in
[32], and to reduce other types of refinement rules (Catmull-Clark, Doo-Sabin) to refinement

of simplicial complexes (Appendix A).

Subdivision schemes. The most general definition of subdivision simply states that a
subdivision scheme computes values at finer subdivision levels from the values at the top

level for any complex and any initial set of values.

Definition 2.5. A subdivision scheme 8 is a map from the class of complezes to the
linear operators S|K| : P(V) to P(V?Y), where V1 is the set of vertices of D(K). We call

the operators S[K| subdivision operators.

We say that a scheme is G-invariant, if it commutes with the isomorphisms in G. If

pK; — K3 is an isomorphism from G, then S[K1](p«(p)) = pP (S[K2](p)):

(k) P (D(ky))

V‘/p* . “/p*D
P(K2) —=P(D(K3))

Definition 2.5 is too general to be useful. In addition, we require schemes to have a
number of properties. These properties have two origins: most of them are motivated by
practical considerations. One property (stationarity), while being practically useful, also
makes theoretical analysis much easier.

We consider subdivision schemes having the following properties:
e finite support;
e local definition;
e stationarity;

e affine invariance.
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Any locally defined scheme is finitely supported, but not every finitely supported scheme
is locally defined.
Before defining these properties, we define stencils. Because a subdivision operator S[K]

is linear on P(K), it can be written as

(S[K] (p)) (U) = Z ava(w)a

where a,,, are coefficients which depend on K. If we fix v, we can consider S[K,v|(p) =
(S[K](p)) (v) as a function P(V') — B. We call this function the subdivision function. Then
the stencil at v St(K7,v) is the set of all w such that the coefficient a,,, is not zero.

Note that the vertices of the stencil are vertices of K7, but due to the inclusion V7 C

VI*L they may be regarded also as vertices of K7+1,

FEzample. Figure 2.8 shows the stencils of the Loop scheme for various vertices.

Figure 2.7: Locality and finite support for the Loop scheme, L = M = 2. The larger gray
disks mark vertices of the stencils S[K,v]. Left: Njs(v) for a new vertex v; Right: Ny, for
an old vertex v.

Condition 1: Finite support. The new value at any vertex depends only on the finite
number of values on the coarser level in the neighborhood of the vertex.

Formally, suppose for any j and v € K91 there is a neighborhood N ]J\;'(i) (v) containing
the stencil St(K7,v). If the set of all M(v) for all K and j is bounded by a constant M,

the scheme has finite support:

for all K,v St(K’,v) C Nﬁl(v)
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We call the minimal M the support size for the subdivision scheme. Figure 2.7 shows

stencils and neighborhoods N, for the Loop scheme (see example below).

Condition 2: Local definition. The scheme has local definition if the subdivision rule
at any vertex depends only on the structure of a finite part of the complex around this
vertex.

More precisely, suppose two subdivided complexes D(K7) and D(K3) for some Lq have
isomorphic L-neighborhoods Ny, (v1) and Np(ve) of vertices v; € V' and vy = p(v1) € V3,
and p is an admissible isomorphism of Np(v1) and Np(ve). Then if for any p € P(V3)
S[K1,v1](p«(p)) = S[K2,v2|(p), and if L can be chosen to be the same for all vertices of all
complexes the scheme is said to be locally defined and L is called the localization size of the
scheme. If a scheme is finitely supported, in general it is possible for schemes with small
support (for example, midpoint subdivision) that L < M. These cases are not particularly
interesting, so we assume that L > M.

As we will see, for local schemes it is sufficient to study surfaces defined over k-regular

complexes and k-regular complexes with boundary.

Condition 3: Affine invariance with respect to the values. A natural geometric
property of subdivision is invariance with respect to rotations and translations of the space
of initial values B. Due to linearity of subdivision, this is equivalent to requiring invariance
with respect to the class of all affine transformations.

Let A be an affine transformation on B. Then a subdivision scheme S is called affine
invariant with respect to the values if for any complex K, for any j, for any p € P(K, B),
SI|K|(Ap) = ASI[K](p). Above, the transformation A is applied to the values of p at the
vertices of K and to the values of S7[K](p) at the vertices of D(K).

The properties of subdivision schemes defined above are all independent, except the
dependence between finite support and locality: a scheme can be finitely supported, and
not locally defined, but not the other way around.

Ezample. One of the simplest and useful subdivision schemes satisfying Conditions 1-3
is the Loop scheme (Loop [40]). The stencils and coefficients for a variant of the scheme
are shown in Figure 2.8. Different stencils are used for computing values at four types of

vertices:
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new internal old interal old boundarynew boundary
1/8 .1 /8
1/2
3/8 @3/4
1/2

/8

Figure 2.8: Loop scheme. Gray vertices of K7 are elements of St(K7,v) for vertices v marked
with circles. Black vertices are vertices inserted by refinement (only two are shown). The
numbers next to vertices are coefficients used to compute the value p’*1(v) from the values
I (v;) for v; € St(K7,v); co = a(n)/(n+a(n)), a(n) = n((5/8—(3+2cos(2r/n))?/64)~1 —1),
d=1/(1+ a(n)).

e “old” internal: a vertex inherited from the previous subdivision level which has a

closed ring of triangles around it;
e “new” internal: a vertex generated by complex refinement;

e “old” boundary: a vertex from the previous subdivision level which has an open strip

of triangles around it;

e “new” boundary: a vertex inserted by complex refinement on the edge connecting two

boundary “old” vertices.

This list exhausts all possible positions of vertices. For example, the formula used to

compute a new value at a “new” internal vertex is

P (v) = 3/8p7 (v1) + 3/8p (v2) + 1/8p7 (v3) + 1/8p7 (v4)

Vertices vq, vo, v3,v4 are the vertices of triangles adjacent to the edge of v (Figure 2.8.

Details about the scheme can be found in Loop [40]).
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2.2.2 Control and Localization Sets

In this section we introduce the control sets of sets of vertices of subdivided complexes.

It is sufficient to define the values at the control set of a set W to compute with subdi-
vision all values on W.

This idea generalizes the sets of control points of splines: if we know the positions of

control points, all points of a spline patch can be computed.

Definition 2.6. Define the control set Ctrl (W) where W C VIt to be V7 (Nﬁrl(W)>,

where M is the support size defined in Condition 1, Section 2.2.1.

The values p/+1(v) for v € W depend only on the values p/ (v) for v € Ctrl (W).
We define Ctrl*(W) for W € VI+l i < j recursively:

Ctrl (W) = Ctrl*(Ctrl ™ (W)

For a subset W of VV°°, the control set on level ¢ is the union of control sets Uthrli(Wﬂ
V7). For i > j a control set Ctrl*(T) is defined using inclusion V7 c V.

For subsets of W C V°° we define control sets as

Ctrl/(W) = U,;Ctrl’ (W N VY)

Note that the control set may include vertices which are not actually used to compute
values on W; an alternative definition could be based on stencils. Our definition has the
advantage of giving control sets more regular structure at the expense of increasing the size.

There is no guarantee that this set is finite. We are primarily interested in control sets
of V°; CtrlO(Vﬁo) is the direct analog of the set of control points of a spline patch; in fact,
if subdivision produces a triangular spline patch (for example, Loop scheme on the regular
complex), the set of values of p’(v) on Ctrl®(V,2) is exactly the set of control points of the
patch.

The control sets for a triangle for the Loop scheme and for the Butterfly scheme of Dyn,

Gregory and Levin [20] are shown in Figure 2.9.

Lemma 2.2. Control set Ctrlj(Vj‘?o) is finite for schemes with finite support and is a subset

of VI <N%4_1(V%)>, where M is the support size of the scheme.
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Figure 2.9: Left: Control set Ctrl®(V;°) for the Loop scheme, M = 2. Right: Control set
for the Butterfly scheme, M = 3.

Proof. We use Lemma 2.5 from the next section.

Observe that if there is a sequence of sets C7, j = 0,1... such that for any j > 0
Ctrl (Vi) € €9 and Ctrl (C7H1) = €9, then Ctrl' (V) € C%. Indeed, Ctrl!(VE1!)
Ctrl’(C7) = C* (the last inclusion is easy to show by induction). As this is true for any j,
Ctrl (V) C C°

Take C7 = N I{I_I(Vf,). Then from the definition of the control set and Lemma 2.5, we

get

cuti(eivy = vi (g (v ()

= VI (Vo (7)) =¥ () = ©

It is easy to see that M — 1 is the minimal possible size of CV.

O

Note that both Conditions 2 and Condition 1 define a fixed-size neighborhood for any

vertex in V=°.

Exactly the same construction can be used to define localization sets:

Definition 2.7. Let L be the localization size defined in Condition 2, Section 2.2.1 Define
the localization set Loc’ (W) where W C VIt! to be V7 (NiH(W)).
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Significance of localization sets is different; they can be used to establish equivalence of
subdivision on parts of two complexes (Lemma 2.3).

The values p'*1(v) for v € W depend only on the values p/ (v) for v € Loc/ (W).

We define Loc! (W) for W € VJ*1 4 > j recursively: Loc'(W) = Loc*(Loc' ™ (W)). The
rest of the definitions for control sets are transferred to the localization sets in the same
way.

Note that the sets Ctrl’(V,2°) and Loc’(V,2°) are sets of vertices of subcomplexes. We
use the same names for these complexes.

The following fact is the basis for reducing the study of finitely supported schemes
with local definition on arbitrary complexes to the case of k-regular complexes. It follows

immediately from the definition of localization sets:

Lemma 2.3. Suppose K1 and Ks have isomorphic subcomplexes LOCO(VﬁO) and LOCO(VI‘?;),
where T is a triangle of K1 and T is a triangle of Ko and p(11) = Ts. If the initial values
p1 and py satisfy pa = p*(p1) on CtrlO(Vﬁf) and CtrlO(V:,?:), then for all vertices v in
Vi C Vi, ph(p(v)) = pi(v) fori > j.

A proposition similar to Lemma 2.2 holds for localization sets:

Lemma 2.4. Localization set Locj(VT‘?o) is finite for schemes with local definition and is a

subset of Ni_l(V%), where L is defined in Condition 2.

As L is always no less than M, Ctrl (V.2°) C Loc? (V).

2.2.3 Properties of Neighborhoods

We start with several elementary properties which are straightforward to prove using the

definition of the neighborhood and induction.
1. NI(UZA'L) = UiNl(Ai), A, CV
2. if AC B, Ni(A) C Ni(B), A,BCV

3. The sets VI‘7 have the following property: if v; € V,}H \ V7 (ie., it is a new vertex
created on jth subdivision step) then vertices vy, v, € V7 such that (vi,v,), (vi,vp)
are edges of K/*1 also are in V%+1. This property immediately follows from the

construction of le.
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The following fact is easy to show:

N{T (v) € NI (w,) U NI (uy) (2.8)

Using property 2 and induction, we can show that
N (v) © N3 (va) U NG (vs) (2.9)

for any m.

Now we are ready to prove the following lemina:

Lemma 2.5. For any m and any 5 > 0,

vi (N (Vi) = v (NG (V) and
(1))

vi (g (7)) = v (v (v3)

Proof. First we show that D(Ni,(W7)) = Ng;;l(Wj+1) for any subcomplex W,
A straightforward check shows that D(Nf(v)) = Ng“(v) for any v € VJ. It is also

straightforward to show that D(U; A;) = U; D(A;), where A; are subcomplexes of a complex.
Therefore, for any W7,

D(N{(W7)) = D(Upews V] (v)) = Upews N3 ™ (v) (2.10)
Using (2.9) with m = 2, we obtain

D(N] (W7)) = Upe pawsy N3 T (v) = NJTH W7+

Suppose D(NTJ;FI(W]')) = Ng(fnlfl)(Wj‘H). Then taking W7 = Nf;%l(Wj) and applying

(2.9), we obtain
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D(NL(W) = D (N{(W)) = N{*H (D))
= N (NG W) = NEET

which proves our proposition by induction.

Now the first formula becomes obvious: V7(D(A’)) = A’ for any subcomplex A7 by
definition of D.

Now we can prove the second formula. Let WJit! = Ngntl(Vf;H), Wi = an(V%)

Write Ng';fbil(VzJ;H) as NfH(Ng:Ll(VZJ;H)) which coinsides with N7+ (W7+1). For any
vertex v € VJ(Witl) Nf (1) does not contain vertices in V7 except v. For any vertex
v e VITLWIith)\ VI(Witl) v, and v, are in VI(W/TL). Using (2.8), we conclude that for

v Ni(v) doesn’t contain vertices of V7 other than v, and v, which are in W7, and therefore

vi (N (Vi) = v (M (7))

2.3 Convergence of Subdivision

The goal of this section is to introduce some basic constructions for analysis of convergence
of subdivision. To define convergence, we need a parameter domain for subdivision which
has topological structure.

We introduce topology on abstract simplicial complexes. Once topology is specified,
we can define continuous functions on simplicial complex. A subdivision surface is such a
function with values in R3.

A simple, but very useful fact (Theorem 2.8) provides us with a representation of limit
functions of subdivision as linear combinations of a set of basis functions. This is a straight-
forward generalization of a similar fact proved for regular complexes in [6].

We show that for locally defined subdivision the questions of convergence and tangent
plane continuity and C*-continuity of subdivision surfaces can be answered for any complex
if the answer is known for k-regular complexes. This is a consequence of local definition

and finite support. (but see Section 3.1 for a caveat).
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2.3.1 Definition of Convergence

Most of the constructions in this section are routine formalizations of the intuitive concepts

described in the introduction.

Topology on Simplicial Complexes. A 2D simplicial complex in a Euclidean space

RY can be defined as a set of triangles in RV that satisfy the following conditions:

e Any two triangles are either disjoint, or have one vertex in common, or have two

vertices and the edge joining them in common.

e Define the link of a vertex v as the union of edges of triangles that have v as a vertex.

A link of any vertex is either open or closed connected simple polygonal line.

It is clear that for any simplicial complex we can construct a corresponding abstract
simplicial complex, assigning an abstract triangle to each triangle of the simplicial complex
and abstract edge to each edge. The converse is not obvious. A realization of an abstract
simplicial complex K is a simplicial complex such that the corresponding abstract simplicial
complex is isomorphic to K. A well-known theorem says that any finite abstract simplicial
complex has a realization in R* (but not necessarily in R?; non-orientable complexes cannot
be realized in R?). As we are interested primarily in finite complexes we can use simplicial
complexes to introduce topology on abstract complexes. We also use k-regular complexes,
which are not finite, but they clearly can be realized as triangulations of the plane. We use
notation Kg to denote a realization of an abstract simplicial complex K. The union of all
triangles of a simplicial complex Kg regarded as a subset of of R with induced topology
is denoted |Kg|. We use notation |T'| for a triangle of Kg corresponding to the abstract
triangle T of K.

For any abstract complex neighborhood N,,(v), there is a corresponding topological
closed neighborhood U,,(v) = | N, (v)|, which is the union U;|T;| for all abstract triangles
in Ny, (v).

Refinement of simplicial complexes: midpoint subdivision. Refinement of abstract
complexes produces a new complex D(K) from an old complex K. The vertices of K are
also vertices of the new complex D(K). Given a simplicial complex Kg, we can produce a

new complex D(Kj) using midpoint subdivision: replace each triangle of Kg with vertices
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v1,v2,v3 € RN, with four new triangles obtained by adding vertices (vi +w2)/2, (v2 +v3)/2,
(v1 4 v3)/2, and connecting the new vertices. Clearly, |D(Kg)| = |Kg|, and D(Kg) is a
realization of D(K). In this way, !K”, j=0... are identified. If we map a triangle |T| to
the triangle ((0,0),(1,0),(1,1)), the dyadic points (the points corresponding to vertices of
KJ, 7 =0...) map to the points with coordinates of the form /27, k/27 for some integer
i, k. From now on we identify abstract simplicial complexes with their realizations and drop
the subscript in the notation Kg.

For each dyadic point v of |K| we have a sequence of values p’(v),p’*1(v),... defined

by subdivision, where j is the minimal number such that v € V7.

Definition 2.8. A subdivision scheme is called convergent, if for any pair (K,p), p €

P(K, B) there is a continuous function f defined on |K| with values in B, such that

lim sup [|p/(v) — £(0)]], 0

71— 00 ,Uevi

The function f is called the limit function of subdivision.

Notation: f[p] is the limit function generated by subdivision from the initial values

p € P(K).

Isomorphism of simplicial complexes. An isomorphism p of abstract complexes K3
and K5 induces a unique homeomorphism p’ of corresponding simplicial complexes: as
induced isomorphisms are defined for all subdivided complexes K7, p is already defined on a
dense set in | K7]. It is easy to show that p coincides with the restriction to V'*° of a mapping
of topological spaces which is an affine mapping for each triangle of |Kj|. Uniqueness of
continuous extension of p to the immediately follows from density of V> in |K;|. We

identify isomorphisms of abstract complexes with their extensions to the topological spaces.

Identification of k-regular simplicial complexes with the plane. For k-regular
abstract simplicial complex Ry, |Rx| can be realized as a triangulation of the plane. Consider
the triangulation of the plane with vertices v; j;. Let vy, be the point (0,0) and v; j; to
the point R;[j — [ + [ cos 27 /k,[sin 27 /k]?, where R; is the rotation by 2i7/k around zero.
It is easy to see that the abstract complex of this triangulation is exactly the k-regular

complex. This identification is shown in Figure 2.3.



41

are identified with points of the plane obtained

The vertices of subdivided complexes )fR‘}C
by midpoint subdivision. Note that the isomorphism p%k, defined in Section 2.2.1, becomes
the restriction to the set of vertices of R} of the scaling of the plane o : R* — R?,0(y) = 2y.

Extension of p%k to the plane is exactly o.

2.3.2 Basis Function Decomposition

In this section we derive a decomposition of the limit function of converging subdivision
into the sumn of basis functions, which can be obtained as limit functions of subdivision with
initial value 1 at one of the vertices of a complex and 0 at all other vertices. The lemmas in
this section are proved with the only assumption that the stencil of the subdivision scheme
is finite for any point of any complex. The scheme is not required to be either finitely
supported or locally defined.

First, we show that linear and piecewise constant approximations to the limit function

defined below converge to the limit function in L, norm on any compact subset of |K]|.

Definition 2.9. Let T = (v1,v2,v3) be a triangle of K/, y € |T|. Let a1, as,a3 be the
barycentric coordinates of y in the triangle T, a1 +ao+az = 1. Define L[p?](y) = a1p’ (v1)+

asp! (v2) + azp’ (v3), jth linear approximation of f[p"](y).

Clearly, L[p’](y) is continuous, and the definition is consistent on common edges of

triangles.

Lemma 2.6. On any compact subset A of K

lim |27 (y) = fIp°)(9)[loc,a = 0 (2.11)

j—00

Proof. We denote f[p°](y) by f(y), L[p’](y) by L?(y). For any compact set A C |K]|, there
is only a finite number of triangles T of K7 such that AN |T| # (). Thus,

1L (y) — F(y)llso,a < e IZ7 (y) — (W) lo,r

and it is sufficient to show convergence only for A = |T|, where

T is a triangle of K, T' = (vy,va, v3).
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L7 (y) = FW)]|

IN

max max | IJ — Li(s
sE|T|y€|T|‘ (y) ( )‘

LI (v;) —
?é?ﬁierﬁ?fg}’ (vi) — f(s)]

IN

= W, ) -0

As |T| is compact, f(y) is uniformly continuous on |T'| in the standard metrics on
T, i.e., for any € > 0 there is a § > 0 such that for any si, s satisfying [s1 — s3] < 9,
(1) — flsa)] <.

As the maximal distance between points of |T'| for a triangle 7" of K™ is 2\/—3, then for
any € > 0 there is m such that for all triangles 7' of K7, j > my, for any s1,s2 € [T,

[f(s1) = f(s2)] <e.
By definition, f(v;) = limy_. p'(v;). Therefore, there is a number ms such that for all
1> my |pl(v;) — f(vi)| < eforie{1,23}.

Let m = max(my, mgy). Then for j > m

max P’ (vi) = f(s)] < miaX(\Pj(vi) — f@)] +[f(vi) = f(s)]) < 2¢

We conclude that (2.11) is true.

O

A similar statement holds for piecewise constant approximations, defined in the following

way.

Definition 2.10. Suppose for each triangle T of K7 we choose a vertex v, and define
piecewise contstant C7(t), for t in the interior of |T'| to be equal to p’(v). On the

intersections of triangles CJ(y) is defined by arbitrarily picking a triangle “responsible” for

the intersection.

Lemma 2.7. On any compact subset A of K

lim [|C7(y) — f[p")()llsc,a = 0 (2.12)

Jj—o0

The proof of this lemma is exactly the same as the proof of Lemma 2.6.



43

Now we can prove the following theorem:

Theorem 2.8. Suppose a subdivision scheme S converges on a complex K for any initial

values p° € P(K,R). Then

1) = D P (0)eu(y) (2.13)

veVo

where oy, (y) is continuous and p,(y) = f[0u](y), dp(v) =1 and 6,(w) =0 for w # v.

Proof. 1t follows from Lemma 2.7 that

ou(y) = lim L7[6,](y) (2.14)

For any vertex v € V7,

P ) = eviot alyy'pi (w), where only a finite number of af,;' # 0.

By induction, p’(v) = >, cyimt alop =l (w) for all 1 < j, i.e., pi(v) = > wevo A’ (w),
with only finite number of al, # 0.

In particular, for p° = 69, &,(v) = au, i,

P)= ) &@p(w)

weVo

L[p/|(y) = cap’ (v1) + aop? (v2) + asp’ (v3), if y € T, T is a triangle of K7 and a1, a2, a3

are barycentric coordinates of y. Then

Lpl(y) = Y (endly(v1) + @], (v2) + asd],(v3)) pO(w) = Y p°(w)L[8]](y)

weVo0 weVo

The limits of the right and of the left side exist by Lemma, 2.6. Taking limits and using
(2.14), we get (2.13). O
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2.3.3 Reduction to the k-regular Complexes

In this section we reduce local analysis of the limit surfaces generated by a scheme satisfying
Conditions 1 and 2 to the analysis of limit surfaces on k-regular complexes. By local analysis
we mean analysis of properties that can be determined from arbitrarily small neighborhood

of a point in |K| where K is the simplicial complex over which the surface is defined.

Suppose we can demonstrate that for a certain subcomplex K, such that y is an interior
point of | K|, there is an isomorphism p, of K, and K4 where Kgq is a subcomplex of a

standard complex, and any limit function f[p|, p € P(K) can be represented locally on |K,|

as floy(p)] © py:

p
Ky | — [ K std

2.15
\Lf[f)} floy(P)] (215)
B

We use the k-regular complexes, possibly with boundary, as Kg;q. Then the analysis of
all local properties of f, of C*-continuity in particular, can be done on k-regular (possibly

with boundary) complexes.

We consider the case of schemes invariant with respect to all isomorphisms of com-
plexes. Constructions for G-invariant schemes for sets G satisfying the requirements stated

in Section 2.2.1 is similar.

In order to demonstrate existence of the isomorphisms p, described above, we consider

several types of points of | K|, shown in Figure 2.10.

Non-dyadic, non-edge, internal. Suppose € is the distance from y to the boundary of

!TO‘. Let 77 be the triangle of K7 such that y € ‘Tj}. There is j such that Ni_l(Tj)’ C

B(y), where B is a disk of radius € centered at y. Therefore, N i_l(Tj ) doesn’t contain any
extraordinary vertices and it is isomorphic to a subcomplex of the regular complex. Explicit
enumeration of the vertices in Niil(Tj ) establishes the isomorphism. The fact that the
localization set doesn’t contain extraordinary vertices guarantees that the mapping induced

by the isomorphism satisfies (2.15).
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non-dyadic,
boundary

dyadic,
boundary

dyadic,
non-boundary

non-dyadic,
non-edge,
intern

Figure 2.10: Types of points of |K|. Non-dyadic vertices are not vertices of a triangle on
any level of subdivision, not only on the levels shown in the picture.

- ‘jg o
78| [V (2 1)
(&
TO -
72 4 87— Be(p(y))
, — p(v)
7]
[Ny () / !/ .
22 —
| Be(y)
non-edge internal point edge internal point

Figure 2.11: Non-dyadic points, reduction to the regular case, L = 3.

Non-dyadic, edge, internal. Suppose y € }T10| U |T20‘. For any j, there is an isomor-
phism p between D7(T°) U D7 (T") and the subcomplex of the regular complex consisting of
vi g 0 <4,k <2/ induced by the map from ‘Tlo} U ‘TQO‘ to the square [0, 1] x [0, 1], which is
identity for 7V, and reflection across e = [(0,0), (1,1)] for 79, assuming that e is the edge
of TY identified with the same edge of 7. Let T = p(T?), i = 1,2.

Suppose € is the distance from p(y) to the boundary of the square formed by Tlo and
T9. Then there is j such that Nj(le) U Nj(TQj) C Be(p(y)). Then we proceed as in case 1.

Non-dyadic, boundary. Suppose y € |T°|. Assume [(0,0),(1,0)] is on the boundary.
Map 77 to the triangle (vgo, vo1,v11) in the regular complex with boundary. The rest of the

argument is similar to case 1.
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\TOK
i
v Y /’NL(TJ)|
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Figure 2.13: Dyadic points, reduction to the regular case, L = 3, j = 2.

Dyadic, internal. Clearly, NY(y) is isomorphic to N{ in the k-regular complex, where k

is the valence of the vertex. Therefore, Nij in K is isomorphic to a similar neighborhood in

the k-regular complex R;. Choosing sufficiently large 7, we obtain the required isomorphism.

Dyadic boundary. This case is similar to the previous one, but the k-regular complex

with boundary is used instead of the k-regular complex.

In the case of internal non-dyadic and regular dyadic points of | K|, it is sufficient to

analyze C*-continuity of the surface on the regular complex.

In the case of internal extraordinary points, it is sufficient to analyze C*-continuity the

k-regular complexes.
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Thus, analysis of C*-continuity of the scheme at internal points of |K| is reduced to two
cases: the regular case, for which the scheme is defined with a finite mask, and k-regular
case, for which the scheme is defined with a finite number of finite masks, corresponding to
different symmetry classes of vertices.

On the boundary, it is also sufficient to analyze two cases: regular and k-regular com-
plexes with boundary.

The regular case is described in detail for functional subdivision by Cavaretta, Dahmen
and Micchelli [6].

The second case did not receive much attention until recently. Relevant literature in-

cludes works by Loop, Warren, Kobbelt, Reif [40, 63, 36, 55].

2.4 Subdivision Matrix

In this section we introduce the subdivision matrix, which is the matrix that relates the
values on the localization set of the topological 1-neighborhood of zero in the k-regular
complex to the values on the similar neighborhood on the next subdivision level. This
matrix is defined only for stationary schemes.

As the localization set of 1-neighborhood of zero U; is contained in Nz, the limit function
on Uy is completely defined by values p° on Ny. In particular, if we take the initial values to
be equal to the values of an eigenvector of the subdivision matrix, subdivision will produce
a limit function called eigenbasis function. These functions satisfy scaling relations which
will be used in the next section to derive a criterion for C*-continuity.

We introduce layers of a k-regular complex, which are rings of triangles around a vertex,
where only regular subdivision rules are used.

Finally, we prove a simple condition on the eigenvalues of the subdivision matrix that

is sufficient for convergence of subdivision.
2.4.1 Subdivision Matrix and Layers

Let L be the localization size for 8.

Definition 2.11. Consider NY_(NY) = N? in the k-regular complex Ry,. As Ni ~ Ni“
and Ctrlj(Ni+1) C Ni, the values of pj+1|Nj+1 can be computed from pj|Nj only, using
L L

a matriz S7. If there is an m such that for all j > m S = S™ = S we say that the
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subdivision scheme s stationary on the k-regular complex, or simply stationary. We call

S the subdivision matrix of § on Ry.

Note that our definition differs from the definition of stationary subdivision on regular

complexes which can be found for example in [6]. Our definition is somewhat weaker.

Example. The following matrix is the subdivision matrix for the Loop scheme on the

3-regular complex. The vertices are indexed as it is shown in Figure 2.14.

7/16 |3/16 3/16 3/16| 0 0 0 | 0 0 0
3/8 38 1/8 1/80 0 0 0| 0 0 0
3/8 1/8 3/8 1/80 0 0 0| 0 0 0
3/8 |1/8 1/8 3/8/ 0 0 0 | 0 0 0
1/16 | 5/8 1/16 1/16|1/16 0 0 [1/16 0 1/16

1/16 | 1/16 5/8 1/16
1/16 | 1/16 1/16 5/8

0 1/16 0 |1/16 1/16 0

0
1/8 | 3/8 3/8 0 | 0

0

0

0 1/16| 0 1/16 1/16
o 0 |[1/8 0 0

o 0 | 0 1/8 0
0

1/8 | 0 3/8 3/8

1/8 | 3/8 0 3/8

s

(3] Ni Ni-H

Figure 2.14: Subdivision matrix operates on the values of p/ on N, i (left) and produces the
values of p/*1 on Niﬂ (right). In the picture, L = 2, as for the Loop scheme. The numbers
shown in the picture are used to arrange the values at vertices of Ni into one vector.
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Conditions 1-3 from Section 2.2 are reflected in the properties of the matrix. For
example, Condition 3 (affine invariance) implies that the subdivision matrix has eigenvalue
1 with eigenvector z(v) = 1 for all v € Np. Indeed, let p/'(v) = p(v) — 1 for p € N, i.e.,
p' =p—x. Then Sp’ = Sp — z by affine invariance. But by linearity Sp’ = Sp — Sz, thus
Sx =zx.

Next we define the layers of k-regular complexes. For any triangle T, T'N Ny = (),
convergence of 8§ on |T| is equivalent to convergence of § on a triangle of the regular complex
(Lemma 2.4). By assumption, 8§ converges there. Thus the scheme converges on Ry \ Nr.

Note that D(Ri \ Ni) = R?jl \ N%L“-

Definition 2.12. A Layer Lt/ of the subdivided k-reqular complex IRi 1s defined as N‘QjL \
Ni.

AVAVAVAVAVAVA'A'A'A

4
v

JAVAVAVAVAYA

A~
AXN
XY
AX

VAVAVAXAVA"

AV
Vg
%V

VAVAVAVAVAYAY

INANNNAS
E
20
<

O\
AV
\WAW

X%

A
v
00
e
IR
A

\7
%

éé
v

2 E‘f?
>

Figure 2.15: Layers L1 Lr!,Lr? for L = 3 (Butterfly scheme).

The union of all layers covers a neighborhood of zero in |Ry|, except for zero itself:

U [07] = O34 (2.16)
§=0
We use notation Ul] for Ulj \ {(0,0)}.
By construction of the layers, functions f[p"] are defined on U;-”:OLrj for n > m, and
flp"] = f[p"™] on U;.”:OLrj. Thus, we can define f°(y) = f[p"|(y) for y € U;‘:OLrj. If the

subdivision scheme converges on Ry, the limit function f[p°] coincides with f°[p°] on }NSL .
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We summarize the observations above in the following

Lemma 2.9. On a k-reqular complex Ry for a subdivision scheme § converging on the
reqular complez, for anyp € P(NL) there is a continuous limit function f°[p] defined on Uy ;
at dyadic points v, the sequences of values p'(v) converge to f°[p]. If the scheme converges

on Ry, f°[p] coincides with f[p] on Uy.

2.4.2 Eigenbasis Functions and Scaling Relations

The limit functions generated by the eigenvectors of the subdivision matrix have an impor-
tant property: they satisfy scaling relations described in this section. This property will be
used in Section 3.10 to derive a criterion for C*-continuity of subdivision.

Let Ao, Aj, ... Ay be different eigenvalues of the subdivision matrix. The following lemma

can be easily proved

Lemma 2.10. If a subdivision scheme converges on the regular complez, it is necessary
and sufficient for convergence on a k-reqular complex that the subdivision matrixz S has
etgenvalue 1 with a single cyclic subspace of size 1 and all other eigenvalues have magnitude

less than 1.

Let A\g = 1. For any \; let J;, 7 =1...P; be the complex cyclic subspaces corresponding
to this eigenvalue.

Let n; be the orders of these cyclic subspaces; the order of a cyclic subspace is equal to
its size minus one.

Let bt

i T=0... n; be the complex generalized eigenvectors corresponding to the cyclic

subspace J; The vectors b;-r satisfy

Sbi,. = \bi, + 0%, ifr>0
T (2.17)
We use the following rules for enumerating the cyclic subspaces of S:

o All eigenvalues are enumerated in the order of nonincreasing magnitude.

e If the magnitudes of eigenvalues are equal, they are enumerated in the order of non-

increasing order of the largest cyclic subspace.
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e If the eigenvalues have equal magnitudes, and equal orders of highest-order cyclic sub-
space, the real positive eigenvalue if there is one, has number less than real negative;
complex eigenvalues are enumerated after real; two complex conjugate eigenvalues
have sequential numbers; the order of complex-conjugate pairs of eigenvalues is in-

significant for our purposes.

e For each eigenvalue the cyclic subspaces are enumerated in nonincreasing order, i.e.,

ni >nb >ni > nh
Definition 2.13. Suppose S is the subdivision matriz of a subdivision scheme & on the k-
reqular complex, and b;T are the vectors of the Jordan basis of S. Then the limit functions

f[b;r] (y) defined on Uy are called complex eigenbasis functions.

Eigenbasis function f [b“”,] is also denoted fJ’T
It immediately follows from Theorem 2.8 that any function on U; can be written as a

linear combination

FIlw) =Y Bjfir(v) (2.18)

Z’]7/r

where ﬁ;r € C3, and if b;r = b_ft, ;r = B_ﬁ, where the bar denotes complex conjugation.

One can show using the definition of limit functions of subdivision and (2.17) that the

eigenbasis functions satisfy the following set of scaling relations:

F/2) = Nifl () + fi,_1(y) ifr>0

T0w/2) = Niflo(y)

(2.19)

Real eigenbasis functions. As we consider real surfaces, it is convenient to use real
Jordan normal form of the matrix rather than the complex Jordan normal form. For
any pair of the complex conjugate eigenvalues A;, A\x, we can choose the complex cyclic
subspaces in such a way that they can be arranged into pairs J;, JJ]-C , and b;r = @ for

all 7 and r. Then we can introduce a single real subspace for each pair, with the basis
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k

i

_ i i — b
Cips r=0...n%, where ¢j, = Rb}

s and cé?r = %b;w. We will call such subspaces Jordan

subspaces. Then we can introduce real eigenbasis functions g;.T(y) = fj

(y) for real \;, and
gér(y) = %f;r(y), g;?r(y) = %f;r(y) for a pair of complex conjugate eigenvalues (\;, Ag). For
a Jordan subspace corresponding to pairs of complex eigenvalues the order is the same as
the order of one of the pair of cyclic subspaces corresponding to it. We will follow the same
rules for enumerating Jordan spaces, with one alteration: instead of two sequences of cyclic
subspaces corresponding to a pair of complex Jordan eigenvalues we have a single sequence

of Jordan subspaces.

Similar to (2.18) we can write for any surface generated by subdivision on Uy:

fpl(y) =D algi () (2:20)

17]17‘

i.

v are real. Eigenbasis functions corresponding to the eigenvalue

Now all coefficients «
0 have no effect on tangent plane continuity or C*-continuity of the surface at zero. From

now on we assume that A\; # 0 for all 4.

Trivial eigenbasis functions and eigenvalues. Some of the eigenbasis functions of a
subdivision scheme may be identically equal to zero. These eigenbasis functions do not
affect the limit functions of subdivision in any way. If an eigenbasis function corresponds
to the eigenvalue A = 0, it also cannot affect convergence or C''-continuity of subdivision
surfaces. Although it need not be identically zero on Uy, it is identically zero on a smaller
neighborhood U}. Eigenbasis functions which are identically equal to zero or correspond to
the eigenvalue zero are called trivial.

If all eigenbasis functions corresponding to an eigenvalue A are trivial, A is said to be a
trivial eigenvalue.

The non-trivial eigenvectors of the subdivision matrix span a subspace of P(Np,R)
or P(Nr,C) that we call the non-trivial subspace. The limit function generated by any
xz € P(Nr,R) is equal to the limit function generated by the projection of z onto the

non-trivial subspace.
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Constant eigenvectors and eigenbasis functions. We have observed that if the sub-
division scheme is affine invariant, S has eigenvalue \; = 1 with eigenvector constant on Np.
Note that S cannot have generalized eigenvectors of order greater than 0 corresponding to
the eigenvalue 1: if x is such eigenvector, S™x diverges. Any eigenvector with eigenvalue
1 should produce a constant eigenbasis function. Note that for any eigenvector x of the
eigenvalue 1 Sz does not converge to zero as m — oo. Therefore, the corresponding eigen-
basis function cannot be trivial. By Lemma 3.14 the eigenbasis function corresponding to
eigenvalue 1 should be a constant. Consider two eigenvectors bi, and bi, of the eigenvalue
1. if they generate eigenbasis functions equal to Cy and Cj respectively, then Cabi, — C1bb,
generates a trivial eigenbasis function, which means that the Cgblio — Clbgo = 0 (it is also an
eigenvector of eigenvalue 1). We conclude that the eigenvalue 1 has a single cyclic subspace

of size 1 with constant eigenvector and constant eigenbasis function.

Suppose the set of vectors b, m = 0...n are generalized eigenvectors of S for the
eigenvalue A\, Sb,, = Ab,, + b1 for m > 0, Sby = Abg.
In Section 2.3.1 we have introduced an identification of the k-regular complex and the

plane. Recall that the map y — y/2 of the plane to itself maps Nij — Ng“ for any m.

Theorem 2.11. For a subdivision scheme 8, the functions f[by] = fm defined on Ui in

the k-reqular complex Ry, satisfy scaling relations

fm(W/2) = A(y) + fin—1(y) form >0

foy/2) = Mo(y)

(2.21)

Proof. By linearity of subdivision, if bl, = b, + b, _,, bl, € P(DI(N?)), then bii' =
At oL bl e P(DITY(ND)). As Liu(y) := L[bl,)(y) is linear in y on each triangle
|T|, where T is a triangle of D’(Ny), then

L3 (3) = ALip(y) + Lt 1 (v) (2:22)

For any complex RE \ N¥ limj .o Li(y) = f(y). Therefore, lim; .o Lin(y) = f(y)
everywhere, and (2.21) follows from (2.22).
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2.4.3 Jordan Normal Form of the Subdivision Matrix

Let {b;r\z =0...J,j=1...P,r=0... n;} be a basis in which the subdivision matrix S

has Jordan normal form. Any vector x can be written in the form

i

J Pi nj

2= > > B

i=0 j=1r=0

and bj-r satisfies Sb;-r = )\Z-bj-r + bj.(r_l) for r > 0, Sbj-o = )\ib;o-

We are interested in the expression for the vector S'z. We assume that [ > nz for all
i,].

First, we consider a matrix with one Jordan block. In this case the subscripts 7, j can
be dropped.

We introduce a formal operator NV, acting on eigenvectors of S. Nb,,, = b,,_1 for m > 0
and Nby = 0. The action of S is just Al + N. Clearly, multiplication by a constant and N

commute. Therefore,

n n J
Sle =AM+ N Bubpm =Y > (é) A=y, .5
0

7=0 ¢=0

Changing indexing and the order of summation, we get

n J n m n n—q
AN l o 1 .
(=30 (0 Y= 30, (1),
j=0g¢=0 9 m=0 qg=0 q ¢=0 m=0

n n—q
Sl =N ", (Z (L) /\”_mﬂ,n+q> (2.23)
q=0

m=0

In the general case,
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J B

I_ZZ)‘I " Z g% 7q (2.24)

=0 j=1

where a;lq = Zm 0 (m))\” ’mﬁz (m+q)"

Estimating \aéq\, we get

n —q ni—q

) <m0 ()05 <l S (1)
m=0 m=0
for |A\;| < 1.
lajfy < max |, |15 = O
Finally,

Sle = Z Z/\] " sz o™ et (2.25)
i=0 j=0

In certain cases we have to use bases consisting of real vectors. Generalized eigenvectors
corresponding to complex eigenvalues can be complex. As the matrix is real, complex
eigenvalues come in conjugate pairs and the same is true for complex eigenvectors. Further,
if the decomposition (2.23) is written for a real vector z, the coefficients of a pair of conjugate
vectors of the Jordan basis are complex conjugate.

Let A = | A exp(ivn), Bntq = |Bm+ql €xp(i@m+q) and b — |bl| exp(iny]), where b, is j-th
component of by.

Using Equation (2.24) for a matrix with 2 Jordan blocks corresponding to A and A, we
obtain an analog of (2.23).

Sty = 2] ”|Z\ |Z( )|A”—m\|ﬂm+q|cos<w<lm>+¢m+q+wg> (2.26)
m=0

This decomposition of x is real.
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2.4.4 Convergence Criterion for Subdivision

The idea of layers introduced in Section 2.4.1 can be used to prove a criterion for convergence
of subdivision. This criterion is very similar to Theorem 3.2 [55] by Reif. We do not make
any assumptions about the range of p and f it can be R™ or C". For the second part of

the lemma, we use a fact that will be proven in Section 3.13.

Theorem 2.12. Suppose § converges on the reqular complex. & converges on Ry if and
only if the eigenvalues of the subdivision matriz S have magnitudes less than one, except

Ao = 1, which has a single cyclic subspace of size 1 with a constant eigenvector.

Proof. Sufficiency. Suppose A\g = 1, and all other eigenvalues satisfy |\;| < 1. By assump-
tions of the lemma, A has a single eigenvector which is constant on Ny. Consider a sequence
of points s; € Ry such that lim; .. s; = 0. By Lemma 2.9, the limit function f[p|(y) is

defined everywhere except 0. For a triangle T of R;, such that Loc¢’ |T'| doesn’t contain 0,

W = Y. p@)eu(y)

veCtrld| T
Suppose that for all v [[p(v) — al|, < € for some a. For any y, |3, p(v)pu(y) —all, =

||Zv(p(v) —a)py(y) H2 by affine invariance.

Hence,

ZP(U)% (y) —a

<e) lpu(y)| <eC (2.27)

where C' = max,¢|r|>_, [ou(y)|- C is finite, because ¢, (y) are continuous and |T'| is
compact. Clearly, (2.27) is also true for any union of triangles T'.
Consider the sequence p’, p/ € ?(Ng

in P(N;

(L+1)+M)' The control set Ctrl(|Lr7|) is contained

(L+1)+ ay)¢ the limit function restricted to }Lrj ‘ depends only on the values of pJ.

There is a matrix Sj, such that Sj,p’ = p/1. As the subdivision matrix takes p/ = p’|y,
to p/ 1, eigenvalues of Sj, are also eigenvalues of S and have to satisfy the conditions of the

theorem. Let b’ , i€ {0...J},j€{l...P}, r¢€ {On;}, be the the Jordan basis of Sj,.

Jr

Write ,
. J F I jn§ . ;
P=Bobo+ D> D A Y b0,
q=0

i=1 j=1
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using (2.25) and \g =1 > |\q].

Thus, as j — oo p’ — Bobp; in particular, lim;_,« p?(0) = f[po](0) = Bo

For any e > 0 there is [ such that | s;||, < € for j > [. Therefore, for any n there is
such that s; € Ug’in‘Lri} for j > [, unless s; = 0.

Choose I so that ||p/ —ﬂoboHoo < 6/C, for a given §. Then | f[p](s) — Boll, < d for
se L™ forn’ >1U;if sj = 0, this is also true.

We conclude that f[p|(s;) converges to By, and the scheme converges on Ry.

Necessity. In the previous section, we have already proved that the eigenvalue 1 should
be a non-trivial eigenvalue of the matrix and have a single cyclic subspace of size 1 with
constant eigenvector.

Suppose |[A;| > 1 or [A;)| = 1, but A; # 1; clearly, S™b}, does not converge; and the

scheme is not convergent. O

2.4.5 Extension of the Eigenbasis Functions

Sometimes it is more convenient to consider functions defined on the plane rather than
on Uj. In this section we show that any eigenbasis vector b;-r can be extended to the
whole k-regular complex Ry in such a way that when restricted to any neighborhood N,,,
m > L, it is an eigenbasis vector for the subdivision matrix S,, mapping P(N,,) to itself.
Consequently, any eigenbasis function can be extended to the whole plane and will satisfy
scaling relations everywhere.

In this lemma we omit the subscripts i, j for b;-r and f;r.

Lemma 2.13. Any set of eigenbasis functions f., r = 0...n defined on Uy can be extended

m a unique way to the whole plane; the extended functions satisfy the scaling relations

fr(%) =M (y) + fro1(y), for r >0

$o5) = Mow) + fol)

(2.28)

Proof. Throughout this proof we will assume the standard identification of Ry and IR}C.
Consider the set of eigenvectors b,, r = 0...n. If the localization size of the scheme is
L, for any neighborhood N, p > L, the values on Na,_1 can be computed using only the

values from P(N,);
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We extend the vectors b, to the whole complex R, recursively. Suppose we have exten-
sion pr} to N, p > L. It can be extended in arbitrary way to the vector be*t defined on the

whole complex Rj.

Note that S[Rg]bS** restricted to Na, 1 depends only on the values of b on N, i.e.,

only on pr !,
Define
by = SR [ v,y

b can be extended in arbitrary way to the whole complex R and considered to be an

element of P(R¥). Let S™ be the subdivision matrix for N,, n > p. Then

SPLb, = S[Relby |,y 1

depends only on the values of /I;T on N,. By construction of ZT and the assumption of

induction

by | n, = SPHIPN = NplP 4 ]
Define

- s 1 ~
by = (_1) s+l br—s
s=0

As ZT, b, is defined on No,—1, which is larger than N,. A direct check shows that
b|n, = b

At the same time,

r—1
B 1 - 1) L
S2p7Lbr = Z(_l)sw (Abr—s + br—s—l) + ( ) 0 = Ab, + b1
s=0

Therefore, b, extends pr I to Ny, and satisfies the same relation with respect to S2p—L

as pr | satisfies with respect to SP.

By induction, we extend b, to a vector bLoo] defined on the whole plane and satisfying
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SRl = Aploel + pl) (2.29)

r—

The argument, of Theorem 2.11 still applies, and the limit functions f>°(y) generated by
subdivision from b, satisfy scaling relations (2.28).
We have established existence of the extension, now we prove that it is unique.

For any point y and p > n

() = ; <) N ()

p
For sufficiently large p, y/2P is in Uy, and f>*(y/2P) = f(y/2P). Then f°(y) can be
found as a solution of a triangular linear system with non-zero entries on the diagonal. The

solution is unique, hence the values of f>° are uniquely defined by the scaling relations.

O
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Chapter 3 Smoothness of Stationary Subdivision

In this chapter we establish criteria for tangent plane continuity and C*-continuity of sub-

division schemes at extraordinary points. The chapter is subdivided into four parts.

Part I establishes the framework for discussing smoothness of subdivision. In Section 3.4
we show that any subdivision surface near an extraordinary point can be represented as a
projection of a higher-dimensional space R? into R3. We will call this surface the universal
surface. We show that a subdivision scheme is tangent plane or C*-continuous if and only

if the universal surface is tangent plane or C*-continuous.

In Part II we discuss the criteria for tangent plane continuity. This is the heart of the
theory presented in this chapter. In Section 3.5 we show how tangent plane continuity of the
universal surface is related to the eigenstructure of a matrix derived from the subdivision
matrix. We call this matrix the tangent subdivision matriz. The eigenstructure of this ma-
trix is determined by the eigenstructure of the subdivision matrix; the relation between the
two structures is discussed in Section 3.12. These observations lead us to the necessary and
sufficient conditions for geometric smoothness of subdivision in terms of the eigenstructure

of the subdivision matrix and properties of the eigenbasis functions.

We introduce two maps: the parametric map, which gives a local parameterization of
almost all surfaces generated by subdivision, and characteristic map, which is a self-similar
map that can be used to establish properties of the parametric map.

Theorem 3.4 is the most general result of this part. Corollary 3.5 and equivalent Theo-
rem 3.7 provide an characterization of an important class of geometrically smooth schemes.

In Part III we consider C'' and C* continuity. In Section 3.10 we show how to augment
the conditions for geometric smoothness to ensure that the surface is C''-continuous. We
formulate the conditions for C*-continuity, which easily follow once the conditions for C'1-
smoothness are established.

Part IV is a collection of technical proofs that were omitted in the first three parts to

improve presentation.

Figure 3.1 shows the structure of this chapter.
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Reduction to analysis
of the universal surface

(Sec. 3.4, Th. 3.2)

Criterion of
tangent plane continuity

(Sec. 3.5, Th. 3.4)

Part IV:
Technical Details

Criterion
for nondegenerate
schemes

Asymptotic behavior
of vectors

(Sec. 3.11)

Sufficient conditions

for geometri
(Sec. 3.7, Th|. 3.8)

smoothness

(Sec. 3.6, Cor. 3.5)

Explicit form of the
criterion

(Sec. 3.6, Th. 3.7)

Action of
subdivision matrix
on A%2(RP)
(Sec. 3.12)

general C*-criterion
(Sec. 3.10, Th. 3.11)

(Sec. 3.10, Th. 3.10,
Th 3.11)

Part I1I: C! and C* continuity

|
|
|
|
|
|
|
I |explicit C*-criterion
|
|
|
|
|
|
|
|

Scaling relations
(Sec. 3.13)

Figure 3.1: Relations between the main results presented in this chapter.
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Part I: Preliminaries

3.1 Definitions of Tangent Plane Continuity and C*-continuity

To avoid ambiguity, we describe the definitions of tangent plane continuity and C*-continu-
ity that we are going to use in detail, and provide motivations for the choices that we have
made. The discussion in this section is quite general and applies to a variety of parametric

surfaces rather than only surfaces constructed using stationary subdivision.

3.1.1 (C'-continuous Surfaces

The simplest definition of a C'-continuous surface A is a “locally C'-continuous two-
dimensional” subset of R3: if we take a small ball B centered at any point of A, and
look at the part of A enclosed in the ball B, then it can be obtained from a disk in the
plane by a C'-continuous deformation. More formally, there is a C' map p from a disk D
in the plane to A N B with Jacobi matrix of maximal rank. We will call surfaces satisfying
this condition simple C-continuous surfaces. We will call maps with Jacobians of maximal
rank regular. The definition is illustrated in Figure 3.2. Surfaces satisfying this definition

are 2-dimensional manifolds embedded in R?.

ANB

%) e

Figure 3.2: Definition of a simple C''-continuous surface

However, this definition is not convenient for reasoning about surfaces obtained using
subdivision and parametric surfaces in general; (recall that a subdivision surface by con-
struction is parameterized over its topological complex). The problems with the definition
above can be seen best from an example, such as the surface depicted in Figure 3.3. If we
regard the surface in Figure 3.3 as a subset of R?, clearly point A does not have a neighbor-
hood that can be deformed into a disk. But we can look at this surface in a different way.

Suppose we start with a flat sheet, and then deform it into the shape shown in the figure.
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In this case, we can think about the point A as being two separate points of the sheet that
happen to coincide for this particular deformation. We can still consider the surface to be
C'-continuous: we can take a small neighborhood of A on the original sheet and see that

its image under the deformation can be parameterized with a regular map over a disk.

Figure 3.3: A surface with a self-intersection.

Note that we needed the original sheet and the deformation to separate the parts of the
surface that intersect at A. While they are close in R?, from the point of view of the surface
they are far away. The parameter domain (the sheet) is used to define the neighborhoods
of all points. It need not be a subset of R3: we can use any topological space. We only
need it to define neighborhoods on the surface independently from the way the surface is
mapped into R3. In the case of subdivision surfaces we already have a convenient domain:
the topological complex M = |K|. A subdivision surface is the domain M together with
a map f from M to R3. This leads us to the following definition of C'-continuity and

C*-continuity:

Definition 3.1. Consider a surface (M, f) where M is a topological space, and f is a map
f: M — R3. This surface is C'-continuous if for any point x € M there is a neighborhood
U, C M such that there is a reqular parameterization of f(U,) over a disk in the plane,
that is, a map p : D — f(U,) C R3 which is C* and has Jacobi matriz of mazximal rank

(2). If the parameterization p can be chosen to be C*, then the surface is C*-continuous.

The mappings that are used in this definition are shown in Figure 3.4.
Note that parameterization p and the map f are not necessarily related: in fact, for f
C'-continuity may not even be defined, because we assume very little about M: it only has

to have a system of neighborhoods defined for each point. In contrast, the domain of p is a
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Figure 3.4: Definition of a C''-continuous surface.

disk in the plane, which inherits the metric of the plane. We use f to separate the surface
into small pieces; then we parameterize each piece p separately in the same way as we did

it for simple surfaces.

Example. The fact that p and f in our definition are unrelated leads to some complica-
tions. Consider, for example, the map from the unit disk D in x,y plane to the same disk
defined by o' = 22 —y?,y' = 2xy. If we identify the plane with the complex plane, this
is simply the map f(z) = 22. It is easy to check that the map is onto; thus, f(D) = D.
We can look at the pair (D, f) as the pair (M, f) in the definition above. This map is not
one-to-one: f “wraps” the disk around itself twice, and has a singularity at zero. However,
clearly there is a nice regular parameterization of f(D) = D: we can take the identity as
a parameterization. Although f is not one-to-one anywhere, we still get a C'-continuous
surface. If we are trying to determine if a subdivision surface (M, f) is C'-continuous by

constructing a C'l-continuous parameterization p, our example shows that f might be a bad

starting point, which makes analysis of subdivision surfaces somewhat more difficult.

An alternative to our definition is to require p to be a mapping of the form f o p/,
for some p’ : D — M. This approach allows constructing parameterizations from f, and
automatically excludes cases when f locally is not one-to-one. While being somewhat easier
to use, this definition would give f a special role in determining C'-continuity: returning to
the example discussed above, according to the alternative definition the parameterized disk

may be not a C'-continuous surface. We use the weaker definition to include such cases.
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3.1.2 Constructing C'-Continuous Subdivision Schemes

Typically, subdivision schemes are constructed starting with the rules for the regular com-
plex. These rules are chosen so that if we identify each triangle of the topological complex
with a triangle in the plane using a mapping p, then the mapping f o p is C'-continuous in
the interior of the triangle. Moreover, if we use the same rules for refining the boundaries of
the triangles, it is easy to construct C! parameterizations of the same type near any point
of the edge except the endpoints. Note that continuously differentiable parameterization
does not guarantee yet that the surface is C'-continuous in the sense defined above: the
parameterization may be C! but singular, i.e., have Jacobi matrix of rank 1 or 0. It is
possible to show that this problem cannot be completely avoided due to linearity of subdi-
vision. However, for a good choice of subdivision rules on the regular part of the complex
(for example, spline subdivision rules or interpolating subdivision rules) we can ensure that
the surfaces are singular only for a nowhere dense set of configurations of control points.

Assume that the control points are chosen in such a way that the surface is C'*-continuous
everywhere except the corners of the triangles of the topological complex M, i.e., vertices
of the complex. It is easy to see that we can construct a parameterization of a part of the
surface adjacent to a vertex v of M (to be more precise, of the union of images f(T') of all
triangles T of M adjacent to v) which will be C''-continuous and nonsingular everywhere
except at the vertex v. This parameterization is described in greater detail in Section 3.2.
Thus, we are particularly interested in surfaces which are known to be locally C''-continuous
everywhere except at a set of isolated points (extraordinary vertices).

It is important to note that the for C''-continuity of the surface the parameterization of
Section 3.2 need not be regular or even C!-continuous at extraordinary vertices; moreover,

this parameterization need not even be one-to-one.

3.1.3 Tangent Plane Continuity

It turns out to be useful to split the task of establishing C''-continuity of a subdivision surface
at extraordinary vertices into two steps: first, check the existence of a tangent plane, then
determine if the projection into the tangent plane is injective. To make this idea formal,

we need to describe the tangent planes as functions on the surface more precisely.

Recall that the tangent plane is the span of all tangent vectors, which are defined as
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directional derivatives of the parameterization. If regular parameterizations are defined
everywhere except a set of isolated points, so are tangent planes. In R?, a tangent plane at
a given point is uniquely determined by its unit normal; however, each tangent plane has
two unit normals. We use the regular parameterization near the extraordinary vertex, to
guarantee a consistent choice of the orientation of normals: the normal can be computed
as a cross product of directional derivatives in the parametric domain. In this case we can
identify each tangent plane with one of its unit normals. This leads us to the following

definition of tangent plane continuity:

Definition 3.2. Let D be the unit disk in the plane. Suppose a surface (M, f) in a neigh-
borhood of a point x € M is parameterized by p : D — R32, which is reqular everywhere
except 0, and p(0) = f(x). Letn(y), y € D be the unit normal defined as [;—af’l X %].,., where

(x1,x2) is a coordinate system in the plane of the disk D and [-]4+ denotes normalization.

The surface is called tangent plane continuous at x if the limit lim,_on(y) exists.

The orientation of the normals is a subtle question. It is possible to characterize tangent
planes in such a way that no orientation is specified; then the limit plane might exist, even
if the limit of comsistently oriented normals does not. One can show that such surfaces
will not be Cl-continuous (Definition 3.1); as we regard tangent plane continuity as an
intermediate stage on the way to C'-continuity, we choose somewhat stronger definition
including orientation.

Tangent plane continuity is clearly a weaker notion than Cl-continuity. A typical ex-
ample of a surface, which is not C''-continuous but is tangent plane continuous, is shown in
Figure 3.5. The local structure of the surface near the singularity can be very complicated;

this is the reason why requiring just tangent plane continuity is not sufficient.

Tangent plane continuity in RP. A surface in R? is tangent plane continuous at a
point, if the normals to the surface have a limit at that point. In R3, there is a one-to-one
correspondence between planes and their normals. This is not the case for p > 3: the
orthogonal space to a plane is not one-dimensional. A normal to a plane can be obtained
by computing the cross product of any two independent vectors in the plane. The crucial
property of the normal is that up to a constant, it does not depend on the choice of vectors.
The cross product has a well-known generalization to RP, called the wedge product, which

we describe here for completeness.
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Figure 3.5: Right: parametric surface (s®> — t2,2st,s +t). The complex form of (s,t) —
(s — t2,2st) is z — 2%, The surface does not have a regular parameterization around 0.

Left: two sheets of the surface with incision along the ray s = 0. One of the sheets is

displaced.

The key to generalizing the definition of a normal is the relation between normals to a
surface and Jacobians: each component of the normal is the Jacobian of a pair of coordinate
functions, assuming that the coordinate functions are C''-continuous and at least one of the
three pairwise Jacobians is not zero. This is just a special case of the general observation

that the components of the normal to a plane defined by vectors t! and t? are determinants
of two-by-two matrices

1 41
ny, = ; Z (b4, k) € {(2,3,1),(3,1,2),(1,2,3)}
J
Once we have described the normal in this way, we can see that given a plane in RP,
we can consider the vector of Jacobians for all possible pairs of components, which will
have length p(p — 1)/2. Each such component is invariant with respect to planar affine
transformations, hence the whole vector is invariant. For two vectors z!, 22 € RP this vector
of determinants is called the wedge product and denoted z! A z2. As elements of RP(®—1)/2,
such products have well-defined sums, but not every element of Rr®P=1/2 corresponds to
a wedge product for p > 3 (example: e; A es + e3 A ey, where e;,i = 1...4, are the basis

vectors in R?). Although our definition clarifies how wedge products generalize normals, a
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more natural and invariant definition is the space of all antisymmetric bilinear functions of
two vectors from RP. It is straightforward to check that these spaces are isomorphic. The
space of wedge products of vectors is denoted A2(RP).
In the three-dimensional space a surface is tangent plane continuous at a point if the
normals have a limit at that point. Using the wedge product, we can define tangent plane

continuity is R? in a way similar to the definition in R3:

Definition 3.3. Let D be the unit disk in the plane, M a topological space. Suppose a
surface (M, f), f: M — RP, in a neighborhood of a point x is parameterized by g : D — RP,
which is reqular everywhere except 0, and p(0) = f(x). The the surface is tangent plane
continuous at the point x if the limit of [O1g A O2g]y : D — A?(RP) ewists at that point.

[[]+ denotes normalization to unit length.

The following Proposition shows the relation between tangent plane continuity and C1-

continuity:

Proposition 3.1. Suppose a surface is tangent plane continuous at zero. Let T be the limit
at zero of the oriented tangent planes, and let P, : RP — R? be the projection of RP onto
the plane . Then the surface is Ct-continuous if and only if there is a neighborhood D of

zero, such that Py restricted to f(D) is injective.

Proof. Necessity is obvious; we prove sufficiency. Suppose P; is injective on f(D). We are
going to show that the inverse of P;|f(p) is regular as a function on the tangent plane in a
neighborhood of f(0).

By assumption, there is a parameterization p of the surface defined on a neighborhood of
zero in the plane, which is regular away from zero, and the limit lim,_o[01p(y) A Oop(y)]+ =
ug exists. Choose the basis in R? in such a way that ug = e; A ea. As any nondegenerate
projections into a plane differ by a nondegenerate affine transformation which does not
affect injectivity, we can assume that Pr(a) = (a',a?) for any a € RP, if a = ), de;.
Let p‘(y) be the i-th coordinate function of p. Let ®(y) = (p'(y),p?(y)). Note that the
components of 91p(y) Ad2p(y) are the Jacobians of the pairs of coordinate functions J[p’, p/].
As lim,_o[01p(y) A O2p(y)]+ = €1 A ez, for a sufficiently small neighborhood of zero U
(O1p(y) A Dap(y), e1 A ez) > 0; but this component of 01p(y) A dap(y) is exactly the Jacobian

of ®. We conclude that @ is regular on U away from zero.
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Therefore, for any point x € U, x # 0, there is a neighborhood U, of x such that ® is

invertible.

Also note that [01p(y) A G2p(y)]+ = Oip(y) A 82p(y)/H81p(y) A 02p(y)H. Writing the

components of the equation lim,_o[01p(y) A 92p(y)]+ = e1 A ez explicitly, we obtain

: J[2] _
5 Towp(o) A )| - .
ti ] =0 for (i,k) #(1,2) (3.2)

y=0 [|01p(y) A Bop(y)|

combining (3.1) with (3.2) we obtain

i .k
lim Jp',p"]

lim SEE= =0 for (58) £ (1,2)

Let PT|f(D) = 7. As ® = P- o p, then on U, we can write 7 = p o ®~1. Observe that

Ot A Oom = J[®]7101p A Bop. Let M be the Jacobi matrix of ®.
T b Tt ]

Note that the we can write the vector T @] as
1 Jpt, p! 90
e [p. Pl Myt (3.3)
@ | gl 02 Oap'

which is exactly the gradient [0y7%a7?]T" of the i-th component of 7. As we have
observed, each component of the left-hand side of (3.3) converges to zero for i # 1,2. For
i = 1,2 the components of 7w are just linear functions away from zero and their gradients
have limits [1,0] and [0, 1] at zero.

If the limit of a derivative exists at zero, the derivative itself exists at zero and is

continuous. We conclude that 7 is a regular parameterization of the surface. O

3.1.4 (C'-continuous Subdivision Schemes

It would be natural to say that a subdivision scheme is C!-continuous if all surfaces gen-
erated by a scheme are C''-continuous. However, this requirement is too restrictive: in
general, it is impossible to construct schemes of this type; even for spline surfaces we can

find configurations of control points that lead to non-C'-continuous surfaces. We adopt a
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weaker notion of Cl-continuity of a scheme. Recall that the collections of control values
for a given complex can be regarded as elements of a linear space P(V'). As we consider
only local schemes, it is sufficient to consider only finite complexes. For such complexes,
the spaces P(V') are finite-dimensional, and we can define a distance on P(V') identifying it
with a Euclidean space. We will consider a subdivision scheme C'-continuous on a complex
K if it generates C'' continuous surfaces for all initial values p € P(V) exclusing a nowhere
dense subset of P(V').

This approach introduces a new problem. For a vertex v, Ctrl(/N1(vk)) be the set of
vertices w € V such that the values of the limit function f[p] on |Nj(v, K)| depend only
on the vertices from Ctrl(/Vi(v, K)). Recall that we reduce the analysis of subdivision on
arbitrary complexes to analysis on k-regular complexes using an isomorphism p between
Nip(v, K7) and Nz (0,Ry;) for some j. Clearly, the values p’(v) on N (v, K’) can be com-
puted from the values p°(v) on Ctrl(Ny (v, K)). By linearity of subdivision, there is a matrix
(not necessarily square) A such that p’/(v) = Ap°(v). If the rank of A is less than p + 1,
then the dimension of the space of p’(v) on Ny (v, K7) is less than the maximal dimension
p+ 1 and it can be identified with a proper subspace P of the space Py of functions on
the vertices of Np(0,Rg), rather than with the whole space. The simplest example of such
complex is a tetrahedron: the dimension of P cannot be more than 4, but even for Loop
scheme p = 9 for a vertex of valence 3. It might happen that the subspace P is contained
inside the nowhere dense subset of P; for which subdivision generates surfaces that are
not C'-continuous. We will call complexes for which this occurs constraining. It is diffi-
cult to characterize constraining complexes for arbitrary schemes. We simplify our task by
excluding such complexes.

This leads us to the following definition:

Definition 3.4. A subdivision scheme is C'-continuous on a complex K if it generates
Cl-continuous surfaces for any choice of control points on K, except a nowhere dense set
of configurations. A subdivision scheme is Ct-continuous, if it is Ct-continuous for any

non-constraining complex.

Tangent plane continuity of a subdivision scheme is defined in a similar way. This
definition allows us to consider only subdivision on k-regular complexes. If a subdivision

scheme is C'-continuous according to our criteria additional analysis is needed to identify
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Figure 3.6: Mapping of a pair of adjacent triangles of U; to two adjacent triangles of the
regular complex.

constraining complexes.

3.2 Singular Parameterizations and a Nondegeneracy Con-
dition

We have already mentioned that any subdivision surface has a natural parameterization near
extraordinary vertices, which is C'-continuous everywhere except the extraordinary point
itself. In this section we describe this parameterization in greater detail. This construction
is similar but not identical to the complex-analytic structure on complexes described by
Duchamp and others [15].

Consider the 1-neighborhood U;j of the extraordinary vertex of the k-regular complex.
This neighborhood is identified with a regular k-gon in the plane centered at zero. The
surface f : U; — R3 defined by subdivision is piecewise C'-continuous on Uy: it is C'-
continuous in the interior of the triangles of U; and may be not C'-continuous on the
boundaries between triangles. However, assuming C''-continuity of the scheme on the reg-
ular complex, we can map any pair of adjacent triangles to two adjacent triangles of the
regular complex using a piecewise linear mapping h (Figure 3.6). Then f o h~! has to be
C' on the interior of the quadrilateral formed by the two triangles of the regular complex.

Note that any deformation of the two triangles of U; that agrees with h in the limit
near the boundary between the two triangles can be used instead. We describe a mapping
k defined on the whole neighborhood U that agrees with mappings A constructed as above
for each pair of adjacent triangles of U.

Each triangle has angle 27 /k at the extraordinary vertex. The map x first maps each

triangle of Uy, equilateral triangle, then “squeezes” the equilateral triangle back into the an-
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Figure 3.7: Construction of the singular parameterization x.

gle 27 /k conformally. Conformality guarantees that near the boundary of any two triangles
the map looks exactly like the piecewise linear map h defined above.

Formally, the map s can be defined as follows; identify the plane with the complex
plane. Suppose the vertices of the k-gon identified with U; are w/k, 3n/k, ... (2k — 1)« /k.

Let Hj, be the linear transformation with the matrix

V3
2cosm/k 0
0 1
2sinm/k

Let x(z) be the map xx(z) = 26/F. The image of the equilateral triangle with vertices
0, e™/6, e=7/6 is contained in the triangle Tj, with two of the edges adjacent to 0 mapping
to the edges of Tj.

Then on the triangle T}, with vertices 0, (2m — 1)7/k, (2m + 1)w/k the map k can be
defined as

K(z) = e 2mn/k (Xk (hk(e%mﬂ/kz))) (3.4)

The structure of the mapping x is shown in Figure 3.7.

Then for any surface f : U; — R? generated by subdivision, the parameterization for™!

is C'-continuous everywhere except 0.

Nondegeneracy condition. It is straightforward to show that the parameterization f o

k™1 is reqular away from zero for all configurations of control points except for a set of
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configurations of measure zero, if the following nondegeneracy condition holds:

Condition A. For any point y in a triangle T C Uy there is a pair of eigenbasis functions

gér, glkt such that the Jacobian J[g;-ragﬁ] s not zero.

In this condition we assume that the Jacobian is defined on the boundaries of the trian-
gles using one-sided derivatives. Note that these derivatives need not coincide for adjacent
triangles, thus we are talking about Jacobians only for eigenbasis functions restricted to a
single triangle. It is easy to check, however, that although the derivatives may not coincide,
the Jacobians on different sides of the boundary have to coincide. This means that we can

consider the Jacobian to be defined everywhere on Uy except zero.

If Condition A is violated, then there is a point in Uy such that any surface generated by
the subdivision scheme would have a singularity there. Moreover, one can see from scaling
relations for wedge products of tangents (3.9), that there will be a singularity arbitrarily

close to zero. In this work we consider only schemes satisfying Condition A.

3.3 Subdivision on k-regular Complexes as Projection

To analyze C'-continuity of a subdivision scheme it is necessary to examine C'-continuity
of all surfaces generated by subdivision. Moreover, we may have to exclude a nowhere dense
set of surfaces. The problem can be simplified if we regard any subdivision surface as a

projection into R? of a single surface in a higher-dimensional space.

We have observed that any surface generated by subdivision on a 1-neighborhood of
zero in the k-regular complex is just a linear combination of the eigenbasis functions g;'-T,

with coefficients from R3.

Let p+ 1 be the size of the localization set of Uy, i.e., of N1. As the eigenbasis function
corresponding to the eigenvalue 1 is constant we will assume the corresponding coefficient to

be zero, and consider only the surfaces mapping zero to the origin in R3. For our purposes,

1

it is convenient to consider the coefficients as three vectors z!, z?, % from RP, rather

than p vectors from R3. Let h;r be an orthonormal basis in R, with one vector per each
generalized real eigenvector c;'-r of S. Denote the vector of all eigenbasis functions g;l-r by
P(y): Uy — RP, Y(y) = Zi’j,r g;'-r(y)hé-r. Then any surface in R? is given by
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(@t ), (2%, ¥), (2%, 9)) (3.5)

Note that by definition of S for any =z € RP

(.CC, w(y/2)) = (va ¢(y))

Using the well-known formula for inner products, (Su,v) = (u, STv), we get

(2,9 (y/2)) = (x,5T¢(y)), for any x

This means that the scaling relations can be jointly written as

b(y/2) = STv(y)

where S is the subdivision matrix; in our basis, the matrix S is in real normal Jordan
form. Although ST is not in Jordan normal form, a simple permutation of the vectors of
the basis will reduce ST to Jordan normal form; specifically, for a Jordan subspace of a
real eigenvalue \; of order n;'-, introduce a new basis eé.T = hj. - that is, simply reverse
the order of the generalized eigenvectors. Similarly, reverse the order of vectors for Jordan
subspaces corresponding to pairs of complex conjugate eigenvalues. It is easy to see that in
the new basis ST has Jordan normal form. An important consequence of this fact is that
h;n; is an eigenvector of ST. The transposed matrix ST is more important for most of our
constructions, so we will primarily use the basis e’ obtained by reordering the vectors of

jr
the basis hé-r.

From (3.5) we can see that any surface generated by subdivision can be regarded as
a projection of a unique surface ¥ : Uy — RP? into R3. Rather than studying all such
projections, we would like to relate C''-continuity of projected surfaces to C'-continuity
of the unique surface in R3, and then establish C'-continuity criteria directly for . The
advantage of this approach is that it becomes unnecessary to consider singular surfaces that
are generated for some special directions of projection, as long as this set of projections is

known to be nowhere dense.

In the previous section we have described a transformation x of the parametric domain



76
U, that gives a regular away from zero parameterization of almost any surface generated by
subdivision, if Condition A is satisfied. As we will see later, this condition also guarantees

1

that the parameterization of the surface ¢ given by ¥ o k™ is regular away from 0.

Definition 3.5. For a subdivision scheme S let 1 be the vector of the eigenbasis functions
on the 1-neighborhood of zero Uy in the k-reqular complex. The universal surface is the
surface in RP defined by ¢ = v : Uy — RP. Let k be the transformation of Uy defined in
Section 3.2. Then the universal surface has a parameterization o = ok~ : k(U1) — RP,

which is C-continuous away from 0.

Note that while we define a unique surface v, any surface obtained from ' by nondegen-
erate affine transformation of RP would also characterize the subdivision scheme completely.
The advantage of using ¢ rather than 1 is that partial derivatives of ¢ are well-defined
everywhere on k(Up) except 0. The drawback of using ¢ is that the scaling relation has a
somewhat more complex form; instead of simply scaling the argument by 1/2, we have to
use a mapping given by Ty = x(1/2(k *(y))), y € k(U1). Then the scaling relation for ¢

has the form

o(Ty) = STo(y) (3.6)

Tangent plane continuity of the universal surface. Note that Condition A in the
wedge-product notation can be written as 19 (y) A d21(y) # 0 for any y in a triangle T' of
Uy. As the Jacobian of x is not zero anywhere including the boundaries of the triangles of
Uz, and the composition ¢ = 1o k™! is differentiable on x(U7), we can restate Condition A

as
Condition A. 010(y) A dap(y) # 0 for any y in k(Uy), y # 0.

If we assume Condition A, the parameterization ¢ is not only continuously differentiable,
but is also regular at any point y € k(U), y # 0, hence can be used as g in the definition of
the tangent plane continuity of the universal surface at 0.

There is a simple formula relating the Jacobian of a mapping U; — R? generated by
subdivision to the wedge product 91t A 92p. The Jacobian of a mapping ((x!,), (z2,1)) :

U; — R? can be computed as
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(ah,009) (2%, 020) — (%, 829)) (2, 1))

It is easy to check that this expression can be transformed to the following simple form:

JF[z', z?)] = (z' A 2®, 819 A Ba)) (3.7)

where the dot product is defined by the standard basis €’ A el i < j < p, with el ... eP
being the basis in RP.

Note that the partial derivatives of 1 are defined only on the interior of the triangles of
Uzp; on the boundaries only one-sided derivatives exist, excluding zero. However, using the
argument that was used to establish C''-continuity of ¢ in Section 3.2, we can see that the
Jacobian of 1 is continuous on U;. Equation 3.7 is valid on the boundaries too, if one-sided
derivatives of 1) are used.

Equation 3.7 is useful for relating the normals of surfaces in R? defined by subdivision
to the normals of the universal surface. For a surface f[z!, 22 23] : U1 — R? a normal at

any point except zero can be written as

N(y) = [(2® A2’ w(y)), (@ Azt w(y)), (' Aa? w(y)]. € w(U) (3-8)

where w(y) = 019 (y) A 921 (y). Note that by assumption w(y) # 0 for all y. Therefore,
for any choice of !, 22, 23, such that at least 2 vectors are independent, the vector above

is not zero and the unit normal can be obtained by normalizing the vector above.

3.4 Reduction to the Analysis of the Universal Surfaces

Our goal is to relate tangent plane continuity and C*-continuity of the universal surface in
RP? and tangent plane continuity of the subdivision scheme at an extraordinary vertex of

valence k. It turns out that the following theorem holds under our assumptions:

Theorem 3.2. For a subdivision scheme satisfying Condition A to be tangent plane con-

tinuous, it is necessary and sufficient that the universal surfaces for all valences are tangent
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plane continuous; for the subdivision scheme to be C*-continuous, it is necessary and suf-

ficient that the universal surfaces are C*-continuous.

Proof. Sufficiency is straightforward.
Necessity: tangent plane continuity. Suppose the universal surface for some valence is not
tangent plane continuous at zero, that is, the limit lim,_o[w(y)]+ does not exist.

Note that [w(y)]. € SPPTD/2=1 the unit sphere in A2(R?). As the sphere is compact,
there are two sequences y!, y2, s € N such that limg_ oo [w(yl)]s = u1, lims_oo[w(y?)]+ =
ug, and u; # up. As the set of all decomposable elements in A%(RP) is closed, u; = u% A u%

and ug = us A u3 for some ui, u?, ul, u3 € RP. As both u; and uy are unit vectors and are

not equal, at least 3 out of 4 vectors u%, u%, u%, u% are linearly independent, or u; = —us.

For the purposes of this proof it is convenient to fix a basis such that u’,i,j = 1,2 are

o b
vectors of the basis (if some u; are linearly dependent, we can always modify our choices
of uz so that the only ones that are dependent, are equal). We assume that uil, and ué are
independent for i = 1,2. If there are three independent vectors, we assume that u} and u3
are independent. Otherwise, u} = u3 and u} = u3.

First, assume that at least 3 vectors uz are independent. For any basis ¢;, t =1...p in
R? we can construct a basis in A?(RP) out of vectors e; A e;, i < j. For the dual basis é;,
the corresponding basis €; A €; in A%(RP) is dual to the basis e; Aej. Let ﬂ; be the vectors
dual to ué-, that is, satisfying (ﬂ;, uf) = (i — k)o(j — 1), and orthogonal to other vectors of
the basis.

Consider the surface @], a3 + @2, 43]. The normals to this surface are given by

N(y) = [((ay +a) A a3, [w(y)l+), (@ Adr, w(y)]+), (@ A (@ +ai), fwly)l+)]

Note that the limit limy_ ., N(y}) is [0,0, 1] if all four vectors are independent; if ud = u?,

the limit is [0,0,2]. For N(y2) we get [1,0,0] if all four vectors are independent; if u = u3,
we get [2,0,0]. In either case, the sequences of unit normals [N (y})]s and [N (y2)]s converge
to different limits.

In the case of two independent vectors among uz the argument is similar.

In both cases it is easy to see that any surface obtained from the described surfaces by

small perturbation of the vectors defining the surface will not be tangent plane continuous.
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Therefore, there is a set of surfaces of measure greater the zero that are not tangent plane

continuous, and the scheme is not tangent plane continuous.

Necessity, C*-continuity. We assume that the universal surface is tangent plane continuous;
for the surface to be Cl-continuous, it is necessary and sufficient for the projection of the
surface into the tangent plane to be injective in a neighborhood of zero (Proposition 3.1).
Suppose the projection of the universal surface into the tangent plane is not injective arbi-
trarily close to zero. As we have seen, the tangent plane is spanned by two basis vectors
in RP. Suppose these vectors are u{ and uJ, and 91, 1 are the corresponding components
of the universal map ¢ : Uy — RP. Let map ¥ be the map (¢1,12) : Uy — RP. Let
7 be the tangent plane, P, : RP — 7 be the projection into the tangent plane defined
by z € R? — ((u},z), (u},z)). If Py, is not injective arbitrarily close to zero, then
there are two sequences of points yl,y2 € Uy, s = 1..., such that 1 (y}) # ¥(y?) for all s,
limg oo ¥} = limgs_ oo y? = 0 and W(y}) = W¥(y2). We can choose a component ); of 1 that
has different values at infinitely many pairs of points y},y2. Consider a surface in R? de-
fined by (11,%2,1;). The tangent plane to this surface is obtained by projecting u{ and uJ
into R3; this plane coincides with the plane of the first two coordinate axes in R2. Clearly,
projection into this plane is not injective. Now consider arbitrary projection of ¢ into R3.
By a change of coordinates, we can always reduce it to the form (11,5, f) where f is a
linear combination of components of . If this linear combination is sufficiently close to 1;,
the projection is not injective again. We have constructed an open set of surfaces generated

by subdivision that are not C''-continuous, and the scheme cannot be C'-continuous.

The argument is easily extended to C*-continuous surfaces: for the universal surface to
be C*-continuous it is necessary and sufficient that the inverse projection to the tangent
plane is C*-continuous. As any subdivision surface in R3 can be obtained by applying a
linear mapping P : R? — R? to the universal surface, the projection of the surface in R3
into its tangent plane is obtained in the same way. We have shown that if the universal
surface is C''-continuous for almost any linear mapping P the projection into the tangent
plane is injective. Then its inverse is well defined and its derivatives can be computed
as linear combinations of the derivatives of the parameterization of the universal surface
over its tangent plane. If the universal surface is not C*, for almost any choice of P the

subdivision surface in R? is not C*-continuous. O
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Part II: Tangent Plane Continuity

3.5 Tangent Plane Continuity Criterion

In this section we are going to formulate a general criterion for tangent plane continuity of
the universal surface. We make very few assumptions about the eigenbasis functions: we

assume only

e Condition A

e the scaling relation 1 (y/2) = ST(y), y € Uy.

It is important to keep in mind that although eigenbasis functions for a stationary
subdivision scheme necessarily satisfy scaling relations, the converse is not true, that is,
not every set of functions satisfying scaling relations can be generated by subdivision. We
primarily explore properties of the universal surface that do not depend on the fact the

coordinate functions of the surface were obtained by subdivision.

Action of the subdivision matrix on 2-vectors. As we are interested in the behavior
of the normals to the universal surface, rather than using the scaling relation for the surface,
it is convenient to formulate a scaling relation for the elements of A%(RP).

We obtain the action of S on A%2(RP) by setting

AS(u1 VAN UQ) = Sui N Sus

This defines the action on decomposable elements. It is easy to see that AS is linear
and can be extended by linearity to the whole space A2(R?). We call the matrix of A.S with
respect to the basis h;-r A hft the tangent subdivision matriz.

Recall that the scaling relations can be written as ¥(y/2) = ST%(y). Differentiating

and taking wedge products, we obtain

w(y/2) = 4ASTw(y) (3.9)

where w(y) = 01¥(y) A t0(y). Again, although only one-sided partial derivatives exist
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on the boundaries of triangles of Uy, the wedge product does not depend on the chosen
triangle; thus, w(y) is well-defined on U; away from zero.

The matrix AS(y) is uniquely determined by the subdivision matrix S. Tangent plane
continuity of a subdivision scheme is naturally related to the eigenstructure of the matrix
AS.

If the 2-vectors w(y), y € U; span the whole space A%2(RP), as we will see below, the
smoothness properties of the scheme are mostly determined by the eigenstructure of AS.
In general, however, this is not the case: it is possible that two or more functions generated
by subdivision are dependent, i.c., J[f[z'], f[2?]] (y) = 0 for all . In this case the tangents
to the surface are constrained to the directions perpendicular to the plane ' A z2. Writing
the Jacobian above as (x! A 22,011 A 021)) we can see that the condition for dependence
of two functions generated by subdivision can be written in A?(RP) as orthogonality to the
space spanned by vectors w(y), y € U;. The set of all directions of w(y) is the p-dimensional

analog of the set of the directions of normals, i.e., the image of the Gauss map of the surface.

Definition 3.6. The directional set D, is the image of the Gauss map [01¢(y) N0t (y)]+ :
Uy — Sple—1)/2-1,

The crucial property of the directional set Dy, trivially follows from the scaling relation

for tangents: If v € Dy, then [ASTv]4 € Dy.

Asymptotic behavior of vectors under iterated linear transforms. It follows from
relations (3.9) that sequences of 2-vectors of the form [(AST)%u], are important for analysis
of tangent plane continuity. The behavior of such sequences is best understood if we identify
A?(RP) with the Euclidean space RP®~1/2 and regard 2-vectors just as vectors. We need
to determine the conditions on a matrix A and vector v € R that are necessary and
sufficient for convergence of the sequence [A°v]1 as s — oo. The conditions for convergence
of such sequences are quite general and have little to do with subdivision. Here we just
state the main definitions and the condition for convergence (Lemma 3.3). We make only
one assumption on A: all eigenvalues of A are not equal to zero and less than 1. This
assumption does not lead to a loss of generality: components of v from the kernel of A do
not contribute to the asymptotic behavior of A%v for any v, unless v € KerA; in the latter

case, for some s A%v = 0.
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For each eigenvalue p of A let V,, be the corresponding invariant space, that is, the
subspace of vectors that are annulled by (A — ulI)’ for some j. The order of any vector
v in the invariant subspace V,, of a matrix A is the minimal number j such that v €
Ker(A — pl)+L,
If a vector v € VJ has order k, then Av = pv+v" where v has order k— 1. By induction

we obtain the following decomposition of A%v for s > k:

(@ (3.10)

where v(@ is in Vi, and v@ £ 0. As s — oo, the direction of Av converges to the
direction of v(©),
A decomposition similar to (3.10) can be written for complex eigenvalues. Let x be the

complex phase of the eigenvalue pu, let qu) = Rou(@), qu) = Sv(@. where v(@ are complex

(@ (9

generalized eigenvectors of order ¢; note that the vectors v;"’, vy, ¢ = 0...k are linearly

independent.

k

S

Ao = [p* Y [pfek vt cos((s + g — k)x) — vi” sin((s + ¢ — k)x)  (3.11)
q=0 k— q

Consider an arbitrary vector v in R¥. The vector v can be written as a linear combination

of the vectors in the invariant subspaces V,, of A:

v=> v (3.12)

o

where v, € V},. This decomposition is unique. Let k, be the order of the vector v, if
v, # 0.

The following definition identifies the set M(v) of components of A%v that determine
the asymptotic behavior of the direction of A*v. These are the components with coefficients

changing as |u|*k®, with maximal possible |u| and k.
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Definition 3.7. For a given vector v, Let M = max{|u| |v, # 0}, and kyr = max{k,|v, #
0, |u| = M}. Define M(v) as {,u’ p=M,k, =k}

Lemma 3.3. If there is a complex or negative p € M(v), A%v does not have a limit direction
as s — oo. Otherwise, M(v) has a single positive element M and the limit direction is given
by u®(v) = [01(\9[)]+,' The sequence |[u’(v) — [A%v]4|| converges to zero no slower than Cs™,

where C' does not depend on v.

The proof of Lemma 3.3 can be found in Section 3.11.

We apply this Lemma to the tangent subdivision matrix AS acting on 2-vectors.

Tangent plane continuity criterion. We are ready to state a general criterion for
tangent plane continuity. Recall [4ASTw(y)]+ = [ASTw(y)]+ = [w(y/2")]+, s =0..., is
a sequence of normals at points y, y/2 ... in U;. It is clearly necessary for existence of a
limit tangent plane that all such sequences converge to the same limit. It turns out to be
sufficient. Note that the factor 4 in (3.9) has no effect on the limit direction, therefore, we
can drop it and consider sequences (AST)%w(y). From now on we will drop this factor.

Let V, be the invariant subspace of A%(R”) corresponding to the eigenvalue . Let
u,, = Proj(u,V),) be the component of a 2-vector u from the invariant subspace V,, of AS.
For a set of 2-vectors X, Proj(X,V),) is the set of Proj(u,V),) for all u € X.

Lemma 3.3 allows us to prove the following general condition for tangent plane conti-

nuity:

Theorem 3.4. The universal surface and hence the corresponding subdivision scheme is
tangent plane continuous at zero, if and only if there is a real positive eigenvalue M of
AST and an eigenvector u® of M such that the following conditions hold for all u from the

directional set Dy :

1. the set M(u) contains a single element M ;

(0)

2. For any 2-vector u € Dy, let upr = Proj(u, Var); then the term uy, in decomposition
. 1s au’ for some a :in other words, if the order of upy is k, then ups is in
3.10) i 0 0; in oth ds, if the ord is k, th S 1

the preimage (AST — M1)~*(span(u®)) and is not zero.

Proof. Necessity. The first condition immediately follows from Lemma 3.3. By definition

of M, the projection u, is non-zero. In addition, the limit direction is the same for all
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2-vectors; this means that in the expansion (3.10) u(?) is the same for all u € Dy up to a
scaling factor. Given that usel) = (S — MI)*uys for an element of order k, we obtain the
second condition of the lemma.

Sufficiency. The conditions of the lemma guarantee that for any 2-vector u, [(AST)%u]y
converges to the same limit u°. Lemma 3.3 gives us a uniform estimate for the convergence
rate of the direction of (AST)*u. Consider a ring R? in U; with outer radius 27 and inner
radius 7. The distance to the limit direction ||[w(y)]+ — u°|| is bounded by some constant
K on the ring R?. Let R’ be the ring with inner radius 7/2/ and outer radius /2/~1. Then
on R’ the distance to the limit direction can be estimated from above by CKj~!, where C
is a constant not depending on y or j. The same estimate applies to the union of rings R*,

s =j..., that is, to a punctured neighborhood of zero. We conclude that the direction of

w(y) regarded as a function of y has a limit at 0. O

3.6 Tangent Plane Continuity of Schemes with Nondegen-

erate Directional Sets

The results presented in this section, while being less general than the results of the previous
sections, are of primary importance both for practical purposes and for understanding the
geometry of subdivision surfaces near extraordinary vertices.

A geometrically natural assumption on the directional set D, is that span(D,) has
maximal possible dimension, that is, coincides with A2(RP). This assumption means that
the universal surface is in a general position — any surface can be deformed into a general
position surface by arbitrarily small perturbation. In three dimensions, this is equivalent
to requiring that the surface is not a cylinder: there is no plane such that the projection
of 1 into this plane is a curve. In this case for any generalized eigenvector e of AS we are

guaranteed to have 2-vectors d1p A Ga € Dy, with non-zero component along e.

Corollary 3.5. Suppose that for a subdivision scheme with universal map 1 span(Dy) =

A%(RP) Then the subdivision scheme is tangent plane continuous if and only if

1. the subdivision matriz AST has an eigenvalue of maximal magnitude M which is

positive and real, and this eigenvalue has a single Jordan subspace Jyr of mazimal
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order kyr (dominant Jordan subspace); for any eigenvalue p such that |u| = M, the

maximal order of a Jordan subspace is less than kyy.

2. For any u € Dy, Proj(u, Jar) # 0.

Proof. 1f span(Dy) = A?(RP) then for any 2-vector u and hence for any invariant subspace
V,, € A2(RP), Proj(Dy,V,,) # 0. Then the first condition follows from the first condition of
Theorem 3.4.

If the eigenvalue M has two Jordan subspaces of maximal order kj;, there is a subspace
W of Vy; with all 2-vectors of order kj; of dimension at least two. The projection of
Dy, on that subspace should span a two-dimensional subspace. Therefore, we can find
two 2-vectors u; and uy from Dy, such that v = Proj(ui, W) and u) = Proj(ug, W) are
linearly independent. By construction of W, oqu’1 + agu’2 also has order kj; for any aq, as
unless both are 0. Note that the limit directions of [(AST)%ui]; and [(AST)%us]y are
u® = [(AS — MI)’“Mul}Jr and u3® = [(AS — MI)’“Mug}Jr respectively. As aqu) + aoud
has order kpr, aju® + asus® # 0 if one of a;, az is not zero. Therefore, (AST)Sul and
(AST)%uy have different limit directions. We conclude that the Jordan subspace of maximal
order must be unique.

The second condition of the corollary directly follows from Theorem 3.4. U

There are some interesting cases for which the assumptions of Corollary 3.5 are not satis-
fied; most notable exception are piecewise smooth schemes of the type described by H.Hoppe
and others [32]. The assumption is easy to verify for piecewise polynomial schemes, as for
such schemes Jacobians also can be expressed in polynomial bases, and the nondegener-
acy assumption is reduced to checking independence of vectors of control values for the
Jacobians.

The conditions on Dy, and AST required by Corollary 3.5 are quite simple. In practice,
however, it is more useful to have explicit conditions on eigenbasis functions rather than on
the directional set Dy, and on the matrix ST rather than on the larger matrix AS?. There
are three parts of Corollary 3.5 that have to be restated: the assumption about span(D,),
the conditions on the eigenstructure of AST and the condition on the projection of Dy, on

the largest Jordan subspace of AS”. Now we consider these parts one by one.
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Linear independence of Jacobians. First, we reformulate the assumption of Corol-
lary 3.5 in terms of eigenbasis functions. Observe that the components of the vectors
w(y) € Dy, are J[g;-r,glkm] (y). span(Dy) # A*(RP), if and only if for any vector u € A%(RP)
there is y such that (u,w(y)) = 0; the latter inequality means that for any linear combina-
tions of Jacobians J [g;-,r, g 1(y) there is a point y such that this linear combination is not

zero, that is, the set of functions J [g;:,ﬂ, glkm] (y) is linearly independent.

Eigenstructure of AST. To interpret the condition imposed by Corollary 3.5 on the
tangent subdivision matrix, we use a Lemma relating the eigenstructure of a matrix AB
acting on A%(RP?) to the eigenstructure of the matrix B acting on RP. This Lemma is a
general algebraic fact and is not specific to subdivision. We use the notation for eigenvalues
and Jordan subspaces of B introduced in Section 2.4 for the subdivision matrix and the
order of cyclic subspaces fixed there. We use an ordering of pairs (A, n;) corresponding to
the order of Jordan subspaces: ()\l,nz) > (A, nb), if |Ai] > |Ag], or |Ni| = [Ax| and nz > ni.

Let Pr (JJ’ A Jlk) be the real cyclic subspace generated by the vector ej. i A efnk if

1
JJZ: + Jlk, and by e;. i e; i, Otherwise (we assume that A; A is real).
i j

Lemma 3.6. Suppose the Jordan subspaces of a matriz B are numbered following the rules
described in Section 2.4. The dominant Jordan subspace Jyr for the matriz AB acting on
A%(RP) is unique and corresponds to a real positive eigenvalue exvactly in one of the following

cases.

1. Jy = Pr (Jl1 /\Jll), if A1 real, (A\;,n}) < (A\1,ni —2) for all i > 1. If \; has more

than one cyclic subspace, then ni < nl — 2.

2. Jy = Pr(J] A J3), if A\ real, has at least two cyclic subspaces, nj = ni ornj = ni—1,

(A, nd) < (A1,md) for all i > 1. If Ay has more than two cyclic subspaces, n} < ni.

3. Jy = Pr (Jl1 A le), if A1 and Ay real, of the same sign and consequently A1 > Ag.
The eigenvalue A1 has a single cyclic subspace of order nt =0, and n3 < n? if n3 is

defined, and (\;,n}) < (A\g,n?) for all i > 2.

4. Jyr = Pr (Jll A J21), if (A1, A2) are a pair of complex-conjugate eigenvalues, and for

all i > 2 (\,nY) < (A1,nd). If Ay has more than one cyclic subspace, then ni > ni.
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The conditions on eigenvalues are illustrated in Figure 3.8. The proof of the lemma can

be found in Section 3.12.

Parametric map. Suppose the universal surface is tangent plane continuous. The limit

0

unit 2-vector u° is an eigenvector of AST. As it is the limit of sequences of decomposable

2-vectors and the set of decomposable 2-vectors is closed, it can be written as ul Au9, where
ul,ud € RP. If uf A is an eigenvector of a real eigenvalue u{ and uJ can be chosen in one
of the following ways: u(l) and ug are both eigenvectors, u(l) and ug are linear combinations
of a pair of complex eigenvectors, and u{, uJ satisfy STu{ = M + u9. For a suitable choice
of the basis c;'-T, uY has one of the forms efo N ey (Aa and Ac real), or efy A efy (Aq and A.
complex-conjugate), or efy A ef;.

Definition 3.8. Suppose the universal surface for a subdivision scheme is tangent plane
continuous, and has limit tangent plane defined by u{ AuY. Then we define the parametric

map as

(), u9), (,u9)) : Uy — R?

The second condition of Corollary 3.5 is equivalent to requiring the parametric map
to have nonzero Jacobian J(y) for sufficiently small y. Indeed, for any v = w(y), J(y) =
(w(y),u’). If [w(y)]+ — uo as y — 0, then J(y) has to be positive as y — 0. Observing
that if Proj(w(y), J,) = 0 then Proj(w(y/2%),J,) = Proj((AST)*w(y), J,) = 0, we get the
converse.

Now we have all the ingredients required to restate the Corollary 3.5 in a more explicit

form.

Theorem 3.7. Suppose that the set of Jacobians J[gér,glkm] (y) regarded as functions on Uy
is linearly independent. Let S be the subdivision matriz of the scheme with eigenvalues and
Jordan subspaces numbered as described above.

For the subdivision scheme to be tangent plane continuous, it is necessary and sufficient
that the subdivision matriz satisfies the conditions of Lemma 3.6 and for a sufficiently small
neighborhood of 0 the parametric map of the scheme should have positive Jacobian. The
parametric map U; — R? is given by ( lln%’flln}fl) in case 1 of Lemma 3.6, ( 11n}’f11n;)

in case 2, ( 11 ) in case 3, and (Rf! E‘sffnl) in case 4.
1

2
1 2 1
ny’ Y 1ny 1ng

The conditions of the theorem are illustrated in Figure 3.8.
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Figure 3.8: Conditions of Theorem 3.6 illustrated graphically. Each column corresponds
to a Jordan subspace. Each cell in the columns corresponds to a generalized eigenvector
(pair of generalized eigenvectors for complex eigenvalues) of matrix S7. The generalized
eigenvectors generating the parametric map are marked with black squares.

The theorem is just a restatement of Corollary 3.5 in a different language.

Comparison of Corollary 3.5 and equivalent Theorem 3.7 shows the advantage of using
the tangent subdivision matrix AS for theoretical analysis: otherwise, the geometric proper-
ties of subdivision are obscured by the apparent complexity of the conditions on eigenvalues

and generalized eigenvectors.

3.7 Sufficient Conditions for Tangent Plane Continuity

In the previous sections we have derived conditions for tangent plane continuity that are
geometrically natural, but only in Theorem 3.5 we have made a step towards conditions
that can be explicitly verified for specific subdivision schemes. Conditions which are simul-
taneously necessary and sufficient are important for understanding the structure of the class
of tangent plane continuous subdivision schemes. However, for the purposes of verification
of tangent plane continuity of specific schemes it is more useful to have conditions that are
easier to check, even if they are less natural mathematically.

In this section we derive sufficient conditions extending those originally proposed by
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Reif[55]*

As a practical criterion, Theorem 3.7 suffers from two problems: first, the assumption
of the Theorem is unnecessarily restrictive; second, it is likely to be difficult to evaluate
Jacobian of the parametric map directly. We start with introducing a new map, called
the characteristic map, which is closely related to the parametric map; this map is more

suitable for explicit evaluation. Our definition is based on the definition proposed by Reif.

Characteristic map.

Suppose a surface is tangent plane continuous, and u® = lim,_o[w(y)];+. Recall that

for a suitable choice of the basis cé-r./ u® has one of the forms ef, A €5, (A, and A, real), or
efy N efy (Aq and A, complex-conjugate), or ef, A efy. We consider only the first case, the
other two are similar.

Note that for the parametric map at y/2° we have

Y
(w(g),uo) = (AST)w(y),u’) = (w(y), AS*u’) (3.13)

Although AS in the basis of wedge products e;'-T A eft does not have normal Jordan form,
with proper choice of ordering it still has block-diagonal form, with each block corresponding
to a Jordan subspace. It is easy to show that u" = exy N ego has order nf +n§ = kpy with
respect to matrix AS. Therefore, as we can see from (3.10) (3.11), asymptotically AS®u’

behaves as

As we have observed, the 2-vector uf™ = €hny, /N €dn, 1S AN eigenvector of AS. Suppose
for all y € Up the Jacobian (w(y),u*™) is not zero. Then for sufficiently large s, the
Jacobian of the parametric map is arbitrarily well approximated by M? (kfu) (w(y), u*™). If
the Jacobian (w(y),u*™) is positive, this guarantees that the parametric map has positive

Jacobian sufficiently close to zero. One can observe that it is also necessary for this Jacobian

to be nonnegative, otherwise the parametric map will be negative arbitrarily close to zero.

'Reif’s conditions guarantee C'-continuity, not just tangent plane continuity; however, as we will see in
Section 3.10 the difference between conditions for tangent plane continuity and C'-continuity is small.
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These considerations lead us to the following definition:

Definition 3.9. The characteristic map ® : U; — R? is defined for a pair of cyclic

subspaces Jy', J3 of the subdivision matrixz as follows:
1. if J = Jg, A is real, the characteristic map is (fq0, fa1);
2. if J* # JG. Aa, Ac are real, the characteristic map is (fq0, fe0):
3. if Aa = Ae, b= d, the characteristic map is (Rfa0, Sfa0) = (9a0, ge0)-

Although a characteristic map is defined for many pairs of cyclic subspaces, only the
map corresponding to the pair of cyclic subspace of the parametric map is of interest. The
characteristic map has a remarkable property, which makes it particularly useful for proving
tangent plane continuity and C*-continuity of subdivision schemes:

The characteristic map ® for any pair of Jordan subspaces has self-similar Jacobian:

J®](y/2) = J[®](y)

This property can be easily proved using the scaling relation. Therefore, it is sufficient
to verify that the characteristic map is regular on a suitably chosen annular compact set.
Reif’s original characteristic map is defined on such set. In our context it is more natural
to consider the map defined on the whole neighborhood Us;.

Note that if the parametric map corresponds to a pair of distinct Jordan subspaces
of order 0, to a Jordan subspace of a pair of complex eigenvalues of order 0, or a single
Jordan subspace of a real eigenvalue of order 1, the characteristic map coincides with the

parametric map.

Sufficient condition. Now we are ready to formulate the sufficient condition. The idea
of the condition is to ensure that the parametric map corresponds to a given pair of Jordan
subspaces of S and then to require the corresponding characteristic map to have positive
Jacobian.

Suppose that for a given pair of cyclic subspaces J;' and Jj the characteristic map ®
has non-zero Jacobian everywhere. This guarantees that the projection of the any 2-vector
in Dy, on Pr (Jl;L A Jg) has maximal possible order ks, where M = A, A and kpp = ng +nj

if Ji # J and 2nj — 2 otherwise.
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By Theorem 3.4, it is sufficient for tangent plane continuity to ensure for any v € Dy, that
if [AjAg| > M, then Proj(u, JJZ:/\Jlk) = 0 and if |[\;\g| = M, then the order of Proj(u, JJZ:/\Jlk)
is less than ks for (J;:, JE) £ (I8, JS).
The first part of this requirement is also necessary and is equivalent to J[ }r-, [, l’;] =0 if

|AiXr| > M. For the second part it is sufficient to have Proj(u, ek, A ef) = 0 for which the

gr
order of eé-r A eft is no less than ks, i.e. v+t > kps if (¢,7) # (k,0), or r+t — 1 > kpy if
r # t and (i,j) = (k,l). However, this is not necessary: a linear combination of vectors of
order kj or higher may have order less than kjs; projections of 2-vectors from D, can be

such linear combinations.

Our observations lead to the following condition:

Theorem 3.8. For a subdivision scheme to be tangent plane continuous on the k-reqular
complex it is sufficient that there is a basis bz-r, in which S has Jordan normal form, such

that there is a pair of cyclic subspaces Ji', J§ in this basis, possibly coinciding, with Mg\,

positive real, and the following conditions are satisfied:

1. For any pair of eigenbasis functions corresponding to eigenvalues \; and A\ such that

[IAidk| > Ao e the Jacobian J[f}T, fR). is identically zero.

2. Let ord(bi,,bf) =+t if JJZ: # JF, ord(bl,,bE) =7+t — 1 if J;: =JF, andr #t. Let

Jr Jr
0rd(b§r,b§t) = 0. For any pair of eigenbasis functions of S f;T and flli corresponding
to eigenvalues \; and A, such that |A\jAg| = AgAe the Jacobian J[ ‘ fﬁ], 18 identically

ir
zero if ord(b’ bft) > ord (b gng)'

Jr? bng»

3. The characteristic map of J*, J§ has Jacobian of constant sign everywhere on Uy

except zero.

Another condition, with stronger assumptions than the one above, but easier to check,
can be obtained directly from Theorem 3.7 by relaxing the nondegeneracy assumptions; it is
sufficient to assume that only the characteristic map corresponding to the dominant cyclic

subspace of AST" is nondegenerate.

3.8 A Necessary Condition

If we want to prove that a scheme is not tangent plane continuous, it is useful to have

necessary conditions that are easier to check than the general conditions of Theorem 3.4, or
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the assumptions of Theorem 3.7. Most of the schemes do satisfy these assumptions; however,
to make the conditions of Theorem 3.7 necessary, weaker assumptions would suffice.

Define the decay exponent of a generalized eigenvector with eigenvalue p oforder k as
(||, k). Define the decay exponent of a cyclic subspace of order k, of eigenvalue p as
(|pe|, kmu). Decay exponents are ordered: (A,n) > (N,n/) if A> XN or A=) and n > n'.

Define the decay exponent of a pair of basis vectors d.e. (eé-r, e{“t) as the decay exponent
of eér A el Explicitly, the pair (|A\A\g,r +t) if JJZ: # JF, as the pair (|N;|,r +t — 1) if
JJZ: = JF, r#t, and as (0,0) if e;'.r = ek.

Suppose the tangent subdivision matrix has two cyclic subspaces Jys and Jys of equal
sizes with |M| = |M’'|. This happens if there are two pairs of cyclic subspaces of the
subdivision matrix J¢, J§ and Jg', Jg such that d.e. (g, Jg) = de. (Jg, Jg ); and Jyy =
Pr(Jg A Jg) and Jyy = Pr (g A5 ).

We can consider decompositions of the form (3.10), but with respect to the sum of
subspaces Jy @ Jyp. If there are 2-vectors w(y;) and w(ys2) such that their projections on
Jy @ Jyp have maximal order, and w(y;)(®) and w(yz)© are linearly independent, then
w(y1/2%) and w(y2/2%) converge to different limits as s — oo. These projections have
maximal order if and only if

PI‘Oj (w(ym)v Spaﬂ<6§ng N e§n§7 eg/ngl’ A >) ;é 0 for m = 17 2

C/
ed’ngl,
This is equivalent to requireing that at least one of the Jacobians J{gp, 950 (4m), J [gg,lo, géjo] (Ym)
is not zero for m =1, 2.
For w(y)® and w(y;)® to be linearly independent, we require vectors of length 2
[J[ggng,gflna}(ym), J[g;ngl,,gzlng,,](ym)}T for m = 1,2 to be linearly independent.

The resulting necessary condition for tangent plane continuity is

Lemma 3.9. Suppose for any pair of subspaces J;:T,, Jﬁ

dee. (Jli

gr

Jlfg) <de. (J8&,JS)  and dee. (JE,JS) = dee. (J;’,Jgf)

Suppose that at the points y1,y2 € Uy and vectors of length 2

J[ggng,gﬁng](ym) m— 1.9

g 595 o) (Um)
4 d’
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are linearly independent, and J(gq, 950) (Ym) # 0 or Jgio, 950)(Ym) is not zero for each

m = 1,2. Then the subdivision scheme is not tangent plane continuous.

Note that the assumptions on the Jacobians are rather weak and are typically satisfied.
In most cases, schemes with subdivision matrices violating conditions of Theorem 3.7 are

not tangent plane continuous.

3.9 Interpretation of the Tangent Plane Continuity Criterion

In this section we discuss the meaning of Theorem 3.4 in terms of eigenbasis functions
and subdivision matrices, without any additional assumptions. Our goal is to gain more
understanding of the subdivision schemes that do not satisfy our sufficient conditions, but
are nevertheless tangent plane continuous.

Note that the first part of Theorem 3.8 is also necessary. The “coarse structure” condi-
tions on pairs of eigenfunctions with |[A;Ag| # |AgAc| where Ay, A, are the eigenvalues of the
pair of cyclic subspaces J;', Jj corresponding to the parametric map.

The crucial difference between Theorem 3.4 and Theorem 3.8 is the assumption that the
characteristic map of the pair of blocks Ji, J is regular. This assumption is not necessary.
However, it is easy to see that the characteristic map has to have a nonnegative Jacobian.
Thus, the tangent plane continuous schemes that do not satisfy Theorem 3.8, have singular
characteristic maps. If the characteristic map has zero Jacobian at a subset of U;, then
tangent plane continuity of the scheme depends on the “next slowest decreasing Jacobian”
(we will make this idea precise below). If that map also has degeneracies, we have to consider
the next Jacobian etc. We can separate the domain U; into subsets such that the number of
“vanishing Jacobians” is constant for each subset. The rate at which the Jacobian vanishes

is constant for each subset.

Partition of U;. To make these ideas more precise, we consider the eigenspace V), of the
tangent subdivision matrix AST. Let ujp, j =1...P,, 7 =0...n;, be a Jordan basis for
the matrix AST on Vi

We would like to describe more explicitly when an eigenvector u® with an eigenvalue M
is the limit of all sequences (AST)%w(y). By Theorem 3.4, for any y € U; the component
Proj(w(y), V,,) should be in (S — MI)~*(span(u®)) for some k. To make this statement
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more explicit, we define a decomposition of V}, into subspaces W), of elements of k-th order.
Note that while V,, is invariant, W}, depend on the choice of the Jordan basis.
Let Wy, be the span of all vectors u;;, for all j such that the order of the j-th cyclic

subspace n; > k. Then

vV, = f: Wi
k=0
Let v(y) = Proj(w(y), V,,). Then v has order k if Proj(v, W;.) =0 for all 7 > k. If v has
order k then the limit of [(AST)*v]y, is uyg only if Proj(v, Wy) is parallel to uyz; in other
words, Proj(v, uj;) = 0 for all j # 1.
Let Z(k) be the set of all points y such that Proj(w(y),W,) = 0 for r < k and
Proj(w(y), Wi) # 0. This defines a partition of U;:

Uy = U= Z(k)

For each y € Z(k), Proj(w(y), u ;) = 0 for all & > 0.

Orthogonality conditions. Conditions of the type Proj(w(y),v) = 0 can be inter-
preted as conditions on Jacobians using the dual basis ;. of the basis uj. in V. Then
Proj(w(y), u;r) = 0 is equivalent to (w(y),d;x) = 0.

Observe that each vector ,, can be written as a linear combination of vectors

> jorLtagehl, Abf;

where h! ; are vectors of the Jordan basis for the subdivision matrix. Therefore, all conditions

on w(y) can be written in the form

> ajud(fl2d, ), flefl] = 0

jrit
that is, a particular linear combination of Jacobians of maps generated by pairs of the
vectors of the Jordan basis of S should be zero. It is easy to see that in general these linear
combinations cannot be reduced to a single Jacobian of a certain map, because most vectors

Upq are not decomposable. For example, if upm, = hjn; A by, then
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Upmg—1 = Asupmq — HlUpmg = hjnj A hlnl + )\ihjnj A hlnlfl/\khjnj—l A hlnl + hjnj—l A hlnlfl

It is interesting to observe that without additional restrictions on the eigenbasis functions
it is impossible to formulate any strong necessary conditions on the subdivision matrix:
virtually for any structure of the subdivision matrix we can choose the eigenbasis functions

in such a way that the resulting universal surface is tangent plane continuous.

Part III: C*-continuity

3.10 Criteria for C' and C*-continuity

Once tangent plane continuity is established, the only additional condition that is required
for C*-continuity is injectivity and C*-continuity of the projection of the universal surface
into the tangent plane.

This criterion for C*-continuity can be obtained by reinterpreting the injectivity condi-
tion in terms of the eigenbasis functions. Let 7 be the tangent plane, P, be the projection
R? — 7. Recall that P, o is just the parametric map ¥ defined in Section 3.5. Suppose
U(y1) = ¥Y(y1). If ¥(y1) # 1 (y2), the projection P; restricted to ¢(Uy) is not injective.

To obtain conditions for C*-continuity we only have to note that in this case the param-
eterization of the universal surface over the tangent plane can be written as 1 o ¥ =1 where
¥ is the parametric map. Note that U can be noninjective, but conditions of Theorem 3.10
guarantee that ¥ o U1 is well-defined.

Thus, we have the following criterion for C*-continuity

Theorem 3.10. A tangent plane continuous scheme with parametric map ¥ is C'-con-
tinuwous if and only if there is a neighborhood of zero U, such that for any yi,y2 € U,
y1,y2 # 0 for which ¥(y1) = V(ya), and for any eigenbasis function g the values g(y1) and
g(y2) coincide. A subdivision scheme is C*-continuous if and only if the reparameterized
eigenbasis functions f;k(\IJ_l(f)) : U(U) — R are C*-continuous for some neighborhood of

zero in Uq.

This condition can be made much more explicit if the parametric map coincides with
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Figure 3.9: Three types of characteristic maps: control points after 4 subdivision steps are
shown. a. Two real eigenvalues. b. A pair of complex-conjugate eigenvalues. c. single
eigenvalue with Jordan block of size 2.

the characteristic map:

Condition C. The parametric map corresponds to a pair of cyclic subspaces of order 0
with real eigenvalues, or cyclic subspaces of a pair of complex-conjugate eigenvalues of order
0, or a single Jordan subspace of order 2. In other words, the sum of the pair of Jordan

subspaces defining the parametric map has dimension 2.

Additional motivation for considering this case is that only in this case C'-continuity
of the subdivision scheme can be stable with respect to perturbations of coefficients. It is
possible to show that under certain assumptions unless Condition C is satisfied, there is an
arbitrary small perturbation of the entries of the subdivision matrix such that the resulting
matrix violates the necessary conditions for tangent plane continuity. Three possible types
of characteristic maps for which the subdivision scheme can be tangent plane continuous

are shown in Figure 3.9.

In this case the complex eigenbasis functions reparameterized by the parametric map

;r(f )= J’:r(\Ilfl(f)) satisfy more general scaling relations of the form

Fir(TE) = Nif (&) + flippy(€), forr>1
Fio(T€) = Xifjo(&)

where T is a nondegenerate linear transformation of the plane, which can be reduced

to one of three normal forms: diagonal matrix with real eigenvalues A, A., rotation matrix
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corresponding to a pair of complex eigenvalues Aexp(ip), Aexp(—ig) or a Jordan block

Ja(A) for a real \. We assume that [A\], |Aa], |[A| < 1 and X # 0.

Using the results about C*-continuity of functions satisfying scaling relations (Sec-

tion 3.13), we can formulate a general criterion of C*-continuity of subdivision schemes.

Before stating the theorem, we need to define three special types of polynomials. Each

type of polynomials corresponds to a particular type of characteristic map described above.

The first two types generalize the idea of homogeneous polynomials. Their definitions

differ only slightly from the standard definitions of quasihomogeneous polynomials.

1. For T being the diagonal matrix with real eigenvalues A4, \., we use the classes of
polynomials P(p, q). Let N(p,q) be the set of all pairs of non-negative integers (i, j)
such that AL X = MEA? for a fixed pair (p,q). Then P(p, q) is defined as

.3

Note that the set N(p,q) depends on p, g and the ratio In A,/ In A.. For example, if

this ratio is 2/3, then P (4, 3) is spanned by the monomials £, £1€3, €2¢£8, ¢12.

We also define an integer constant ji . for all ); satisfying |\;| > |A|¥ as

Jowin = min {3 | I 15 <k, and MM < [l }

Note that if |[X\,] = [\¢] and |N;| > |AF|, 5 . = 0. The meaning of this constant is

explained in Section 3.13.

2. If T has a pair of a pair of complex conjugate eigenvalues A\, = A, Ao = A, we define
N(p, q) as the set of all pairs of integers (4,5) such that N\ = A\PAY for a fixed pair

(p,q). In this case we define the set of polynomials

Bp.g) = { D 0uti&) | (i-d) € Np.g). ay; € C}
%J

3. If T is a Jordan block of size 2 with real eigenvalue A\, we use polynomials
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1m
(t) = — [ @—d)for m>0; Fo(t) =1 (3.14)
m
=0

Theorem 3.11. Suppose a subdivision scheme 8 is C* on the regular complex and the
parametric map of the scheme coincides with the characteristic map ¥. 8 is Ct-continuous
on the k-reqular complez if and only if ¥ has Jacobian of constant sign, and for any y1 and
Yo for which ¥ (y1) = V(y2), and for any eigenbasis function g the values g(y1) and g(ys2)
coincide.

8 is C*-continuous if in addition for |N;| > |Ae|¥ any nontrivial set of complex eigenbasis
functions f;T(Q’I(f)) = ;T(f), r = 1..nj corresponding to the eigenvalue \; satisfies one of

the following conditions:
1. If the characteristic map is (fgf, f5) with Aq, Ac real and

(a) \i = AL AL Tmin for some nonnegative p,q , p+q < k—j.. and 8%;”’"]‘;”1 (€) e
i J
P(p,q). %mi”f;m(f) =0 form< n;
(b) OR %m’"f;,q(@ =0 for all j.

2. If the characteristic map is (Rf5, S fi) with complex eigenvalue \,, and \; = MY
for some p,q, p+q <k, f;n; (€) € P(p,q), and f]’m(g) =0 form< n;

3. If the characteristic map is (fg), fiy) with eigenvalue A\, real, A\; = o for some p < k

and

Aa
f]r ZC’I’ - m)\mp ( gfl)

forr > n — p, where | = max(0,n’ ni — p). Forr < n; —p, f}r(f) =0.

The theorem immediately follows from 3.10 combined with the criteria of C*-continuity
of functions satisfying scaling relations stated in Section 3.13.

In the first case, the eigenbasis functions can be specified in more explicit form integrat-
ing the relations given in the theorem, as it is described in Section 3.13.

An important special case of Theorem 3.11 occurs when A\, = A.; in this case the

eigenvalues are necessarily real and the criterion becomes
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Corollary 3.12. If a subdivision scheme satisfies conditions of Theorem 3.11 and \, =
Ao = A, than the scheme is C* if and only if any nonzero complex eigenbasis function f]Zn’
i

corresponding to an eigenvalue \; > \¥ is a homogeneous polynomial of degree d, \j = A%

and for all r < nz JZ-T = 0.
Another important special case are the conditions for C''-continuity:

Corollary 3.13. If for a tangent plane continuous subdivision scheme the characteristic
map ¥ coincides with the parametric map, it is C'-continuous if and only if for any y1, vy €
Ui, y1.y2 # 0, such that ¥(y1) = U(y2), for any eigenbasis function g(y1) = g(y2) and the

Jacobian of ¥ has constant sign.

C?-continuity. The conditions of Theorem 3.11 for k = 2 lead to the following constraints

on the nontrivial eigenbasis functions.

o If the eigenvalues A\, and A, are real and |A\,| > ||, there are three distinct cases:
IXal? > | N], [ Aal? = [Xo| and |Ag|? < |Xp|. For simplicity, we assume that both A, and

Ap are positive.

In both cases, a nontrivial eigenbasis function f(£) has to correspond to an eigenvalue
N with X < A2, or X € {Ag, Ao, AaXo, A2, A2}, In the latter case, if X' = A, f(§) = C¢&,
if N = A\, f(&) = C&1&+g(&1), where g(€) satisfies N-scaling relations for (Mg, Ap),
if N =X}, £(€) = C& +g(&1), and if X = X, f(€) = C&f.

If N = )\, three cases are possible: if A2 > )\, then f(¢) = Cé&; if A2 = )\, then
f(&) = C1€f + Ca&o and if A2 < Ay then f(§) = C& + g(&1).

e If the eigenvalues A\, and A, are complex conjugate, then a nontrivial eigenbasis func-
tion corresponds to an eigenvalue N with |N| < [Ay|, or N € {Aq, Aay A2, |)\a|2,)\_a2},
and f(€) is C&1, C& C&F, C&1& or O3 respectively.

e If the characteristic map is defined by a Jordan block of size 2 with real positive
eigenvalue )., then a nontrivial eigenbasis function corresponds to an eigenvalue )\
with [N] < [Ag], or X € {A\g, A2}, If ) = \,, then there may be a pair of eigenbasis
functions corresponding to a cyclic subspace of order m > 1 f,(§) = C1& + Co&r

and f,—1(§) = Cy&, or a single eigenbasis function fy(§) = Cpé& for a a cyclic
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subspace of order 0. if A = A2, then there may be three nontrivial eigenbasis functions
corresponding to a cyclic subspace of order m > 2, fi,(€) = C263 + C1616 + Coé3,
fm—1(€) = (ACy + Cp)&€3 + 2Co€1€2 and fry_o(€) = 205A2€3. For a cyclic subspace of
order 1, there may be a pair of nontrivial eigenbasis functions f;(¢) = (C; — Cp)&3 +

CoXé1&s and fi(€) = 2CpA2€2, and for a cyclic subspace of size 1, fo(€) = Coé3.

3.10.1 Limit Values, Tangents and Normals

When the subdivision surface is C''-continuous or at least tangent plane continuous, it is
possible to find explicit expressions for limit values, tangents and normals to the surface
at vertices of V°. These expressions can be easily derived from decompositions given in
Equations 2.24. Suppose the parametric map is defined by the pair of eigenbasis functions
(g%, g°), corresponding to the generalized eigenvectors ¢!, ¢2. Recall that (c!,c?) is either
(angacgng) (real g, Ac), (angacgng) (complex-conjugate \,, A.), or (angmgngfl) (single
real eigenvalue \,).

A vector of initial values z € P(Nr, R?) can be decomposed with respect to the Jordan

basis of the subdivision matrix:

=Y 8,

QT

where ﬂ;-T € R3 for all i,j and 7.

The tangent plane is spanned by the vectors 4! and %, from R? corresponding to ¢!
and ¢? in the decomposition above unless 5! x 52 = 0. In the latter case the generated
surface may be not smooth (this is the subset that we allow to be excluded in our definition
of smoothness of a scheme).

Let ¢! and & be the left generalized eigenvectors of the subdivision matrix corresponding

to ¢t and ¢2. Then

Bt = (& 2)3% = (%, x) (3.15)

It is possible to compute 3! and 32 using vectors of smaller size; Let L' < L be the size

of the neighborhood Ny, such that Ctrlo(Nll) C Ny, we call such neighborhoods invariant.
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Similar to Lemma 2.2, it is easy to see that minimal size of an invariant neighborhood is in
general L — 1. It can be further decreased in specific cases such as the Modified Butterfly
scheme (Section 6.4).
For such neighborhood we can write a matrix S’ such that 'z’ = 27/t for z € P(Np/).
Clearly, this matrix is a submatrix of the subdivision matrix, and subdivision matrix with

appropriate reordering has the form

S 10
Srl Sr2

S:

Each left generalized eigenvector of S can be taken in one of the two forms [¢'|7"]
or [§'|0] where 7 is a left generalized eigenvector of S’. Corresponding generalized right
eigenvectors have forms [0]y"] and [y'|y"] respectively. Typically, the dominant eigenvectors
have the second form. (Explicit reasons for this for single ring symmetric schemes are
discussed in Section 6.2). If this is true, then corresponding left generalized eigenvectors
can be written as [c~’1|0] and [5’2\0], where ¢ and ¢ are generalized eigenvectors of 5.
This means that 4! an 3% depend only on S’ and can be computed using its left generalized
eigenvectors. This makes formulas for computing tangents and normals for schemes with

small support particularly simple (Sections 6.4,6.5).

3.10.2 Degree Estimate for Piecewise Polynomial Subdivision

A simple consequence of Theorem 3.11 is the following estimate for the minimal degree of
the polynomial patches that is required to obtain C*-continuous surfaces.

We derive these estimates for the case of two equal real eigenvalues, which is the most
common case.

First, we note that if all eigenvalues are less than A¥, then the scheme is C*-continuous.
But this also means that all partial derivatives up to the order k£ disappear at zero, i.e., the
surface is “flat.” Extending the definition of [53] we define a non-flat surface of order k as
a C*-continuous surface which has non-vanishing partial derivatives up to order k. In this

case Corollary 3.12 tells us that the scheme should reproduce surfaces of the form

z=H"(z,y)
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where H*(x,y) is a homogeneous polynomial of degree k. x, y and z, in the case of
piecewise polynomial schemes, are piecewise polynomials of degrees less than d > k. As it
was shown by Reif, the degree of piecewise polynomials z and y should be at least k + 1.
Therefore, the degree of z is at least k(k + 1).

3.11 Proof of Lemma 3.3

Using (3.10) and (3.11) we can write an expression for A%v in terms of vectors vﬁq) (real p)

s
and v%‘fl), vgg (complex 1), ¢ =0...k,. Define r,(s,q) = | |5 Futa . Then

k,—q

k
Ay = Z Zﬁrﬂ(s,q)vfﬂ)

real >0 q=0
ku

+ > (=Rt (s g)u (3.16)
real <0 q=0

ku
+ Y S s )W cos((s + g — k)x,) — 08 sin((s + a — k)x,))

complex . =0

(@ (0 (2

The set of vectors vy, vy, vy, , B € M(v), is linearly independent. Therefore, we can
construct a basis such that this set of vectors is a part of the basis. In a finite-dimensional

space any basis is a Riesz basis, in particular, there is a constant B such that

ku
v zB(z S ) o0

real u g=0

ky
+ Y st,q)(\!vi?mcos«s+q—k)xu>|+}\vL%>\||sin<<s+q—k:)xm)

complex p g=0

(3.17)

Consider the direction of A®v, that is, A%v/ HASH As all components of the vector are

independent, this vector has a limit if and only if each component has a limit.

Suppose p € M(v) is complex. Define
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(0) (0)

v(s) = vy, cos sy, — vy, sinsx,

Intuitively it is clear that this sequence of vectors does not have a limit direction; there
are two sequences s, s such that v(s}) and v(s?) converge to linearly independent limits
as k — oo. For irrational x,/2m, this follows from the well-known fact (see for example,
Hardy [30]) that for any € > 0, ¢ € [0,27] and arbitrary large s, there is an s’ such
that |sx,mod2r —t| < e. If x,,/27 is rational, then the function is periodic, and unless
it is constant, which is impossible, we can choose two constant subsequences of linearly
independent vectors.

Let si, s are two sequences such that v(s}) converges to ¢* and v(s}) converges to ¢
as k — oo, with ¢! and ¢? linearly independent.

Because p € M(v), k, = ky and the ratio r,, (s, q)/7.(s, k) as s — oo for all 4 and q.
From (3.17) we have

A% ]| > Brar(s, kar)(||c!]| (1 =€) (3.18)

for arbitrary small € and sufficiently large k. Similar statement is true for si. Therefore,

all elements of the sequence A%v/ HAS’U

are well-defined for sufficiently large k.

Also from definition of M and kj; it follows that

|A%v|| < Kras(s, kar) for some constant K. (3.19)

Observe that v(s)r,(s, kar)/||A%v|| is a linearly independent component in the decom-
position of A%v/||A%v||. To show that A%v/||A%v|| does not have a limit it is sufficient to
show that v(s)r,(s, kar)/||A%v|| does not have a limit.

For sufficiently large k and arbitrarily small €

[o(sh)rar(sh. kar) |

Ly
. > —llc|[(1—¢)
ke Il<*]|

The direction of the vectors v(s}.)r, (s}, kM)/HAsllch converges to cl/Hc1 H, the direction
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of the vectors in the sequence v(si)rﬂ(si,kM)/HAsivH converges to ¢?/||c?||. By lincar
independence of ¢! and ¢? these limits do not coincide.

Therefore, the component does not have a limit as s — oo and we conclude that the
sequence A*v does not have a limit direction.

Similar argument can be used to show that that u € M cannot be negative.

Thus, if the sequence of vectors has a limit direction, the eigenvalues in M(v) are all
positive and real. But the magnitudes of all eigenvalues in M(v) are equal, therefore, it
may contain only a single element.

Convergence rate can be easily estimated observing that the ratio of the second slowest

term to the dominant term decreases at least at the rate O(s™1).

3.12 Linear Transformations on A?(R?)

Complex Jordan structure of AB. We start with the complex Jordan structure of
AB. 1t is straightforward to show that any eigenvalue p of AB is a product of eigenvalues
A, of B (i and k may coincide). Suppose B has cyclic subspaces JJZ: and Jlk corresponding

i.

i and nf respectively.

to eigenvalues \; and A, of orders n
Let eg.o, - e;'.n; be the basis for the cyclic subspace JJZ: satisfying Beé-r = )\ie§r + ez-rfl,
for r > 0, Be§-0 = Aie;o- Let efo, e eg“ngc be a similar basis in Jlk.

Two cases are possible: JJ’: and Jlk are are different subspaces, or they coincide.

1. Case 1: JJZ and Jl’C are different. In this case the cyclic subspaces JJZ and Jl’C generate a
subspace J ;/\Jlk of A2(R?) of dimension (nz +1)(n¥+1). For different cyclic subspaces
J} and Jlk, eé-r A e{“t has order r 4+ ¢t. This can be shown by induction. For r > 0 and

t>0,

(A )\i)\kl)e§7. A el :Aeé-T A Ael — >\z’)\k€§'r Aef
_ | | (3.20)
=M€y Al + Nieh, Aefyy el Aefiy

As we apply the transform (AB — A\; A\ I) iteratively, on step m (AB — )\i/\kl)meéT Aef.
would consist out of terms proportional to e;'-q A efs, where ¢ +s < 7+t —m. After

r 4t steps, we get ¢ + s < 0, that is, a single component 6;-0 A efo. The components
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that we get by repeatedly applying the transform to a vector e A elt can be seen in

the diagram on Figure 3.10

OTO‘<OTI‘<T - - ‘¢\0,n,'-1*(),{l;
K N
N NN
n,-1,0=— - «n, n 1<n, -L,n,
NN
nl,()fnl,je - . ¢ - *”1,, nl’j

Figure 3.10: Subspace of A%(RP) generated by two cyclic subspaces Ji Jlk The pairs of
numbers correspond to the basis vectors es A elt, r=0...n%t=0. nl ; arrows indicate
the components that are generated by each vector after one apphcatlon of AB — A\ il
as given by (3.20); after m steps, if we start in the bottom right corner, we only have
components above the line given by equation r 4+t < nj + nf —m.

Clearly, there is a cyclic subspace of order n; —{—né‘“‘ generated by ej. i /\efn?; we will de-
note this subspace Pr (JZ A Jf) to find other cyclic subspaces, we should characterize
eigenvectors of AB that are linear combinations of e /\elt Suppose u = Znt crte§rAeﬁ
is an eigenvector, that is, should satisfy (AB — A\jAxl)u = 0. Then from (3.20) after
trivial transformations, we get the following system of equations for coefficients ¢,; of

the eigenvector:

Crt FAicr—1¢ + AgCrp1 =0, 1= 1...n§~, t=1...n
(3.21)

Crnf:(): r=1...n

Cn§t:07 t=1...n

Note that if two out of three coefficients c,¢,c,_1¢,¢-4—1 are zero, then the third one

C i k

is also zero. An inductive argument starting with the triple cn = Cni =15

c =0...m k_1, shows that for r+¢ > nj the coefficient ¢, is zero, that is,

i k_
ny 1,

all coefficients below r+t = nz the diagram in Figure 3.10. Similar statement is true for
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nf . We conclude that any eigenvector has coefficients ¢4 = 0 for r +¢ > min(n;'., nf)
Assume nf < n; Again, following the diagram it is easy to see that if we choose
arbitrary values for Cpip WE can always construct a unique eigenvector. By choosing
Cniy = d(r —m), for m = OngC we get nf + 1 eigenvectors ug, Uy, . .. Uy, with
uy = 33'0 A efo. Clearly, the size of the cyclic subspace corresponding to ug is né + n;“
All other eigenvectors us are not decomposable, and corresponding cyclic subspaces
are of little interest to us. We note however, that orders of the cyclic subspaces are

i k — k
nj +mny —2m, m=0...nj.

2. Case 2: J; and Jl]“C coincide. This case is similar; however, because of dependencies
between the basis vectors, we get smaller cyclic subspaces. The diagram for the basis

of J; A J; is shown in Figure 3.11

0] <=—(2=— * = * -1=0,7

R KT
N f

2.1,

J

1 1
n-2,n,

]

8
N
N

1 1

= 1Lm

S—-3

Figure 3.11: Subspace of A?2(RP) generated by a single cyclic subspace JJ’ The pairs of
numbers correspond to the basis vectors.

In a similar way, we obtain a decomposition of .J JZ A J]Z: into a sum of | (n; +1)/2] cyclic
subspaces with orders from 2n; — 2, 2n; — 6 ..., down to 0 for odd n; and down to 2
for even n3 If n; = 0, the cyclic subspace J]Z: A J} does not exist. For J} A J;: again the
only cyclic subspace that has decomposable eigenvector has maximal order 2n; — 2,

which we denote Pr (JJZ A J;)
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Conditions for existence of a single dominant cyclic subspace of AB. Recall
that we call a cyclic subspace Jy; of AB dominant, if it corresponds to a real positive
eigenvalue M, and for any other cyclic subspace of order k corresponding to the eigenvalue
w, (p, k) < (M, kpr) where kpy is the order of Jyy.

We have observed that any eigenvalue of AB has the form A\;A; or A?; and the orders of
cyclic subspaces are of the form n; + nf — 2m and 2n§- —2—4m m = 0.... Therefore, we
need to assert that (M, kyr) > ()\i/\k,nj- +nf) and (M, k) > (A2, Zn;) for all other pairs
of cyclic subspaces of B different from the pair of cyclic subspaces defining Jy.

We have to consider only subspaces Pr (J; A Jf); other cyclic subspaces of AB have
smaller orders. With our ordering of cyclic subspaces M can be either )\% or A\iAs. The
dominant subspace is one of Pr (J11 A Jll), Pr (Jl1 A ng), Pr (J11 A J12) and Pr (,]11 A J12)
The first two cases require Aq real, the third case requires A; and A, real, and the last case
requires A\; and Ay to be complex conjugate with A;Ay real positive. These four possible

cases correspond to the cases of Lemma 3.6.

1. Jyy =Pr (Jl1 A Jll); this case implies that M = )\%. Therefore, \; is real. In addition,
we need for any 4, j, (\iAj,nt +n¥) < (A1,2nd — 2) and (\;, 2n8 — 2) < (A1,2n] — 2).
As [A1| > |\ for any i@ > 1, and nl > nJ1 for any j > 1, it is sufficient to require

ni >nd +2, and (\,nl) > (\;,nt +2) for all i > 1.

2. Jy =Pr (Jl1 A J21); M = )\% and Aj are real. Similarly, the additional conditions are

ni < nd+ 2, nd > nlif nl is defined, and (A1,n?) > (\;,nd) for all i > 1.

3. Jay =Pr (Jll A J12), M = Ao, and A1 and Ay both are complex and have opposite
phase. Suppose that [A\;| # |[Xo|; then A\ = \; and Ay = )\ are also eigenvalues
of B distinct from A and Ay. Then eigenvalue Ao = A\ A has a cyclic subspace
Pr (Ji A J{C) distinct from Pr (J{ A J?) and of the same size, because n{ = n| and
n’f = n?. Therefore, there is no dominant subspace unless A\; = Aa. Suppose A\; = \o.

For Pr (Ji A J}) to be dominant, we need ny < n} if nj is defined and (\;,n}) <

(A1,nd) for all 4 > 2.

4. If Ay and Ay are real, for M to be positive, they have to be of the same sign. Then
necessarily [A1| > |A2|. To guarantee that (ImyAg,ni +n?) > (Im;\g, n} +n¥) we need

ni <n? -2, n2 <n? and (\;,n}) < (A\g,n? — 1) for all 4.
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3.13 Scaling Relations

In this section we the prove the criteria for C*-continuity of functions satisfying scaling

relations. We consider the scaling relation of the form

F(T8) = Tnpa(N) £(8) (3.22)

where T is a nondegenerate linear transformation of R?, f is a map R? — C"tl
Jn+1(N) is a Jordan block with eigenvalue )\, possibly complex.
We assume that T is reduced to the real Jordan normal form; as T is nondegenerate, it

can be reduced to one out of three possible forms:

A0 Acose —Asing Al
0 A Asing  Acosy 0 A

where A1,A2, A and ¢ are real and are not equal to zero; in addition, we assume that
IA1], |A2], [A| < 1. We assume that A # 0.
The following lemma, is the basis of our derivations. This lemma extends a similar lemma

by Warren [63].

Lemma 3.14. Suppose f(&) = [fn, fae1--- fo]' : R? — C"*L is a continuous function
defined on D\ {0}, where D is a compact domain in R? which contains the origin as an

internal point and f satisfies (3.22)

1. IfIN| < |Aminl®, where My, is the eigenvalue of T with minimal absolute value, then

1)

lim ——=—— =0

k
R
2. If N =1, then f is continuous at 0 if and only if f, = const and f,, =0 for m < n.

3. If IN| > 1, and N # 1, then [ are continuous if and only if f = 0.

Proof. 1. Without the loss of generality we assume that f is defined on the whole plane

except zero: using the scaling relation (3.22) we can extend f to the whole plane from
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D.
For any &,
el [Gan)" 1@ _ . X [5€)]
= < (3.23)
|zve]* |zve]" [Aminl” ]|
where K is a constant.
Suppose HfH < €. Then
|T77]| < (Amin]) ™" m"||€] (3.24)

where m is the size of the maximal Jordan block of 7'. On the other hand, for any &
there is p such that | TP¢|| > rg for a fixed rg. Let p. be the minimal p such that for
some & with HSH < € HT‘pff
Suppose for some € || T=P¢| > o and ||T=7+1¢]| < 7o Then || T~P€|| < Cro, where C

‘ > ro. It follows from (3.24), that p. — oo as € — 0.

depends only on T. We conclude that for any ¢ > 0 for any HS H < € we can choose
p such that ry < HT*pr < Ry, and if p. is minimal p defined as above, p, — co. As
Hf(E)H/HfHk is continuous away from zero, it is bounded on the ring ro < HIZH < Ry

by a constant K'.

Therefore, we can estimate

Gl
le|l*

/ |/\, Pn?
|/\min|pek

< KK (3.25)

k

for any £ < e for sufficiently small ¢, if |N| < [AF . |. Clearly, as € — 0, the estimate

in the right part of (3.25) converges to zero.

CAEN =1, then f(T?(8)) = (Jat2(1))" F(§) = (L + N)Pf(E) = f(§) +PNS(E) + ...,
where N is a nilpotent matrix. Unless N f(£) = 0, this sequence does not have a limit.

This proves the second part of the lemma.

ST N > 1, f(TPE) = T (V)P f(E) diverges whenever f(€) # 0; as TPE — 0, this

proves that f(€) is continuous at zero only if it is identically zero. If [\'| = 1, consider
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fo(TPE) — fo(TP=1E) = (N)P=H1 — N)fo(€). Unless fo(€) is identically zero, this
quantity does not converge to zero as p — 0o. In a similar way we prove that f,,(&)
for m > 0 has to be identically zero for f to be continuous.

O

Remark: the proof of the lemma did not use the fact that 7" is a transformation of R?; it
holds for f defined on RF for any k, as long as 7" is contracting.

Using Lemma 3.14, we establish conditions for C*-continuity of functions satisfying
scaling relations. These conditions have different form depending on the type of the trans-

formation 7". We consider each of the three types separately.

3.13.1 Two Real Eigenvalues

First we consider the scaling relations of the form

FmnA1€1, 008) = N f(€) + frne1(€), form >1
Jo(Aiér, A2&2) = N fo(€)

(3.26)

This case includes the case when A\; = A2, and the matrix has a single real eigenvalue
but with two cyclic subspaces. We assume without the loss of generality that [A1| > |As].
We say that a system of functions f,(£) satisfies (A1, A2)-scaling relation for X if it satisfies
(3.26).

Functions of this type are well-know in singularity theory; Newton diagrams described
below were used to study quasihomogeneous functions by Kushnirenko [39].

The derivatives of functions satisfying a scaling relation do not satisfy a scaling relation

themselves, but their scaled versions do. This allows us to establish the following

Lemma 3.15. If a system of functions fo(€), ... fm(&) satisfies the (A1, \2)-scaling relation
for X, the functions are defined on a compact domain containing 0 as an internal point,
and are C* everywhere except 0, then the derivative 8%8% fm(&), i+ 7 <k, exists at 0 and
18 continuous if and only if one of the following conditions is met:

LN < [ALAY]

2. XN = XX, 9180 £,(€) = const and 919} f,,(€) = 0 for all m < n.



111
3. 8}3%fm(§) =0 for all m.

Proof. Differentiating the scaling relation, we obtain

XX 0L frn(M€r, Aaba) = NBL0S fn (€) + DL8) frn1(§) for m >0
NN DL fo( M€, Aaka) = N 8L fo(€)

Define the functions

Then f,,(€) satisfy

Fu610062) = 2 f(€) + o (€) for m >0

7
172

fo(hér, Aa&o) = fo(€)

N
NP
As the functions f,,, are just scaled versions of 9{d3 f,,, their properties are the same.

which is the (A1, A2)-scaling relation for

Now we can apply Lemma 3.14.
Necessity immediately follows from Lemma 3.14, as the derivatives 8%6% fm (&) and, therefore,
fm(€) have to be continuous.

Sufficiency.

1. If both ¢ and j are equal to zero, the statement of the lemma is reduced to the
statement of Lemma 3.14.

)\/
AAL

Assuming that j # 0, consider the derivative 8{33_1 fm- If < 1, then <

)\/
.-
AN

|A2]. As the set of functions fm corresponding to o4 6%_1 fm satisfies the (A1, A2)-scaling

relation for ﬁ;*l’ by part 1 of Lemma 3.14, the limit
172
lim _fm(f)
él=0 &2

exists and is equal to 0. This limit is precisely the derivative 818; Fm(&).
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Similarly, as < 1, the limit of 8;8% fm (&) exists and is equal to 0. We conclude

)\/
A

that the derivative 318% fm (&) exists and is continuous.

2. If /\;‘:\]2 = 1, to be continuous, a{&g'fn has to be constant. Therefore, 8{8%_1fn is

linear in &, for £ # 0, and the appropriate limit clearly exists, and is equal to the

same constant. Thus, the derivative in this case exists. For m < n 8}35 fm 18 0
everywhere. Then 8%6%71 fm is a constant for £ # 0, and 8%8; fm exists and is 0 at

¢ = 0. This argument also applies to part 3.

The functions f,,(&) are C*-continuous if all derivatives
0103 (&)

with ¢ 4+ 7 < k exist and are continuous. The derivative 8{8% fm can be associated with the
integer point (7,7) in the plane. Such representation is used for the Newton diagrams of
quasihomogeneous polynomials (Appendix B).

We are interested in the existence and continuity of the derivatives which are represented

by integer points inside the triangle bounded by x =0, y = 0, z + y = k (Figure 3.12).

N
AL
1. Taking logarithms of both sides of this inequality, we can see that for all integer points

According to Lemma 3.15, the derivatives 818% fm are guaranteed to exist at 0 if ’ <
below the line I[(\) with equation z1n |[A\]| + yIn|A2| = In|N|, the derivatives are known to
exist. The slope of I[()\’) is less than —1, because || < |A1].

For the points between the lines [(\') and = +y = k, the derivatives have to be either 0
or constants to exist and be continuous. For those that are constants, additional condition
N o=\ /\% have to be satisfied; only the derivatives of f,, can be constant; derivatives of f,,
for m < n are identically zero.

Note that if a derivative 818% fm is 0 or constant, all derivatives to the right and upward
from (i, j) are equal to zero everywhere. Suppose |X'| > |\5|; this means that I(\’) intersects
the y axis below or at the point (0, k).

In this case let j:, be the minimal integer value of y for which there is an integer point
(%, Jmin) between [(XN) and x + y = k. All derivatives represented by integer points inside

the area delimited by z = 0, [(X), z +y =k, Yy = jnin are 0 (shaded area in Figure 3.12).
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Y
In | \| A

1n|/\2| (] (] (] °

k
In |N|
In |A2|

In | N|
o In|A2| §

L] Ll
jmin o:ko o o
L] L] Ll L]
L] Ll .I'
T
b C
> ' T L >

In|X| Inf\]

Figure 3.12: (a) |N| < |A2|¥; All variables up to order k exist. (b) [N| > |A2|¥, fmin = 0;
The function f,, has to be a polynomial. (c) |N| > |A2|¥, jimin # 0; derivative 93™" f,,, has
to be a polynomial.
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Before formulating the result following from these considerations, recall the definition
of the sets of polynomials P(p, q), generalizing the idea of homogeneous polynomials to the

case of nonuniform scaling of variables. Let N(p, ¢) be the set of all pairs of integers (i, j)

such that XA, = AA? for a fixed pair (p,q) Then

P(p.q) = {3 eutié] | (i.) € N(p.g), o € C}
Y]

Lemma 3.16. Suppose a set of functions f,(§), m = 0...n satisfies the conditions of

Lemma 3.15. If |N| > |Xo|F, set

Jmin = min{j € N|

)\Zi)\%’ <|N|, i+j <k, forsomeiecN}

All functions are C*-continuous at 0 if and only if one of the following conditions holds:
1. |N| < |)\2|k,

2. N = NOALHmin for some p, q, pA+q < k—jmin, 0" fu(€) € P(p,q), and 35" f(€) =

0 for m <n.

3. %m’“fm(f) =0 for all m.

Proof.

Necessity. Suppose |N| > [X\a]/. As it was observed above, all derivatives corresponding to
the integer points in the area between [(\) and x 4+ y = k should be constant. Note that
all derivatives 3%8%+jmm fm for all m and for i 4+ 7 > k — j,i are 0. This means that 3% fm
is a polynomial because all its derivatives of order k — j,,;, are zeros.

Suppose &/ 8g+jmi” fn is not zero for some p and ¢ satisfying p + g < k — jmin. Then it
follows from Lemma 3.15 that X' = X?AdtImin,

Moreover, as the polynomial 5{’”"” fo(&) should satisty the scaling relation for A’/ )x%"”" =
AL, 8{””'”f0(§) should be contained in P(p,q). On the other hand, if for a pair i,j
IXEM| > [APA2], &) fo cannot contain the monomial CEi&) unless n = 0. In particular,
5‘{”““ fo cannot contain any monomials from P(p, q); therefore, fo(£) = 0. By induction, all

8‘{””" fm for m < 0 are identically zero and 04 jimin fn is contained in P(p, q).
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Sufficiency. If the first condition of the lemma is satisfied, the derivatives up to order k

exist by Lemma 3.15.

Suppose the second or the third condition is satisfied. Then all derivatives 8}8% fm exist

for j > jmin. However, if j < jpmin, the scaled versions of the derivatives fm satisfy scaling

)\l

relation for and |2
At
172

< 1 by definition of jpin. Therefore, all other derivatives also

)\/
AL

exist.

The condition on 8%"”" fm does not give the explicit form for the functions f,, unless
Jmin = 0. It is possible to find a more explicit expression for f,, that are C* and satisfy

scaling relation for \.

Integrate the expression for the derivative, we obtain the following formulas:

. Jmin—1
Fa©) =&mmp©) + > h(€1)és
5=0 (3.27)

jmin_l

fu(€) = D hn(6)& form <n

s=0

where A}, are some functions of £;. The functions f,,, satisfy

Fm(M€1, Aaba) = NOXLTImin £ (€) 4 frn 1 ()
fo(M€1, Aaba) = NEALTTmin £ (&)

Regarding f,, as polynomials in &2, we obtain equations for hJ,:

Ahs,(M€1) = MAGTImings (€) + R, 1 (€)
ASh§(M&r) = NATHminps (g)

Substituting by, = A, %" f (£), we can see that the set of functions f5,(£), m =0...n

satisfies one-dimensional A\i-scaling relations for X’ngﬂmm_s:
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Fa (€)= NAGHmin=s g2 (1) 4 f2_1(&)  for m > 0

F5N&r) = NOAGHImin=s fia(e))

Fixing &2, at a set of values z1...x; . such that the matrix

pI—

1 = o I A
jmin—1

1 @ S
) 2 jmin_l

L Zjpin Tjin - - - Tt

has nonzero determinant, we can express h,(£1) as linear combinations of f,,(1,&2)
with & € {z1...2j,,,}. Therefore, the functions have to be C*-continuous if f,, is C*-
continuous. Therefore, f2 (£1) also have to be C*-continuous.

A direct computation shows that if f2, are C*-continuous and satisfy A'-scaling relations
for )\Il’)\gﬂ"m‘”*s, then f,,, m = 0...n defined as above satisfy (A1, \y)-scaling relations for
AP \IFImin

Therfore, we can restate Lemma 3.16 in the following more explicit form

Lemma 3.17. The functions fm(£), m =0...n that are C*-continuous on a set D\ {0},
where D is a compact set containing zero as an internal point satisfy the (A1, A2)-scaling
relation and are C*-continuous at zero, if and only if one of the following conditions is

satisfied:
LN < olf,

2. N = )\fx\gﬂm"" for some nonnegative p,q, p+ q < k — Jmin and

jmin_l

Fal&) = EmmpE, &)+ D ATTE(E)E
s=0

jminfl

f€) = > A (€0)E

s=0
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where f3, are C*-continuous and satisfy the \i-scaling relation for /\’f)\%ﬂmm_s.

jminfl

Fn©) = D AT (60E
s=0

where f3 are C*-continuous and satisfy the \i-scaling relation for NS,

For |NX3°| > 1 this implies that f5,(€) =0 for all m; for INAJ®| =1, f5(€) = const
and f5(&) =0 for m < n.

If A1 = Ao, it is guaranteed that j,.;, = 0. Moreover, the set P(p,q) becomes simply

the set of homogeneous polynomials of a given degree p + q.
This case is particularly important for the analysis of subdivision schemes, so we state

is as a separate corollary.

Corollary 3.18. Suppose a set of functions fn(§), m = 0...n satisfies the conditions of
Lemma 3.15 for \i = Ao = X. All functions are C*-continuous at 0 if and only if one of

the following conditions holds:
LN < A%,

2. X' = AP for some p, fr(§) is a homogeneous polynomial of degree j, and fn,(§) = 0

for allm < n.

3. fm(&) =0 for all m.

3.13.2 Complex-Conjugate Eigenvalues

In this section we consider the case of scaling relations

fm(Tg) - )‘/fm(f) + fm—l(g)v form > 1
fo(T€) = XN fo(€)

with
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A COS —Asin
T— ® ®

Asing  Acosp

In this case it is convenient to consider £ to be a complex number.

We introduce operators & = 9; — i0y and 0 = 0; + i0>. Clearly, any derivative 8%8%
can be expressed as a linear combination of operators 9°0% with s +t =i + j. We examine
conditions for existence and continuity of derivatives of the form 9'97, for i 4+ j < k, which
is equivalent to C'* continuity.

Observe that T¢ = ¢, where A = Aexpip.

Thus, the scaling relation takes the form

fm()‘f) - /\/fm(g) + fm—l(f)a form >1
fo(A§) = X fo(€)

(3.28)

If the system of functions f,,(§) satisfies (3.28) we say that it satisfies A-scaling relation
for \.

The following two equations make the transfer of Lemmas 3.14-3.17 a straightforward

operation:

A(f(AE)) = MIf)(AE)
A(f (X)) = MOF)(XE)

(3.29)

Lemma 3.15 becomes

Lemma 3.19. If a system of functions satisfies the A-scaling relation for X', the functions
are defined on a compact domain containing 0 as an internal point, and are C* everywhere
except 0, then the derivative 807 f,,(€), i +j < k, exists at 0 and is continuous if and only

if one of the following conditions is met:
1N < |\

2. N = N\, ai%fn(f) = const, and 0'0’ f,(€) = 0 for all m < n.
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3. 8}3%fm(§) =0 for all m.

The proof of this lemma exactly repeats the proof of Lemma 3.15, if Ay and Ay are
replaced with A and X respectively, and 8; and 0, are replaced with 0 and 0.

The analog of Lemma 3.16 is much simpler due to the fact that |A\| = ||, and is more
similar to the Corollary 3.18.

Recall the definition of N and P: N(p,q) is the set of all pairs of integers (i,) such
that A'\ = A4 for a fixed pair (p,q) Then

P(p,q) = {Z ;i€ ‘ (i,5) € N(p,q), aij € C}
3

Lemma 3.20. Suppose a set of functions fn(§), m = 0...n satisfies the conditions of

Lemma 3.19.

All functions are C*-continuous at 0 if and only if one of the following conditions holds
LAl < A,
2. X' = XX for some p,q, fn(&) € P(p,q), p+q <k, and f,(£) =0 for m < n.

3. fm(&§) =0 for all m.

The crucial observation is that in this case jp,;, is always 0. Using the same substitutions

as for Lemma 3.19, we obtain the proof of the last lemma from the proof of Lemma 3.16.

3.13.3 Jordan Block of Size 2

Finally, we consider the case when

T = Jo(\) =

If a system of functions fy,... f, satisfies scaling relations (3.22) with T' = Jy(\), we
say that these functions satisfy Ja(\)-scaling relations for X'

Applying 87 3§ P to fm(T-) we obtain the following expression for the derivative:
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k—p _ _ (kDY et i
(atat 7s(r) (© =30 ([ 7) tr0 el 1,7

l=p o

Write each equation for m > 0 in the set of scaling relations in the matrix form:

M RARST (a2 O fun (T€) KN fon() + frn-1())
0 M (B—1AT A 0105 £ (T€) 0L (N fin (&) + fm-1(9))
0 0 DL 820572 £, (T€) _ 0205 (N fin(€) + fm-—2(9))
0 . D\ Ok, (T€) OF fm(€)

(3.30)

Similar equation holds for fy, with f,,—1 removed. Denote the vector of derivatives
Fm(€) = [05 (), B20572 f(€),... 0¥ frn(€)]T and let B be the matrix on the left side of
(3.30). Then (3.30) becomes

B]Fm(Tf) = )‘/fm(f) + fmfl(f)

Equations for all m can be written together as

B falT€) NI T fa(©)
B fa1(T€) NI I fa1(6)
B fo(T€) NT fo(€)

multiplying by the inverse of the matrix on the right we get
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Fu(T€) XB1 B! Fu(€)

fn—l(Tg) A,B_l B_l fn—l(g)
= ' ' (3.31)

fo(T€) NB™1 fo(®)

Let B be the matrix on the right, By be its Jordan form, P the matrix such that
PBP~! =By, and let f be the vector [fn, fo1... fO]T; then (3.31) can be written as

Pf(T€) = BNPf(€)

Note that B is triangular with X'/ A on the diagonal. Therefore, B has a single eigenvalue
N /AF. The vector P f can be separated into several sets of functions satisfying Ja(A)-scaling
relations for X /AF. If || < |A¥|, all components of Pf and hence all derivatives 8{8% fm
for all i + j < k and m are continuous at zero. If [X'| > |XF| all components of Pf are
necessarily constant (zero if X' # A¥). We conclude that in this case the functions f,(€)
have to be polynomials of degree no higher than k.

Next, we prove that all such polynomials have to be homogeneous. We start with the
polynomial fy. Any polynomial in two variables (£1,£2) = £ can be written as fy(§) =
Z?:o HI(€) where Hj is a homogeneous polynomial of degree j.

Note that H7(T€) is also homogeneous of degree j. Therefore, the scaling relation

fo(T€) = XN fo(€) can be written separately for each homogeneous component

HY(T€) = NHY(€)

Write HY (€) = Z{:o ;€8¢ — 2071, Then for HI(T¢€) we have

i . J J .
HI(TE) = <l> ATl eIl = S el ! (Z (l) aiA”j‘i) (3.32)
i =0 =0

J
i=0 i=l

Using (3.32), we can write the scaling relation as
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J J .

. 2 . .

e (5 ()
=0 i=l+1

For the polynomial to be identically zero, each coefficient has to be zero; therefore, «;

have to satisfy the linear system of equations

EJ: (;) a XL (N — Ml =0, 1=0...j (3.33)
i=l+1

Note that the matrix of the system is triangular with identical entries A’ — A7 on the
diagonal. This system has a nontrivial solution if and only if ' = M\ for some j < k.
As X = N can hold only for one j, only one component H7(£) of fy(£) can be nonzero.
Therefore, fy is a homogeneous polynomial. Moreover, if we assume that A = )\, then we
can immediately solve the system: clearly, « = C, «,;, = 0 for m > 0 is a solution for any C.
The entries above the diagonal are all nonzero, therefore the rank of the system is j, with
total size 1, and the space of solutions is one-dimensional. We conclude that fo(¢) = C&7 if
N =M.

Our next task is to find expressions for f,,,(£). Suppose f,,,(£) is homogeneous of degree j
and X = M. Then the equations for a homogeneous component of f,,,.1 of degree p different
from j are identical to the equations (3.33) with p instead of j. These systems have only
trivial solutions, therefore, all polynomials f,, are homogeneous of the same degree j.

Let (&) = Zg:o ami€t€97% Then aup; i = 0...j are solutions of the linear system of

equations

J .
Z . .
> (z> Nt =, 1, 1=0...5-1 (3.34)
i=l+1

Note that the system has rank j and a,,¢ is not present in any equation. Therefore,
once ay, 1 are fixed, all possible q,,; form a one-dimensional space. As fy linearly depends
on 1 constant, then fi linearly depends on 2 constants, etc. If we construct a family of

solutions with f,, depending on m + 1 constant, we found all possible solutions.
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Observe that we can formally write for any homogeneous polynomial of degree j

fm(€1,&) = EQm(61/&)

where @,,,(t) is a polynomial with one variable. Note that Q(t) = C. Scaling relations

can be written as

Qm(t + %) = Qm(t) + %Qm—l(t)

for m > 0. Introduce polynomials Fy,(t) = A™Qpm (%), i.e. Qm(t) = E ().

Ama
After substituting ¢ instead of At, we reduce the scaling relations to a form that does

not depend on A or j:

Fu(t+1) = Fp(t) + Fur(t);  Fo(t) = C (3.35)

Note that if we have one solution of the recurrence (3.35), we can immediately obtain
a solution with sufficient number of constants to span the whole space of sets homoge-
neous polynomials satisfying scaling relations: if F,,,(t), m = 0...n, is a solution, then
Yoty CiFi(t), m = 0...n is also a solution. A single solution of (3.35) can be guessed

and is given for Fy(xz) =1 by

1 m—
:—Hm—z for m > 0 (3.36)
m
=0

This leads us to the following general expression for f,,:

m—l
_ 52 )\fl
- i;c"” S Filg)

where [ = max(0,n — j).

We summarize our derivation in the following Lemima:

Lemma 3.21. All functions fm(§) in a set satisfying Jo(X\)-scaling relations for X' are

CF*-continuous if and only if one of the following conditions holds:
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N < AR

N =N forj <k and form>n—j

e
ZCm - 'L)\mz 62 )

where F,(t) =

1
m!

1 (@ —d) for m > 0, Fo(t) = 1 and | = max(0,n — j). For
0.

m<n_j fm(g)E

. All f(€) = 0.
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Chapter 4 Constructive Conditions for

Smoothness

In this chapter we concentrate on constructive ways of proving C'-continuity of subdivision
schemes. As it was shown in Chapter 3 a generalization of Reif’s sufficient condition is
necessary for practical subdivision schemes unless they have eigenbasis functions with rather
specific structure. All previous applications of Reif’s criterion were restricted by necessity
to the schemes that produce piecewise polynomial surfaces away from the extraordinary
points. We develop methods that allow us to determine if a subdivision scheme is smooth
even if there is no closed-form parameterization of the part of the surface away from the

extraordinary points.

We start with several lemmas that show that injectivity and regularity of the a map
generated by subdivision can be inferred from a sufficiently close linear approximation, due

to the convergence of the linear approximations to the limit functions in the Lipschitz norm.

We show that a simple condition guarantees that the characteristic map is a covering,
whether it is C'-continuous or not, and thus the question of injectivity can be reduced to

computing the winding number of a curve, leaving regularity as the only non-trivial part.

Next, we demonstrate how the difference between a linear approximation and the limit
map can be estimated using contractivity with respect to a suitably chosen function, fol-
lowing [6] and [18]. We derive explicit formulas for the convergence rate for two classes
of schemes: traditional uniform stationary schemes and a particular class of nonuniform
schemes schemes with creases. In particular, our estimates allow us to prove smoothness

of a parameterized family of subdivision schemes on the regular complexes.

We conclude with an outline of the algorithm for checking smoothness of subdivision;
details of the implementation for particular classes of schemes are discussed in the next

chapter.
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4.1 Injectivity of the Characteristic Map

In Section 3.10, the question of C'-continuity of a subdivision scheme was reduced to
checking local regularity of the parametric map and compatibility of eigenbasis functions
once it is known that the scheme is tangent plane continuous. From the practical point
of view, the schemes with regular injective characteristic maps are the most useful. If the
characteristic map is injective with non-zero Jacobian everywhere it is defined, it is sufficient
for C''-continuity.

We show that, in general, injectivity of the characteristic map can be inferred from

injectivity of a sufficiently close linear approximation.

4.1.1 Lipschitz Norms

In this section we state several simple facts about Lipschitz continuous functions with a
special structure and prove a criterion for injectivity.

In the following lemmas we assume that f is a mapping from R™ to R™ (C™ can be
identified with R2?" for our purposes).

It does not matter which particular norm from the family [|-||,, p=1... 00 we use in a
finite-dimensional space when examining convergence, as the topologies induced by all norms
are identical. However, as we may have to compute certain norms explicitly, it is useful to
make estimates for a general p and choose a norm which is most convenient computationally
(typically, ||-[;). We use the following general relation establishing equivalence between

norms in R™:

1_1
lzll, < llzll, < ne”allzll, for p<q (4.1)

the Lipschitz norm for functions from R" to R™ can be defined for any given pair of
norms on the domain and range. For our purposes it is sufficient to consider the same norm

on both. Denote

1Fllzsy, = sup T2l

ziae 171 — 22,

(4.2)
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Lemma 4.1. For a C' function f defined on a compact convexr domain,

1z < C|I9 41,

where C' depends only on p, and V f is the n x m Jacobi matriz of f, with the standard

linear operator norm.

Proof. First, we prove this fact for the norm |[|-||,. Note that

1f (22) = f(z)lly = %Ilf(f)llg\lwl — 2|,

where the direction of the derivative is 7 = m and T is a point of the line segment
[93'1, $2].

0y _ (@ f@) |0, - -

SI@I, = B < | @) =195 @r < I9/@),

Thus, || fl|Lip2 < IV fllall- Using the bounds given by the norm equivalence, we get

the statement of the lemma for p > 2:

I G2) = flol, 5 L gup M @2) = f@lly 4 VAL

Pliing =
1| zip p o2 — 21]l, |22 — 21|,

For p = 1, we get the estimate

[f (@) = F)ll, _ 1 p I (@2) = F@)lly

o2 —2all, — 22 — 21l (4.4)

1 1
<n2[[[Vflyl o < (nm)>

||fHLip,2 = sup

O

Lemma 4.2. Assume thalt a function is piecewise C'-continuous on a union of convex
domains and on each domain it is C*, with one-sided limits of the gradients existing on the
boundary. In addition, assume that there is a constant B, such that for any x1 xo there is a

piecewise linear path in A connecting 1 and x2 of length no more than Bz — LUQHP. Then
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£ 12y < BEI9 11,

Proof. Let by = x,b1,...b, = x4, be intersections of a segment [z}, z4] of a piecewise linear
path connecting

with domain boundaries. Then

£ (2h) = f(a3))] <Z|\f iv1) = fi)ll,

<CH||Vf|| | St vty =cfies, | e -2,

O

Summing the inequalities for all intervals of the path, we get the estimate of the lemma.

Lemma 4.3. Let Q be a compact set. Suppose f is Lipschitz continuous on Q. If L7 is a

sequence of functions converging to g in the Lipschitz norm, and
0< K'< HLj(xg) — Lj(xl)Hp/Hacg — 331Hp <K

for some K and sufficiently large j. Then f is injective.
Proof. As for any x1, 2o

HLJ(xl) — Lj(J?Q)Hp

0< K' <
|1 — 22|,

Suppose HLj — <e.

f ‘ ’ Lip,p
Then

1 (1) = fa)ll, |27 (1) = L (@s) |,

> >K' —¢
|21 — 2], |21 — 22|,

HLip,p -

- s

£ (@1)—f ()]

Therefore, if € < K’, ol — 2 K’ for z1 # x5, which means that g is invertible.
p

O
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We call the ratio || f(22) — f(z1)l],/|[z2 — z1]|, the Lipschitz ratio of f.

4.1.2 Injectivity Criterion

In this section we show how injectivity of the characteristic map can be inferred from a
sufficiently close linear approximation.

First, we note that Theorem 3.1 from [6] works also if the Haar subdivision scheme
HY™ where (I,m) is one of six points adjacent to (0,0) on three-directional grid, used as a

comparison scheme

Definition 4.1. On a reqular complex define Haar subdivision H™ by

k+1 (

p m UU, i(j+m)

pk—l—l (

k+1 (

m(vlj s U(i4-1) (54+m)

))

(vis vasy)) =
P )
)

P vy) = pMuy)
where m(u,v) denotes the midpoint of the edge (u,v), and the pair l,m is one of (0,1),

(1,0), (—1,-1), (1,1), (—1,0), (0,—1).

In the formulas of the definition, we use notation v(u,w) for the vertex of D(R) inserted
at the edge (u,w).

Note that the limit function is discontinuous (piecewise constant). Convergence, how-
ever, is obvious, and basis functions satisfy a trivial scaling relation. The domains of the
basis functions are shown in 4.1; each function is constant and equal to 1 on its domain.

Stability of Haar subdivision is obvious.

If the comparison scheme B in Theorem 3.1 from [6] is taken to be H-™, § still converges

and the estimate for the convergence rate is the same as in [6].

Theorem 4.4. Suppose 8 is a convergent subdivision scheme on a compler K with |K|
being a subset of the plane satisfying the conditions of Lemma 4.2. Suppose for any vertex
of K there is a piecewise linear one-to-one mapping p, from Uyi(v) to a subcomplex of
the regular complex. Then the linear approximations converge to the limit surface in the

Lipschitz norm, if § is C' on the regqular complex.
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(4,7 +1)

(i, + 1)

(i, 4+ 1)

(4,7)

\j

(i+1,j

(4,7 +1)

(4,9)

\j

(i+1,5)

\J

(@, 5)

\j

(i+ 1,4

(i5j)

\j

G+1,)

(4,5)

(i+1,7)

Figure 4.1: Domains of the basis functions ; ; for H™, (I,m) = (1,0), (0,1), (1,1) (first
row) (—1,0), (0,—1), (—1,—1) (second row). Thick triangle boundaries are included in the

’

domain; each function is 1 inside the domain and 0 outside.
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Proof. For the regular complex we introduce the difference scheme d', following Dyn and

Levin [18]:

If § is O there is a matrix subdivision scheme $() such that
dlpk+1 — S(l)dlpk

is convergent.

By a straightforward generalization of the Lemma 2.7 to the matrix case, piecewise
constant approximations of d'p* converge uniformly to Vf[p°] (for f: R® — R™, Vf =
Vi1 Vi)

Note that by construction 2¢d'p” is the gradient of the piecewise linear approximation
on each triangle of u,(Ui(v)) for any v. Consider two adjacent triangles of K. The limit
function f o ;! is continuous and piecewise C*, with limits of partial derivatives existing
on the boundary. The difference scheme converges everywhere inside each triangle. On the
boundary the limits on different sides exist, but may be different.

Consider V(f[p] — L7) on each triangle. Tt is equal to J,(V(f o u;!) — d'p’) where J,

is the Jacobian matrix of y, on the triangle, and

IV = 29, < 1T1,9(f 0 w5 — d',

Hf — Lij converges to 0 uniformly on K, as HV(f o iy t) — dlijp converges to 0 on a
subcomplex of the regular complex, and | K| is compact, therefore it can be covered by a

finite number of neighborhoods Uy (v) where pu,, are defined.

The conditions of Lemma 4.2 are satisfied for |K|; therefore,
£ = Lill iy < CB|I9(F = Lyl | _

and || f — Ljl|p,, also converges to 0. O
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Now we observe that each layer defined in Section 2.4.1 is a complex satisfying the
requirements of Theorem 4.4.

Suppose that we can establish that the Lipschitz ratio of a sufficiently close linear
approximation is bounded from below by a positive number. Then the characteristic map
is injective on each layer, and Reif’s argument in Theorem 3.6 [55] applies in unchanged
form.

We conclude that the following theorem holds:

Theorem 4.5. Consider a subdivision scheme 8, which is C'-continuous in the reqular

case. Suppose for a subdivision level j the following conditions are satisfied:

1. the Jacobian J of a piecewise linear approximation L; to the characteristic map ® for
some valence k is within € of the Jacobian of the limit function in L., norm on the

layer Lrg, infy |J| > € for x in Lry;

2. the linear approximation is within € from ® in Lipschitz norm of Lrg, and the Lipschitz

ratio || ®(z2) — @(21)|l,/l|v2 — 71|, > €
Then ® is injective and the scheme is C*.

This theorem allows us to use the following procedure for asserting C'-continuity of a
subdivision scheme on the k-regular complex. First we estimate the rate of convergence of
the scheme and the derivative scheme in the regular case. This allows us to estimate the
precision of the approximation of the map and its derivatives after N subdivision steps. If
the Jacobian of the linear approximation is greater than a sufficiently large positive constant
everywhere, and so is the Lipschitz ratio, than we can guarantee that the characteristic
map is injective. Special effort has to be made to ensure that the numerical error of the
calculations does not affect correctness of our conclusions (see the next chapter for details).

Although the Lipschitz ratio for a piecewise linear function can be computed explicitly,
it would be desirable to reduce the complexity of the problem. We will prove two lemmas
in the next section; one reduces checking injectivity to computing the winding number of a
curve under additional assumptions that are also easy to check; the second makes weaker
assumptions but requires checking injectivity of the characteristic map on a curve. We

describe a constructive procedure for this test.
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4.2 Covering Conditions

We will prove the following lemma, which allows us to check injectivity with less effort.
Lemma 4.6. Suppose a characteristic map ® = (fq, f.) satisfies the following conditions:

1. the preimage ®~1(0) contains only one element, 0;

2. the characteristic map has a Jacobian of constant sign at all points where it is defined.
Then the extension of the characteristic map is surjective and is a covering away from 0.
Proof. Three cases are possible:

1. the characteristic map is defined by a pair of real eigenvectors;

2. the characteristic map is defined by two generalized eigenvectors from the same Jordan

block corresponding to a real eigenvector;

3. the characteristic map is defined by the real and imaginary parts of an eigenvector

corresponding to a complex eigenvalue.

In the first case components satisfy the scaling relations of the simplest form

Jo(3) = Naful®)
fo5) = Aefely)

First, we establish the following important fact: if a characteristic map satisfies the first
two conditions of the lemma, then the map is continuous at infinity.

Consider two circles of radii r and 2r centered at 0 in the domain of ®. The image of
the ring R bounded by the two circles ®(R) is compact, and does not contain 0. Thus,
there is a constant M > 0 such that for any point p in the ring ||®(p)|| > M (Figure 4.2).

Consider any point p in the domain of ®. There is a number k € Z such that 2p is
contained in the ring R. Thus, by scaling relations, ||®(p)|| > min(|\a|, |A\e])¥M. Clearly,
as ||p|| — oo, k — o0, and for any C there is C’ such that if ||p|| > C’, ||®(p)| > C.

Consider the stereographic map P from the plane into the sphere without one point.

The map ® gives rise to the map &g = P®P~! : 52\ {N} — S2, where N is the center
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(0}
2r
Figure 4.2:

of projection. From continuity of ® at infinity it follows that if we extend the mapping by
setting ®g(N) = N, we get a continuous mapping. Thus, ®g is a continuous mapping of
a sphere into the sphere. As we have assumed that the Jacobian of the characteristic map
has constant sign where it is defined, the mapping is also a local homeomorphism away
from 0. The sphere is compact, thus its image is compact, hence closed, i.e., contains its
boundary. But under local homeomorphism the points on the boundary of the image can
be images only of the points of the boundary of the domain. Therefore, the only points
that can be contained in the boundary of the image are 0 and N. Therefore, the image has

no boundary, i.e., the mapping is surjective.

Finally, for any p set q)gl(p) is finite: if it were not finite, it would have a limit point
(82 is compact). As <I>§1(p) is a discrete set for any local homeomorphism, the only limit
points that it may have are 0 and N. But ®(0) = 0 and ®(N) = N, so this is impossible.
We conclude that for any point p <I>§1(p) is finite. As any point y € @gl(p), p # 0,N
has a neighborhood U (y) such that ®g|r(,y is a homeomorphism, then the intersection of
all neighborhoods V' = ®g(U(y)) has inverse image consisting of disjoint homeomorphic

images of V. This proves that ®g is a covering away from 0.

The case of the characteristic map generated by imaginary and real part of a complex
eigenvector corresponding to a complex eigenvalue is similar to the case of two real eigen-
vectors; we proceed directly to the proof for the case of two generalized eigenvectors from

a single Jordan block ® = (fy, f1),
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fo(%) = Afo(y)
A = i)+ folw)

From these equations we immediately obtain

sep=1" " Jew=Lrey (46)
AP 1 *p/)\ AP

Consider the image of a circle 7 of radius 7 centered at 0. As ®~1(0) by assumption is
{0}, then 0 is an interior point of the image of Int(y) and there is an open disk centered
at 0 of some radius r’, which is contained in ®(Inty). For any p the image of the disk
bounded by 2P~ is determined by the equations (4.6). It can be obtained from the image
of the disk bounded by v by affine transform %T from (4.6). If a disk D, of radius r is
contained in ®(Inty), then the interior of the ellipse £5TD, is contained in ®(Int2Py). We
can estimate the length of the minor axis of this ellipse: it can be represented parametrically
as (35 cos(t), x5 (sin(t) — (p/A) cos(t))). The square of the distance from 0 to a point on the

ellipse is

r? : p o P P
W(COS2(t) + (sin(t) — 3 cos(t))?) = W(l + ﬁ(COS(Zt) +1)— X sin(2t))

This quantity can be estimated from below by

p
@(1 +5 - X)
As A < 1, the length of the minor axis increases with p for sufficiently large p. We
conclude that as p — oo, the image of the exterior of 2P is arbitrarily far from zero, and
® is continuous at infinity. Then the rest of the argument that was used for the case of two

eigenvectors applies. O
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Figure 4.3: An example of a map which does not satisfy the conditions of Lemma 4.6.
Infinitely many points on a line on the right map to 0, and the image of the line has to
return to zero infinitely many times. While the points that map to zero do not have to be
on one line, any regular characteristic map which has infinitely many points mapping to
zero has to have similar structure for some curve.

Note. It is easy to see that if the first condition ®1(0) = 0 is violated, the structure of
the characteristic map has to be quite complicated (Figure 4.3) and it is unlikely that any
useful scheme may have such a map. Despite the fact that only “unreasonable” cases are
excluded, it would be useful from a theoretical point of view to make the conditions of the

lemma weaker.

Algorithm for checking injectivity. Lemma 4.6 is useful for checking injectivity of
a characteristic map which is known to be regular. Indeed, suppose the conditions of
the lemma are satisfied, and we have shown by some means that the map is regular and
®~1(0) = {0}. Once the conditions of the lemma are established, we know that the map
is a covering away from 0. Therefore, it is injective, if and only if the winding number of
a simple curve around zero has winding number 1. This fact can be seen by looking at
the fundamental groups of the domain and the image. The conditions of the Lemma 4.6
guarantee that both have fundamental group Z. As for a covering the fundamental group
of a covering space is a subgroup of the fundamental group of the base space, with a
monomorphism induced by the covering map. A simple curve around zero is the generating
element of the fundamental group of the domain. Thus, the mapping of fundamental groups
is an isomorphism which is necessary and sufficient for the covering mapping to be an

injection, if and only if the simple curve maps to a curve homotopic to a simple curve, i.e.,
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one with winding number 1.

We summarize our observations in the following Proposition:

Proposition 4.7. Suppose the characteristic map of a subdivision scheme is reqular and
satisfies ®~1(0) = 0. Then if the winding number of the image ®(7) of a curve is 1, the

characteristic map is injective and the scheme is C'-continuous.

Computing the winding number. In general, we do not have a closed-form expression
for any curves on the limit surface. One way to compute the winding number of a curve is
to choose a sufficiently close linear approximation and compute the winding number of the
approximation. The linear approximation is sufficiently close if we can guarantee that the
winding number of the approximation is equal to the winding number of the curve. This is

a particular instance of the following problem:

Consider two continuous curves 7 (t) and 72(t). Suppose supy ||v1(t) — 12(t)|| =

€. What value of € guarantees that the winding numbers of the curves are equal?

It is convenient to consider v;(¢) and v2(t) as functions into the complex plane. Define
a1(t) to be the continuous phase of v, and as(t) to be the continuous phase of 4(¢). Then
a1(0) = a2(0) = 0, ay (1) = 2mny, az(l) = 27ny, where ny and ny are the winding numbers.
Consider a4 (t) — ae(t); this is a continuous function with values 0 and 27(n; — ng) on the
endpoints. Suppose ni # no; then aq(t1) — as(t) = 7 for some tq, i.e., for some ¢ the points
~1(t1) and y2(¢1) are on the same line going through zero on different sides of zero.

Suppose that we have established that inf; ||y1(¢)|| > € and infy [|[72(¢)|| > e. Then the
distance between 1 (t1) and ~2(t1) is at least 2e. Therefore, if sup |71 — 72|l is less than 2e,
the winding numbers cannot be different.

The following proposition reduces computation of the winding number of a curve to the

computation of the winding number of a linear approximation:

Proposition 4.8. Suppose for some €

sup [|[@(y(t)) — Lm(y(1)) [ <€
t (4.7)

inf || S (y(8)]| = 2¢
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where (t) is a curve in the domain of ®, L, is a piecewise linear approximation to ®.

Then the winding number of Ly, (v(t)) is equal to the winding number of ®(y(t)).

The simplest way to compute the winding number is to count the number of intersections
of a half-line starting at zero with the curve. However, when the curve is known only
approximately and is represented by its linear approximation, this method is not very
reliable numerically. The winding number of a piecewise linear curve can be computed
in a more stable way using a projection of this curve to the unit square. Let v(¢) be a
piecewise linear curve with v(¢;) = y;, @ = 0...n, v(¢) linear on each interval [t;,t;11],
to = 0,t, = 1, and yg = y,. A projection of the curve into the unit square can be defined
using P(y) = y/|lyllo- Let pi = P(yi), i = 0...n. Suppose p; and p;11 end up on the
different sides of the square [—1, 1] X [=1, 1]. Then a corner of the square is contained in the
projection of the line segment [y;, y;+1]. We split this interval in two, so that the projection
of each subinterval is contained in only one side of the square. We assume that p; and p;41
both have one of the coordinates equal. Then p;11 — p; has one of the forms (pl1 1 p}, 0)
or (0, p? 1 p?), i.e., can be characterized by a single number d;. As the phase increases or
decreases on each interval, depending on the sign of d;, it is straightforward to show that
the winding number is simply (1/8) ", d;.

Under additional assumptions, we can simplify the computation even further (see the

next chapter).

4.3 Convergence Rates for Uniform Schemes on Regular

Complexes

To apply Theorem 4.5 to a particular scheme, we need a way to estimate the rate of
convergence of the scheme and the matrix schemes corresponding to the derivatives. As it
was shown in [6], under sufficiently general assumptions subdivision converges geometrically.
We derive estimates on the rate of convergence, and use them to determine the number of
subdivision iterations that have to be performed to achieve sufficient approximation both to
the limit surface and partial derivatives of the surface in the sense described in Section 4.1.

We use the contraction function

D(p) = max(||Aq0p|| ., [[A0.n2l,)
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/

Figure 4.4: Computing the winding number of a piecewise linear curve.

, where [A g, plij = Pitkj+1 — Pij, to be able to use convergence estimates of Theorem 3.1

[6].

Suppose that a subdivision scheme satisfies for any p

D(SVp) < ~nD(p) for some N and v < 1 (4.8)

IS = Bplloe < eD(p) (4.9)

where B is a midpoint or piecewise constant subdivision scheme, then we have

Suppose that m = kN + g; then D(p™) < v*D(p?) and
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[M]8

|L® — L™, < | — L] =

0

<.
Il

lts = B ™|, <3 D (™) =

I
[M]8

§=0 j=0
oo N 00 N-1
_ CZZD mHN—q) = Z D pm+iN7q)_|_D (pm+(i71)N))
i=1 q=1 i=1 q=1
If m> N,
c N-1
11 = LMoo < 72 (1 2 D) + D ™) (4.10)
q=1
Ifm < N,
N-1
12 = L < 3 vZD ™)+ 3" D (pY) (4.11)
qg=m

Note that the formulas coincide for m = N — 1. In particular, if N =1, we get

I L < 72D ) (4.12)

and for N =2, m>1

-1 <o (15 D) + Do) ) (@.13

Note that piecewise constant approximations can be shown to satisfy the same estimate;
this fact is important for characterizing convergence of the differences to partial derivatives.
To calculate the number of steps necessary to approximate the limit surface to a given

precision, we need to find an expression for constants v and c.
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Estimates of 7. For uniform stationary subdivision on regular complexes, we use the
techniques of Cavaretta, Dahmen and Micchelli [6] and Dyn, Levin and Micchelli [21] to
estimate the constants in the formulas above.

In this section we use notation S, for a stationary uniform subdivision scheme with
the Laurent polynomial a(z). Consider a scheme S,. Assume that a(z) is divided by
1427 Vand 1+ 29 1. In general, this is not necessary for C'-continuity of subdivision and
matrix schemes have to be considered. However, it is true for the particular instances of
subdivision schemes that we are going to consider, and we restrict ourselves to the schemes

with reduceable polynomials a to simplify exposition. We use the notation

ar(z) = % as(z) = % (4.14)

Polynomials a; and as correspond to difference subdivision schemes satisfying commu-

tation formulas

S A1,0P = A1,005P  SayAo,1)P = A0,1)5p

Denote

a; a;

= — aQ;,q = — 7:7 ':172, 7: ] 4.15
1+ZJ~_1 13 1—|—Z2_121_1 J 7é.7 ( )

aij

It is easy to show for a symmetric scheme that if aq is finite, then as, aqs,ao1, a3, ass

are all finite. The polynomial a(z) can be written in the following form:

a(z) == (L4+27") (L +23") (L4 23" 27" a(z1, 20) 2122 (4.16)

N —

1 2129), as the rotation of the

with g(z1,22) satisfying q(z1,22) = q(22,21) = q(z5
grid by 7/3 corresponds to the transformation z; — z; ! 2y — z12z9. The polynomials

a12,as1, a13, as3 satisfy
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ai(z1,22) = az(22,21), ai2(z1,22) = a1 (21, 22), aiz(z1,22) = az3(22,21) (4.17)

We can can find the estimate for 4 in (4.8) using the L norms of the subdivision

operators; for S we get

D(SVp) = max(||A01)SVp| s 18005Vl )
= max(|[SHA0 P - [[SaAnopl) <

max([|S, | oo [ A 0.7l S lluo | A0l )

VAN

As ai(z1,22) = az(z2,21), the norms of the corresponding subdivision operators are

equal and

D(SNp) < [|SN||..D(p) (4.18)

Thus, v can be taken to be HS’é\i Hoo for any V. N should be chosen in such a way that the
norm is less than 1; in addition we may try to improve our estimate of the convergence rate
by choosing larger N, to minimize the number of subdivision steps required to guarantee
the necessary precision. For any scheme an optimal N has to exist, as large N are clearly

non-optimal (subdivision has to be evaluated for all levels at least up to N).

To prove that the characteristic map is regular, using Theorem 4.5 we need to estimate
the Jacobian of the map, i.e., the partial derivatives of the limit functions of subdivision.
In the case of schemes with Laurent polynomials that can be factored in the way described
above, approximation of partial derivatives can be done using a similar approach applied
to the schemes for the derivatives Sa,, and Sa,, (in a more general case we would have to

use a single matrix subdivision scheme acting on the vector of differences).

When choosing the contraction functions, we have to ensure that there is a convenient
commutation relation associated with this function. In the case of schemes for derivatives,

the following contraction functions turn out to be convenient:
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D1 (p) = max(A,1y, Ao,1y) and Da(p) = max(A 1), A1) (4.19)

For the scheme Sy,, we get by triangle inequality
Dy, Aaop) = max ([ Ay i, Aaopll.: [Aensh Aworll,) =

= max (|83, 8008007 o [ A0 Adaopll., ) <

< max (HSéYHB Hoo’ Hsé\(flm Hoo) Dl(A(LO)p)

Thus, the following estimate holds for the derivative scheme Sy,
Dy (SéYLlA(LO)p) < max (HS%N, Hoo’ HS%H Hoo) Dy (A(l,o)p) = 7Dy (A(l,o)p) (4'20)

In a similar way, for the derivative scheme Sy,, we get

Dy (‘5’2]\;2A(071)p) < max (HS%\;% Hoo’ Hsé\t]lm Hoo) Dy (A(Oal)p) =72D2 (A(Oal)p) (4.21)
Estimates of c¢. Estimates of constant ¢ in (4.8) can be obtained by considering the

subdivision scheme S,_;, where b is the Laurent polynomial for the midpoint subdivision

given by the formula

(T420) (L4 27) (T+ 23727 2120

DN =

b(Zl, 22) =

The following obvious fact plays an important role in our derivations, so we state it as

a separate proposition:

Proposition 4.9. For any pair of affine-invariant uniform schemes S and I’ with Laurent
polynomials s(z) and t(z), the polynomial s(z) — t(z) corresponding to their difference can

be factored in the following ways:
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s(2) —t(z)  =pi() (et = 1) +p3(2) (2t = 1)
s(z) —t(z) =pi(2)(er — D) +P3() (e T2yt - 1)

s(z) —t(2) =p3(x)(ey" — 1) +p3(2) (o7 2y 1)

Proof. As both schemes are affine-invariant, they reproduce constants. Therefore, the fol-

lowing sums are 1:

Z A2i+a2j+b — 17 a, be {07 1}
i,J

Therefore, the sum of all coefficients of each Laurent polynomial is 4, and the sum of
the coefficients of their difference is 0. This means that the pair (1,1) is a solution of the
equation s(z)—t(z) = 0. It follows that the polynomial admits the first decomposition. Any
Laurent polynomial in z; and 25 can be rewritten as a polynomial in y; = 21 and y2 = 2122
or y1 = zg and Yy = z129. If 21 = z0 = 1, then y; = y3 = 1 in both cases, and we can obtain

the second and the third decomposition. O

Using this proposition, we can write a — b in the following form:

a(z1,22) — b(z1, 22) = b(21, 22) (pl(zl, 22)(21_1 —1) +p2(z1,22)(z2_1 — 1)) (4.22)

Note that z; —1 is the Laurent polynomial for A ) and zg—1 is the Laurent polynomial

for A ). Define polynomials

b(Zl, Zg)

b121,22 = s = — = —
( ) 1427t 1425 14 27 2

Then we have the following estimate:

1Sa=sPlloe < (I1Sh:p1 e + 1Sbops lloc) D(P) (4.24)
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For the derivatives, instead of using midpoint subdivision as a comparison scheme, we
use one of the piecewise constant schemes corresponding to the polynomials by, by, b3.

As q(z1, 29) defined in (4.16) satisfies q(z1, 22) = q(z2_1, 2122), 1 — q can be decomposed
as pro(zy ' — 1) + (27 25" — D)p1z or as par (27 — 1) + (27 251 — 1)pas. Note that we can
choose polynomials pi2, p13, pa1, pas to be pra = —z1 'p1(z122, 21 ), P13 = p1(2122, 2 1),
po1 = —25 'p1(2y b 2122), pa3 = P12y L, 2122).

Similar to (4.24) we get

H52a1—2b1A(1,0)pHOO < (HSlezplz Hoo + \|S2b13p13”oo) Dy (A(l,O)p) =c1Dq (A(LO)p) (4'25)

where b;;, are defined similarly to by, with b replaced by b;. For the other partial derivative,
we have a similar expression and by symmetry c¢; = co.

Here is a summary of the estimates, m > N — 1:

e For the limit function f:

N-1
Hf LmHoo > ﬁ Y Z D( " q) +D( ) Y= HSl{L\iHOO’ c= ||Sb1p1||oo + HSbgngoo
q=1
(4.26)
e For the derivatives:
N-1
[—L7"|| < " D1 (Apop" %) 4 D1 (Aq,0p™)
H&vl w ITm o 0 o (4.27)
Y71 = max (HsgzlgHooa Hsé\cflm Hoo) y 01 = (Hs%mpmuoo + HS2513P13H00)
Co =
—f Ly S V2 Dy (Ap.1yp™ ™) 4+ D2 (Ao 1yp™)
H I—m q:zl ©n 01 (4.28)

Y2 = max (HSé\fzngmv “5%23}’00) » 2= (”326211721Hoo + HSQb23p23”oc)

where Lj" = 53 are the approximations of the derivatives generated using the basis
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functions corresponding to Sgp, (piecewise constant).

In all estimates above we need to compute the L-infinity norm of Laurent polynomials

for powers of subdivision schemes. These norms can be computed using the formulas [6]

ISV, =max{a¥, 0<ij<2V 1}, a¥ =Y
k,l

ai]\i2Nk,j—2Nl (4.29)

N are the coefficients of a(z)a(zQ) ... a(ZQN—l).

where a;;

In particular, the Butterfly scheme is characterized by the polynomial a(z1,22) with

q(z1, z2) being

1
q(z1,22) =1— 1—6(2zf2251 + 225227t — 42y eyt — 42t

— 422_1 + 2z1_122 + 22122_1 + 12 —4z1 —4z9 — 42129 + 22%22 + 2zlz%) (4.30)

261

7 31 1
gv Hsngoo = 6_47 HSngOO - @7 HSblmuoo =+ ||Sb1p1Hoo - 5 (4'31)

1Sarlloo =

7 11

152415 [l0e = 1, "822@12“00 = ]’ HSS)aIQHOO = 16’ (4.32)
7 11

H82a13||00 =1, HSQQGJSHOO = 8’ Hsgalzsuoo = 16’ (4.33)

H52b12p12 Hoo + ||52b13p13 Hoo =2 (4'34)
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4.4 Convergence Rates for Schemes with Creases on Regular

Complexes

It is often desirable to introduce a smooth or sharp one-dimensional feature on a surface.
A common way of introducing sharp features is to separate the surface into several surface
patches which match along an edge. When a smooth feature is introduced, it is typically
done by increasing the number of control points on the surface near the crease. An alterna-
tive method of introducing sharp edges into a subdivision surface was proposed by Hoppe et
al. [32]; the main idea of the approach is to modify the subdivision rules near tagged edges
of the initial mesh so that the limit surface becomes non-smooth at that edge. A related
idea was used by B. Barsky [3] for (-splines, who added tension parameters to the spline
basis functions. In both cases it is not necessary to increases the number of control points
of a surface to introduce a crease; only manipulation of the tags or tension parameters is
required.

We extend the idea of modification of subdivision rules to add tension parameters to
subdivision, and study C'-continuity of the resulting families of schemes.

In this section we consider the behavior of subdivision schemes with modified rules along
an edge on a regular complex.

To analyze C'-continuity for extraordinary vertices, we need to derive estimates on
convergence of the partial derivatives of a scheme similar to those in Section 4.3.

Note that we develop a method for asserting C'-continuity of a particular parameteri-
zation of the surface (the dyadic parameterization over the plane). If this parameterization
is not C''-continuous, in general it does not mean that the surface is not C''-continuous; our

conditions are sufficient but it is not known if they are necessary.

4.4.1 Definitions

We restrict ourselves to the simplest class of schemes with creases defined as follows:

Definition 4.2. A crease subdivision scheme S with uniform coefficients a,?j,i,j € 7Z and
crease coefficients c; 25, i, € Z is a linear operator on sequences p(v; ;) = piji,j € Z,

such that
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[Splij = 2im aio—Zm,j—lelm for 3 #0 (4.35)

[Splio = _1m Ci—2m,~21Plm (4.36)

In this definition special coefficients are used to compute values at vertices on the z-axis
in the parametric plane. It is clear from this definition that the scheme is stationary but not
uniform. The crucial observation for analysis of schemes of this type is that Theorem 3.1
from [6] and the estimates 4.10 do not use the assumption that the scheme is uniform.
However, the lack of translation invariance does not allow us to use Laurent polynomials
to represent the schemes. Nevertheless, we can derive convergence estimates for crease

subdivision schemes in a similar way, considering several separate cases.

As we would like to introduce parameters into subdivision, we would like to estimate
convergence rates for parametric families of subdivision schemes, rather than schemes with
fixed coefficients. In order to do this efficiently, we further restrict the type of schemes
that we consider, assuming that there is one parameter k£, and the crease coeflicients are

computed using linear interpolation

c(k)ij =ajy = (1~ k)af; + kaj;, 0<k<1 (4.37)

1

where a;; are coeflicients for a sharp crease, that is, when the limits of the partial

derivatives are different on the different sides of the z-axis.

The case kK = 0 corresponds to the uniform scheme; the case k¥ = 1 corresponds to a

sharp crease.

We use notation S* for the uniform scheme with coefficients afj. We denote by a*(z1, 2o)

the Laurent polynomial with coefficients afj. Sy is not the crease subdivision scheme; it

is the uniform scheme that uses the coefficients of the crease scheme everywhere, rather

than only at the z-axis. We use notation D = S% — S, with the Laurent polynomial

d(z) = a(z) — al(2).
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As in Section 4.3, we assume that the Laurent polynomials a’, a' have the form

1 _ _ 1
a(2) = b(2)d'(2) = gazm(ar + D5+ D+ 277274 (2) (4.38)
In addition, we assume that
d(z) = (5 — 1)d(2) (4.39)

where Z is a finite Laurent polynomial. Both assumptions can be relaxed, but it would
make the exposition somewhat more complex. The specific schemes that we consider satisfy
this requirement, and we restrict our derivations to this special case.

In the case of crease schemes, it is not sufficient to consider scalar schemes for estimating
the convergence rate even with the assumption (4.38), as we did in Section 4.3. Recall ([6],
Section 2.4) that a matrix stationary uniform subdivision scheme is a linear operator on

the sequences of vectors p;; € R"

[Splij = ZaszZl,jf2mplmv i,j €4 (4.40)

Im
where a;; are n X n matrices. In general, there is no subdivision scheme that would
allow to compute forward differences in a particular direction on a finer level from the
forward differences in the same direction on the coarser level. However, if a scheme S is
parametrically Cl-continuous, there is a matrix subdivision scheme S’ that allows us to
compute the gradient of the limit function starting with the vector of forward differences.

This scheme satisfies the commutation formula
A12Spi; = S A1api; (4.41)
where A1opi; = [pit1j —DPij, Pij+1 —Pij]T - The index of A refers to the particular pair of

forward differences that is used. The three direction vectors (0,0), (0,1) and (1, 1) are often

used throughout the derivations; to make the notation less cumbersome, we assign numbers
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1, 2,3 to (1,0), (0,1), (1,1) respectively and use 1,2,3 in indices instead of direction vectors:
A0y = A1, Ay = Ag, A1y = As. Clearly, we can define A in (4.41) using any pair of
independent forward differences; it is useful to consider Ai3p;; = [Dit1 —Pij, Pit1 j+1 —pij]T
and Aospij = [Pi j4+1 — Pijs Dit1j+1 — Pij) L -
We use three operators acting on schemes, both uniform and nonuniform, and on Laurent

polynomials for uniform schemes.

1. For any scheme S, the scheme S}, | = 1,2, 3, satisfies

ASp = S|Ap (4.42)

Note that S’ may not exist. Our assumptions guarantee existence of such schemes for

Sk,

If S is uniform, the polynomials aj(z) corresponding to S; as in previous section satisfy

ai(z) = . an(z) = . as(z) = 4.43
1(2) 41 2(2) 41 (=) izt 41 (4.43)
2. Next we define for any scheme S S;, [ = 1,2,3 a scheme
Sp = S| Aip (4.44)
Again, S need not exist. If S is uniform, the polynomials a(z) satisfy

- a(z) - a(z) - a(z)
ai(z) = , as(z) = , asz(z) = 4.45
1() Zf2—1 2() 252—1 3() 212222—1 ( )

3. Finally, operator Z,) is defined by
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[Z’(a,b)p] ij = Pitaj+b (4.46)

For (a,b) being one of (0,1), (1,0), (1,1) we use the notation 21, Z2, Z3. The corre-

sponding polynomials are

The following list of relations allows us to manipulate schemes in a formal way:

A =21 (4.47)

NS = SIA (4.48)

S = S| (4.49)

Sk =80 kD (4.50)

where | = 1,2,3. The relations above using S’ and S are valid only when these

schemes are defined for a given S.

4.4.2 Commutation Formulas

In this section our goal is to derive commutation formulas for the crease schemes and
schemes for their partial derivatives under the assumptions (4.38) and (4.39). Once we
have expressions for the schemes in commutation formulas, it is straightforward to obtain
contractivity estimates necessary to apply (4.10), using formulas similar to the |[|-|| -norm

expressions for polynomials.

In the following formulas we use %,j to specify the domain for the formulas defining

nonuniform schemes; if A, B, C' are uniform subdivision schemes, then the expression
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A ifj#0,-1 [Apli; if j #0,—1
S=4B ifj=0 is equivalent to [Spli; = [Bpl;; ifj=0

Expanding the definition of a crease scheme using D; = Z; — 1, S* = S° — kD, and the

fact that A and Z commute, we get

/

Ay SO if 7 #0,—1 AySO if 7 #0,—1
DS = (2,80 -8k if j=0 =9 AySO + kD if j =0
29o8F — 80 if j=—1 ApSY — k20D if j = —1
SOLA, if j £0,—1
= S0%A, +kDyAy  ifj=0
SO Ay — kZoDyAy if j = —1

Thus, we can define

SV if 5 #0, -1
Sy =198%+kDy  ifj=0 (4.51)

SO, — kZoDy if j=—1

For 57 we get

ASO ifj£0 SOA4 if j 40
AS = = = S1A; (4.52)

/

ALSF ifj=0 (1—k)SYIA; +kSYA, ifj=0

The motivation behind the assumptions (4.38) and (4.39) was to make it possible to

define S| and S} as scalar, not matrix, subdivision schemes.
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We outline briefly the derivation for the matrix scheme S’ for the cases when the condi-
tion on D does not hold. It is not possible to use Dy. Instead, we can apply Proposition 4.9
to d(z): the polynomial d(z) can be decomposed as pf(z) (27 — 1) + pd(2) (25" — 1); com-
bined with assumption that both a’(z) and a'(z) are divided by b(z), we we obtain a

decomposition

d(z) = ¢f(2)(z* = 1) + a5 (2) (252 = 1)

We can factor A; out of the first term and As out of the second term. Thus, we express
AsS as AA1+ BAs where A and B are some schemes. This gives us two components of the
matrix. The other two components are easily obtained from the expression for S| above.

Next, we derive commutation formulas for the schemes S7 and S5. Note that 257
and 25 converge to the partial derivatives of the limit function of subdivision when it is
C'-continuous. The goal of our calculations is to obtain estimates for convergence using
contractivity functions; we are going to use the function Di(p) = max (||A1p]| .. [|A3p|l )
for S5 and Da(p) = max (||A2p|| .. [|Aspll,) for S7. Thus we need commutation formulas
for As.

For A4S} we obtain

A1S9, if j#0,—1 SO0 AL if j#0,—1

A8y = ASY% + kA Dy if =0 SO0 Ay + kDy Ay ifj=0

A1S% — kZoA1 Dy if j = —1 S99 81 — k2o Dy Ay if j = —1
Define
509, ifj#0,-1
S§ = S% + kD) ifj=0 (4.53)

809, — kZoDb, if j=—1

Then AIS§ = SglAl-
For A3S5 we get
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A58, if j £0,—1,—2
, 2359 — SO — kDy ifj=0
AgSQ -
2359 + kZ3Dy — 8% + kZo Dy if j = —1
2359, — kZ3Zy Dy — SO, if j = —2
500, A3 if j#£0,—1,-2
S92 As — kA3Ds ifj=0

SOYAs + k(Zy + 22)AsDy if j = 1

SO0, As — k2329 A3 Dy if j =2

As we have observed, d(z) can be decomposed as

d(z) = ¢f(2)(z1° — 1) + §(2) (21 223 ° — 1)

Denote Q¢ and Q¢ the schemes corresponding to polynomials ¢f(z) and ¢§(z).

Thus, we can write the following commutation formula

AzD = QYA +Q3A;

Thus for AzSh, we get

S350 if j #0,—1, -2

(5%, — K[Q4,) Az — Q. ifj=0
AsSh =4 % 32 2 (4.54)

(8% + k(Zs + 22)[@@2)A3 + k(Z3 + Z2)[@ﬂgA1 it j =—1

(5993 — k2322[Q415) A5 — kZ322[QF], A1 if j = —2

Define two difference schemes
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597, if j£0,—1,-2
e k[Q4,) if j =0
23,3 — _
(% + k(Zs + 22)[Q4],) if j = —1
(S0, — kZ3Z2[Q41,) if j = —2
'
0 ifj£0,-1,-2
., —kQ1, if j =0
23,1 — _
k(Zs +22)[QF], ifj=-1
~kZs22(QY],  ifj=-2

Then

A3S5 = S233A3 + Sa3.14A4

For AyS] and A3S] we have

S0, if j #0,—1
o =1 8%, + kD), ifj=0
STy — kZoD}, if j=—1
(30'1’3 if j£0,-1
Sl =1 8%, +kDj, ifj=0
S5 — k2D, if j=—1
The commutation formulas for S] are ApS] = S75Ag, A3S] = ST5As.

(4.55)

(4.56)

Commutation formulas could be derived in full generality for a matrix scheme with

4 components instead of the pair S| and S, and a matrix scheme with 16 components

instead of Sy, S13, 591, 5531, Sa3 3 using polynomial decompositions of the type used for d.

Whenever a scheme is affine-invariant, decompositions of this type are guaranteed to exist.

Further, for schemes with negative coefficients, the schemes S] and S} may be non
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contractive (the Butterfly scheme being the primary example). Then it is necessary to
consider powers of the scheme. The commutation formulas above have to be applied several

times in such cases.

Comparison Schemes. The commutation formulas above allow us to estimate the rate
of convergence (v in the equation (4.10)) in the way described below; we also need to
estimate the constant ¢, the measure of approximation by a comparison scheme. If we use
piecewise linear subdivision scheme S, as the comparison scheme for the limit function of
S, it is natural to use piecewise constant schemes Sj,, Sp, defined in the previous section,
as the comparison schemes for partial derivatives, as the limit functions of these schemes
are derivatives of the piecewise linear function generated by Sp, whenever these derivatives
are defined.

To estimate S| — Sp, in terms of the contractivity function D; it is sufficient to factor

1

out Ay and As. Using Proposition 4.9, we can write the difference a) — by as blgplg(zl_l —

1)+ 17121?13(22_121_1 —1)

Thus,
Shiapia A1 + Shiapia A it 40
Si _ Sbl _ 12P12 13P13 ) (4‘57)
Sb12p12A1 + (Sb13p13 + kDi3)A3 if j=0
and
Sb21p21A1 + Sb23p23A3 if j #0,-1
Sé — B = (Sb21p21 + k[éil]Q)Al + (Sb23p23 + k[ég]z)A3 ifj=0 (4'58)

(Sb21p21 — kZo [écll]Q)Al + (Sb23p23 - kZ2[C§§l]2)A3 if j=-1

Convergence parameters. Finally, we discuss how to compute convergence parameters

~ and ¢ given the commutation formulas. Suppose that a scheme S satisfies relations of the

type
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NS = S0+ SijAj
A;S = S;li+ S50,

Then we can make an estimate of the convergence rate using the function D;;(p) =

max([[Aipl| oo, 18771 ):

D;;(Sp) = max (|[S;Aip + Si; Ajpll . |Sjidip + Sj;A;pll, ) <

oo

< max (max([[Sill oo [|Sijll o) Dij (p), max ([Sjill o 118551l 00) Di(p)) < (4.59)

< max (1Sl sos 119651l oo | Sjill sos 155511 0) Dij (p)

The last question that we have to address is calculation of the operator norms for
nonuniform subdivision schemes described above. An estimate of the norm from above is
the maximum of the norms of the uniform schemes that are used to construct the scheme
on each subdomain (j # 0,—1, j = 0, j = —1 for some of the schemes above). The norm
can be calculated precisely, if we exclude the sums in the formulas (4.29) that correspond to
the elements outside the domains: for example, if the scheme is used on the domain j = 0,

the coefficients for odd j are never used.

4.5 The Algorithm for Checking C'-continuity of a Subdivi-

sion Scheme

The following algorithm can be used to check C'-continuity of a subdivision scheme on the
regular part of the surface and near an extraordinary point of a fixed valence. Note that if
this test fails, the scheme still can be C'-continuous. It is likely, however, that the success
of the test is necessary for C''-continuity of a large class of schemes. This is a brief outline
of the algorithm; details of the implementation for particular types of schemes are discussed

in the next chapter.

1. Establish C'-continuity of the scheme on the regular complex; this may be known

a priori, as it is in the case of polynomial patches; otherwise, convergence estimates
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derived in this section can be used to check C'-continuity

. Compute the convergence estimates for the scheme and the derivatives if they were

not computed on the first step.

. For the given valence, compute the eigenvectors with an initial precision.

. Compute linear approximations to the characteristic map on a layer defined in Sec-

tion 2.4 keeping track of the error bounds.

. Test if the image of the layer is isolated from 0, using convergence estimates for the

limit function of subdivision. The test can either fail (layer is not isolated from 0)
or succeed (the layer is isolated from 0) or the result cannot be determined on this
subdivision level. If this test fails, the whole test fails. If the test is successful, it is

not repeated on the next subdivision level.

. If the previous test is successful, compute the winding number of the approximation

to the outer boundary curve as described in Section 4.1. If it is not 1, the whole test
failed. If it is successful, this test is not repeated on the next subdivision level. This
test always either fails or is successful, as the winding number can be determined from

the linear approximation of the curve given that the previous test was successful.

. Compute the lower and upper bounds for the minimum and maximum of the Jacobian

using the Jacobians of the linear approximation and convergence estimates. If the
minimal and maximal Jacobians have the same sign, the whole test is successful; if
the minimal and maximal Jacobians have different signs, the whole test fails. If the
signs of Jacobians cannot be determined, compute the next subdivision approximation

and return to step 4.

Continuity with Respect to the Control Values

Convergence estimates derived in the previous sections allow us to examine smoothness

of subdivision for fixed subdivision matrices; the estimates of Section 4.4 allow to analyze

smoothness of particular parametric families of schemes on regular complexes. To extend

this analysis of families to the neighborhoods of extraordinary points, we note that the

limit functions generated by subdivision are linear combinations of the basis functions with



159

coefficients being the control values. Clearly, the same is true for the derivatives of the
limit functions. Therefore, the limit functions and its derivatives are continuous functions
of control values. If the control values of a characteristic map continuously depend on a
parameter, as it is the case for crease schemes, it follows from regularity and injectivity of
a characteristic map for a particular value of the parameter that all characteristic maps for
nearby values of the parameter are also regular and injective, and corresponding schemes
are C''-continuous.

The same idea can be used to analyze smoothness of a given scheme on a k-regular
complex for arbitrary value of k. Suppose the scheme is defined in such a way that some
properly chosen affine transformations of control points of all sectors of the characteristic
map converge to one of a set of fixed configurations as k — oco. If for these configurations
we can prove regularity and if we can prove injectivity for all maps, then the scheme is
smooth for arbitrary k.

It is clear that this approach does not always work: for example, if the dominant eigen-
values of the subdivision matrix approach 1 as & — oo, the limit configurations do not
produce regular maps. However, in this case from practical point of view for sufficiently
large k, the behavior of the scheme is be indistinguishable from non-C*-continuous. More
precisely, the convergence rate for the derivatives is very slow. When the scheme is “stably
smooth” as k — oo (for example, modified Butterfly and Loop schemes described in the
next section), then smoothness for arbitrary k can be established by examining the limit
configurations if they exist.

To implement this approach, we need an estimate of the change of the limit function
and its derivatives given a change in the control values. As we cannot assume a closed-form
expression for the basis function and its derivatives, two approaches are possible. The first

approach is to use the decomposition

f(t) = sz‘jB(t —tij), tij = (i, ])

where t is a point in the regular topological complex identified with the plane in the
standard way, B(t) is the basis (scaling) function corresponding to the scheme, p; are the

control values. For schemes with bounded support the basis function has compact support
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so for a fixed ¢ summation goes over a finite number of copies of the basis function. Let this
number be K. Using subdivision we can compute B theoretically with arbitrary precision.
Let the approximation error of our calculation be e. Then we can easily obtain the following

estimate:

1t <Z||Bt—tw bl + K (4.60)

where p is the vector of control values. However, the error term for realistic Ke may
be significant for derivatives. By necessity, our estimates of the error e based on (4.10)
are quite conservative, especially in the case of schemes with negative coefficients, such as
Butterfly. For a reasonable number of subdivision levels (< 10) the error term may still be

very large.

It is useful to derive a better estimate directly using contractivity functions.

oo
IF Ol = 157l Z SHL S pm 47| <
=0 0o
o] 4 oo N—
< DS =B+ 1" e ZZ (P NED) + P o
i=0 00 i=0 ¢=0
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Suppose m = kN + qo. Then
N-1
fOle < "o
q=0
N-1 go—1
< YD) +v> DY) | + 1P

qqo

Observe that D(p) < 2||p||, for all choices of D(p) that we use. This leads to the

following estimate
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ZC’VL%J mmod N—1 N-1
Ao < (T X 19t X 18%) + 187 | Il (460
q=0 g=mmod N

In the next chapter we will use this estimate to prove smoothness of the modified But-

terfly and Loop schemes on arbitrary k-regular complex; see the next chapter for details.
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Chapter 5 Algorithms for Verification of

C'-continuity

In this chapter we describe in detail the algorithms for checking C'-continuity of subdi-
vision schemes outlined in the previous chapter. These algorithms are used to establish
C'-continuity of several subdivision schemes in the next chapter.

The main idea of all algorithms is to use a sufficiently close linear approximation to the
characteristic map to determine regularity and injectivity of the characteristic map or a

family of sufficiently close maps.

5.1 Error Types

In this section we discuss the types of error that have to be taken into account in our

algorithms.

Floating point error. Evaluating derivatives of subdivision schemes with slow conver-
gence may require a large number of subdivision steps. For example, approximately 7
levels of subdivision are necessary to determine whether the Jacobian changes sign !
In practically all cases there is little hope to perform more than 3-4 subdivision steps
in symbolic form: the general data structures, memory management strategies and
arbitrary precision floating point implementations used in common symbolic algebra
packages make them difficult to use for extensive computations. In addition, the gen-
eralized eigenvectors of the subdivision matrix quite often can be represented only
approximately. These factors suggest an implementation based on finite-precision

arithmetics.

As the goal of our algorithms is to establish certain properties of the characteristic
map precisely, we need to keep track of guaranteed lower and upper bounds for each

number. One approach would be to encode the precision in the number of digits used

! After the work described in this thesis was completed, we have developed an improved method which
allows us to determine if a map is regular with fewer subdivision steps; nevertheless, if the convergence of a
scheme is slow, implementations using a symbolic algebra system is not feasible.
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in the representation, as it is done in Maple or Mathematica. An alternative approach

is to represent the numbers as intervals.

The ideas of interval arithmetic date back at least to Moore’s work [43], [44]. The
IEEE 754 standard made possible consistent and efficient implementations on a variety

of hardware (e.g., PROFIL/BLAS package [34]).

A number of approaches can be used to implement this type of arithmetic. One
approach would be to use IEEE standard operations “round to 4+o00” and “round to

—o0” to compute the upper and lower bounds of the intervals, as suggested in [60].

Another approach was implemented in the RealExpr package described in [65] and in
detail in [46] the BigFloat representation for numbers. A distinctive feature of this
package is that it does not rely on the hardware floating point and uses an arbitrary-
length integer representation for mantissas instead. Although this approach leads to
significantly longer run times, it avoids the limitations on precision inherent in fixed-
size representations. If our algorithm fails because the intervals for computed values
grow too large before it is possible to determine whether the scheme is C'-continuous

or not, we can simply increase the precision and rerun the algorithm.

We have compared implementations of our algorithms based on these two approaches
and found that at least for the examples that we have considered the hardware-based

implementation is sufficient.

Linear approximation error. This error is defined by

€approx = HLm - f”oo

where L, is the linear or piecewise constant approximation obtained after m steps of

subdivision. The upper bounds on this error were derived in the previous chapter.

Control point approximation error. This type of error is defined by

€contr = Hf[p] - f[ﬁ]Hoo

where p is the actual vector of control values, p is the approximation of the vector of

control values. This error was estimated in Section 4.6. The input of our algorithms
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includes vectors of control points in interval representation; extending the intervals to
include all initial configurations of control points that are of interest, we can simul-
taneously examine C'-continuity of a parametric set of characteristic schemes for a

sufficiently small ranges of parameters.

In all cases, the precise value is not known explicitly, and the error is not known either.
In our calculations we track an upper bound for the error, rather than the error itself. Below
we use the term “error” when referring to upper bounds.

The use of the interval representation allows us to obtain guaranteed bounds on the
results; however, not all operations on real numbers can be extended to the interval repre-
sentations. In the next subsections we define the representations precisely, introduce a set
of operations defined on the interval representations and formulate the algorithms described

in chapter 4 in terms of these operations.

5.2 Interval Representations

In our algorithms, we use the following set of operations on the interval numbers: binary
+, —, %, /, min,max, unary —. In addition, for any number a, which has an exact repre-
sentation, and for any interval number X we can check if a belongs to X. For any interval
number X ceil(X) = X is the larger endpoint of the interval, and floor(X) = X is the
smaller endpoint.

Conversion of a rational number to an interval number can be regarded as a special case
of division. Also, given a floating point number with a known number of valid digits, we
can easily compute a corresponding interval representation with the error being determined

by the last valid digit.

Hardware-based interval representation. Each interval number X is a pair of ma-
chine floating point numbers (X, X). A real number a belongs to X if X < a < X.
Following Moore, we define the operations on the interval numbers. In the formulas below
the operations on hardware f.p. numbers performed in round-to-+o0o mode are denoted
with an arrow pointing up and operations performed in round-to-oo with an arrow pointing

down.
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e addition

X+Y=X|+4+Y, X+Y=XT+Y
e subtraction

X-Y=X]|-Y, X-Y=X1-Y
e multiplication

division (assuming 0 ¢ Y')

XY =min(X | /Y, X | /Y. X

B
- T~
I~

>

B

X/Y =max(X 1 /Y, X 1/Y,X

minimum

min(X,Y) = min(X,Y) min(X,Y)=min(X,Y)

e maximum

max(X,Y) = max(X,Y) max(X,Y)=max(X,Y)

BigFloat Number Representation. Part of this section is adopted from the work of
Ouchi [46].
Let B = 2¢, where ¢ = |L/2] — 2, L is the number of bits used for representing an

integer. Each BigFloat number is a triple (m, err, exp) where
e m € 7 is mantissa, represented by an arbitrary-length integer;
e err € N is the error normalized, i.e., be in the range 0...2F — 1;
e exponent exp € Z, which is assumed to be in the range —2F~1 .. 261 1,

We say that a real number X belongs to a BigFloat = = (m, err, exp) if



167

X € [(m — err)B®P (m + err)B®?]

’

The general definition of a binary operation @ on two numbers & = (mg, erry, exps;)
and y = (my,erry, exp,) is a number z = (m.,err,,exp,), which satisfies the following

condition:

if a real X belongs to x and a real Y belongs to y, then XQY belongs to z.

It would be desirable to minimize err, B"P= subject to the condition above and error
normalization conditions. Unfortunately, this is not computationally feasible, and in some
cases compromise formulas for computing z are adopted, which attempt to minimize the
error without sacrificing the performance.

The formulas for the arithmetic operators are derived in [46]. Here we describe the
formulas for addition/subtraction and multiplication; the formulas for division are quite

complex and can be found in the cited work.

Addition/Subtraction. For the sum of two BigFloat numbers x and y, the sum is
defined as follows.

Assume exp, > expy. If exp, = exp,

my = My + My
err, = erry + erry

EXP, = €TPy

If exp, > exp, and err, =0,

m, = m, BP* Py 4m,
err, = erry

erp, = exTpy

If exp, > exp, and err, > 0,
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m, = my + sgn(my) Umy‘Bexpy—ewsz
err, = erry + 9o

erp, = erp;

In the last case the error may have to be renormalized. The definition for the difference

is similar.

Multiplication. The product of x and y is defined by

m, = Mgy
err, = |mglerry + |mylerry + erryerr,

TP, = exPy + expy

The error has to be renormalized.

Min/Max. It is sufficient to define min. Several cases are possible (we assume that

erp, > expy):

1. exp, = expy; if my > my,

m, = My
err, = max(erry, erry — my + my)

ETP, = ETPy

The case my < m,, is similar with z and y exchanged.

exr —€ex exr —ex
2. expy > expy, my B~y <m, and (m, — erry) B¥P* Py > m, — err,



169

m, = m, BETPr—CTPy
err, = my B~ Py —m, 4 erry

eTp, = eTpy

If (my — erry) BP=~%"Pv <= m, — err, then z = x.

Eex —Eex Eex —Eex
3. exp, > expy, myBP*~Py > my and (m, — erry) BP*="Py <m, — err,

m, =my
err, = my — (Mg — erry) BEP==Py

ETD, = ETPy

If (my — erry) BP==%Pv > m, — err,, then z = y.

5.3 Input of the Algorithms

In our description of the algorithms we do not assume any specific data structures for
representing the mesh; we assume that there is a way to iterate through all values in the
mesh and compute forward differences and second differences at all vertices where they are
defined.

The algorithms compute linear approximation errors for the function and derivatives
using formulas (4.26), (4.27) and (4.59).

The input is a collection of 2D control points Gy, typically a part or a whole control set
for the characteristic map, and constants ~,C,v;,C}, 7 = 1,2 estimating the convergence
rate of subdivision.

Formally, let Gy € P(P,R? x R?) be a vector of 2D control points defined on a subset
P of the regular complex identified with the plane with coordinates (t1,¢2) in the usual
manner (Section 2.2). The values of Gy are represented using 2-vectors of interval numbers,
thus the range is R? x R? (pairs of intervals) rather than R? (pairs of numbers).

Let ® = (f1, f2) be the limit function corresponding to these control points, defined on
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a maximal subset D of |P| such that Ctrl’(D) € P. Note that ® is an interval function
with values in R? x R?. The range of such a function in R? is the union all points y € R?
such that y € ®(y) for some y. When @ is defined by interval approximations to dominant
generalized eigenvectors of a subdivision scheme, we call it an interval characteristic map.

Let P! be the maximal subcomplex of P? (i-th subdivision of P) such that Ctrl°(P?) c P.
Let G be the restriction of G to P'. L' is the linear or piecewise constant extension of G
to D.

The functions €;(C, 7, G%,1), j = 1,2, €;1(C},7;,G",4),j = 1,2, k = 1,2, compute linear
approximation errors at level i for the functions f; and fy and their partial derivatives,

using formulas (4.26), (4.27) and (4.59).

Ifi — Lill o, <€, Jj=1,2

1,

a .
‘af <€m, m=12 j=1,2
m

oo
To define the initial control net G° more specifically, we consider the characteristic map
of a subdivision scheme on a k-regular complex Ry, with £ fixed.
As input to our algorithm we use the control set for a ring of triangles Ring;, of Ry,
which have vertices v;;; withi =0...k—1, j =ry...7r2, [ < j (see Figure 2.3 for notation).
We refer to this control set as the control net of the ring.

The inner and outer radii 71 and 79 are defined by the following conditions:

e For any triangle T' of Ring,
V000 ¢ LOC0 (T)

e If p" is the identification of 322 and R}, then

(Uoe_glp™(Ringy,)|) U{0}  contains a neighborhood of 0

e 71 is the minimal value such that the ring satisfying the first two conditions exist; 7o

is the minimal value of ro for rq.

Informally speaking, this means that the subdivision rules that are used to subdivide
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Figure 5.1: The ring Ring; for the Loop scheme and 3 scaled copies of the ring; the ring
coincides with the domain of the characteristic map in the sense of Reif. The union of all
scaled copies is the interior of the 7-gon bounded by the outer boundary of Ring, excluding
0.

Ring;, are the subdivision rules that are used on the regular complex, and a neighborhood
of zero is covered by scaled copies of the ring as shown in the Figure 5.1.

The characteristic map in our sense restricted to Ring;, coincides with the characteristic
map in the sense of Reif whenever it is defined.

Note that although the only meaningful input to the whole algorithm is the control
net of the ring of the characteristic map, the subalgorithms (regularity test, isolation from
zero test, winding number calculation) can be used to determine properties of other maps
generated by subdivision, which need not be characteristic maps. In particular, we use
isolation from zero test and winding number computation to establish that the Butterfly

scheme does not satisfy a necessary condition for regularity.

5.4  Algorithm for Testing C'-Continuity for Fixed Valence

We define the algorithm for testing C'-continuity of subdivision on a k-regular complex for
fixed k starting with the top level. The main algorithm uses a number of subalgorithms,

which will be described in subsequent sections. The following subalgorithms are used:

TestRegular tests whether the map defined by the control net G has Jacobian of constant
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sign.
TestIsolZero tests whether the map has value 0.

TestInjective tests if the boundary curve of the map has winding number 1 or -1. As-

suming that the first two tests succeeded, this means that the map is injective.

Assumptions: We assume that the dominant generalized eigenvectors defining the char-

acteristic map are eigenvectors, to be able to apply Lemma, 4.6.

Input:
ég, the control net for Ringy;

convergence rate estimates C, v, Cj, ’yZ-N, 1 = 1,2. N is the number of levels of
subdivision used in (4.26) and (4.27). (For simplicity, we assume that it is the same

for the function and both derivatives.)
mazlevel The maximal number of levels of subdivision to perform.

If the algorithm is able to establish C'-continuity, it is established for all maps with
convergence described by the input constants or better, and with control points of the
characteristic maps belonging to the interval control points of G°. This fact can be used
to establish C''-continuity of certain types of schemes for arbitrary valence as explained in

Section 6.2.1.

Output:
true if the scheme is C''-continuous,

false if the scheme is not C''-continuous or the assumption

®=1(0) = {0} of Lemma 4.6 is not satisfied.

undefined if the algorithm cannot determine whether the scheme is C'-continuous,

but it might be possible to give a definite answer with more subdivision steps, and

fail if the algorithm could not determine C'-continuity and increasing the number of

subdivision steps does not help because the precision of the arithmetic is insufficient.
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TestClcont( ég, C, v, Cio, 7{\,72, mazxlevel)

isolationTestOK := injectiveTestOK := regularTestOK := undefined
for i =0 to maxzlevel
compute éz
if isolationTestOK# true then
isolation TestOK := TestIsolZero(G, Cyy,max(e, e2))
if (isolationTestOK= false) then return false

endif

if (injectiveTestOK # true) and (isolationTestOK = true) then
injective TestOK := TestInjective(GY, Cyy)
if (injectiveTestOK= false) or (injectiveTestOK= fail) then return injectiveTestOK

endif

if regularTestOK+# true then
reqular TestOK := TestRegular(G};, Ci2,71,2)
if (regularTestOK= false) then return false

endif

if injective TestOK= true and isolationTestOK= true and reqularTestOK= true then
return true
endfor

return undefined

5.5 Algorithm for Testing Regularity

This algorithm attempts to check if the limit function f has non-zero Jacobian everywhere
on D. This algorithm does not rely on any assumptions about the nature of G° and can be

used on any initial control net.
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Input: GO, v, Cj, = 1,2 as defined above.
Denote Int(A) the subset of a set A of vertices of the regular complex such that if
vk € Int(A), then vgy1; € A and vg 41 € A, i.e., forward differences at this point can be

computed.

Output: true if the function is regular, false if not, undefined if the algorithm could

not make a decision.

For brevity, we omit the arguments of €;, which are clear from the context.

TestRegular( GY, 7,2, C12)

Jminmin = +0, Jminmaz = +00

Iminmin = —09, Jmazmaz = —OO

foreach vy € Int(GY)
d' = Gii+1,5) — G(i, 5)
d? = Gii,j+ 1) — G'(4,7)
compute 16 numbers J;, [ =1...16
choosing signs in (di & e11)(d3 + €22)(d} + €12)(d? + €21)
Jmin = min(J;, | =1...16)
Jmae = max(J;, [ =1...16)
Iminmin = M Jnin, Jminmin)  Jminmaz = mMin(Jmaez s Jminmaz)
Imazmin = MaX(Jmin, Jmazmin)  Imazmaz = MaX(JImaz, Jmaz maz)
if 0 ¢ Jminmaz and 0 ¢ Jmaz min

and Joinmar and Jomazmin have different signs then
return false
endforeach
if 0 ¢ Jminmin and 0 ¢ Joazma
and Jpinmin and Jyazmaee have the same sign then
return true

return undefined
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If we can make the precision of CNJ% arbitrarily high, our algorithm returns undefined
only if the Jacobian is zero at some points, but never changes the sign for all maps in the
set defined by the intervals of the initial control points (assuming infinite amounts of time
and memory available).
Note that the algorithm never returns fail. It seems to be reasonable to expect that
further refinement does not help if 0 € J,,;,, and 0 € Jp,q0 Or 0 € €. Proving if this is indeed

the case is rather difficult, so we do not use this condition for termination.

5.6 Algorithm For Testing Isolation from Zero

This algorithmn determines if the range of the limit interval function produced by G% is
further than ¢ from (0,0) in ||-||, norm. This algorithm does not rely on any assumptions
about the nature of G and can be used on any initial control net. The idea of the algorithm
is straightforward: if it is known that the function is approximated within e, and if all values
of the approximation are further than € + ¢ from zero, the limit function cannot have value

Zero.
Input: G°, v, C, as defined above; 9.

Output: true if the function has no value f(y) with ||f(y)|,, < J, false if it does,

o0

undefined if the algorithm could not make a decision.

TestIsolZero( G', C, 7, 0)

foreach v € G
dy = ‘é’l(vkl)‘ —d—€
do = ‘é%(vkl)‘ —0 — €9
if di and dy are both negative then return false
if 0 €dy and 0 € dy then return undefined
endforeach

return true

This algorithm can be made considerably more efficient if additional information is
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known: for example, if the map is regular on the domain, and the domain is a union of
triangles of the initial complex, then we can check these conditions by scanning only the

points on the boundary.

5.7 Algorithm for Testing Injectivity

Unlike the previous two algorithms, this algorithm is specific for characteristic maps. Here
we use the assumption that Lemma 4.6 can be applied. The generalized eigenvectors have
to be known in advance; the condition ® 1(0) = {0} is tested by the algorithm. Given
that both components of ® satisfy scaling relations, checking this condition is equivalent to
checking isolation from zero for a layer, which can be done using the algorithm from the
previous section. If we have established regularity for every top level triangle, we know that
the map has to be a covering. In this case it is sufficient to estimate the winding number
for the image of a simple curve that has zero in its interior region; the winding number can

be computed using projected length as described above.

Input: C;‘g, the interval control net for the characteristic map restricted to Ringy, v, C,

as defined above.

Output: true if the interval characteristic map is injective, false if it is not, undefined
if the algorithm could not determine the result.

Projected length is computed in the following way: for each linear segment of the piece-
wise linear approximation to the image of the boundary, we compute the projections of the
endpoints, determine on which sides of the square they ended up and compute the length
accordingly. We need not determine precisely the side of the square where the point is; it
is sufficient to determine a pair of adjacent sides. Number the sides of the square from 0 to
4 starting from the side on the line y = 1 (Figure 5.2). Note that this calculation may fail
as shown in the figure.

We define a function ComputeProj which computes the interval projective length of the
image of the outer boundary of the Ring at level 1.

The function returns either the length or undefined or fail.

We use an auxiliary function Sides(x), which returns the set of sides of the unit square

that an interval point x intersects.
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1
B Side 2
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Side 3
1 o 7 "
A - Sie 1

Figure 5.2: Projecting an interval point onto the unit square. For the interval point A
unique side is defined; for the interval point B two adjacent sides intersect the projection.
For the point C there are 3 sides intersecting projection. In this case, precision is insufficient,
and the algorithm fails completely: it is unlikely that the problem disappears with further
subdivision. The absence of cases of this type can be guaranteed if the characteristic map
on the ring is sufficiently well separated from 0 and the intervals for the control points are
small.

A side i is in Sides(x) if and only if the corresponding predicate is true:

for1: (0€x;—1) and (0 ¢ z1 + 1

for 2: (0 €z —1

B

d(0¢l‘2—|—1
and (0¢ 1 —1
and (0

d( §é$2*1

)
)
)
for 4: )

)

( ) (5.1)
for 3: (0ex;+1 )
( )

0Oexy+1

we also define Next (v, ry j) := Next (v, ry j41) if j <12 — 1, and

Next(Umryry—1) = Next(Vm+1imodrs0)-
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ComputeProj(G")

projLength := 0
form := 0 to k-1
for j ;= 0 torpg—1
n’ = é%(vmmj)/max(éﬁ(vmrzj)véé(vmrzj))
nf = G (Next (v ry ;))/ max(Gy (Next (vy, ry 7)), G (Next (v 1y )))
if |Sides(n®)| > 2 or [Sides(nf)| > 2 then
return fail
intervSides := Sides(n®) U Sides(n/)
if |intervSides| > 2 then return undefined
case intervSides
{1}:projLength += ng —nj

{2}:projLength += nj — n{

{3}:projLength += nj — ng
{4}:projLength += n{ —ns
{1,2}:projLength += nj — n{ + ng —n3
{2,3}:projLength += nf — n{ +n§ — ng
{3,4}:projLength += nf —nf +nj —nJ
{4,1}:projLength += n! —ns + nf —n

endcase

endfor

endfor

return projlLength

The test is illustrated in Figure 5.3.

Now we can describe the algorithm for checking injectivity. As we compute the winding
number of the linear approximation to the image of the curve, we need to check that the

image is sufficiently far from zero using the function TestIsolZero.

For the winding number to be 0, projected length has to be 8 (the perimeter of the

square).
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v

Figure 5.3: Projecting an interval into the unit square. The algorithm computes projected
length for interval A, but not for the interval B. It is possible to estimate the upper and
lower bounds for projected length in some cases of type B, but it may also happen that
the interval passes through 0 and its projected length is undefined. Rather than further
analyzing this case, we choose to refine the mesh further to reduce the length of the interval.

TestInjective(Gi, C, 7)

ProjLength= ComputeProj(G%)
if (ProjLength= fail) or (ProjLength= undefined) then return ProjLength
if (0 € ProjLength — 8) and (0 ¢ ProjLength) and ( 0 ¢ ProjLength — 16) then

return true

This is the only subalgorithm that can return fail.
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5.8 Conditions for Successful Completion

We say that the algorithm TestClcont was successful if it returned true or false. Assum-
ing unlimited memory and time available, as well as arbitrary precision arithmetic (note
that we need arbitrary but finite precision, rather than exact arithmetic), the algorithm is

guaranteed to return true or false for a finite value of maxlevel if
e the Jacobian of the characteristic map either has constant sign or changes signs;
e or 0 is a value of the characteristic map in an internal point of the ring;

e or 0 is not the value of the characteristic map on the ring and the winding number of

the image of the bounding curve is not 1 or -1.

The time and/or space required to execute algorithms above grows linearly with the
valence k and size of the initial mesh G°. Dependence of the complexity on other parameters
is more difficult to determine. Intuitively, it is clear that the number of subdivision steps

to be performed is proportional to |log~|™!.

Arbitrary Valence. The algorithm that we have described in this section works for fixed
valence k. For practical purposes it is typically sufficient to prove C'-continuity for a finite
number of valences. It is, however, desirable to be able to obtain more complete results
and prove C''-continuity for a scheme for arbitrary valence. It turns out that it is possible
with for certain classes of schemes; we describe the algorithm for verifying C''-continuity of
invariant schemes for arbitrary valence in Section 6.2.1; in the same section we also explain

how a similar approach can be used for a more general class of schemes.
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Chapter 6 Analysis of Specific Schemes

In this chapter we present analysis of several subdivision schemes. In each case, we present
a brief description of the scheme and its properties. Eigenvalues and generalized eigenvec-
tors of the subdivision matrices play an important role in our analysis. Most of the analysis
techniques developed in previous chapters apply to G-invariant schemes, which are invariant
with respect to sets GG of isomorphisms of complexes described in Section 2.2.1. For invari-
ant schemes, that is, schemes that are invariant with respect to all possible isomorphisms of
complexes, we can establish necessary conditions for C'-continuity. that are easier to evalu-
ate. We derive some general formulas for the eigenstructure of invariant schemes that allow
us to understand the behavior of the schemes and synthesize new and improved schemes.

In the case of Modified Butterfly and Modified Loop schemes, we establish C'-continuity
for complexes with vertices of arbitrary valence.

C'-continuity of the Butterfly scheme on arbitrary complexes was not rigorously ana-
lyzed before, as all previous work on the analysis of subdivision surfaces relies on closed-form
expressions for the surface on the regular complex.

C'-continuity of the original Loop scheme was analyzed in [59] for complexes with
extraordinary vertices of valence up to 100. We show that Loop scheme is C'-continuous
for all valences. We use Loop scheme as an example to identify the origin of some common
problems with subdivision surfaces and discuss a modification of the scheme that corrects
some of the problems. We prove that our modification of the Loop scheme is C''-continuous
for all valences of extraordinary vertices.

Finally, we present a parametric family of schemes based on Loop that allows us to

create “soft creases” on the surface.

6.1 Invariant Schemes

Before discussing properties of particular schemes, we discuss some properties of a general
class of invariant schemes. General algorithms for verifying C''-continuity can be simplified

for invariant schemes and extended to handle all valences.



182

All well-known subdivision schemes (Loop, Butterfly, Catmull-Clark, Doo-Sabin) belong
to this class (although some changes in notation are required to describe quadrilateral-based
schemes, essential properties are preserved). Useful examples of non-invariant schemes are
Hoppe’s piecewise smooth Loop scheme and Loop’s scheme with creases proposed in this
work.

The constructions of this section follow the ideas of Ball and Storry [2]; some of them
were presented in [66]. Similar constructions are presented by Peters and Reif [49].

However, in most common situations there is no restriction on isomorphisms that can
be used. For a k-regular complex there is a set of automorphisms that add additional
constraints on the subdivision rules that can be used. For a regular complex this set is even
larger and the number of degrees of freedom in such schemes is considerably reduced. In

most general form, such conditions can be written as

S'K, v](p) = S'[K, p(v)](pop™") for any p € P(K) (6.1)

where S7[K,v] is the subdivision function at a vertex v, p is an automorphism of the
complex K.

By linearity, any subdivision function can be written as

Si[Kv U] (p) = Z a(vv w)p(w),

w
where a(w,v) are the coefficients of subdivision. Expanding (6.1) and substituting

w = p(w), we get

S alw,wpplw) = 3 alp() wlple~ (@) = 3 alp(v). plw))p(w) for any p € P(K)

w

Taking p(w) = d(w) (1 at w, 0 elsewhere) we get explicit conditions on coefficients of

subdivision

a(v, w) = a(p(v), p(w)) (6.2)
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In particular, for k-regular complexes with three-index numbering shown in Figure 2.6,
the set of automorphisms consists of rotations around the extraordinary vertex, mirror
reflections and their combinations; we start with considering only rotations, adding restric-
tions following from mirror symmetries later. We will use notation (sjl) for the vertex with

indices s,7 and [. In our notation the formulas for rotations are particularly simple:

R™ ([sj1]) = [smod k jl]

where R™ is the automorphism of the k-regular complex corresponding to the rotation

of the plane by 2mmn /k.

This leads to the condition on the coefficients of the scheme

a ((s’j’l'), (sjl)) =a ([(s’ +m) modkj'l’] ,[(s+m) modkjl]) for any m, 7.5 >0

In the cases when j =0 or j/ =0 (one of v, w is the extraordinary vertex), we get

a([000], [s3])

a ([000] , [S'jl]) for any s, s’

a([sjl],[000]) =a([s'51] ,[000]) for any s,s'

This means that the coefficients are functions of j,l,5',l' and (s — s’') mod k only.

This fact allows us to simplify analysis of subdivision matrices, in particular for schemes
with small control and localization sizes, for which the range of j and [ that we have to

consider is small.
Let n = (4,1) for j >= 1. We introduce notation a ([sjl], [s'j'l']) = app(s — §'). Tt
follows from (6.3) that a ([000],[sjl]) and a ([sjl],[000]) and do not depend on s. This

allows us to introduce notation

bn = a([000], [s41])
cn = a([s51],[000])

agy = a ([000],[000])
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Let M be the localization size for the subdivision scheme on a k-regular complex. In this
case, the control set of U; is a M-neighborhood of the extraordinary vertex. One sector of
this neighborhood (center excluded) contains M (M + 1)/2 = N vertices, the total number
of vertices being Nk + 1.

To write the subdivision matrix explicitly, we need to convert triple indices into single
indices. The matrix will have a convenient block form if we use the following rule for
translating indices

+1)

(5,,1) — k(ZU T

5 +0)+14s forj>0,1<j,s=0...k—1

Effectively, we arrange the vertices “by symmetry class”: first we enumerate all vertices
that can be obtained by rotation from the vertex (0, 1,0), then (0,2,0), (0,2,1), etc.

The index (0, 0,0) corresponds to index 0. For double indices n = (j, 1) inside one sector,
we use the rule (j,1)— > j(j+1)/2 forj>0,1<j

With this ordering of vertices, the subdivision matrix has the form

apo | b§ o by,
Co Aoo o Aon—a
S = (6.4)
cN-1 | AN-10 - AN-1N-1
where A, are k x k matrices with entries a,,/ (s — '), s,s = 0.... Clearly, these
matrices are cyclic. b, denotes the vector [by,...b,]T of size k with equal entries; similarly,

c,, is the vector [cy,...c,]7.
A cyclic matrix can be reduced to a diagonal form using the DFT. As the subdivision

matrix has cyclic blocks, we can simplify the matrix applying DFT to each block. Let

10T ... of

0| 1Dy 0
D=

00 2Dy,
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where Dy, is the DFT matrix with entries e 2™k j 1 = 0...k — 1, and 0 is the
zero vector of length k. The number of DFT blocks in D is N. We choose to include
the normalization factor % in D rather than in D~ because it will slightly simplify the

calculations later.

The inverse of this matrix is

1|07 ol
oot 0| Dy 0
0|0 Dy,

Applying a similarity transform to S, we obtain a matrix with diagonal blocks A\nn/ =

%DkAnn’ Dki

ano b(j;ljk st b%_lljk
) £ Dyco 2 Dy Ago Dy, -+ +DRAoNn-1Dy
DSD™ =
tDren_1 | tDkAN_15,0 - FDRAN—1N—1Dg

The matrices (1/k)DyADy, are diagonal with entries on the diagonal Dia,,, where
a = [ann/(0)...apn(k —1)]. Note that vectors D*b,, and Dyc, have zeros in all positions

except the first: D¥b = [kb,0...0]T.

Finally, the subdivision matrix can be reduced to block diagonal form by applying a
permutation. Let P be the permutation matrix mapping the index r = pk + q¢ + 1, where
qe{0...k—1}pe{0...N -1} ,tor’ =gN +p+ 1; if we write an Nk + 1 vector v as
[f UOT ...v%_l]T where v; are vectors of length k and f a scalar, then Pv will be a vector
with f in the first position, followed by N first components of vy...vy_1, followed by N

second components, etc.

Applying this permutation reduces the subdivision matrix to the block-diagonal form:
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apo b 0 e 0 0
zc | B(0) 0 0
o 0 |0 B(2E) - 0
PDSDP =] | ‘ (6.5)
0 |0 B(3) 0
0 |0 0 B2

The matrix has & N x N blocks B(2w) where w = 0,7/k,27/k,...(k — 1)n/k. Each
B(2mn/k) has entries [Day,,]m, i-e., is composed of m-th entries of DET transforms of all
vectors by,,,,. For m = 0 we have to analyze a larger (N + 1) x (N + 1) matrix Z with
vectors b = [bg,---by_1]T and (1/k)c = (1/k)[co, - cn_1]T added on two sides. Note
that B(2mn/k) = B(2(k — m)n/k) and the eigenvalues of these blocks are conjugate. If
an eigenvalue happens to be real, and corresponds to the block B(2mn/k) with m # k/2,
it necessarily has an eigenspace of dimension at least 2. If x is its complex eigenvector
obtained from an eigenvector of B(2mn/k), a pair of real eigenvectors in this subspace
can be taken to be Rx and Sz. If an eigenvalue A is complex, the two-dimensional real
eigenspace corresponding to A and ) is also spanned by Rz and Jz.

This representation of the subdivision matrix allows one to find eigenvectors and eigen-
values of the matrix using eigenvalues and eigenvectors of smaller matrices B(w) and the
matrix Z. For example, in the case when M = 3 which will be considered in greater detail
in the next section, the matrices B(2w) are 6 x 6 and can be further reduced to 3 x 3;
eigenvalues and eigenvectors of 3 x 3 matrices and one 4 X 4 matrix can be computed
explicitly.

Each eigenvalue of the subdivision matrix is an eigenvalue of a block B(2mm/k),m =
1...k—1or Z. Each eigenvector can be obtained by taking an eigenvector of one of the
blocks, setting the rest of the entries to 0, and transforming it using DP. This means that
the eigenvectors have symmetries that can be used to establish necessary conditions on
location of dominant eigenvalues of the subdivision matrix.

A condition of this type was proposed in [49] (Theorem 3.1). Unfortunately, the proof

of that theorem is not formally correct as reported in the paper; some assumptions on
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the characteristic map, which are difficult to verify, are implicitly used in the proof. The
theorem of Peters and Reif states that the dominant eigenvalues for a subdivision scheme
with injective characteristic map necessarily have to be the eigenvalues of the blocks B(1)
and B(2m(k — 1)/k). Intuitively, it appears that this is true for any “reasonable” subdivi-
sion scheme. However, it is possible to construct examples of C'l-continuous schemes with
dominant eigenvalues in other blocks. Typically, such schemes would have noninjective
characteristic map. As it was shown in Chapter 3, injectivity of a characteristic map is not
strictly necessary for C'-continuity of the scheme. This contradicts Theorem 2.2 of [49]
which has several errors in the proof. However, the cases when the scheme is C''-continuous
and the characteristic map is not injective, are quite degenerate and are unlikely to be
practically useful.

We prove a weaker version of the conditions of Peters and Reif under some additional
assumptions. These additional assumptions are quite technical, and it would be desirable

to come up with more natural conditions.

Lemma 6.1. Let 8 be a invariant scheme, S its subdivision matriz for valence k. Suppose
that the subdivision matriz has a dominant pair of cyclic subspaces Ji', Jj corresponding to
the blocks B(2rm/k) and B(2w(k —m)/k), m # 1, the characteristic map of this pair of
cyclic subspaces has Jacobian which is not identically zero, and dimension of J;' & J§ is 2.

Let X be an eigenvalue of the block B(2m/k) and x a corresponding complex eigenvector.
Suppose that for the limit map f : Uy — R? generated by the pair Rz, Sx the following

two conditions hold:

1. f710) = {0}

2. there is a simple curve y(t) : ST — Uy such that the winding number of f(y(t)) is 1 or
-1, and Im(v) is invariant with respect to rotations of the plane by 2mm /k, for integer

m.

Then the scheme is not C'-continuous.

Proof. Suppose the scheme is C''-continuous. It follows from the conditions of the lemma
that the parametric map ® has to correspond to the pair of cyclic subspaces J;' and J3 and

coincide with the characteristic map. If the scheme is C''-continuous, fo®~!: ®(U;) — R?
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is well-defined. U. This means that the curve f(v(¢)) can be written as f(®~1(®(y(t)))). As
f710) =0, ®71(0) = 0 also, and the winding number for the curve ®((t)) is well-defined.

Figure 6.1: This diagram shows the maps used in the proof of Lemma 6.1 for the case k = 7.
In this case the characteristic map ® is generated by the eigenvectors of the blocks B(47/7)
and B(107/7).

The idea of the proof is to show that the curve f(7) cannot be parameterized over the
image of 7/(t) = ®(y(t)) (Figure 6.1).

Consider ®(v(t)) on the part of the curve contained in one triangle of U;. It follows from
the invariance of the curve and structure of the generalized eigenvectors generating ® that
the difference of the arguments at the endpoints is 2mm/k; the change in the argument of
O(y(t)) is 2mm /k+2nl for some [. By symmetry, the total change of argument is 2w (m+[k)
and the winding number of 7/ = ®(y(t)) is 2w (m + k).

As it was shown in Lemma 2.13, the mapping ® : U; — R? can be extended to
the mapping ® : R> — R?. Note that ® satisfies the conditions of Lemma, 4.6 for a C'-
continuous scheme. Thus, it is a surjection from R?\ {0} to R?\{0}. f is a homeomorphism

R?\ {0} to R?\ {0}. Clearly, f o ®~! which is well-defined, is also a homeomorphism of
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the same type. Moreover, it is not nullhomotopic because the image of f(vy(t)) is a curve
in R?\ {0} not homotopic to 0.
The mappings

R?\ {0} -2 R2\ {0} 22 R2\ {0}

induce a pair of homomorphisms of fundamental groups, which are all Z:

* O—l*
7z 27U g

any homomorphism Z — Z is of the form n — rn, where n € Z, r is an integer.
This means that the combined homomorphism is of the form n — riron. Recall that
the winding number of the curve in R?\ {0} is the index of the corresponding element
of the fundamental group. As v(t) is a simple curve, it corresponds to the element 1 of
the fundamental group. We have shown that ®(y(¢)) = +/(¢t) has index m + lk. The
winding number of the composition f (®1(+/(t))) must be a multiple of m + lk. However,
by assumption of the Lemma it is 1 or -1; as £ > 3 and m < k, this is possible only if
m = 1. U

It would be desirable to improve on the last lemma in a number of ways. Conditions
like Lemma, 6.1 are primarily useful for proving non-C'-continuity of a scheme. Although
it is possible to check the condition on the winding number above using the techniques
that we have developed, the check is relatively complex and has to be performed for all
valences. It would be desirable to have a simpler procedure for rejecting schemes that are
not C''-continuous. For example, this potentially can be achieved describing constraints on

the coeflicients of the schemes and eigenvectors that would imply conditions of the Lemma.

6.2 Single Ring Schemes

Schemes with localization and control sizes < 3 are particularly important in practice: all
well-known schemes belong to this class or its analog for the quadrilateral-based schemes.
It follows from the definition of the localization and control sizes that the stencils St(K7,v)
of such subdivision schemes may include 1-neighborhoods for even vertices V € V7 and

I-neighborhoods of the two even neighbors of an odd vertex v € V7t \ V7. Examples of
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such stencils are shown in Figure 6.3. The name “single ring” was suggested by the shape

of stencils. Several reasons make this class of schemes particularly important:

Efficiency Small stencils allow efficient subdivision.

Simplicity If the stencils were larger, we would have to design rules for a variety of cases:
for example, if we were to include two rings into the stencil for an odd vertex, at least
on the top level we would have to define rules for a k-vertex surrounded by vertices
of valences n ...nyg; instead of a family of rules parameterized by a single parameter

k, we need a family of rules with infinite number of parameters.

Generality This family of schemes includes both interpolating and approximating C*
schemes; there are no C''-continuous interpolating schemes in the family of schemes

with support size 2.

Schemes from this family have sufficiently small number of parameters to make achiev-
able the goal of complete characterization of C''-continuity properties of all schemes in this
family; the tools developed in this thesis can serve as a foundation for such characterization,
and we hope that a more or less complete analysis will be done in the nearest future.

Single ring schemes have subdivision matrices with blocks of size N = 6. It is possible
to show that the blocks have a particular form that allows us to reduce the analysis of their
structure to the analysis of the structure of 3 x 3 blocks.

We start by making several simple observations about the coefficients of the scheme
in the regular case; the number of symmetries in this case is higher than in the k-regular
case, and all possible schemes are fully characterized by 4 coefficients a, b, ¢, e as shown in
Figure 6.2 (by affine invariance d = 1/2 — a — b — 2¢). The number of parameters can be
further reduced by considering C'-continuity requirements, but this is not our goal at this
point.

Figure 6.3 shows the 6 symmetry types of vertices for single ring schemes. One can see
that the stencils for vertices of types (3,0), (3,1) and (3,2) do not contain the extraordinary
vertex; by definition of the localization size, the coefficients used in this case have to be the
coefficients for the regular case.

Considering the stencil for each type we can see that the blocks of the subdivision matrix

have the following form:
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Figure 6.2: Coefficients for a single ring scheme in the regular case; a,b,c,d satisfy 2a + 2b+
4c 4 2d = 1 by affine invariance.

Figure 6.3: 6 symmetry types of vertices with respect to rotations for single ring schemes
and stencils for each type.
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where * denotes potentially non-zero entries. Some of the #-entries could be made
explicit, but it is not important for our purposes. It is immediately clear that the matrix
has two sets of eigenvectors and eigenvalues; the first is defined by the 3 x 3 matrix in the
upper left corner; the rest are defined by a 3 x 3 matrix in the lower left corner which depends
only on the coefficients of the scheme in the regular case; the eigenvalues and eigenvectors
of this matrix are easy to compute. The eigenvalues are d, ¢ — d and ¢ + d. Eigenvectors
may have different expressions depending on the Jordan type of the matrix. Given that the
eigenvalues do not depend on the block number, if one of them happens to be dominant, the
scheme is not C'-continuous excluding several exceptional cases; in general, the primary
reason to examine these eigenvalues is to make sure that they are not dominant.

Finally, the structure of the block Z is

* « 00 0 0 O
* % % x 0 0 0
* x x x 0 0 0
* x x x 0 0 0
x % % % d ¢ ce 2k
x x x x 0 ¢ d
x x x x 0 d ¢

In this case a 4 x 4 matrix in the upper left corner has to be considered.
We conclude that analysis of the structure of any single ring scheme with explicit co-
efficients can be done in closed form although the expressions for the eigenvalues may be

quite complicated as we will see in Section 6.3.

6.2.1 Algorithms for Testing C'-Continuity of Invariant Schemes

It is easy to see that for an invariant scheme it is sufficient to test regularity on one out of k
identical segments surrounding the k-vertex. The same applies to the test of isolation from
zero — testing one sector of the ring is sufficient. In the injectivity test, if the projected
length of the part of the boundary curve contained in one segment may be 8/k and is

not 0 or 16/k, then the total length should be 8. Thus, the algorithms TestRegular and
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TestIsolZero don’t have to be changed at all (their input becomes the control net for one
segment rather than for the whole ring). The only change that is required in TestIsolZero

is replacing the lengths 8 and 16 with 8/k and 16/k.

Arbitrary valence. An important observation about all algorithms described in this
section is that the input is always a set of interval control points; thus, each time the
algorithms are successful in establishing C'-continuity of subdivision, we actually have
established C''-continuity not for one scheme but for a collection of schemes with sufficiently
close eigenvectors of the subdivision matrix.

As we have observed, for invariant schemes we need to check regularity and compute
projective length for a boundary curve only on one segment. If r; and r5 are constant for all
k > kg for some kg, and the control set does not contain the whole ring for k > kg, then the
initial data for all k£ > kg are defined on the same subcomplex of the regular complex, i.e.
are elements of one space P(P). As our schemes are affine-invariant, proving C*-continuity
for initial data G° € P(P,R? x R?) is equivalent to proving C'-continuity for any affine
transformation A A o G° € P(P,R? x R?), where A is extended to act on the space of
interval vectors in the obvious way. The algorithms don’t have to be changed in any way,
except for the value of the projected length, which have to be scaled in an appropriate way.
It is worth noting that it can be deduced from symmetry that if the projected length for
one segment is less than 8, it is less than 8/k, so even this scaling is not really necessary.

Suppose we can choose affine transformations of the initial data G°(k) in such a way
that the sequence of vectors GO(k) converges to a limit GY(oc). Further, assume that for
any k the pair of dominant eigenvalues is unique and satisfies conditions of Lemma 4.6.
Then for any n-dimensional interval I containing G°(co), there is a ko such that for all
k > ko the initial data vectors GV (k) are in I. Then if we can test regularity for the limit
set of initial data, and an interval around it, we need to test C''-continuity only for finitely
many valences k < ky to prove C'-continuity for arbitrary valence. Note that in the limit
eigenvalues of the scheme need not be well-behaved and for example, may approach 1. In
these cases, however, Cl-continuity for large k& has mostly theoretical interest, because of
extremely slow convergence of derivatives to the limit.

We describe the algorithm for testing C'-continuity of a invariant scheme for arbitrary

valence using an additional function ControlNet(i, interval_size) which computes the nor-
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malized interval control net for one segment of the ring of the characteristic map with each

interval point having size at least interval_size.

Normalization is given by an appropriately chosen affine transform of the map, the one

for which the sequence GY(k) converges and the limit net is nondegenerate. The particular
choice of the transform depends on the way in which the coeflicients are specified. As we

will see in Sections 6.3 and 6.5, a simple scaling by 1/sin(w/k) works for most invariant

schemes.

The function TestClcontSymmetricNormalized differs from the function TestClcont

described in Chapter 5 in two aspects: the control net that is used in all algorithms is the

net for one segment and the constant that is used for checking projected length is scaled

using the normalization transform.

We omit the usual arguments C, v, C1 2, 71,2

TestAllValences(interval size)

current_mesh = ControlNet(3,interval_size)
limit_mesh := ControlNet(oo,interval_size)
if TestClcontSymmetricNormalized(current_mesh) # true then return fail
if TestClcontSymmetricNormalized(limit_mesh) # true then return fail
1 =4
loop
mesh := := ControlNet(i,interval_size)
if Distance(mesh, limit_mesh) < interval_size
then return true
if Distance(mesh, current_mesh) >= interval_size then
current_mesh = mesh
if TestClcont(current_mesh) # true then return fail
endif
endif

endloop
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The argument interval_size should be chosen as large as possible without making the
algorithm fail.

This algorithm can be further generalized to non-invariant schemes, crease schemes in
particular.

In this case all k£ segments of the ring may be different. However it is reasonable to
expect that control segments in fixed positions (e.g. 0 and |k/4]) also admit suitable
affine transforms such that as j — oo their control nets converge to a nondegenerate limit
control net. It is also reasonable to expect that the control net of each segment changes
“continuously” with the number of segment; by “continuous change we mean that as &k — oo
the maximal difference between normalized control meshes of any two adjacent segments is
approaching zero. It is clear that if the scheme behaves in this way, it is possible to apply
the algorithm above; however, now we have to use two parameters: one corresponding to
the valence, the other to angular position of the segment (27rm/k for segment number m).
In addition, we have to be careful about estimating the projected length correctly. However,
the general structure of the algorithin remains the same although the details become more

complicated.

6.3 Butterfly Scheme

In this section we analyze the Cl-continuity of the Butterfly scheme of Dyn, Gregory and
Levin [20, 21]. Tt turns out that this scheme produces C! surfaces only for extraordinary
vertices of valences 4, 5 and 7. We examine the behavior of the scheme when it is not
smooth; the non-C'-continuous appearance of the surfaces is primarily due to the clustering
of eigenvalues for large valences. This observation suggests an approach for constructing

C'-continuous schemes which will be further developed in the following sections.

6.3.1 Definition of the Scheme

An attractive feature of the Butterfly scheme is that the same set of coefficients is used for
all odd vertices. The scheme is interpolating, which means that for each vertex we need to
compute only one value in R? which is the same for all subdivision levels. The coefficients

of the scheme are shown in Figure 6.4.
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Figure 6.4: The stencil of the Butterfly scheme.

6.3.2  Analysis of the Eigenvalues

As in Sections 6.1 and 6.2, we apply the DFT to obtain a general forma for the blocks of
the subdivision matrix near a vertex of valence k. As it was observed in Section 6.2, the
eigenvalues of the subdivision matrix are the eigenvalues of a 4 x 4 matrix, a family of 3 x 3
matrices and three eigenvalues d =0, c —d = —1/16 and ¢+ d = —1/16. As the scheme is
interpolating, the matrix Z, is block diagonal with 1 and B(0) on the diagonal, so we may

consider B(0) instead of Z. By abuse of notation we denote the 3 x 3 matrices in the top

left corner of 6 x 6 matrices B(2mm/k), m = 0...k — 1 by the same letter B.

For the Butterfly scheme these matrices have the form

1,1 _1 1 —2iw _ 1
5+ 1 cos(2w) — g cos(4w) 16 € 16
— 1 1 2iw 1 —2iw _ 1 4diw 1 _ 1
B(w) zt3ze€ 16 € 16 © 8 16
1 0

where w = mn/k. Denote z%,y“, 2¢ the coordinates corresponding to the block B(w).

Using a change of coordinates, y* = y“e"’, we can reduce the matrix to a real form:
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[ 1/2+1/4 cos(2w) —1/8 cos(4w) —1/8 cos(w) 0
—1/8 cos(3w) + cos(w) 1/8 —1/8 cos(w)
I 1 0 0 |

Expanding the cosines as functions of cos(w) and denoting cos(w) = z, we get

1/8+43/22%2 -2 —1/82 0

-1/223+ 42 /8 —1/8z

1 0 0

The characteristic polynomial of this matrix is

123 1
3 o o 2 4 2 - oo 2 4 .2
N4 (=1/4-3/222 +2%) X +<64+64Z 3/162>/\ 61’

Using the standard substitution g = A — r/3, where r is the coefficient of the quadratic

term, we can eliminate the quadratic term

17 37
3 2 4 6 8
2513
u+< TR il /z),u
—t+ — —z —1/3z27 — — 2+ =2
Toore T2t Taat Tam /3 61”76’

=1° + p(2)p + q(z)

The number of real roots is determined by the sign of D = (p/3)3 + (¢/2)2. It can be
shown that p(z) < 0 for all z. If D <0 the three real roots of this polynomial are
©w 27

Y1 = —2Rcos§ Yo = —2Rcos(§ + 3

4
) ys3= —2Rcos(f +=

3 3)

where R = sign(q)+/|p|/3, cosp = q/2R3.

If D > 0, then there are two complex and one real root:

y1 = —2R cosh% Yo = Rcoshg + i\/gRsinhg Yo = Rcosh% + i\/gRsinhg
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where R = sign(q)+/(|p|/3), cosh ¢ = q/2R3.

The eigenvalues of the matrix can be expressed as functions of z = cos(w), which changes
in the range from -1 to 1; the eigenvalues for a subdivision matrix for valence k are obtained
by substituting z = 1, cos(m/k), cos(2m/k) ... cos(m) into the expressions for the roots of the
equation above. The graphs of the roots are shown in Figures 6.5-6.8.

To characterize the eigenstructure of the matrix completely, we also need to determine
the size of the Jordan blocks for all values of z in the range —1...1. These sizes can be
determined using the following argument. Given a fixed eigenvalue A of B(w) an eigenvector
x is a solution of the equation (B(w) — AI)z = 0. Directly solving this system, we can see

that 2 cases are possible.

1. z = cos(w) = 0. In this case for a given A # 0 the solution of the system is unique
up to a scaling constant. This means that for a given value of A there is only one
eigenvector. If the characteristic polynomial happens to have a double or triple root,
necessarily there is only one Jordan block for that eigenvalue, which has to have size
2 or 3. The characteristic polynomial has a triple eigenvalue 1/4 for z =1 (z = —1
can be excluded as it does not occur for any valence), a double eigenvalue 1/4 for
z = £0.5 and a double eigenvalue for z ~ £0.9212389505. The latter value of z is
unlikely to be the value of cos 2mm/k for any m and k, although we did not establish
this rigorously. z may have value 0.5 for valences 3,6,9.... For all valences the Oth

block has z = 1, i.e., has a triple eigenvalue 1/4.

2. z = 0. In this case the matrix is simply

1/8 0 0
0 1/8 0
1 0 0

and has a double eigenvalue 1/8 with 2 Jordan blocks and a simple eigenvalue 0.

Using the algorithm of Sections 5.6 and 5.7, we can verify the conditions of Lemma 6.1
for all valences except 3.

We will describe the calculations in greater detail in the next section where they are
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performed for the Modified Butterfly scheme. We conclude that the scheme is C''-continuous
only if the largest eigenvalues, excluding 1, all belong to the blocks B(1) and B(k — 1).
Figures 6.5-6.8 show the magnitudes of eigenvalues for valences 3, 6 and 8. The mag-
nitudes of eigenvalues can be visualized as intersections of vertical lines z = 1, cos(w/k),
cos(2m/k) ... cos(m) with the plots of the magnitudes of roots of the characteristic polyno-

mial as functions of z.

Figure 6.5: Eigenvalues of the subdivision matrix for the Butterfly scheme for valence
3. There are 2 eigenvalues with Jordan blocks of size 2 (dots with circles), 1 eigenvalue
with a Jordan block of size 3 (the dot with a double circle) and 2 single eigenvalues. All
eigenvalues with nontrivial Jordan blocks happen to coincide and are equal to 1/4. The
dominant eigenvalue in this case is the one with the largest Jordan cell and belongs to B(0).

As shown in Figure 6.5, necessary conditions of Lemma 3.9 for tangent plane continuity
fail for valence 3 (additional assumptions are verified computing sufficiently close approxi-
mations of the appropriate Jacobians). As a result, the surfaces produced by the butterfly
scheme have a singularity whenever there is a vertex of valence 3 (Figure 6.11).

Eigenvalues satisfy necessary conditions for valences 4,5,6,7. Due to symmetry we need
to consider only one out of k segments of the characteristic maps for & = 4,5,7. Once
the eigenvalues are known, the pair of dominant eigenvectors is completely defined, up to
a scaling factor, by 2 real parameters ¢ and ¢ and a complex parameter [, as shown in
Figure 6.6.

The equations for finding the values of a, c and [ can be obtained by applying subdivision
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A\ 4

Figure 6.6: One sector of the control net of the characteristic map for the Butterfly scheme.

and using the fact that the central 2 rings of the subdivided mesh should be scaled versions

of the rings of the initial mesh with scaling factor A. In this way we find

Al
a278—+—+1227823
z oz

L5, L e W
S8\ 2X2 4N 4N 8
. . mOA — 34+ 2azA

Sl = —sin —

E A16A+1)
_ —10Az — 9X\a — z + 2az3\
A(16A + 1)

Rl =

Control nets for the rings of the characteristic maps for valences 4,5 and 7 are shown
in Figure 6.9. The characteristic map can be shown to be regular and injective using
our algorithm. We don’t reproduce the details here; an example of detailed analysis of
regularity and injectivity is given in the next section where we prove that our modification

of the butterfly scheme is C''-continuous for all valences.

It is not necessary to check C'-continuity for the valence 6, but this is an important
boundary case (Figure 6.7) and it helps to understand the eigenstructure for other cases.

Necessary conditions fail for valence 8: the largest eigenvalue for w = 7/8 is smaller than
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w=51/6 w=41/6 w=m/2 w=27/6 w=ma/6

Figure 6.7: Eigenvalues of the subdivision matrix for the Butterfly scheme for valence 6.

w=067/8 w=7/2 w=21/8 w=r/8
0‘5_ 1 1 1

Figure 6.8: FEigenvalues of the subdivision matrix for the Butterfly scheme for valence 8.
The magnitude for the largest eigenvalue of the first block B(7/8) is less than the magnitude
of the largest eigenvalue for the second block B(27/8).
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the largest eigenvalue for w = 7/4. Moreover, it is clear from Figure 6.8 that for higher
valences the situation will be the same: the vertical line z = cos(r/k) will move to the right
as z increases and the magnitude of the largest eigenvalue will decrease. z = cos(2m/k)
will intersect the upper curve at a point to the left of z = cos(w/k) and to the right of
z = cos(m/4) for k > 8. Therefore, the eigenvalues of block B(7w/k) will be always less
than the largest eigenvalue of B(2m/k). This fact can be established precisely analyzing the

expressions for the roots of the characteristic polynomial.

VAV Dy <
KL O SRR
SICK st SRR
AV 9% WAVAVANRI 0 S
RO SN SRR T+
S e SR
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SAKS NSO Y% SN 703
S SN vy AV
AR Y AL

Figure 6.9: Characteristic maps for the Butterfly scheme, valences 4,5,7.

Formally, failure of the eigenvalues to satisfy the necessary conditions precludes the
scheme from being C'-continuous. However, it is useful to examine the behavior of surfaces
generated by the scheme near extraordinary points. From the fact that the dominant
eigenvalues of the scheme are located in the second block of the subdivision matrix, one
might infer that in a small neighborhood of the extraordinary vertex, the surface will behave
in a similar way to the map generated by a pair of eigenvectors corresponding to the second
block. These eigenvectors produce a mapping U; — R? that is not injective and is a double
covering on a sufficiently small neighborhood of the extraordinary vertex. However, this
effect often cannot be observed even after a few subdivision steps.

The reason for this is that for many surfaces the decomposition with respect to the
eigenbasis of the subdivision matrix contains only small components corresponding to the
dominant eigenvectors; and large components corresponding to the eigenvalues of the first
block which are not dominant, but close to dominant. If we consider a surface which is
known to contain components of sufficiently large magnitude corresponding to the second
block (Figure 6.10a), then the twist starting to appear in the surface becomes apparent.

Note the difference between behavior of the Butterfly scheme and the Modified Butterfly
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Figure 6.10: The difference in the behavior of a C''-continuous scheme (Modified Butterfly)
and non-C'-continuous scheme (Butterfly). The latter has close eigenvalues in B(7/8) and
B(27/8). The ring of points around the vertex of valence 8 was generated using the formula
e2mm/8 4 (). 7e*mm/8+0-2 ¢4 introduce a significant component at the “frequency” 4w /8.

scheme (Figure 6.10bc) which is C'-continuous near extraordinary point of valence 8 as it
will be shown in the next section. For other initial meshes the Butterfly can produce smooth-
looking surfaces even for valences for which it is not formally smooth (Figure 6.12a). On

the other hand, in the particularly degenerate case of valence 3, the Butterfly scheme never

produces surfaces that look smooth (Figure 6.11).

For large valences, the appearance of the meshes generated by the Butterfly scheme is
primarily determined by the fact that the largest eigenvalues of the blocks B(mn/k) are
clustered together (Figure 6.12b) rather than by the number of the block which has the
largest eigenvalues. It is particularly important for common “cap-like” configurations that
the eigenvalues of the block B(0) are close to the eigenvalues in the block B(27/k). This

results in a surface very close to conical near a vertex with large valence.

As we will see in the next section, for Loop’s scheme the formal requirements for C'-

continuity are satisfied, but the surfaces produced by the scheme don’t look smooth for
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Figure 6.11: A tetrahedron is subdivided according to the original Butterfly scheme (on the
left) and with our modified Butterfly scheme (right).

large valences due to a similar clustering of eigenvalues.

These observation indicate that for practical schemes it is important to consider relative
magnitudes of eigenvalues rather than only the dominant eigenvalues and characteristic
maps generated by the dominant eigenvectors.

In the next section we discuss how the Butterfly scheme has to be modified to ensure

C'-continuity for all valences and avoid eigenvalue clustering.

6.4 Modified Butterfly Scheme

In this section we describe and analyze a modification of the Butterfly scheme that corrects
some of the problems of the original scheme while keeping the support of the scheme small
and coefficients easy to compute. Some examples of surfaces generated using our scheme

are shown in Figure 6.13

6.4.1 Definition of the Scheme

As we have observed, the appearance of the surfaces generated by the Butterfly scheme is
largely determined by the behavior of the eigenvalues of the subdivision matrix. We can
improve the Butterfly scheme by choosing the coefficients near extraordinary points in such
a way that the eigenvalues of the subdivision matrix have desired behavior. It would be nice
to be able to preserve the size of the stencil of the scheme; however, it is easy to show that if
the stencil does not change, the eigenvalues inevitably will be clustered; formal C'-continuity
in this case will have little relevance. We allow the stencil to include 1-neighborhoods of

both neighbors of the vertex were the value is computed, i.e., the whole stencil for single
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Figure 6.12: Left: for this initial mesh (all vertices around the extraordinary vertex of va-
lence 8 are on a circle) the Butterfly scheme generates a smooth-looking surface, although it
is not formally C''-continuous. Right: for valence 17, the surface generated by the Butterfly
scheme is close to conical.

ring schemes. Using this stencil, it is possible to find coefficients for subdivision for any
prescribed set of eigenvalues of the subdivision matrix. In fact, it is sufficient to use a
smaller stencil, including only one ring (Figure 6.14). Note that this stencil is asymmetric.
For vertices on level finer than 0, this is not a problem: we are modifying coefficients of
the scheme only for neighbors of extraordinary vertices, and only one of the two neighbors
can be extraordinary after one subdivision step. On the top level both neighbors can be
extraordinary. The choice that we make on the top level does not affect C''-continuity, but
affects the appearance of the surface. As we don’t have enough degrees of freedom to apply
a meaningful optimization procedure, we make an ad hoc choice to take the average of the
results produced by each of the two possible choices. In our experience, this choice has
produced satisfactory results, but a better one may be possible.

For the stencil shown in the Figure 6.14, the eigenvectors of the subdivision matrix
are completely defined by the eigenvalues. The eigenvalues of the subdivision matrix can
be chosen using the following considerations. The Butterfly scheme does not generate C?

surfaces on the regular complex, and it is possible to show that no other interpolating scheme
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Initial mesh Butterfly interpolation Modified Butterfly interpolation

Initial mesh Modified Butterfly interpolation Initial mesh Modified Butterfly interpolation

Figure 6.13: Top row: pipe joint. Note the difference between Butterfly and Modified
Butterfly. Lower left: mannequin head. Lower right: torso.
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Figure 6.14: Stencil for a vertex in the 1-neighborhood of an extraordinary vertex

on a Butterfly or ten-point (Figure 6.2) does. We can try to approximate the behavior of a
C? surface. Suppose a C? surface is generated by a symmetric scheme with all eigenvalues

having trivial Jordan blocks.

If the scheme is not flat at the extraordinary vertex, it is necessary that the second
largest eigenvalue is the eigenvalue of B(0), B(47/k) (and, by symmetry of B(2(k—2)n/k))
and is A2. It is possible to make any scheme which is C? on the regular complex into
a C? scheme on an arbitrary complex by making it flat, i.e., make the distance to the
tangent plane decrease as O(h?®) as we approach the extraordinary vertex. However, this
is undesirable: one of the reasons for using C? surfaces is their natural local behavior; for
generic points C?-surfaces have either parabolic or saddle shape, while a flat surface will

always closely approximate a plane or a cylinder.

If the surface is not C? at the extraordinary vertex but is C? elsewhere, picking the
eigenvalues A\? as largest eigenvalues for B(0), B(4r/k) and B(2(k —2)/k) ensures that the
second derivatives of the parameterization given by the characteristic map stay bounded

near the extraordinary point, without diverging to infinity or converging to zero.

Finally, it is useful to have the dominant eigenvalues the same for the regular and
extraordinary case. The magnitude of the eigenvalue does not affect C'-continuity as long
as all other eigenvalues are scaled with it, but it determines how fast the size of the triangles
near an extraordinary point decreases with each subdivision step. In Section 6.5 we will see

how the magnitude of the eigenvalues affect the quality of the approximating meshes.

In the regular case, the dominant eigenvalues of the subdivision matrix are both 1/2.
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This leads us to the following choice of the eigenvalues: 1/4,1/2,1/4,1/4,1/2 for blocks
B(0), B(2n/k), B(4r/k), B(2(k — 2)n/k), B(2(k — 1)7/k). The only condition that we
have to impose on the eigenvalues for other blocks is that their magnitude should be less
than 1/4. The simplest choice is to set them to 0. This appears to work quite well in
practice. The two cases that have to be treated separately are k = 3 and k = 4. We choose
eigenvalues 1/2,1/2 in the first case and 1/2,1/4,1/2 in the second.

These conditions immediately determine the choice of coefficients of the scheme for
computing the values at vertices that have one regular and one extraordinary neighbor.

For K > 5 the coefficients are given by the equations

(1/4 + cos(2m/k) + 1/2 cos(4m /k)) (6.6)

Sj_

1
ok
with j = 0,... ,k — 1. For k = 3 we use s9 = 5/12, s12 = —1/12, and for k = 4,

S0 = 3/8, SS9 = —1/8, 81,3 = 0.

To summarize, the proposed scheme uses the following rules:

1. For all edges with both endpoints of valence 6, compute the value for the midpoint

using the coefficients of the Butterfly scheme.

2. For every edge that is adjacent to an extraordinary vertex, compute the value for the

midpoint using coefficients of Equation (6.6).
3. For every edge that connects two extraordinary vertices, compute values for the mid-
point using coefficients (6.6) for each vertex and take the average.
6.4.2 Subdivision Matrices, Eigenvectors and Convergence Rates

As in the case of the Butterfly scheme, we primarily have to analyze the eigenstructure of

the blocks B(2mn/k) which in this case have the form

Ao 0 0
BQ2w)= | 1/2+1/2€*™* —1/16e7 2™ —1/16e*™ 1/8 —1/16 —1/16€>™

1 0 0
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with eigenvalues A, 1/8 and 0, where A\, are the prescribed eigenvalues. Therefore, the
dominant eigenvalues are guaranteed to be the prescribed eigenvalues 1/2.
The eigenvectors can be determined in the same way as it was done for the Butterfly
scheme using the parameters A, a, ¢, [ shown in Figure 6.6. For the Modified Butterfly

scheme A = 1/2, ¢ = 3, a and [ are given by

In order to analyze C'-continuity using the algorithms of Chapter 5, we need to find

the control net for a ring of patches; the size of the ring is determined by two conditions:

e No stencil of the net contains the extraordinary vertex as an internal vertex; in our
case this is guaranteed by choosing the internal radius to be 2. This is due to the fact
that the extraordinary vertex has stencil of size 1 on all subdivision levels finer than

the top level. In general, this radius for a single ring scheme is 3.

e The union of the ring and it scaled images with scaling factors 1/2¢, i > 0, cover Ui.
This means that the outer radius should be no less than twice the inner radius, i.e.,

at least 4.

The control net for the ring consists of 6 rings of vertices around the central vertex as
shown in Figure 6.15.

The algorithms of Chapter 5 require the constants C, C1, Ca, v, 71, 72 characterizing
the convergence of the scheme on the regular grid. These constants can be computed using
Equations (4.26) and (4.27) and formulas for the [|-|| . norm of Laurent polynomials (4.29).

For the Butterfly scheme, as it was already mentioned in Section 4.3, we obtain

_3 171 2 _ 31 261

C=13 T=8 V=6 BT 104 (6.7)
1mn o1 2 _ 7 3 _ 11

Cig=% 72=1 YM2=5 MN2=15

We have chosen to use v for 3 levels of subdivision as after 3 levels of subdivision the

convergence rate estimate is close enough to what we would get if we were to use more
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Figure 6.15: Control nets of the rings of characteristic maps for the Modified Butterfly
scheme.

/3 1/4

levels: 'yé is close to (4) /. These estimates indicate that the convergence for derivatives
is quite poor: « stays close to 0.9 per level. However, this is a worst case estimate and
in practice the scheme behaves quite well. The reason for this is that for schemes with

negative coefficients, the *

‘worst case” happens when the initial values have changing signs,
i.e., consist primarily out of high frequency components, which is uncommon for surfaces.
These overly conservative estimates result in a relatively large number of subdivision steps
that have to be performed to establish C'-continuity of the Modified Butterfly scheme.

Potential ways of improving the situation are discussed below.

6.4.3 (C'-Continuity Analysis

To prove Cl-continuity of the Modified Butterfly scheme for vertices of arbitrary valence,
we use the algorithms of Chapter 5. As discussed in Section 6.2.1, it is possible to prove
convergence for arbitrary valence if suitably chosen affine transforms of the control nets for
one segment of the characteristic map converge to a limit as ¥ — oc and the normalized

segment in the limit is regular and injective. This is the case for the Modified Butterfly
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scheme; the affine transform that we use is simply scaling along the y-axis by sin(rn/k).
The values of a and [ for the limit configuration are
5 71 26

a=5; l=—=—=1t

30 " T 97 97

The control net for one segment of the characteristic map before normalization consists
out of parts of 3 segments of the control net for the whole map; the middle segment is the
one shown in Figure 6.6; the other two can be obtained from the middle one by rotation by
27 /k and —27/k. After scaling, the transformation for obtaining the normalized segments

from the normalized middle segment are given by the matrix

27 < 2m/k g
cos 4 + sin on &

s 2T /i T 27
+sin<f/sin T cos ¢

The limit of this transformation as k — oo is

1 0
+2 1

Normalized control nets for several valences and the limit net are shown in Figure 6.16

The algorithm of Section 6.2.1 steps through the valences, verifying C'-continuity for
each valence which has sufficiently different control net. In the case of the Modified Butterfly
scheme we were able to use only a relatively small step size 2.6 x 1079, with all tests passing
only after 7 steps of subdivision. However, our implementation based on hardware floating
point operation is quite efficient and the algorithm spends around 30 sec. performing all
tests for 7 levels of subdivision; as the test has to be one only once for a given scheme, time
becomes a concern only for multiparameter schemes.

The plot in Figure 6.17 shows the valences used by the algorithm; Figure 6.18 shows
how the normalized control nets approach the limit as function of valence.

The lower and upper bounds of the Jacobians computed by the algorithm are shown in
Figure 6.19. Each upper and lower bound is an interval number; the error bars indicate the

size of the interval.
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Figure 6.16: Convergence of normalized control nets of one segment of the characteristic
maps for the Modified Butterfly scheme as valence increases. Only the boundaries of the
nets are shown.
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Figure 6.17: Valences tested by algorithm; note that only few large valences need to be
tested. Total number of tested valences is 440. Data for valences 3, 4, 5 are not shown.
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The jumps in the plot occur when the algorithm has to increase the number of levels
used for estimating Jacobians.

It is clear from the appearance of the control nets that the estimates for the convergence
rate of the Butterfly scheme are overly pessimistic; clearly, for this initial configurations the
linear approximations to the Jacobians approach their limit values much faster. A possible
approach to improving the performance of the algorithm is to refine analysis of Chapter 4;
rather than using worst case estimates, one can try to decompose surfaces on regular grids
into suitably chosen combinations of basis functions corresponding to different frequencies;
as it was observed by Taubin [61], high-frequency components of surfaces are typically
small. The same observation applies to characteristic maps of practically useful subdivision
schemes. One may expect that significantly better convergence estimates can be obtained
for interpolating schemes restricted to low-frequency initial data. This will lead to better
estimates for general surfaces. In particular, one may expect a significant improvement
simply by decomposing the control net into a linear component and an offset. For the
linear part the convergence rate is very fast; in fact, the Butterfly scheme degenerates into
midpoint subdivision and we can get rid of that component altogether, in error estimation,
adding fixed constants to the derivatives.

Finally, the plot in Figure 6.20 shows the behavior of 6 error estimates €, ¢

G €51, 88 functions

of valence.
The tests for isolation from zero and injectivity succeeded after 3 or less subdivision

steps.

6.4.4 Tangents, Normals and Degeneracy Conditions

To complete the description of the Modified Butterfly scheme, we state the formulas for
tangents and normals for the scheme. As discussed in Section 3.10.1 the tangent vectors
can be computed using left eigenvectors of a submatrix of the subdivision matrix, which is
obtained by restricting the matrix to the minimal invariant neighborhood. For the Modi-
fied Butterfly scheme, this is a 2-neighborhood for regular vertices and 1-neighborhood for
extraordinary vertices. The latter is due to the fact that the immediate neighbors of an
extraordinary vertex can be computed using only immediate neighbors of the same vertex
on the coarser level.

The left eigenvectors required to compute tangent vectors are dual to the subvectors of
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the dominant eigenvectors. For extraordinary vertices the calculation is trivial: the matrix
is cyclic (with one column and row added on the left and top) so it is reduced to the diagonal

form by the DFT matrix. The left eigenvectors are the rows of the inverse DF'T matrix.

Therefore, for the extraordinary vertices the tangent vectors are given by

A= 2mm " 2mm
t; = Z x"™ cos o to = Z 2" sin 5 (6.8)
m=0 m=0

Tm, m = 0...k — 1 denote the control points at the vertices of 1-neighborhood of the
vertex of valence k, the vertex itself excluded. The numbering can start from any vertex
(tangent vectors are not unique). The normal is just the cross-product ¢; x to; this product is
unique up to a scaling factor. This is not obvious from the expressions above; to understand
this, it is useful to consider the expression for the normal which is obtained from t; x t5 by

expanding the product and rearranging the terms:

k
2(n —m)mw 2pm
t1 Xty = E sin %x" x g™ = sin % E 2" x gntp)modk
m<n p=0 n=0

In this form one can see that the cross product is a sum of normals of all triangles
adjacent to the vertex plus a scaled sum of normals of triangles formed by edges adjacent
to the vertex which are separated by another edge etc. Clearly, this sum does not depend
on the particular choice of indexes of the vertices. This construction also shows the relation
between the exact normal and approximate normal computed using the standard technique

of averaging normals.

The same formulas can be used for any other scheme for which the subdivision matrix
for minimal invariant neighborhood is diagonalized by DFT, such as Loop and Modified

Loop schemes described in Sections 6.5 and 6.6.

For regular vertices the situation is somewhat more complicated; the minimal invariant
neighborhood in this case has size 2, and the eigenvectors are larger: as the valence is 6, the
number of points in the invariant neighborhood is 19. the left eigenvectors corresponding to

the dominant eigenvalues have the following form using indexing described in Section 6.1:
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83 43 43 83 443 4+/3 1 1 1 1

lg = [16, -8, —8,16, —8, —8, — 1l.—-2. —_Z.1.—-= _Z

0 [ 9 9 9 9 ) ’ 3 3 3 3 3 3 ) 23 23 3 2’ 2]
43 4+/3 43 43 1 1 1 1
l1:[0,8,—8,0,8,—8,0,— \/ ) \/_v s \/73 \/7707_3__7 v_v__]
3 3 3 3 27 27727 2

The tangent vectors are obtained by multiplying the vector of control points on the
2-neighborhood of a vertex by the vectors {1 and [s.

As the surfaces generated by subdivision are not necessarily C'*-continuous if a; x az = 0
it is desirable to have a geometric condition which would guarantee that this does not
happen.

For the case of extraordinary vertices (as well as for Loop-like schemes) it is possi-
ble to formulate a natural sufficient condition for a configuration of control points to be
nondegenerate.

For any integer j € [0...%k — 1] the set of indices {0..k — 1} of vertices in the invariant

neighborhood can be separated into two sets: Hi(j) = {j,...j5 + L%J} and its complement
Hy(j)={5+ 5] +1...k—1}U{0...5}

Proposition 6.2. For any direction in space d consider the projections Px™, of control
points ™, m € {0...k — 1} onto this direction. Fiz an origin and a positive direction on
d. If there is a real number C' and an integer j, 0 < j < k — 1, such that for all m € Hy(j)

Pl < C and for m € Ho(j) P2 > C, then the normal t; X ty is not a zero vector.

Informally speaking, this condition means that there is a plane such that L%J consecutive

points of the invariant neighborhood are above this plane and the other [%1 are below.
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Figure 6.20: Linear approximation errors for Modified Butterfly scheme; €1, €y are errors
for components of the map, €12, €12, €12, €12 are errors for the partial derivatives. Note that
errors level out quite quickly; this indicates that the difference between normalized maps
for large valences is quite small.
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6.5 Loop Scheme

This scheme was introduced in C. Loop’s thesis [40]. This is one of the simplest known
C'-continuous subdivision schemes. On the regular mesh this scheme generates degree 4
triangular splines. Tangent plane continuity (existence of limit normals) of this scheme
was analyzed in Loop’s thesis. C!-Continuity as defined in Section 3.1 was established
using Reif’s criterion and analytic methods for valences up to 100 by J. Schweitzer [59]. In
this section we use our algorithms to establish C''-continuity of Loop scheme for arbitrary
valence. Observations that we make in this section lead to improved versions of Loop scheme

described in the next section.

6.5.1 Eigenvalues, Eigenvectors, Convergence Rates

Many facts stated in this section can be found in [40] and [59]. We reproduce these facts

here for completeness.

The Loop scheme was defined in Section 2.2. The control and localization sizes for Loop

scheme are both 2.

The eigenvectors of Loop scheme are determined by two parameters A and a shown in

Figure 6.21.

A
/1 ei 7/ 2k
ei 7/2k
a
»
7
e—iﬂ/Zk
yl e—in/Zk

Figure 6.21: One sector of the control net of the characteristic map for Loop scheme.

The subdivision matrix in this case has particularly simple blocks
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S+ Jcos(2w) 0 0
B(2w) = 3 cos(w) : 0 (6.9)
2+ tcos(2w) feos(w) £
where w = 2mm /k, m = 1...k—1. The eigenvalues of this matrix are 3/8+(1/4) cos(2w),

1/8 and 1/16. The first changes in the range 1/8 to 5/8. In particular, the eigenvalue of
the first block increases from 1/4 to 5/8 as w goes through values w/3, w/4, /5 ...

The 0-th block Z has the form

Co 1-— Co 0
3 5 0 0
3 3
Z = (6.10)
0 O
3 1 1
0 7 5 1%

The eigenvalues of Z are 1, 1/8, 1/16 and ¢y — 3/8 (see Figure 2.8 for definition of ¢p).

It can be easily established by direct calculation that the dominant eigenvalues are both
3/8 4 (1/4) cos(2m/k) for all k and are eigenvalues of blocks B(27/k) and B(2(k — 1) /k).

For Loop scheme Ring;, has the same size as for the Modified Butterfly; the control nets,
however, are smaller and contain only the vertices (s, j,1) with j = 1...5. Several control
nets for rings are shown in Figure 6.30.

We choose the same normalization for the control nets of one segment of the character-
istic map as we used for the Modified Butterfly scheme, i.e., scaling by factor 1/sin(27/k)
along the y-axis. As a result, we get a converging sequence with nondegenerate limit, similar
to the one shown in Figure 6.28; see also Figure 6.16.

Convergence rate estimates for Loop scheme are much better than for the Modified
Butterfly; not only all coefficients of Loop scheme on the regular grid are positive, but all
coefficients of the schemes generating derivatives are positive too. It turns out that this
results in convergence rate 1/2.

The values of the convergence constants for Loop scheme are
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The plots in Figures 6.22-6.25. show that the algorithm is able to establish C''-continuity
of Loop scheme with significantly less effort: only 55 valences have to be tested, and only
3 subdivision steps were required in the worst case. The primary reason for this is that
the estimates for convergence rates for schemes with non-negative coefficients are much
more realistic. This allowed us to use the interval size 0.0004, considerably larger than the

interval size for the Modified Butterfly.
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Figure 6.22: Valences tested by algorithm; note that only few large valences need to be
tested. Total number of tested valences is 55. Data for valences 3,4,5 are not shown.

Behavior for large valences. Eigenvalue clustering for large valences also occurs for
Loop scheme. Clearly, as k — oo largest eigenvalues of blocks B(27/k) and B(4w/k) both
approach 5/8. However, the limit values of the eigenvalues of block Z are 1, 1/8, 1/16
and 25/64; thus, the “zero-frequency” eigenvalues are away from the cluster; as a result, as
k — oo, the surfaces generated by the scheme don’t approach cones, unlike the Butterfly
scheme (Figure 6.12). Note that this becomes possible for a scheme which uses the regular
rule for immediate neighbors of the central vertex only if it is not interpolating.

However, a milder problem coming from eigenvalue clustering persists: an example is
shown in Figure 6.26 on the right. This problem can be solved as it is described in the next
section; it is worth mentioning that in some cases this behavior may be desirable, but our
goal is to make it controllable rather than let the artifacts appear by chance.

The other problem, presence of ripples in the surface close to an extraordinary point,
shown in Figure 6.26. It is not clear to what extent this problem can be eliminated, as
it appears to be related to the fact that Loop scheme is not C? at extraordinary vertices.

There is no C?-stationary non-flat symmetric scheme with same stencils as Loop, and it is
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Figure 6.23: Distance from normalized control net to the limit control net as a function of
valence.

unlikely that the problem can be eliminated completely if we use stationary schemes.
It turns out that there is a trade-off between the two types of artifacts described above;

we discuss this problem further in the next section.

6.6 Modification of Loop Scheme

In this section we describe a modification of Loop scheme that does not have eigenvalue
clusters.

We construct the new scheme in the same way we have constructed the Modified But-
terfly scheme: we prescribe eigenvalues and compute coefficient using inverse DFT. An
additional property of Loop scheme that we would like to preserve is non-negativity of co-
efficients. When coefficients are nonnegative, the surfaces generated by the scheme have
the convex-hull property, that is, are contained inside the convex hull of the initial control
points.

The only eigenvalues that we would like to fix are the free eigenvalues of Z, B(27/k),
B(2(k-1)m/k), B(4r/k), B(2(k—2)7/k); it is desirable to have eigenvalues 1/4, 1/2,1/4,1/4
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Figure 6.24: Upper and lower bounds for the Jacobians; error bars indicate the size of the
interval; the interval_size argument for the algorithm was chosen to be 0.0004 so that lower
bound of the interval for .J,,;, is close to zero.

and 1/2 in these blocks as explained in Section 6.4. As can be seen from the formulas of
the previous section, we have no control over the eigenvalues except one eigenvalue in block
Z if we use the stencil of Loop scheme and require the scheme to coincide with Loop on the
regular complex. We increase the stencil in a minimal way, including all vertices around a
k-vertex into the stencil for an immediate odd neighbor, as we did for the Butterfly scheme.
Formally, this increases the control and localization sizes of the scheme to 3; however, as
the change is made only for neighbors of extraordinary vertices, the size of the subdivision
matrix does not have to be increased for analysis.

It turns out that it is possible to obtain a scheme with prescribed eigenvalues and
positive coefficients using eigenvalues (1/2)" for blocks B(2mmn/k) and B(2(k — m)n/k),
for m = 1...|k/2|. Let the (0,0) entry of B(0) be a. Using notation of Figure 6.14, the

coefficients of the scheme for immediate neighbors of extraordinary vertices are for k > 4

34 (—1)92(k+1)/2 cog mm
si= a1+ + k) for j=0...k odd k
k 9 —8cos? 47

1 3+ 3(—1)727k/2cos mE
SJ:%<G,1+ ( ) COSk

9 —8cos? 4f

(6.11)

> for j=0...k, even k
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Figure 6.25: Linear approximation errors for Loop scheme; €1, €5 are errors for components
of the map, and €12, €12, €12, €12 are errors for the partial derivatives. ¢; and ey for valences
close to 6 are large because J,,;, is sufficiently far away from zero, and the errors were
computed using fewer subdivision levels.

For valences 3 and 4 we cannot have all prescribed eigenvalues because the subdivision
matrix has too few blocks. In these cases we use spectra 1/4,1/2,1/2 and 1/4,1/2,1/4,1/2
obtaining coefficients 13/24,1/24,1/24 and 1/2,1/16,0,1/16 respectively, assuming the co-

efficient in the center is 3/8.

If we ignore the variable terms in the denominator of the second term of the formulas
(they vanish as k — 00), it is easy to see that the coefficients are nonnegative if a > 2/3.

More detailed analysis shows that it is sufficient to use values for a above 5/6 + 1/61/48.

For given a we can choose the coeflicients of the scheme for the central vertex to be
(1/k)(a — 1/4) for the immediate neighbors and 5/4 — a for the vertex itself to guarantee
that the free eigenvalue of 7 is 1/4.

The tests required to prove C''-continuity of this scheme are very similar to the tests for
Loop scheme; 60 valences had to be tested; the interval size used was 0.0013. Behavior of

lower and upper bounds of the Jacobians is shown in Figure 6.27.

As expected, the meshes generated by this scheme have better structure near extraor-
dinary points (Figure 6.29). However, the ripples become larger, so one kind of artifact is

traded for another. The reason for this can be understood intuitively from the form of the
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Figure 6.26: Left: ripples on a surface generated by Loop scheme near a vertex of large va-
lence; Right: mesh structure for Loop scheme near an extraordinary vertex with significant
“high-frequency” component; a crease starting at the extraordinary vertex appears.

expressions for the coefficients and eigenvalues: eigenvalues can be computed as DFT of
coefficients. One can hypothesize that ripples are amplified by non-zero coefficients s; with
j far from 0 and k. Thus, it is desirable to make these coefficients as small as possible.
However, for large k having distinct eigenvalues in adjacent blocks B(27/k) and B(4w/k)
is similar to having a J-function for the continuous Fourier transform. This means that
coefficients s; may be significantly different from zero for values of j far from 0 and k. This
reflects the standard duality between properties of a function and its Fourier transform.

It is, however, possible to seek an optimal solution or one close to optimal; alternatively,
one may resort to a family of schemes that would allow to control the tradeoff between the

two artifacts.

6.7 Crease Subdivision

In this section we briefly discuss a simple one-parametric family based on Loop scheme,
with rules modified to create a smooth crease. This family of schemes is shown to be
C'-continuous for regular vertices and extraordinary vertices for certain ranges of tension
parameters. Further work is needed to achieve controlled behavior near extraordinary ver-
tices.

As discussed in Section 4.4, one can analyze C'-continuity of a particular type of non-
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Figure 6.27: Upper and lower bounds for the Jacobians for Modified Loop scheme; error
bars indicate the size of the interval; the interval_size argument for the algorithm was chosen
to be 0.0013 so that lower bound of the interval for .J,,;, is close to zero.

uniform schemes, constructed as a linear combination of two uniform subdivision schemes.

For Loop scheme the natural choice of coefficients satisfying Definition 4.2 is shown in

Figure 6.31.

Direct computation using (4.59) and commutation formulas derived in Section 4.4 gives
the following estimates for convergence rates y: 1/2 for the derivative in x direction; (k+1)/4

in y-direction. Clearly, the scheme is C'-continuous for all £ < 1 on the regular complex.

It is instructive to analyze the eigenstructure of the subdivision matrix in the regular

case; the matrix has the form

7 11 16 limit

Figure 6.28: Normalized control nets for Modified Loop scheme and the limit control net.
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[ biss k116 1/16—% 116k £41/16 1/16— £ 1/16- L |
Eysig b3 18-k 0 0 0 1/8 - &
3/8 1/8 3/8 1/8 0 0 0
3/8 0 1/8 3/8 1/8 0 0

k+3/8 0 0 1/8-% ki3 1/8-% 0
3/8 0 0 0 1/8 3/8 1/8
| 3/8 1/8 0 0 0 1/8 3/8

An additional parameter can be introduced to adjust the shape of the crease near a
vertex; it will affect only the first row of the matrix, and won’t have any impact on the

C'-continuity analysis; the coefficients for the central vertex change to

5/8 + k/8 + 3ky(1 — k)/8,
(k+ 1)1~ ky)/16, (1 R)(1 — ky)/16, (1 K)(1 — k,)/16,

(k+1)(1 —kp)/16,(1 —k)(1 — k) /16, (1 — k)(1 — k;,)/16

where k, is the “parallel” tension, i.e., tension along the crease. For k, = 1 the crease
interpolates the vertex and has a sharp corner. For k # 1 it does not mean that the surface
is not C''-continuous.

Remarkably, in the regular case the eigenvectors and eigenvalues of the subdivision
matrix also linearly interpolate between eigenvectors and eigenvalues of the two limit cases
k=0and k=1.

The eigenvalues are

1111 k+1 k+1

17_7 70 9 8 o ¢
4" 47 2" 2 8 4

If we choose to interpolate coefficients linearly for extraordinary vertices, the behavior of

eigenvectors and eigenvalues is much more complicated. Although we were able to analyze
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C'-continuity for a range of valences using our algorithms, this analysis relies on numerically
computed eigenvalues; precision of such calculations is difficult to estimate, in most cases,
and the analysis without such estimates cannot be regarded as rigorous. Additionally,
our analysis indicates that the surface may become non-C'-continuous at an extraordinary
vertex for k < 1.

A better way to determine coefficients for the crease scheme near extraordinary vertex
is to derive them from predefined eigenvalues and eigenvectors. It would be undesirable
to use matrix inversion to compute coefficients; this imposes an additional constraint of
having an orthogonal system of eigenvectors for all values of the tension parameter. Note
that the standard crease scheme as introduced by Hoppe does not have an orthogonal
system of eigenvectors for valences different from 6. It can be made orthogonal, however,
by appropriate modification of coefficients. Interpolation inside the class of orthogonal
matrices is also a difficult task, and the resulting expressions for coefficients are likely to be
quite complicated. We leave construction and analysis of such schemes as a direction for
future work.

As the expressions for eigenvalues and eigenvectors of the crease scheme for £k = 1 are
known [59], we were able to prove one-sided C'-continuity of Loop scheme with sharp
creases for arbitrary valence. The results are very similar to those obtained in the previous
sections of r symmetric schemes, with the only difference that two parameters have to be
considered.

Shapes generated by the scheme for various values of the tension parameter are shown

in Figure 6.32.
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Figure 6.29: Left: mesh structure for Loop scheme and Modified Loop scheme near an
extraordinary vertex; a crease does not appear for the Modified Loop. Right: shaded
images of the surfaces for Loop and Modified Loop; ripples are more apparent for Modified
Loop.
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Figure 6.31: Coefficients for Loop scheme with creases (regular case).
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Chapter 7 Multiresolution Representations

In the previous chapters we have concentrated on theoretical properties of subdivision. In
this chapter we describe algorithms for implementing subdivision and a multiresolution
representation closely related to subdivision. Combining subdivision and the smoothing
algorithms of Taubin [61] allows us to construct a set of algorithms for interactive multires-
olution editing of complex hierarchical meshes of arbitrary topology. The simplicity of the
underlying algorithms for refinement and coarsification enables us to make them local and
adaptive, thereby considerably improving their efficiency. These algorithms take advantage

of some basic properties of subdivision:

e Smoothness of the subdivision scheme used in the representation ensures that the

changes made to the surface are blended with the rest of the surface.

e Locality of subdivision makes it possible to design algorithms which typically traverse

only a small part of the data when recomputation is required.

e Topological Generality: Vertices in a triangular (resp. quadrilateral) mesh need not
have valence 6 (resp. 4). Almost all generated surfaces are C''-continuous everywhere,
and efficient algorithms exist for computing normals and limit positions of points on

the surface.

e Multiresolution: Because they are the limit of successive refinement, subdivision
surfaces support multiresolution algorithms, such as level-of-detail rendering, mul-

tiresolution editing, compression, wavelets, and numerical multigrid.

e Uniformity of Representation: Subdivision provides a single representation of a
surface at all resolution levels. Boundaries and features such as creases can be resolved

through modified rules reducing the need for trim curves.

Although all algorithms are presented for multiresolution representations, they can be
used for rendering and manipulation of pure subdivision surfaces, which are a special case

of our representation.
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For reasons of efficiency the algorithms should be highly adaptive and dynamically ad-
just to available resources. Our goal is to have a single, simple, uniform representation with
scalable algorithms. The system should be capable of delivering multiple frames per second
update rates even on small workstations taking advantage of lower resolution representa-

tions.

7.0.1 Structure of the Editng System

The particulars of the algorithms will be given later, but Figure 7.1 already gives a preview
of how the different algorithms make up the editing system. In the next sections we first

talk in more detail about subdivision, smoothing, and multiresolution transforms.

Adaptive analysis

[ v |

Adaptive synthesis

—>| Begindragging

i

Select group of vertices Create dependent
at level i submesh

o |
Local analysis Local synthesis

Render

i

]
i

Figure 7.1: The relationship between various procedures as the user moves a set of vertices.

7.1 Multiresolution Representation

We begin by fixing our notation which is slightly different from the notation used in previous
chapters. As usual, K denotes the initial complex, K*, i > 1 subdivided complexes. Recall
that the vertex sets are nested as VJ C V? if j < i. We define odd vertices on level i as
M? = VHL\ Vi, Vit consists of two disjoint sets: even vertices (V) and odd vertices
(M?%). We define the level of a vertex v as the smallest i for which v € V. The level of v is
i+ 1 if and only if v € M.

With each set V? we associate a map to R3., i.e., for each vertex v and each level i, we

have a 3D point s¢(v) € R3. The set s* contains all points on level i, s' = {s(v) | v € V*}.
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U

Figure 7.2: Computing approximate frame; the tangents at m(v,w) are taken to be t; =
w — v and to = us — uq; the normal n is their cross-product; the frame is the coordinate
system obtained from (¢1,75,n) by orthonormalization.

A subdivision scheme S takes the points from level 7 to points on the finer level i + 1:
sl — g gt

Assuming that the subdivision converges, o(v) € R? denotes the point on the limit
surface associated with vertex v € V'*°.

In order to define our offsets with respect to a local frame, we also need tangent vectors
and a normal. For the subdivision schemes that we use, such vectors can be defined through
the application of linear operators @ and R acting on s° so that ¢'(v) = (Qs')(v) and 7%(v) =
(Rs%)(v) are linearly independent tangent vectors at o (v). Together with an orientation they
define a local orthonormal frame F(v) = (n(v), ¢ (v),r%(v)). It is important to note that ,
in general, it is not necessary to use precise normals and tangents during editing; as long as
the frame vectors are affinely related to the positions of vertices of the mesh, we can expect
intuitive editing behavior.

The simplest possible formula that can be used for odd vertices is illustrated in Fig-
ure 7.2; it is important to note that while the approximate frame is adequate for represent-
ing details, the approximate normal vector computed in this way is not adequate for lighting
calculations at coarsest levels of resolution. A precise subdivision surface normal using the
formulas from the previous chapter can be used; in the case of a scheme with localization
size 3, such as Butterfly, 2-ring neighborhoods have to be used for this calculation which
makes them expensive to compute. In practice, formulas for schemes with support size 2,
which don’t depend on the coeflicients of the scheme as long as it is symmetric, provide an

adequate approximation to the normal for lighting.
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For our implementation we have chosen the Loop scheme, since more performance op-
timizations are possible in it. However, the algorithms we discuss later work for any single
ring scheme.
So far we have only discussed subdivision, i.e., how to go from coarse to fine meshes. In
this section we describe analysis which goes from fine to coarse.
We first need smoothing, i.e., a linear operation H to build a smooth coarse mesh at

level 7 — 1 from a fine mesh at level :
s = Hs'.

Several options are available here:

e Least squares: One could define analysis to be optimal in the least squares sense,
min ||s* — S 5" 1|2
§i—1

The solution may have unwanted undulations and is too expensive to compute inter-

actively [24].

e Fairing: A coarse surface could be obtained as the solution to a global variational
problem. This is too expensive as well. An alternative is presented by Taubin [61],

who uses a local non-shrinking smoothing approach.

Because of its computational simplicity, we decided to use a version of Taubin smoothing.
As before let v € V' have k neighbors v,,, € V. Use the average, 3'(v) = k! Zﬁmzl 5 (vm),

to define the discrete Laplacian £(v) = 3% (v) —s'(v). On this basis Taubin gives a Gaussian-

like smoother which does not exhibit shrinkage
H:=(I+pLl)(I+AL).

With subdivision and smoothing in place, we can describe the transforms needed to sup-
port multiresolution editing. Recall that for multiresolution editing we want the difference
between successive levels expressed with respect to a frame induced by the coarser level,
i.e., the offsets are relative to the smoother level.

With each vertex v and each level i > 0 we associate a detail vector, d'(v) € R3. The
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set d’ contains all detail vectors on level i, d* = {d'(v) | v € V'}. As indicated in Figure 7.3

the detail vectors are defined as
d' = (FY) (s' = Ss'™ 1) = (F)' (I — SH) 5",

i.e., the detail vectors at level ¢ record how much the points at level ¢ differ from the result
of subdividing the points at level ¢ — 1. This difference is then represented with respect to
the local frame F* to obtain coordinate independence.

Since detail vectors are sampled on the fine level mesh V?, this transformation yields
an overrepresentation in the spirit of the Burt-Adelson Laplacian pyramid [4]. The only
difference is that the smoothing filters (Taubin) are not the dual of the subdivision filter
(Loop). Theoretically, it would be possible to subsample the detail vectors and only record
a detail per odd vertex of M*~!. This is what happens in the wavelet transform. However,
subsampling the details severely restricts the family of smoothing operators that can be

used.

|

Smoothing Subdivision
;o T e oy
Z ® =

Figure 7.3: Wiring diagram of the multiresolution transform.

7.2 Algorithms and Implementation

Before we describe the algorithms in greater detail, let us recall the overall structure of the
mesh editor (cf. Figure 7.1). The analysis stage builds a succession of coarser approximations
to the surface, each with fewer control parameters. Details or offsets between successive
levels are also computed. In general, the coarser approximations are not visible; only their
control points are rendered. These control points give rise to a virtual surface with respect

to which the remaining details are given. Figure 7.4 shows wireframe representations of
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virtual surfaces corresponding to control points on levels 0, 1, and 2.

Figure 7.4: Wireframe renderings of virtual surfaces representing the first three levels of

control points.

When an edit level is selected, the surface is represented internally as an approximation
at this level, plus the set of all finer level details. The user can freely manipulate degrees
of freedom at the edit level, while the finer level details remain unchanged relative to the
coarser level. Meanwhile, the system will use the synthesis algorithm to render the modified
edit level with all the finer details added in. In between edits, analysis enforces consistency

on the internal representation of coarser levels and details (cf. Figure 7.5).
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Figure 7.5: Analysis propagates the changes on finer levels to coarser levels, keeping the
magnitude of details under control. Left: The initial mesh. Center: A simple edit on level
3. Right: The effect of the edit on level 2. A significant part of the change was absorbed

by higher level details.
The basic algorithms Analysis and Synthesis are very simple, and we begin with their

description.
Let 7 = 0 be the coarsest and 7 = n the finest level with N vertices. For each vertex v and

all levels ¢ finer than the first level where the vertex v appears, there are storage locations

v.s[i] and v.d[i], each with 3 floats. With this the total storage adds to 2% 3% (4N/3) floats.



239

In general, v.s[i] holds s*(v) and v.d[i] holds d’(v); temporarily, these locations can be used

to store other quantities. The local frame is computed by calling v.F (7).

Global analysis and synthesis are performed levelwise:

Analysis Synthesis
for i =n downto 1 for i=1 ton
Analysis (i) Synthesis (1)

With the action at each level described by

Analysis(7)

Vo € VTl : w.s[i — 1] := smooth(v,1)
Yo e Vi :wdfi] == v.F(i) % (v.s[i] — subd(v,i — 1))

and

Synthesis (7)

Yo e Vi swli] == v.F(i) * v.d[i] + subd(v,i — 1)

Analysis computes points on the coarser level ¢ — 1 using smoothing (smooth), subdivides
s~ (subd), and computes the detail vectors d* (cf. Figure 7.3). Synthesis reconstructs level

1 by subdividing level ¢ — 1 and adding the details.

So far we have assumed that all levels are uniformly refined, i.e., all neighbors at all
levels exist. Since time and storage costs grow exponentially with the number of levels, this
approach is unsuitable for an interactive implementation. In the next sections we explain

how these basic algorithms can be made memory and time efficient.

Adaptive and local versions of these generic algorithms (cf. Figure 7.1 for an overview
of their use) are the key to these savings. The underlying idea is to use lazy evaluation and
pruning based on thresholds. Three thresholds control this pruning: €4 for adaptive analy-
sis, eg for adaptive synthesis, and er for adaptive rendering. To make lazy evaluation fast
enough, several caches are maintained explicitly and the order of computations is carefully

staged to avoid recomputation.
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7.2.1 Adaptive Analysis

The generic version of analysis traverses entire levels of the hierarchy starting at some finest

level. Recall that the purpose of analysis is to compute coarser approximations and detail

offsets.

be found. Adaptive analysis

some threshold €4 by observing that small detail vectors imply that the finer level almost

coincides with the subdivided coarser level. The storage savings are realized through tree

PrUNIng.

For this purpose we need an integer v.finest := max;{||v.d[i||| > e4}. Initially v.finest =

n and the following precondit

In many regions of a mesh, for example, if it is flat, no significant details will

avoids the storage cost associated with detail vectors below

ion holds before calling Analysis(i):

e The surface is uniformly subdivided to level 1,

o Vo eV vsli] =s'(v),

o VoeVi|i<j<u.finest : vdj] =d(v).
Now Analysis(i) becomes:
Analysis(4)
VYo € V=t 1 v.s[i — 1] := smooth(v,1)
Vo e Vi
v.d[i] = v.s[i] — subd(v,i — 1)

e

if v.finest > i or ||v.d[i]|| > €4 then

Prune(z — 1)

vdfi] = v.F(i)! * v.d[i]
1se

v.finest == i —1

Triangles that do not contain

details above the threshold are unrefined:

Prune (7)

Vte T :

If all middle vertices m have m.finest =i — 1

and all children are leaves, delete children.
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This results in an adaptive mesh structure for the surface with v.d[i] = d‘(v) for all
v € V¥, i < w.finest. Note that the resulting mesh is not restricted, i.e., two triangles that
share a vertex can differ by more than one level. Initial analysis has to be followed by a

synthesis pass which enforces restriction.

Figure 7.6: A restricted mesh: the center triangle is in 7% and its vertices in Vi. To
subdivide it we need the 1-rings indicated by the circular arrows. If these are present the
graph is restricted and we can compute s*1 for all vertices and middle vertices of the center
triangle.

7.2.2 Adaptive Synthesis

The main purpose of the general synthesis algorithm is to rebuild the finest level of a mesh
from its hierarchical representation. Just as in the case of analysis we can realize savings
from noticing that in flat regions, for example, little is gained from synthesis and one might
as well save the time and storage associated with synthesis. This is the basic idea behind
adaptive synthesis, which has two main purposes. First, ensure the mesh is restricted on
each level, (cf. Figure 7.6). Second, refine triangles and recompute points until the mesh
has reached a certain measure of local flatness compared against the threshold eg.

The algorithm recomputes the points s'(v) starting from the coarsest level. Not all
neighbors needed in the subdivision stencil of a given point necessarily exist. Consequently,
adaptive synthesis lazily creates all triangles needed for subdivision by temporarily refining
their parents, then computes subdivision, and finally deletes the newly created triangles
unless they are needed to satisfy the restriction criterion. The following precondition holds

before entering AdaptiveSynthesis:
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e VtcT7|0<j<i:tis restricted

o Vo e VI |0<j<w.depth :v.s[j] = s/ (v)

where v.depth := max;{s’(v)has been recomputed}.

AdaptiveSynthesis

Vo e VO : v.depth := 0
fori=0ton—-1
temptri == {}
Vte T :
current = {}
Refine(t, i, true)
Vt € temptri : if not t.restrict then

Delete children of ¢

The list temptri serves as a cache holding triangles from levels j < ¢ which are temporarily
refined. A triangle is appended to the list if it was refined to compute a value at a ver-
tex. After processing level 7 these triangles are unrefined unless their t.restrict flag is set,
indicating that a temporarily created triangle was later found to be needed permanently
to ensure restriction. Since triangles are appended to temptri, parents precede children.

Deallocating the list tail first guarantees that all unnecessary triangles are erased.

The function Refine(t, i, dir) (see below) creates children of t € 7% and computes the
values Ss¢(v) for the vertices and middle vertices of t. The results are stored in v.s[i + 1].

The boolean argument dir indicates whether the call was made directly or recursively.
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Refine(t,1, dir)

if t.leaf then Create children for ¢
Vv et :if v.depth < i+ 1 then
GetRing(v,1)
Update(v, 1)
Vm € N(v,i+1,1) :
Update(m, i)
if m.finest > i+ 1 then
forced := true
if dir and Flat(t) < €s and not forced then
Delete children of ¢
else

YVt € current : t.restrict := true

Update(v,1)
v.s[i + 1] := subd(v, 1)
v.depth :==1+1
if v.finest > i+ 1 then

v.s[i 4+ 1] += v. F(i + 1) x v.d[i + 1]

The condition v.depth = i+1 indicates whether an earlier call to Refine already recomputed
s"1(v). If not, call GetRing(v,i) and Update(v,i) to do so. In case a detail vector lives at
v at level i (v.finest >4 + 1) add it in. Next compute s (m) for middle vertices on level
i+ 1 around v (m € N(v,i+1,1), where N(v,1i,l) is the [-ring neighborhood of vertex v at
level ). If m has to be calculated, compute subd(m, i) and add in the detail if it exists and
record this fact in the flag forced which will prevent unrefinement later. At this point, all
51 have been recomputed for the vertices and middle vertices of t. Unrefine ¢ and delete
its children if Refine was called directly, the triangle is sufficiently flat, and none of the
middle vertices contain details (i.e., forced = false). The list current functions as a cache
holding triangles from level ¢ — 1 which are temporarily refined to build a 1-ring around the

vertices of t. If after processing all vertices and middle vertices of t it is decided that ¢ will
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remain refined, none of the coarser-level triangles from current can be unrefined without
violating restriction. Thus t.restrict is set for all of them. The function Flat(t) measures

how close to planar the corners and edge middle vertices of ¢ are.

Finally, GetRing(v, ) ensures that a complete ring of triangles on level i adjacent to the
vertex v exists. Because triangles on level ¢ are restricted triangles all triangles on level i —1
that contain v exist (precondition). At least one of them is refined, since otherwise there
would be no reason to call GetRing(v,7). All other triangles could be leaves or temporarily
refined. Any triangle that was already temporarily refined may become permanently refined

to enforce restriction. Record such candidates in the current cache for fast access later.

GetRing(v,1)

vVt e T ! withv €t :
if t.leaf then
Refine(t,i — 1, false); temptri.append(t)
t.restrict := false; t.temp := true
if t.temp then

current.append (t)

7.2.3 Local Synthesis

Even though the above algorithms are adaptive, they are still run everywhere. During an
edit, however, not all of the surface changes. The most significant economy can be gained
from performing analysis and synthesis only over submeshes which require it.

Assume the user edits level I and modifies the points s'(v) for v € V** < VI This
invalidates coarser level values s’ and d* for certain subsets V** ¢ V?, i <, and finer level
points s* for subsets V** C V? for i > I. Finer level detail vectors d’ for ¢ > [ remain
correct by definition. Recomputing the coarser levels is done by local incremental analysis
described in Section 7.2.4; recomputing the finer level is done by local synthesis described
in this section.

The set of vertices V** which are affected depends on the support of the subdivision

scheme. If the support fits into an m-ring around the computed vertex, then all modified
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vertices on level i 4+ 1 can be found recursively as

Vet = | ) N(v,i+1,m).
veV*i

We assume that m = 2 (Loop-like schemes) or m = 3 (Butterfly type schemes). We define

the subtriangulation T*' to be the subset of triangles of T? with vertices in V*%.

LocalSynthesis is only slightly modified from AdaptiveSynthesis: iteration starts at

level I and iterates only over the submesh 7%

LocalSynthesis

Yo € V¥ 1 v.depth =1
fori=lton—1
temptri == {}
Vt e T* -
current := {}
Refine(t, i, true)
Vt € temptri :
if t.leaf and not t.restrict then

Delete children of ¢

7.2.4 Local Incremental Analysis

After an edit on level I, local incremental analysis will recompute s‘(v) and d*(v) locally
for coarser level vertices (i < [) which are affected by the edit. As in the previous section,
we assume that the user edited a set of vertices v on level I and call V* the set of vertices
affected on level 7. For a given vertex v € V*, we define R"=!(v) C V~! to be the set of
vertices on level i — 1 affected by v through the smoothing operator H. The sets V* can

now be defined recursively starting from level i = [ to i = 0:

V*i—lz U Ri_l(v).

veV *t
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I

Figure 7.7: The mesh on the top is adaptively subdivided; middle image shows the mesh
after subdivision but before any temporary triangles are removed; in the bottom image the
mesh has all temporary triangles removed. Temporary triangles are shown in light gray;
temporary triangles that were fixed due to restriction and subdivided triangles are shown
in dark gray.
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Figure 7.8: Sets of even vertices affected through smoothing by either an even v or odd m
vertex.

The set R"~!(v) depends on the size of the smoothing stencil and whether v is even or odd
(cf. Figure 7.8). If the smoothing filter is 1-ring, e.g., Gaussian, then R*~!(v) = {v} if v is
even and R"™1(m) = {ve1,vea} if m is odd. If the smoothing filter is 2-ring, e.g., Taubin,
then R (v) = {v} U{vy, | 1 <m <k} if v is even and R (m) = {ve1, ve2, vp1,vp2} if v
is odd. Because of restriction, these vertices always exist. For v € V? and v/ € R" (v) we

let c(v,v") be the coefficient in the analysis stencil. Thus

(HsHW) = > cv,0)s' ().

v|v'€RI1(v)

This could be implemented by running over the v’ and each time computing the above
sum. Instead we use the dual implementation, iterate over all v, accumulating (+=) the right
amount to s’(v) for v/ € R*=1(v). In the case of a 2-ring Taubin smoother, the coefficients

are given by

) = (=) (@d =) +pr/6

clv,vp) = pA/6K
) = (- @A+ (1= N+ pA/3)/K
)

= pA/3K,

where for each c(v,v"), K is the degree of v'.

The algorithm first copies the old points s¢(v) for v € V** and i < [ into the storage
location for the detail. Then it propagates the incremental changes of the modified points

from level [ to the coarser levels and adds them to the old points (saved in the detail
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locations) to find the new points. Then it recomputes the detail vectors that depend on the

modified points.

We assume that before the edit, the old points s'(v) for v € V* were saved in the detail
locations. The algorithm starts out by building V*=! and saving the points s'~!(v) for
v € V*1in the detail locations. Then the changes resulting from the edit are propagated

to level 4 — 1. Finally, S s*~! is computed and used to update the detail vectors on level i.

LocalAnalysis (%)

Yo e V¥ W' € R (v) -
V*i—l U= {v/}
v'd[i — 1] = v'.sli — 1]
Yo e V¥ Vo' € R (v) -
v'.s[i — 1] += c(v,v') * (v.s[i] — v.d]i])
Yo e Vil .
v.d[i] = v.F(i)! * (v.s[i] — subd(v,i — 1))
Vm € N(v,i,1) :
m.d[i] = m.F(i)! * (m.s[i] — subd(m,i — 1))

Note that the odd points are actually computed twice. For the Loop scheme this is less
expensive than trying to compute a predicate to avoid this. For Butterfly type schemes this
is not true and one can avoid double computation by imposing an ordering on the triangles.

The top level code is straightforward:

LocalAnalysis

Vo € V¥ @ vd[l] == v.s[l]
for 7 :=1 downto 0

LocalAnalysis (i)

It is difficult to make incremental local analysis adaptive, as it is formulated purely in terms
of vertices. It is, however, possible to adaptively clean up the triangles affected by the edit

and (un)refine them if needed.
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7.2.5 Adaptive Rendering

The adaptive rendering algorithm decides which triangles will be drawn depending on the
rendering performance available and level of detail needed.

The algorithm uses a flag t.draw which is initialized to false, but set to true as soon
as the area corresponding to ¢ is drawn. This can happen either when ¢ itself gets drawn,
or when a set of its descendents, which cover ¢, is drawn. The top level algorithm loops
through the triangles starting from the level n — 1. A triangle is always responsible for

drawing its children, never itself, unless it is a coarsest-level triangle.

AdaptiveRender

for i =n—1 downto O
Vt € T : if not t.leaf then
Render(t)
Vt € TV : if not t.draw then

displaylist.append (t)

non linear edge

Figure 7.9: Adaptive rendering: On the left 6 triangles from level 7, one has a covered child
from level 7 + 1, and one has a T-vertex. On the right the result from applying Render to
all six.

The Render(t) routine decides whether the children of ¢ have to be drawn or not (cf.
Figure 7.9). It uses a function edist(m) which measures the distance between the point
corresponding to the edge’s middle vertex m, and the edge itself. In the case when any of
the children of ¢t are already drawn or any of its middle vertices are far enough from the
plane of the triangle, the routine will draw the rest of the children and set the draw flag for
all their vertices and ¢. It also might be necessary to draw a triangle if some of its middle
vertices are drawn because the triangle on the other side decided to draw its children. To

avoid cracks, the routine cut(t) will cut ¢ into 2, 3, or 4 triangles depending on how many
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middle vertices are drawn.

Render(t)

if (Jc € t.child| c.draw = true
or dm € tmid_vertex | edist(m) > ep) then
Ve e t.child :
if not c.draw then
displaylist.append c)
Yv € ¢ : v.draw = true
t.draw = true
else if Jm € t.mid _vertex | m.draw = true
Vt' € cut(t) : displaylist.append(t’)

t.draw := true

7.2.6 Data Structures and Code

The main data structure in our implementation is a forest of triangular quadtrees. Neigh-
borhood relations within a single quadtree can be resolved in the standard way by ascending
the tree to the least common parent when attempting to find the neighbor across a given
edge. Neighbor relations between adjacent trees are resolved explicitly at the level of a

collection of roots, i.e., triangles of a coarsest level graph.

Finding neighborhoods. One can observe that the algorithms described above rely on
a fast algorithm for finding neighborhoods of a set of vertices in the mesh (submeshes). An
obvious solution can be described recursively: find a neighborhood Ny, _1(Vp) of size m — 1;
for each vertex of v N,,,—1, insert all vertices of Ni(v) into N,,(Vy). This procedure requires
time which is quadratic in the size of the neighborhood. Complexity is even worse if we
use a representation of the mesh that does not allow us to determine if a triangle is already
in the mesh in constant time. In addition to improving speed, we would like to solve this

problem under several additional constraints:

e We avoid using markers associated with triangles to indicate whether a triangle is in

the submesh that we are constructing or not. We take this approach for two main
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reasons: it is useful to be able to maintain more than one submesh at the same time
and it is desirable to avoid an extra cleanup step, which would reset markers to zero

once the submesh is constructed.

e We would like to reduce as much as possible the number of searches for a 1-neighbor-
hood and the number of times we test if a triangle is in the submesh, as well as the

time required for each test.

In order to avoid markers we need a container that stores the triangles of the submesh

and allows fast iteration and fast tests for existence of a given element.

Our solution is to maintain an explicit representation of the boundary of a submesh.
In this way in order to extend N,,—1 to N,,, we have to iterate only over the boundary
which has average size proportional to /m. The size of the container is reduced, which also

decreases the time for non-constant time operations with the container.

The algorithm is based on the following function, which, given a vertex v on the bound-
ary, adds all triangles in Nj(v) to the submesh. The vertex is specified as a triple (T, e, v)
where T is a triangle already in submesh with edge e on the boundary, and v indicates

which of the two vertices of e we are using.

Variables used in the algorithm are shown in Figure 7.10.

The function takes as an argument the boundary of the old submesh B and adds edges to
the boundary of the new submesh Bnew. Containers representing boundaries are assumed
to have operations insert and erase. The algorithm uses functions Neighbor and link to

find neighbors and to create links to adjacent triangles.
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ExpandMesh( 7', e, v, B, Bnew)
prevTri:=T prevEdge:=e

Neighbor:=wv

currentTri := Neighbor(prevTri, prevEdge)

currentFdge:=edge of currentTri containing Neighbor which is not prevFEdge

while currentTri exists and ( currentTri, prevEdge) ¢ B
nextTri:= Neighbor( currentTri ,currentEdge)
nextEdge := edge of nextTri containing Neighbor which is not currentFEdge
if ( currentTri ,currentEdge) ¢ B then

link( prevTri, currentTri)
Brnew.erase(prevTri,prevEdge)
if nextTriexists and (nextTri, currentFdge) € B then
link(nextTri, currentTri)
Bnew.erase(next Tri,current Edge)
else
Bnew.insert( currentTri ,currentEdge)
endif
outerTri := Neighbor( currentTri ,outerEdge)
if outerTri exists and (outerTri , outerEdge) € B then
link( currentTri , outerTri)
Bnew.erase(outerTri ,outerEdge)
else
Bnew.insert( currentTri ,outerEdge)
endif
prevTri:= currentTri  prevEdge:= currentEdge
currentTri :=nextTri  currentBdge:= nextEdge

endwhile
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Figure 7.10: Notation of the function ExpandMesh.

We have used the C++ Standard Template Library implementation of sets based on red-
black tree which has log(m) time for search, insertion and deletion of elements to implement

containers for edges.

7.3 Results

In this section we show some example images to demonstrate various features of our system
and give performance measures.

Figure 7.11 shows two triangle mesh approximations of the Armadillo head and leg.
Approximately the same number of triangles are used for both adaptive and uniform meshes.
The meshes on the left were rendered uniformly, and the meshes on the right were rendered
adaptively. (See also color plate 7.13).

Locally changing threshold parameters can be used to resolve an area of interest partic-
ularly well, while leaving the rest of the mesh at a coarse level. An example of this “lens”
effect is demonstrated in Figure 7.12 around the right eye of the Mannequin head. (See also
color plate 7.14).

We have measured the performance of our code on two platforms: an Indigo R10000,
175MHz with Solid Impact graphics, and a PentiumPro@200MHz with an Intergraph In-
tense 3D board. We used the Armadillo head as a test case. It has approximately 172000

triangles on 6 levels of subdivision. Display list creation took 2 seconds on the SGI and
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Figure 7.11: On the left are two meshes which are uniformly subdivided and consist of
11k (upper) and 9k (lower) triangles. On the right another pair of meshes mesh with
approximately the same numbers of triangles. Upper and lower pairs of meshes are generated

from the same original data but the right meshes were optimized through suitable choice of
€s. See the color plates for a comparison between the two under shading.

3 seconds on the PC for the full model. We adjusted er so that both machines rendered
models at 5 frames per second. In the case of the SGI approximately 113,000 triangles were
rendered at that rate. On the PC we achieved 5 frames per second when the rendering

threshold had been raised enough so that an approximation consisting of 35000 polygons
was used.

The other important performance number is the time it takes to recompute and re-
render the region of the mesh which is changing as the user moves a set of control points.
This submesh is rendered in immediate mode, while the rest of the surface continues to be
rendered as a display list. Grabbing a submesh of 20-30 faces (a typical case) at level 0
added 250 mS of time per redraw, at level 1 it added 110 mS and at level 2 it added 30 mS

in case of the SGI. The corresponding timings for the PC were 500 mS, 200 mS and 60 mS
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respectively.

VAV
Ay

Figure 7.12: It is easy to change eg locally. Here a “lens” was applied to the right eye of
the Mannequin head with decreasing eg to force very fine resolution of the mesh around the
eye.
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Figure 7.14: Shaded rendering (OpenGL) of the meshes in Figure 7.12.
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Chapter 8 Conclusions and Future Work

8.1 Summary

8.1.1 Subdivision Theory

In Chapters 2 and 3 we develop a foundation for analysis of general subdivision schemes.
Our results extend and put into a common context most previously known results on C*-
continuity of stationary subdivision surfaces.

We prove necessary and sufficient conditions for tangent plane continuity and C'-
continuity of subdivision. Omne of the important observations we can make is that for
almost any Cl-continuous subdivision scheme a small generic perturbation of the coeffi-
cients of the scheme near an extraordinary vertex will not destroy Cl-continuity, as long as
the coefficients for each subdivision rule sum up to 1.

We establish necessary and sufficient conditions for C*-continuity of subdivision surfaces,
relating C*-continuity and reproduction of certain polynomials in a parameterization given
by the characteristic map. These conditions show that requirements for C'* schemes are quite
different from C! schemes: unless the surface is flat, a small perturbation of coefficients is
likely to destroy C'-continuity. Our results demonstrate both the potential and limitations
of stationary subdivision methods: while C*-subdivision schemes can be constructed for
k > 2, the support of the schemes is likely to be large.

In Chapters 4 and 5 we establish explicit estimates on convergence rates of subdivision
along with constructive sufficient conditions for C'-continuity and used them to develop
algorithms for verification of C'-continuity. We implement these algorithms using interval
arithmetic, which allows us to prove C''-continuity for all valences simulataneously, and for

parametric families of subdivision schemes.

8.1.2  Multiresolution Editing

We have built a scalable system for interactive multiresolution editing of arbitrary topology

meshes. The user can either start from scratch or from a given fine detail mesh with
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subdivision connectivity. We use smooth subdivision combined with details at each level as
a uniform surface representation across scales and argue that this forms a natural connection
between fine polygonal meshes and patches. Interactivity is obtained by building both local
and adaptive variants of the basic analysis, synthesis, and rendering algorithms, which rely
on fast lazy evaluation and tree pruning. The system allows interactive manipulation of
meshes on a variety of hardware, with rendering quality adapting to the available resources

while maintaining acceptable frame rates.

8.2 Future Work

8.2.1 Subdivision

It is immediately obvious how to extend our constructions in several directions.

Different topological rules. We have considered only schemes defined using the simplest
topological subdivision rule; schemes using different types of topological rules are also of
considerable interest. A topological rule for a stationary scheme is typically based on a
tiling of a plane that admits a refinement procedure that produces a similar tiling from the
original one. If we would like to use a tiling consisting of identical regular polygons, only few
cases are possible: triangular tiling (this is the tiling that we were using), quadrilateral and
hexagonal tiling. It does not make a lot of sense to consider refinements that create more
than 4 polygons per each polygon of the initial tiling. If we restrict ourselves to regular
tilings and dyadic refinements, not that many topological rules are possible. Excluding
rather arcane, but possible case of honeycomb refinement, we have 3 main cases: midpoint
refinement of triangular and quadrilateral grids and dual refinement of the quadrilateral
grid (Doo-Sabin-type rule), as shown in Figure 8.1.

In each case we can reduce the scheme to an equivalent scheme defined on simplicial
complexes as explained in Appendix A. However, while this is acceptable for theoretical
purposes, analysis of specific schemes would be more difficult than it is necessary if we adopt
this approach. Instead, we might develop a similar formalism for each refinment type.

Generalization of our formalism to the refinement of quadrilaterals of Catmull-Clark
type is straightforward: vertices of refined complexes still form a hierarchy of nested sets;

one case can be reduced to the other by splitting each quadrilateral into two. The only
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Catmull-Clark-type rule Doo-Sabin-type rule honeycomb refinement

Figure 8.1: Several different topological rules on regular grids and near an extraordinary
vertex of valence 7.
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difference between these cases is the number of symmetries in the group of automorphisms
of regular complexes, and hence the number of constraints on symmetric schemes.
Doo-Sabin-type schemes are different from triangle-based schemes in a more fundamen-
tal way. The vertices of the refined complexes do not form a hierarchy, but the polygons

do. Thus it would be more natural to define neighborhoods on the dual complexes.

Boundary case. All derivations in Chapter 3 were performed for an extraordinary vertex
in the interior of the surface. The same methods can be used to consider the vertices on the
boundary; although Schweitzer [59] applied Reif’s conditions to vertices on the boundary, a
careful theoretical analysis was never performed in that case. In the case of C* continuity,
the fact that the classifications of singularities of smooth functions are different for the

boundary case suggests that there might be subtle differences in the conditions.

Convergence estimates in the general case. In Chapter 4 we made some simplifying
assumptions on factorizations of Laurent polynomials in our derivations of convergence esti-
mates. Convergence estimates using matrix schemes can be derived without these additional

assumptions.

Better convergence estimates. As already mentioned in Section 6.3, the estimates
that we have obtained for schemes with negative coefficients are unnecessarily pessimistic.
A simple way to improve these estimates is to subtract suitably chosen closed-form functions
that the scheme is known to reproduce (quadratic in the simplest case) from the coordinate
control points and perform the estimates only on the residual term. It is likely that some

improvement can be achieved for most schemes.

Single ring schemes. A more difficult problem that appears to be within close reach
is sufficiently complete description (in terms of coefficients) of all possible C''-continuous
symmetric single ring schemes based either on a triangular or quadrilateral topological rule.
Such a description would allow us to search for small-support schemes satisfying certain
requirements.

While the polynomial degree estimate leads to the conclusion that C*-continuous poly-
nomial schemes have large support, it does not require all other schemes to have large

support. Intuitively, it appears that polynomial schemes have maximal smoothness among
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all schemes with given support. A proof of this fact in the one-dimensional case can be
found in [6]. We are not aware of a proof in the two-dimensional case; a theorem like this
would finally answer the question of the minimal possible support for a C? scheme.

Limitations of stationary subdivision make it desirable to extend the theory to some
classes of non-stationary schemes. However, in the case of non-stationary schemes, smooth-
ness analysis alone is unlikely to be sufficient. The remarkable fact that CF-continuity of
subdivision surfaces is related to polynomial reproduction also leads to a particular depen-
dence between global (fairness) and local (smoothness) properties. It is unlikely to be the
case for most non-stationary schemes, so it might be necessary to consider fairness directly.

All smoothness criteria that we have described reduce verification of smoothness of all
surfaces generated by a subdivision rule to verification of certain properties of the eigenbasis
functions. The eigenbasis functions are still defined as a limit of the subdivision process; in
some important cases we found a way to verify the properties of the limit function using
a sufficiently close linear approximation. It would be desirable to have sufficiently general
smoothness criteria formulated entirely in terms of the coefficients of the scheme (0-th linear

approximation).

8.2.2  Multiresolution Representations and Editing

There are several avenues for future research:

Multiresolution transforms readily connect with compression. We want to be able to

store the models in a compressed format and use progressive transmission.

e Features such as creases, corners, and tension controls can easily be added into our

system and expand the users’ editing toolbox.

e Presently no real time fairing techniques, which lead to higher quality coarse levels,

exist.

e In our system coarse level edits can only be made by dragging coarse level vertices.
The locations of the vertices control the on coarse levels cannot be controlled directly.
Ideally the user should be able to dynamically choose control points and their areas

of influence (direct manipulation).
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e The system allows topological edits on the coarsest level. Algorithms that allow

topological edits on all levels are needed.

e An important area of research relevant for this work is generation of meshes with
subdivision connectivity from scanned data or from existing models in other repre-

sentations.
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Appendix A Reduction of Subdivision of
Polyhedra to Subdivision of Complexes

In this thesis we have considered schemes defined on simplicial complexes; most theoretical
constructions and algorithms are more transparent for this type of schemes. For a variety
of reasons some of the popular types of schemes are defined on general polyhedral meshes
(Catmull-Clark, Doo-Sabin). With minor modifications, constructions of Chapter 2 also
apply to these schemes. Rather than redoing all derivations for each type of refinement
rules, we can show that schemes using these refinement rules are equivalent to other schemes
defined on simplicial complexes. This can be achieved using tagged complexes.

The goal of this reduction is not to propose a new way to implement Catmull-Clark or
Doo-Sabin subdivision, but to demonstrate that the theoretical results of Chapter 3 equally
apply to schemes of other types. To simplify the exposition, we assume that all polyhedra

are closed.

Catmull-Clark refinement. Refinement rules of this type can be defined on polyhedra
in the same way as we defined refinement of simplicial complexes. In addition to inserting
vertices in the middle of each edge, we also insert a vertex at the barycenter of each polygonal
face. For any subdivision scheme using subdivision rules of this type defined on a polyhedron
P, we construct a subdivision scheme defined on a suitably simplicial complex X (P), which
produces the same limit surfaces.

Subdivide a polyhedron P once to obtain P; after this, no extraordinary vertices are
adjacent, all faces of the subdivided complex are quadrilateral, and each face has no more
than two extraordinary vertices. Consider one of the quadrilaterals (v1, ve,vs,v4). Suppose
v1 is extraordinary. If the quadrilateral has two extraordinary vertices, the other can be
only v3. We split the quadrilateral along the diagonal (vg,v4) into two triangles; as a result,
we obtain a simplicial complex X(P). In addition, we tag all edges of the resulting simplicial
complex X(P) that are also edges of P!. The process is shown in Figure A.1.

Finally, we define a rule to propagate the tags from X(P) to D(X(P)). Note that each
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Figure A.1: Reducing refinement rules of the Catmull-Clark scheme to simplicial complex
refinement.

triangle in Y (P) has exactly two tagged edges. a new edge of the refined complex D(3(P))
(we use simplicial refinement defined in Chapter 2) is tagged if it connects a midpoint of a
tagged edge with the midpoint of an edge that is not tagged.

Now the standard Catmull-Clark rules [5] (vertex, edge and face rule) are used as follows:
the vertex rule is used to compute the values p/T1(v) at vertices v € V7, the edge rules are
used to compute midpoints of tagged edges, and the face rule is used to compute the
midpoint of edges that are not tagged.

We define the set of admissible isomorphisms G as the set of all isomorphisms that
map tagged edges to tagged edges; it is easy to show that it satisfies our requirements for
admissible sets (Section 2.2.1) and that the simplicial complex equivalent of the Catmull-

Clark scheme is G-invariant and stationary.

Doo-Sabin scheme. Because the refinement of the type used by the Doo-Sabin scheme
removes vertices from the polyhedron, it is more difficult to reduce it to simplicial refinement.
We show how to reduce it to the Catmull-Clark refinement with vertex tags. Then it can
be reduced to simplicial refinement using edge tags as above.

Note that defining the domain for Doo-Sabin surfaces is less straightforward than for
simplicial refinement or Catmull-Clark refinement. One possible way of doing this is to in-
troduce additional vertices into the polyhedra generated by the scheme. For each polygonal
face, we add the center of the face and connect it to all vertices of the face (Figure A.2a).
Then we eliminate all the edges of the original polyhedron, retaining only the edges intro-
duced on the previous level (Figure A.2a). Initially we tag all centers. Then we propagate

vertex tags as shown in the figure.
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Figure A.2: Reducing refinement rules of the Doo-Sabin scheme to the Catmull-Clark re-
finement. a. The original polyhedron. b. One step of the Doo-Sabin subdivision. c. The
original polyhedron with the centers of the faces added. d. The polyhedron subdivided
using the Catmull-Clark refinement, with the edges of the polyhedron obtained using Doo-
Sabin refinement (b) shown as dashed lines. e. The polyhedron converted to a simplicial
complex. The picture in the center shows how vertex tags are propagated. Each quadrilat-
eral has two tagged vertices; in the subdivided quadrilateral all old vertices are tagged, all
new vertices are not tagged.

The new mesh can be subdivided using the Catmull-Clark refinement. Note that all
tagged vertices always correspond to the centers of the faces of polyhedra that we would
obtain using the Doo-Sabin refinement.

Clearly, the values at the centers on subdivision level j + 1 can be computed from the
values on level j. These formulas give us vertex rules for tagged and untagged vertices; the
rule for tagged vertices is the rule for centers of faces on level j+ 1 that correspond to faces
of level j; the rule for untagged vertices is the rule for centers of faces that correspond to
new faces on level j+ 1 created for vertices. The vertex rules are derived from the formulas
for the centers of new faces. The edge rules are the standard Doo-Sabin rules. The tagged
vertex (exactly one vertex of each edge is tagged) is used to determine which values to use

in the rule.
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Appendix B Classification of Quasihomogeneous

Polynomials

The conditions provided by Lemmas 3.16 and 3.20 are not explicit in one aspect: they use
implicitly defined sets of polynomials P(p,q). If a set P(p,q) consists of more than one
polynomial, it is possible to enumerate all polynomials in this set as points on a line with a
rational slope in the Newton plane. It would be of some interest however, to find classes of
polynomials that can be reduced to each other with suitable coordinate transformations.

Polynomials in these sets play an important role in singularity theory. In this section
we will briefly touch on the subject; the nature of the relation between quasihomogeneous
functions and eigenbasis functions of subdivision requires further study.

First we make the connection between functions satisfying scaling relations and quasi-

homogeneous functions explicit.

Definition B.1. A function satisfying relation

SO, AEE6) = Af(61.82) (B.1)

where q1 + g2 = 1, is called quasihomogeneous function of degree 1 with exponents q1,

q2-

It is clear that whenever the set P(p,q) is not spanned by one monomial, there is a
non-zero pair of integers p1, ps such that A*X5? = 1. Therefore, all scaling factors in the
corresponding relation can be expressed in terms of M)A, resulting in the relation of the
type (B.1). The exponents g; and g2 in this case will be positive and rational, which means
that any smooth quasihomogeneous function satisfying (B.1) has to be a polynomial.

Thus, the set of quasihomogeneous functions with given positive rational exponents is
exactly one of the sets P(p,q).

With each monomial of a quasihomogeneous polynomial, we can associate a pair of

integer points in the plane, similar to the way it was done in Figure 3.12.
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All such points (4,j) are on the line ¢17 + g2j = 1. Monomials corresponding to these
points are called diagonal. Monomials below the line are called lower; monomials above the
line are called upper.

An important quantity characterizing quasihomogeneous functions is intrinsic modality.
To define intrinsic modality, we first define the local algebra of a quasihomogeneous function
f. This algebra is the factor algebra of all formal power series with respect to the ideal
generated by the partial derivatives of f.

The local algebra has a basis of monomials, and the number of upper, lower and diagonal
monomials in the basis does not depend on the choice of the basis.

The intrinsic or inner modality is the number of upper and diagonal monomials of any
basis of the local algebra. There is a simple geometric method for calculating modality on
the exponent plane.

Any quasihomogeneous polynomial of given type can be represented in the form fy +
> crex, where fp is a fixed quasihomogeneous polynomial of the same type, ej are diagonal
monomials of the basis of the local algebra and c; are some coefficients.

The sets P(p, q) can be specified by presenting the diagonal monomials of the basis of
the local algebra and one quasihomogeneous polynomial with given exponents.

The equivalence of quasihomogeneous functions is given by the group of quasihomoge-
neous diffeomorphisms. The classification of the quasihomogeneous functions of intrinsic
modality 0 up to equivalence is particularly simple: all such functions are listed in the table

below (up to renaming of variables):

Type | Normal Form | ¢ q2
Ay azFtl 4 byl | k41 %
Dy | az?y+bytt | 22 2
Eg az® + by* % %
Er az® + bry? % %
Eg az® + by’ % %

The same five classes occur in various classifications, such as classifications of simple Lie
algebras, braid groups and regular polyhedra.

Many references to the singularity theory literature can be found in Arnold [1].
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rate, 156
convergent, 40
crease, 147, 225
definition, 30
derivative, 143, 145
difference, 131, 154
Doo-Sabin, see Doo-Sabin scheme
finitely supported, 31
Haar, 129
invariant, 182
conditions for C''-continuity, 187
with respect to a set of isomorphisms,
182
Laurent polynomial, 141
locally defined, 32
Loop, 161, see Loop scheme
matrix, 142, 149, 260
Modified Butterfly, see Modified But-

terfly scheme



modified Butterfly, 161
nonstationary, 261
piecewise constant, 129, 139, 156
single ring, 189, 260
stationary, 47
stencil, 189
tangent plane continuity, 77
sufficient conditions, 88, 91
support size, 31
surface
C'-continuous, 63, 64
self-intersections, 63
singular parameterization, 72
tangent plane continuous, 67
tangent plane continuous in RP, 69
synthesis, 238
adaptive, 241
local, 244

tangent plane continuity, 67

criterion, 83, 87

necessary condition, 92

of universal surface, 76
tangent plane continuity in R?, 69
Taubin’s smoothing, 233, 236, 247
tension, 147

tension parameter, 147, 225

universal surface
definition, 76

reparameterization, 76

vector

279
normal, 100

tangent, 100

wedge product, 67
winding number, 137, 187

computation, 137



