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ABSTRACT

One toxic effect of hyperbaric oxygen (HBO) exposure is tonic-clonic seizures.

To assess the association between seizure onset, mean arterial pressure (MAP) and

cerebral blood flow (CBF), male Yorkshire swine were chronically instrumented to

measure those parameters during exposure to 3, 4, 5 or 6 atmosphere absolute (ATA) on

100% oxygen. Seizure latency differed significantly as a function of pressure (P < 0.05).

The increase in MAP and CBF correlated with seizure latency and multiple regression

analysis demonstrated that MAP and CBF jointly predict seizure latency. These results

demonstrate that a measurable increase in MAP and CBF may be a useful predictive tool,

which may improve the safety of diving operations and clinical treatments requiring

HBO.



INTRODUCTION

One risk of breathing pure oxygen, especially at elevated pressures, is the

development of central nervous system (CNS) toxicity, including the onset of generalized

tonic clonic seizures. Professionals involved in diving operations are often required to

utilize 100% oxygen in a closed-circuit breathing apparatus. Hyperbaric oxygen (HBO)-

induced seizures in an open environment are potentially fatal. The risk of such seizures

has imposed exposure limits of 15.2 meters for 10 min in military diving operations. In

addition to diving operations, HBO is a treatment modality for a number of clinical

conditions, including carbon monoxide poisoning, decompression sickness and lower

extremity wound care (2). Developing a method to prevent or predict seizures would

enhance the safety of all situations that require HBO exposures.

The exact mechanism for HBO-induced CNS toxicity is not completely

understood, but an elevated partial pressure of oxygen in the brain is one possible

explanation (4, 22, 23). Evidence from the literature indicates that, in the rodent,

increases in mean arterial pressure (MAP) and cerebral blood flow (CBF) precede the

seizure event and may actually serve to predict seizure onset (8, 12, 18). Similarly,

regional increases in CBF appear to occur prior to the onset of electrical seizure activity

in non-HBO human seizure studies (1, 3). Despite evidence for such changes in the

rodent, it is unknown whether such changes occur and may be predictive in a large

animal model. Such a model would be useful for future mechanistic studies of HBO-

induced CNS toxicity.
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The present study was conducted to determine whether a large animal model

could be used to investigate mechanisms of HBO-induced CNS toxicity. Specifically, we

sought to develop a swine model with the goal of evaluating the relationship between

MAP and CBF as possible predictors of CNS oxygen toxicity.

METHODS

All experiments reported here were approved by the Naval Medical Research

Center Institutional Animal Care and Use Committee and were conducted according to

the principles set forth in the Guide for the Care and Use of Laboratory Animals, Institute

of Laboratory Animal Resources, National Research Council, National Academy Press,

1996.

Surgery

Male Yorkshire swine (n = 68, 19.0 + 1.8 Kg) were sedated with ketamine HCl

(Ketaject: 100 mg/ml, Phoenix Pharmaceutical, Inc., St. Joseph, MO) at 30 mg/kg and

given atropine sulfate (1/120 grain, Phoenix Pharmaceutical, Inc., St. Joseph, MO) at 0.4

mg/kg, i.m. to prevent excessive salivation. General anesthesia was induced with

acepromazine (1.5 mg/kg, i.v.) and 5% sodium pentothal (7.5 mg/kg, i.v.) through an

aural vein catheter. The surgical plane of anesthesia was maintained through bolus doses

of 5% sodium pentothal (2.5 mg/kg) based on movement and the presence of a palpebral

reflex. Swine were intubated with an endotracheal tube and permitted to breath

spontaneously during the surgical procedure. They were arranged on a circulating warm

water bath blanket connected to a heating pad for body temperature maintenance; the

temperature was monitored throughout the procedure with a rectal thermistor probe.
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Lactated-Ringers solution (-50 ml/hr) was administered intravenously over the course of

the surgery. All surgeries were performed using sterile technique.

Catheterization of the femoral artery was achieved using the purse-string

technique, which was developed in-house (Forcino and Clark, unpublished data). Briefly,

an 8 cm incision was made through the skin above and parallel to the femoral artery,

beginning distally from the femoral triangle. The muscle planes and surrounding

connective tissue were separated and 4 cm of the artery was isolated. A silk suture was

used to perform 3-4 mm insertions diagonally in a diamond pattern in the tunica media

portion of the vessel wall. A small incision was made in the center of the diamond and 8

cm of the tygon catheter (I.D. = 0.254 cm, O.D.= .229 cm) filled with heparizined saline

(1000 U/ml) was placed in the vessel; the distal and proximal ends were occluded by silk

suture. The tygon catheter was fitted with a tygon tubing sheath at 9 cm (I.D.- 0.254 cm,

O.D.= 0.457 cm) and secured with silk suture. The purse-string was pulled tightly and

tied down to close the vessel wall around the catheter; the suture was secured around the

sheath. The catheter was anchored several times in the surrounding muscle and fascia

and then run subcutaneously to an exit incision on the back using a trocar. Common

suture techniques completed the procedure. The swine was fitted with a pocketed vest

that covered the back incision and secured the exposed portion of the catheter.

The incision for placing the ultrasonic Doppler (USD) flow probe was 7 cm long,

2 cm anterior to the angle of the mandible and 1.5 cm lateral to the midline over the right

common carotid. After isolating the bifurcation of the common carotid and ligating the

external carotid, a 3.5 mm diameter, 20 MHz, USD hard epoxy cuff probe (Harvard

Apparatus, Holliston MA) was placed around the common carotid 1 cm proximal to the



bifurcation. It was tied in with silk suture threaded through holes in the cuff lip and used

to estimate internal carotid flow. The probe was anchored to muscle and fascia and the

leads were run subcutaneously to a 1 cm incision on the back using a trocar. The tissues

were closed as described above for the femoral artery catheterization, with the

externalized portions of the leads secured in the vest pocket.

Post Surgery

Animals were administered 0.2 ml Prednisolone (50 mg/ml, i.m.) immediately

following surgery and at 22 h and 30 h post surgery. The femoral artery catheter was

evacuated twice daily, and the line was filled with 1,000 U/ml heparin. Rectal

temperature, heart rate, respiration rate, and body mass were measured each day for at

least 2 and at most 3 days. In addition, swine were monitored to confirm weight bearing

and locomotion in all four limbs and checked for differing skin temperatures between

hind feet to ensure that blood flow to the hind limb was not compromised.

Swine were housed singly in a cage, fed standard pig chow at 2% of body mass

per day to maintain a gradual weight increase. Water was provided ad libitum, and all

animals were maintained on a 12 h light/dark cycle. To prepare the animal for HBO

exposure, each one was placed in a modified Panepinto sling (Charles River,

Wilmington, MA) and fitted with a hood bearing a neoprene neck dam through which

either air or oxygen could be supplied. Each animal was then positioned inside the

controlled hyperbaric chamber (Maine Technologies, Inc. Hatfield, PA), and the chamber

was flushed with air for 10 min to simulate the sound during chamber compression. To

confirm that the flow probe was measuring a change in CBF, all animals underwent a

carbon dioxide (C0 2) challenge one day prior to the exposure, and changes in CBF were
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evaluated. Animals not demonstrating any change were eliminated from the CBF portion

of the study.

HBO Exposure

Animals were connected to an electroencephalograph (Model 8-10 Grass

Instruments, West Warwick, RI), USD flow monitor, and Gould P23 pressure transducer

(Cleveland, OH) on the day of the exposure. Once inside the hyperbaric chamber, swine

were monitored for a 10 min control period on air at 1 atmosphere absolute (ATA).

Following the control period, the chamber was pressurized to 3, 4, 5, or 6 ATA on air.

After a 10 min period of equilibration in hyperbaria on air, the breathing medium was

switched to 100% oxygen, and the swine were observed for signs and symptoms of CNS

oxygen toxicity. Animals that did not seize after 100 min of exposure, or those that were

brought up early for technical difficulties, were eliminated from the study (n=5).

Instrumentation/Data Collection/Statistical Analyses

Analogue signals for CBF, MAP, 02, and CO 2 were filtered and displayed through

a custom data acquisition system. Briefly, the voltage signal from each instrument

(pressure transducer, ultrasonic Doppler, oxygen and carbon dioxide meter) was routed

through an analogue to digital (A/D) converter (ATMIO-16L9, National Instrument

Company, Austin, TX) to a 386DX IBM compatible PC to convert the voltage output to a

digital signal. Each instrument's voltage signal was calibrated with a known quantity to

determine actual numerical value measured. The data were recorded at 10Hz in a binary

format, which was converted into a raw data file and averaged into 2-second intervals

following completion of data recording. All results are expressed as mean ± 1 SD.

Differences between groups were analyzed using a Kruskal Wallis or Mann-Whitney

6



Test, as appropriate, and a Bonferroni correction test was employed for multiple

comparisons. In addition, a correlation z-test was performed to determine the correlation

between the first increase of both MAP and CBF to seizure latency. Finally, multiple

regression techniques were used to determine predictive value of CBF and MAP on

seizure latency, and an F-test was used to determine significance of nested models.

RESULTS

Of the 68 animals used in the study, we successfully measured the responses of

MAP and CBF from 55 and 55 animals, respectively, and 49 animals had both successful

MAP and CBF measured concurrently.

Explanations for responses not obtained included: occluded catheter, lack of

response to CO2 challenge, post surgical infection, and mechanical apparatus failure.

The characteristic response of one swine at 6 ATA on 100% oxygen is presented

in Figure 1. Surface control measurements were taken for 10 min prior to compression

(C). During compression and equilibration (E), MAP fell below the surface control

value. After switching to oxygen (0), MAP was maintained at a constant level for about

10 min, but then slowly increased beyond surface control values prior to seizure (S).

CBF initially decreased upon oxygen exposure and then increased beyond surface control

values prior to seizure.

The times to seizure at the various exposures, as determined by observation and

electroencephalographic (EEG) discharges ranged from 73.6 ± 20.5 min (n=8), 27.7 +

12.9 min (n=19), 18.7 ± 8.2 min (n=19), and 15.3 ± 5.0 min (n=17) for the 3, 4, 5 and 6

ATA exposures, respectively. There was a significant difference in seizure latency
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between 4 and 5 ATA (P < 0.05, Bonferroni multiple comparison test) and between 3 and

4 ATA (P < 0.05), but no difference in latency between 5 and 6 ATA.

To determine the time to the first increase in MAP and CBF, the upper 95%

confidence intervals (CI) were calculated from surface control measurements taken prior

to exposure (time prior to compression or "C") as shown in Figure 1. The upper 95% CI

were then compared to averages of 2 min intervals during the experimental period. When

the mean of the 2 min window differed significantly from the upper 95% CI of the

surface control measurement, an increase in both MAP and CBF were considered to have

occurred. There was a significant difference between the time to the first increase among

the 4 groups, with MAP at 3 ATA significantly higher than all other pressures (P < 0.05).

No significant differences between the times to first increase were noted for the 4, 5, and

6 ATA exposures (Figure 2A). Similar results were seen for the time to first increase in

CBF; the time for the 3 ATA exposure was significantly higher (P < 0.05) than all other

pressures (Figure 2B). Figures 2A and 2B depict the relationship between time to first

increase and seizure latency, with actual time for both MAP and CBF listed in Table 1.

Correlations between the time to first increase in CBF and MAP and seizure

latency were examined. Figure 3A shows the association between the first increase of

MAP and seizure latency, and Figure 3B presents the pattern for CBF. A Cox

proportional hazard regression model, including the animals that did not seize after 100

min at 3 ATA, suggested that ambient pressure, time to first increase in MAP and CBF

were important variables that explained the seizure latency (P < 0.05, n = 54). To predict

the seizure latency, a multiple regression model was developed, combining ambient
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pressure and the time to first increase in MAP and CBF as independent variables and

seizure latency as a dependent variable. The best regression model was:

Seizure Latency = MAP ° 0.449 + CBF - 0.528 - Pamb ° 54.7 + Parnmb ° 5.11

(r2=0.906, n = 49), and predicted seizure latency with an absolute difference of 4.8 min

(Figure 4).

DISCUSSION

One of the hallmarks of HBO-induced seizures, as well as some experimental

seizure models, is an increase in CBF prior to seizure. Chavko et al. (8) demonstrated a

significant correlation (r = 0.8, P<0.01) between the time of seizure and the time of CBF

increase in a rat HBO exposure model. Artificially ventilated rats also demonstrated a

similar pattern at 5 ATA 100% oxygen, wherein the time of increase in CBF strongly

correlated with seizure onset (12). Prior to this study, larger animals had not been studied

under HBO conditions, and it was important to determine if the correlation seen in

rodents between time of seizure and the time of CBF increase could be detected. If so,

changes in CBF may be used as a predictor variable during HBO exposures to prevent

seizures. Swine have well-recognized anatomic and physiological similarity to humans,

and their utility in biomedical research models has been well recognized (19). In recent

years they have been used successfully to study a variety of diving-related conditions (7,

17) and have been used as a model to study seizures (21). They are common domestic

animals, and the use of matched littermate pairs from a closed breeding colony reduces

genetic variability. These facts, combined with their ease of handling, make them very
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useful in hyperbaric experimentation. Unlike previous rodent models, methods to

adequately measure CBF in awake, unanesthetized swine were limited. This model

utilized ultrasonic Doppler as a measure of CBF velocity. Studies using ultrasonographic

imaging and pulsed doppler in exercising men demonstrated that increases in CBF

velocity, measured in the ipsilateral middle cerebral artery, were similar to changes in

flow in both the internal carotid artery and the common carotid artery (11), suggesting

that our measurement of internal carotid artery flow is similar to changes in CBF

velocity.

Our study confirmed that the correlation between time of seizure and time of CBF

increase is distinct in a large animal model, demonstrating that an increase in the CBF is

a predictive indicator of seizure onset (Fig. 3B and 4). Consequently, this first CBF

increase, ranging from 49 min at 3 ATA to 7 min at 6 ATA, allows sufficient time to

decrease exposure and prevent a CNS event. The difference between time to first

increase of CBF at 3 ATA compared with 4, 5, or 6 ATA is merely a reflection of the

increased time to seizure and still reflects the overall 31-43% of seizure latency.

The increase in blood flow prior to seizure also has been noted in a variety of

other seizure models. For example, Pentylenetertrazol (PTZ) as well as kainic acid (KA)

seizure models show an increase in blood flow prior to seizure (14, 24). In humans,

regional CBF appears to increase several minutes prior to the onset of epileptic temporal

lobe electrical discharges (1, 3). Our study replicates the pattern of initial CBF decrease

immediately upon HBO exposure followed by an increase beyond control levels as seen

in rodent models (8, 10).
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In addition to CBF changes, we demonstrated a possible predictive value between

the first increase in MAP and seizure latency (Fig. 3A). Again, the increase in 3 ATA

time to first increase of MAP compared to 4, 5, or 6 ATA reflects the increase in overall

time to seizure at 3 ATA. Moreover, the results of this study indicate that MAP is the

least variable of these two physiological variables: it reliably predicted time to seizure at

57-61% of seizure latency, regardless of pressure, allowing sufficient notification time

ranging from 29 min at 3 ATA and 7 min at 6 ATA. Rats exposed to 5 ATA and 100%

oxygen displayed a similar pattern of continuously rising MAP until time to seizure (8,

12). Torbati et al. (23) also showed that blood pressure in rats increased during exposure

to HBO (5 and 7 ATA), with maximum blood pressure occurring a few minutes before

the first electrical discharge. MAP was increased 120% over control in ventilated rats 20

min after exposure to 5 ATA, with an average seizure latency of 37 min (18). In a non-

seizure HBO exposure, MAP and systolic blood pressure increased significantly above

control in rats exposed to 4.9 ATA for 1 h (5). A similar increase in MAP was noted

prior to the onset of seizure in the PTZ seizure model (15). Thus, MAP, as noted for

CBF, appears to be a reliable marker for an impending seizure. However, it is not clear if

neural damage occurred prior to the first increase in MAP or CBF and it would be

important that future studies determined if damage is absent before or just after this

increase if this method is to be useful.

The mechanisms whereby alterations in CBF and MAP are induced remain

unknown, although it is possible that MAP may be responsible for the increase in CBF.

Prior to seizure onset MAP exceeded the autoregulatory range of CBF (50-150 mmHg) in

some swine, and this could account for the vasodilation of the cerebral vasculature. An
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association between increasing MAP and alterations in CBF in some seizure models has

led to the suggestion that a loss of autoregulation may be important (9, 12, 16). However,

in our study, the first increase of CBF often preceded the increase in MAP.

One of the primary factors responsible for mediating CBF is nitric oxide (NO).

Inhibition of NO synthesis during hyperbaric 02 exposure increased the time to first

seizure in rats (13). Pre-treating rats with L-NAME, a competitive nitric oxide synthase

(NOS) inhibitor in HBO and some KA seizure models, has resulted in decreased CBF

and increased seizure latency as compared to controls (8, 20). Several studies suggest an

HBO-induced increase in NO production. Demchenko et al. (10) demonstrated that NO

production increased as a result of HBO exposure, and Bernareggi et al. (6) found

inducible NOS in plasma leakage of the rat trachea following exposure to HBO. Yet,

others have found a timely increase in NO metabolite production that was related to the

increase in CBF prior to HBO seizure in rats (18). Oury et al. (13) suggested several

possible mechanisms by which NO could contribute to CNS oxygen toxicity. One

possibility is that NO works as a vasodilatory and increased levels of NO reverse the

vasoconstrictor effect of 02, increasing brain oxygenation (13). Thus, prevention of NO-

induced vasodilatation could prevent the increase in CBF associated with seizures. This

is consistent with the data from this study where there was an initial decrease in the CBF

and a slight increase in the MAP after the gas switch from air to 02 (Fig. 1), indicative of

cerebral vasoconstriction. The subsequent increase in both MAP and CBF prior to the

seizure suggests vasodilation of the cerebral vasculature that increases the oxygenation.

Regardless of the mechanism by which CBF and MAP may affect seizure latency,

these results clearly demonstrate that both parameters increase prior to the onset of
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seizure. Regression analysis indicated that these parameters, together with the ambient

pressure, can adequately predict seizure latency. Our study demonstrates that seizure

latency was predicted with an absolute difference of 4.8 min. The changes in the

physiological patterns for CBF and MAP during exposure to 100% oxygen may serve as

reliable indicators of CNS toxicity. The developments of a non-invasive means to assess

oxygen toxicity would reduce the probability of a CNS seizure during operational diving

and enhance the safety of operations that require breathing 100% oxygen. In addition,

such a physiological marker would allow for more aggressive uses of HBO in the

treatment of decompression sickness and various clinical HBO applications.
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Table 1. Minutes of notification prior to seizure latency for swine exposed to 3, 4, 5 and

6 ATA oxygen. Data expressed in mean ± SD.

Pressure MAP CBF
(atm abs) (min) (min)

3 29.0 ± 19.2 49.1 ± 22.7
4 11.1 6.8 18.4 ± 11.1
5 8.0 6.0 11.4 8.5
6 6.5 ± 3.8 8.3 ± 4.7

16


