
REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply
with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

14-12-2005
2. REPORT TYPE

Final Report
3. DATES COVERED (From – To)

01-Dec-00 - 01-Dec-05

5a. CONTRACT NUMBER
ISTC Registration No: 1993p

5b. GRANT NUMBER

4. TITLE AND SUBTITLE

Mathematical Basis of Knowledge Discovery and Autonomous Intelligent
Architectures

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5d. TASK NUMBER

6. AUTHOR(S)

Dr. Vladimir I Gorodetsky

5e. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
St. Petersburg Institute For Informatics & Automation of the Russian Academy of
Sciences
39, 14th Liniya
St. Petersburg 199178
Russia

8. PERFORMING ORGANIZATION
 REPORT NUMBER

N/A

10. SPONSOR/MONITOR’S ACRONYM(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

EOARD
PSC 802 BOX 14
FPO 09499-0014

11. SPONSOR/MONITOR’S REPORT NUMBER(S)

ISTC 00-7031-1

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

Global awareness (GA) entails the acquisition of data from local to global levels, appropriate fusing of the data, and presentation of that data
as useful information. This data will then be fused to fully describe situations of interest such as large transportation systems and complex
communication systems. This project specifically aims at developing the mathematical basis, architecture and software techniques
implementing particular new technologies to support Global Awareness and comprises six main tasks. Task 1 was:
 1. Autonomous Information Collection and Knowledge Discovery from Data (KDD) Techniques and Software Prototype for Knowledge-Based
Data Fusion; including addendums on “Multi-agent Information Fusion for Situation Assessment and Prediction: Architecture, Case Study and
Software Prototype", “Multi-agent Information Fusion for Situation Assessment and Prediction: Process Flow– and Data with Missing Value-
based On-line Situation Assessment Update”;” Multi-agent Technology for Airspace Deconfliction".

15. SUBJECT TERMS
EOARD, Mathematical And Computer Sciences, Computer Programming and Software

16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE PERSON
PAUL LOSIEWICZ, Ph. D.
 a. REPORT

UNCLAS
b. ABSTRACT

UNCLAS
c. THIS PAGE

UNCLAS

17. LIMITATION OF
ABSTRACT

UL

18, NUMBER
OF PAGES

40 19b. TELEPHONE NUMBER (Include area code)

+44 20 7514 4474

 Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39-18

Project Manager
Head of Intelligent Systems

Laboratory of SPIIRAS
Ph.D. Professor
V.I. Gorodetsky

St. Petersburg
November 2005

Project #1993 P
Task 1: Autonomous Information Collection, Knowledge Discovery

Techniques and Software Tool Prototype for Knowledge-Based
Data Fusion

Addendum 3: Multi-agent Technology for Airspace Deconfliction
Final Report

EUROPEAN OFFICE OF AEROSPACE
RESEARCH AND DEVELOPMENT

(EOARD)

ST. PETERSBURG INSTITUTE
FOR INFORMATICS AND AUTOMATION

(SPIIRAS)

Mathematical Basis of Knowledge Discovery and
Autonomous Intelligent Architectures

SPIIRAS

 1

St. Petersburg
November 2005

Project # 1993P
Mathematical Basis of Knowledge Discovery and

Autonomous Intelligent Architectures

Task 1. Autonomous Information Collection, Knowledge Discovery
Techniques and Software Tool Prototype for Knowledge-Based
Data Fusion

Addendum 3: Multi-agent Technology for Airspace Deconfliction

Final Report

EUROPEAN OFFICE OF AEROSPACE
RESEARCH AND DEVELOPMENT

(EOARD)

ST. PETERSBURG INSTITUTE
FOR INFORMATICS AND

AUTOMATION

SPIIRAS

Project Manager
Head of Intelligent System Laboratory
of the St. Petersburg Institute for Informatics
and Automation

Professor Vladimir I.Gorodetsky,
Doctor of Sciences (Tech), Ph. D.

 2

Table of Content

Preface 4
Report summary 5
Chapter 1. Airspace Deconfliction Domain and Problem Analysis 7

1.1. Topology of Airport Vicinity Airspace 7
1.2. Modeling Assumptions and Simplifications 8
1.3. Typical Scenario of Airspace Deconfliction 10
1.4. Airliner Behavior Specification 11
1.5. Admissible Plans and Conflicts 12
1.6. Conceptual Problem Statement 12
1.7. Conclusion on Chapter 1 12

Chapter 2. Meta–level Design Project of Multi-agent Airspace Deconfliction System 13
2.1. Airspace Deconfliction Scenario Specification 13

2.1.1 Scenario knowledge base 13
2.1.2. Deconfliction Algorithm 15
2.1.3. Deconfliction Algorithm in Case of Hijacked Airliner Course Change 18

2.2. Roles of Multi-agent Airspace Deconfliction System 18
2.2.1. Role: Pilot Assistant 18
2.2.2. Role: Resource Manager 18
2.2.3. Role: Dispatcher Assistant 18

2.3. Meta–model of Multi-agent Airspace Deconfliction System 18
2.4. Formal Specification of the Protocols 20

2.4.1. NHA_protocol 20
2.4.2. JSV_protocol 20
2.4.3. CRO_protocol 21
2.4.4. CR_protocol 21
2.4.5. DC_protocol 22
2.4.6. CRR_protocol 22
2.4.7. SA_protocol 22

2.5. Conclusion on Chapter 2 23
Chapter 3. Formal Specification of Agent Behavior 24

3.1. PA_agent agent class 24
3.1.1. Behavior Meta–Model 24
3.1.2. PA_agent Agent Class Service Specification 25

3.2. RM_agent agent class 27
3.2.1. Behavior Meta–Model 27
3.2.2. RM_agent Agent Class Service Specification 28

3.3. D_agent agent class 31
3.3.1. Behavior Meta–Model 31
3.3.2. DA_agent Agent Class Service Specification 31

 3

3.4. Conclusion on Chapter 3 32
Chapter 4. Simulation Results: Validation of Deconfliction Algorithm 33

4.1. Software Prototype: Simplified Implementation 33
4.2. Software Prototype Interface 36

Conclusion 37
References 39

 4

Preface

This Report is final one on Addendum 3 to the Task#1 ("Multi-agent Information Fusion for Situation
Assessment and Prediction: Architecture, Case Study and Software Prototype") of the Project 1993P
("Mathematical Basis of Knowledge Discovery and Autonomous Intelligent Architectures"). The
Addendum entitled "Multi-agent Technology for Airspace Deconfliction" is scheduled for Q19–Q20 of
the research on the main project.
As compared with the previous research on this Project, which was mostly of fundamental character,
the research assumed by Addendum 3 is application–oriented. The main motivation behind it is to
apply theoretical results of the main Project (multi-agent technology and its use within knowledge–
based information fusion for situation assessment) in particular class of application that is airspace
deconfliction within homeland security scenario.
Airspace deconfliction within a homeland security scenario is a typical component of many more
general important problems associated with situation assessment and prediction intended to provide air
traffic security and reliability. Indeed, airspace deconfliction issues the challenges peculiar to many air
traffic control applications. Examples of such challenging issues are algorithms for detection and
resolution of potential conflicts among objects moving in a bounded space; methods and scenarios of
their realization; providing grounded decomposition and coordination of the local solutions; generic
distributed architectures specifically designed for solving large scale planning, scheduling and
resource allocation; real time control intended for adaptation of air traffic to unexpected changes in the
airspace environment, etc. Typical nature and high practical importance of the airspace deconfliction
task is the major motivation behind the scope of the research on this Addendum.
Addendum is focused on investigation and detailed development of a multi-agent architecture for
airspace deconfliction within a homeland security scenario. Existing experience proved that multi-
agent framework provides well grounded methodologies, architectures and technologies specifically
designated for design and implementation of large scale distributed systems operating in unpredictable
environment. That is why this framework is potentially capable to well cope with the task in question.
The Addendum 3 objective is development of mathematical model of the airspace deconfliction
system in question and detailed design its multi-agent architecture projected onto software
implementation of the latter in the future. The research also assumes analysis of admissible
simplifications of the task statement. Development and justification of these simplifications is also a
subject of this research.
Three main tasks compose the Addendum 3 scope:
1. Analysis of admissible simplifications and development of the airspace deconfliction task statement.
2. Conceptual analysis of the task, its decomposition and development of the mathematical model of
the task. This assumes development of a typical scenario(s) of the airspace deconfliction;
decomposition of the task, and development the model of its distributed solving.
3. Development of detailed multi-agent architecture of airspace deconfliction system, its formal
specification, as well as detailed formal specification of the target system components.
Although development of any software was not assumed by the Work Plan of the Addendum 3, it was
decided to additionally develop small software prototype that would demonstrate feasibility of the
basic algorithmic ideas of airspace deconfliction and verify their correctness and efficiency.
The research results that cover all the tasks scheduled for Addendum 3 form the content of this Report.

Principal Investigator of the Task#2 of the Project 1993P
Head of Intelligent System Laboratory

of the St. Petersburg Institute for Informatics and Automation

Prof. Gorodetsky, Vladimir
Ph.D., Doctor of Tech. Sciences

 5

Report Summary

The Project objective is development of mathematical model of the airspace deconfliction system in question and
detailed design its multi-agent architecture projected onto software implementation of the latter in the future. The
research also assumes analysis of admissible simplifications of the task statement. Development and justification
of these simplifications is also a subject of this research. Thus, the main tasks of the Addendum 3 are as follows:
1. Analysis of admissible simplifications and development of the airspace deconfliction task statement.
2. Conceptual analysis of the task as a whole, its decomposition and development of the mathematical model of
the task. This assumes development of a typical scenario(s) of the airspace deconfliction, decomposition of the
task, and development of a model of its distributed solving.
3. Development of detailed multi-agent architecture of airspace deconfliction system, its formal specification, as
well as detailed formal specification of the target system components.
Respectively, Chapter 1 considers conceptual aspects of the airspace deconfliction task within homeland security
scenario. It analyses typical structuring of the airport airspace determining all admissible trajectories of landing
and take–off of airliners, formulate rules determining use of this airspace according to existing regulations of air
traffic control in the vicinity of an airport. An example of the developed abstract airport airspace structure is
further used as a case study for verification and validation of the basic ideas of the airspace deconfliction. The
second important issue considered in this Chapter is justification of basic assumptions and problem statement
simplifications that are reasonable at the current stage of the research on the problem in question. The
assumptions and simplifications used in this research are needed to understand the essence and nature of main
challenges peculiar to airspace deconfliction problem. The third issue of conceptual level highlighted in this
Chapter is description of the used deconfliction task typical scenario that intends for development of grounded
decomposition of this task, discovery of the main roles of the entities participating in solving of the airspace
deconfliction task and their functionalities as well as character of the above entities interaction in distributed
problem solving. This scenario is further used as a basis for the whole task decomposition and its formal
specification in terms of multi-agent architecture. In general, this Chapter forms conceptual basis for the main
solutions developed in regard to the design and implementation issues of multi-agent airspace deconfliction
system.
Chapter 2 introduces the main algorithmic and design solutions concerning the project of a multi-agent airspace
deconfliction system at meta–level. It proposes formal specification of the airport airspace structure in terms of
so-called Scenario Knowledge Base framework developed by the research authors and justify the main
advantages of its use within the application in question. Actual state of Scenario knowledge base represents
jointly formal specification of the airport airspace structure and operation of airliners (both "normal" and
hijacked ones). Within such representation of the constraints imposed by the structuring of airspace and rules of
air traffic control this formal specification is done in terms of Scenario knowledge base whereas dynamics of
admissible airliners' movement is determined as a result of specifically developed inference mechanism. Using
the above formal specifications of the airport airspace structure and movement of airliners, an algorithm of
airspace deconfliction is described. This algorithm was developed specifically for distributed solution of the
deconfliction task while assuming that it is implemented within multi-agent framework. While using conceptual
solutions outlined in Chapter 1 and formal structure of the airport airspace representation and reasoning within it,
a meta-model of multi-agent airspace deconfliction system is designed. It specifies formally meta-model
formalizing the roles of entities participating in airspace deconfliction, protocols of their interaction with
emphasis on type of messages which they exchange with, and also assignment of the discovered roles to agents
classes. This design and designed formal specification of the meta–model of the multi-agent airspace
deconfliction system is done according to the worldwide known Gaia methodology supported by MASDK 3.0
software tool, Multi-agent System Development Kit, implementing the above methodology in graphical style.
Chapter 3 continues in depth development of the design project of multi-agent airspace deconfliction system. It
starts from the formally specified meta–model of the system in question (see Chapter 2) and then design in depth
the services to be provided by each agent class performing the assigned roles. These specifications determine
agent classes behavior in terms of the list of services provided by each agent, their functionalities and algorithms
implementing services (like it is assumed by Gaia methodology). Formal specification of services is done in
terms of state machines. Materials described in Chapter 2 and Chapter 3 present complete implementation–
oriented design project of a multi-agent airspace deconfliction system that is the main objective of the research
on Addendum 3. Design of the multi-agent system in question is carried out with support of graphical means of
MASDK 3.0 software tool.

 6

Chapter 4 outlines simple software prototype designed for verification and validation of the airspace
deconfliction algorithm and graphical representation of the results in real–time mode.
Conclusion summarize shortly the main Addendum results

 7

Chapter 1. Airspace Deconfliction Domain and Problem Analysis
Abstract. This Chapter considers conceptual aspects of the airspace deconfliction task within
homeland security scenario. It analyses typical structuring of the airport airspace determining all
admissible trajectories of landing and take–off of airliners, formulate rules determining use of this
airspace according to existing regulations of air traffic control in the vicinity of an airport. An
example of the abstract airport airspace structure developed is further used as a case study for
verification and validation of the basic ideas of the airspace deconfliction. The second important
issue considered in this Chapter is justification of basic assumptions and problem statement
simplifications that are reasonable at the current stage of the research on the problem in question.
The assumptions and simplifications used in this research are needed to understand the essence
and nature of main challenges peculiar to airspace deconfliction problem. The third issue of
conceptual level highlighted in this Chapter is description of the used deconfliction task typical
scenario that intends for development of grounded decomposition of this task, discovery of the
main roles of the entities participating in solving of the airspace deconfliction and their
functionalities as well as character of the above entities interaction in distributed problem solving.
This scenario is further used as a basis for the whole task decomposition and its formal
specification in terms of multi-agent architecture. In general, this Chapter forms conceptual basis
for the main solutions developed in regard to the design and implementation of the multi-agent
airspace deconfliction system.

1.1. Topology of Airport Vicinity Airspace
A topology of an airport area space described below corresponds to an abstract airport, which, on the
one hand, is intended for demonstration of the basic notions, used in the Project, components of the
airspace and their structuring, and, on the other hand, this topology is used below in the case study
developed for demonstration of the airspace deconfliction algorithms implemented within a software
prototype. This demonstrational topology was developed based on the study of the topologies of the

Approaching
area

Vicinity area

Waiting area

Outer airspace

4
2 3

5

1

6

8
7

9 19

18 17

16

13

15

20

23

21 22

24

25

26

33

28

27

32

34

31

30
29

10

11

12

14

35 36

Fig.1.1. An example illustrating the airspace structure (topology) in surroundings of an Airport

Part of the landing orbit or approaching
corridor (not echeloned)

Waiting circle (echeloned)

Landing strip

Corridors of the waiting area
(echeloned)

 8

Moscow airports [Moscow], airport "Pulkovo" [Pulkovo]1 in St. Petersburg (Russia) and also based on
consultation provided by experts from St. Petersburg University of Civilian Aviation (Russia).
Materials of the Report [Report 97] were also carefully studied and used in development of a typical
airport airspace structure.
Within the surroundings of an airport (within airport area, for short) three types of areas are
discerned:

1. Vicinity of the airport;
2. Approaching area and
3. Airport waiting area

Airport vicinity area comprises (a) one or several landing strips, (b) one or several landing orbits for
each landing strip. Landing orbit is understood as part of trajectory from approaching area leading
directly or through a circle to landing strip. Landing and taking off may be organized in two opposite
directions, but during a fixed period of the airport operation both of them, landing and taking off, are
mandatory carried out only along one of the admissible directions. Correspondingly, during the
aforementioned period, all normal landing and taking off airliners have to move along landing strips
and landing orbits in the same direction.
Approaching area comprises several routs (corridors) connecting waiting area with landing orbits.
Each of these paths begins in a fixed exit point of the waiting area and ends in the fixed entry point of
a landing orbit. A corridor is a part of 3D space specified as a rectangular "pipe" within the 3D space
having fixed height, length and width. The form of corridor "pipe" is determined by of the form of
"pipe" central line having given 3D coordinates of its begin and end.
Airport waiting area comprises several waiting zones (corridors, waiting circles). Each of these zones
may be entered through one or more entry points admitted by the waiting area topology. Airport
waiting area zone can be entered either from the outer airspace, or from the approaching area. Each
corridor of the waiting area is determined in 3D space in the same way as corridor of approaching
area. Maximal and minimal heights of each corridor of the waiting area are constant along the central
line (i.e. these corridors are assumed horizontal). The corridors along which the normal airliners can
move within waiting area are predefined (this is not the case for hijacked airliner). Some of the zones
of the waiting area can be assigned orbits along which airliners may move during waiting. While
moving from one zone of waiting area to another one, an airliner can change the echelon with the
neighbor one, either upper or lower.
An abstract example illustrating the aforementioned notions describing airspace topology in an airport
area is given in Fig.1.1.

1.2. Modeling Assumptions and Simplifications

Modeling Assumptions

1. Movement of airliners in the outer space is not considered.
2. The airliners arrive from outer airspace to the airspace of the airport area through given entry points

(from fixed sectors of directions).
3. Airport has two landing strips (runways) with one landing orbit per landing strip.
4. An airliner entered into landing orbit has finally either to land or leave landing orbit through a

permitted corridor of the approaching area.
5. An airliner entered into an approaching path has to enter in the landing orbit or in the landing strip.
6. An airliner entered into landing orbit has either to land or leave it using a corridor of approaching

area.

1 Both mentioned web sites are presented in Russian.

 9

7. An airliner entered into a corridor of the waiting area may either wait along a waiting orbit of a
fixed echelon, or transit into neighbor echelon of the upper or lower corridor, or transit into other
corridor, or transit in permitted entry point of the approaching area.

8. Only one airliner may be situated in each particular corridor, waiting orbit, landing orbit and on
landing strip (runway).

9. Approaching corridors or landing orbits are not echeloned, i.e. can be occupied by only one airliner.
10. If a corridor or an orbit is occupied by an airliner, it is prohibited for transition of another airliner.

It is assumed that topology of the airport area is organized in such a way that the last condition
guarantees that airliner minimal separation standards are met, thus providing safety.

11. Fuel content of each airliner including hijacked one is given in terms of time it can fly safely.
12. Hijacked airliner (HA) can follow along any trajectory.
13. Distances to the closest neighbor airports are known and presented in terms of time needed to

approach them. These airports are operating in normal mode and can be used at any time.

Modeling Simplifications

1. All airliners including hijacked one have the same constant velocity and rate of climb capabilities.
2. Each corridor, waiting and landing orbit in the airport area airspace is assigned a time interval an

airliner spends while moving from its entry point to exit one. This simplification is implied by the
previous one.

3. The hijacked airliner can move along any path and at any height and does not agree its movement
with the air traffic dispatcher, but in airspace deconfliction it is assumed that in the future the
hijacked airliner will be moving rectilinearly and uniformly.

4. Each corridor and orbit are determined by coordinates of entry and exit points of its central line.
5. The prohibited area around the hijacked airliner which normal airliners have to leave as soon as

possible is determined as follows: the space within the rectangular tube of given horizontal and
vertical sizes (e.g. 10 miles and 500 m. respectively) and situated ahead of hijacked airliner up to
fixed length (for example, the length of 10 miles).

6. Transition of a normal airliner from its current position (state, node) to other ones is forbidden if the
target position:
• is occupied currently by other airliner;
• is overlapping with the prohibited area;
• is forbidden by the airport area topology; (see, for example, Fig.1).

7. Planning, scheduling, plan performance, etc. are event-driven.
8. As events, the following facts are considered in the airspace deconfliction model:

a. Receiving of information about hijacked airliner by normal airliners (from dispatcher);
b. Receiving of information by normal airliners (from dispatcher) about changing of hijacked

airliner course.
c. Transition of a normal airliner in new corridor, new waiting or landing orbit, etc. like this (to

reflect this information in representation of current situation;
d. Appearance of a new normal airliner in the airport area;
e. Disappearance of a normal airliner from the airport area (due to landing or transition in the outer

space).
g. disappearance of the hijacked airliner (independently of the reason)

9. Time interval needed for agents providing pilots with airspace deconfliction assistance is negligibly
small in comparison with the time between events implying re-planning of airspace deconfliction.

10. Hijacked airliner is not aware of positions and courses of other airliners operating within airport
area.

 10

1.3. Typical Scenario of Airspace Deconfliction
Airspace deconfliction (deconfliction planning, scheduling and performance) starts when an event
indicating the fact that an airliner within airport area is hijacked. This event arrives to normal airliners
from the air traffic dispatcher. The task is completed if (a) all the normal airliners are landed or left the
airport area airspace; or (2) hijacked airliner disappeared in a way.
Airspace deconfliction task is solved according to the following scenario.
1. Dispatcher is (first of all but not only) responsible for notification of all the airliners operating

within airport airspace area about appearance of a hijacked airliner. This notification is sent to all
"normal" airliners operating in the airport airspace. Along with the fact of hijacking, dispatcher
sends to all "normal" airliners information about (1) positions of all "normal" airliners and
currently being executed plans of "normal" airliner represented in terms of sequences of corridors,
waiting and landing circles, etc. assigned the times of entering into and exit out of each
aforementioned components of airliner's route; (2) current position and velocity course of the
hijacked airliner and also sends (3) information about zones of airport topology to be occupied by
hijacked airliners during computed time intervals. These zones are further considered as forbidden
for use by normal airliners during the corresponding time intervals. These zones and time intervals
are computed by dispatcher according to information about the trajectory of hijacked airliner and
existing separation standards for such case. Communication of air traffic dispatcher and pilots of
"normal" airliners is performed according to a protocol called below NHA–protocol, Notification
about Hijacked Airliner protocol.

When the notification about hijacking and associated information has arrived to "normal" airliners, the
deconfliction task solution is initiated. It is solved with minimal intervention of the air traffic
dispatcher. This task is solved via collaboration of pilot using corresponding software. Pilots solve this
task via negotiations with each other and with some external entity according to several protocols
conceptually outlined below.
2. While having information about (1) airport airspace topology (see Fig.1.1), (2) position and course

of the hijacked airliner and (3) current positions of each normal airliner, as well as (4) information
about aforementioned forbidden zones mapped time intervals, each pilot (in fact, an assisting
software agent)computes several his own best admissible routs resulting in achievement of the
airliner goal and selects one of them (as a rule, the most preferable route selected according to a
criterion). When selection of the preferable route is done, each pilot requests to reserve "resources"
(sequence of corridors, waiting and landing circles, etc.) needed to realize the selected route. Along
with each requested resource composing the route sequence, particular pilot indicates the real time
interval when each resource composing the route is needed to be reserved. The requests of all pilots
are sent to the special software program called Resource Manager which is considered as resource
owner. Although it is not located on any "normal" airliner, this software is not a mean of dispatcher
as well. Here it is not important where and at which computer this agent is located. At this stage,
interaction of pilots and Resource management agent is performed according to JSV_protocol –
Joint Schedule Verification protocol.

3. When the resource requests are collected from all pilots, Resource Manager determines the set of
"conflicts" and the list of the pilots (airliners) involved in each of them. A "conflict" is understood
as potential violation of one or several rules of regulation determining the safety policy of airliners
behavior within the airport airspace area including the necessity to avoid going through the
forbidden zones during given time intervals. Resource Manager analyzes the conflicts and,
according to set of rules, selects one of them that has to be resolved first of all and informs the
corresponding pilots about this solution according to Conflict Resolution Ordering protocol.

4. The set of assistants of the pilots whose airliners are conflicting for a resource within given time
interval negotiate to resolve potential conflicts according to Conflict Resolution protocol, CR-
protocol. This protocol is most important and at the same time it is most complicate.

Sub-scenarios 3 and 4 are repeated to resolve all the conflicts.

 11

5. The schedules of airliners' coordinated behaviors resulting from the above procedures (resulting
from repeatable performance of sub-scenarios 3–4) are then forwarded to the responsible dispatcher
for verification and approval. Schedule verification is realized by dispatcher through fast
simulation. The results of verification (approval or rejection indicating "weak places" of the
developed coordinated schedule) are then forwarded to the pilots. This task and associated agent
interactions are performed according to DC_protocol - Deconfliction Completion protocol.

6. After joint schedule approval (if any) is received, the normal airliners are carrying out the developed
(and approved) plan according to the developed (and approved) schedule autonomously, while
informing dispatcher and each other (according to an event-driven agent interaction protocol) about
the events associated with the behavior of the normal airliners. These events indicate the facts of
entering into and exit out of a corridor, echelon, waiting or landing circle thus supporting the global
situational awareness of all airliner pilots (assistants of the pilots), dispatcher an Resource manager
trough their software assistants. This information exchange is supported by Situational Awareness
protocol, SA-protocol.

7. Plan and schedule of the deconfliction task are re-designed if (a) an event informing about new
course (and position) of the hijacked airliner has arrived. When such information is received by
dispatcher, he cancels the previously resource reservations according to CRR_protocol - Clear
Resource Reservations protocol and the airspace deconfliction task is solved again; and (b) if the
airliner plans are not approved by dispatcher..

1.4. Airliner Behavior Specification
Each "normal" airliner has to move in the airport airspace according to a plan that guarantees
avoidance of "conflicts" with other airliners (including hijacked one) through meeting separation
standards at any time. Plan can be represented as a sequence of (echeloned) corridors, waiting circles,
landing circles, etc. mapped time interval lasting from the time of entrance to and till the time of exit
out of the corresponding component of the airport airspace topology. In this Addendum, each
aforementioned component of the airspace is considered as a resource, which, during any time point,
may be used only by a single airliner. An example given below in Fig.1.2 represents a plan of an
airliner behavior that is moving from the corridor 1 to the corridor 16. (The latter corresponds to the
landing strip, see Fig.1.1.)

Thus, while knowing coordinates of each resource, it is possible to compute the airliner coordinates

in airport airspace at any time point to the error of its deviation from the central corridor line. Let us
recall that the coordinates of a corridor central line are known as well as the coordinates of entry and
exit points of this corridor.

The trajectory of movement of the hijacked airliner is represented by its coordinates, course and
velocity at the moment when the fact of hijacking is detected. According to the simplifications (see
section 1.2) the rout of the hijacked airliner can be computed by using liner equations as follows:

00

00

00

)(*

)(*
)(*

zttVz

yttVy
xttVx

z

y

x

+−=

+−=
+−=

,

Time 7:30 7:55

Corridor 1

8:20

Corridor 21

8:45

Corridor 20

9:32

Corridor 12

9:46

Corridor 16

(Landing strip)

Fig.1.2. Formal specification of an airliner behavior (trajectories along the airport airspace structure)

 12

where xV , yV , zV denote the components of the airliner velocity, 0x , 0y , 0z – coordinates of the

airliner at the beginning time point, 0t –time of the hijacked airliner detection and t –current time.
Thus, while knowing the trajectory of the hijacked airliner and coordinates of every resources of the
airport airspace, it is easy to compute which resources and during which time intervals will be
occupied or intersected by the hijacked airliner. The latter added information about separation
standards assumed for this case makes it possible to compute time intervals when the resources are
forbidden for use by "normal" airliners.

1.5. Admissible Plans and Conflicts
"Conflict" between two or more airliners moving along with corridors of airport airspace structure

is understood as the fact when either two or more airliners occupy the same corridor during the
overlapping time intervals or separation standards are broken. A plan of an airliner is admissible if it
has no conflict with any airliner including hijacked one.

The set of airliners plans are admissible if they have no conflicts.

1.6. Conceptual Problem Statement
Goal of the airspace deconfliction task within the airport airspace is to provide either (a) safe landing
or (b) leaving the airport area by normal airliners provided that all of the leaving airliners have enough
fuel to land in an other airport independently of trajectory of hijacked airliner. Criterion basis of the
aforementioned task has to provide resolving of an airspace deconfliction problem as fast as possible
while taking into account fuel capacity of each normal airliner, meeting the minimal airliner separation
standards and safety policy described above and with minimal intervention of the dispatcher into
airspace deconfliction task solving. This task should be entrusted to the software assisting the pilots of
"normal" airliners themselves.

Airspace deconfliction task (planning, scheduling and schedule execution) is initiated by an event
informing the participating entities about appearance of a hijacked airliner within airport airspace (or
in its vicinity). This event is issued by air traffic dispatcher responsible for safe landing and take-off of
airliners within the airport airspace. The airspace deconfliction task is completed when all
aforementioned airliners either (1) have landed, or (2) have left airport airspace, or (3) the hijacked
airliner has disappeared according to any reason.

1.7. Conclusion on Chapter 1
The main results of this Chapter are as follows:
1. Development of an abstract but typical structure of an airport airspace that is then used as a case
study for justification of the main conceptual and design solutions concerning multi-agent airspace
deconfliction system.
2. Development and justification of the main assumptions and simplifications of the airspace
deconfliction problem that, nevertheless, preserve the main peculiarities of the task in question.
3. Development of a typical scenario of airspace deconfliction task within homeland security scenario
that determines basic entities, their roles and coordination in distributed solving of the task.
4. Development of the conceptual statement of the airspace deconfliction problem.

 13

Chapter 2. Meta-level Design Project of Multi-agent Airspace Deconfliction
System

Abstract. This Chapter introduces the main algorithmic and design solutions concerning the
project of a multi-agent airspace deconfliction system at meta–level. It proposes formal
specification of the airport airspace structure in terms of so-called Scenario Knowledge Base
framework developed by the research authors. Actual state of Scenario knowledge Base represents
jointly formal specification of the airport airspace structure and operation of airliners (both
"normal" and hijacked ones). Within such representation of the constraints imposed by the
structuring of airspace and rules of air traffic control specification is done in terms of Scenario
Knowledge Base whereas dynamics of admissible airliners' movement is specified in terms of
specifically developed inference mechanism. Using the above formal specifications of the airport
airspace structure and movement of airliners, an algorithm of airspace deconfliction is described.
This algorithm was developed specifically for distributed solution of the deconfliction task, while
assuming that it is implemented within multi-agent framework. While using conceptual solutions
outlined in Chapter 1 and formal structure of the airport airspace representation and reasoning
within it, a meta-model of multi-agent airspace deconfliction system is designed. It specifies
formally meta-model that formalizes the roles of entities participating in airspace deconfliction,
protocols of their interaction with emphasis on type of messages which they exchange with, and
also assignment of the discovered roles to agents classes. This design and designed formal
specification of the meta–model of the multi-agent airspace deconfliction system is done according
to the worldwide known Gaia methodology supported by MASDK 3.0 software tool, Multi-agent
System Development Kit, implementing the above methodology in graphical style.

2.1. Airspace Deconfliction Scenario Specification
Let us first specify formally the structure of the airport airspace,
determine constraints imposed by the above structure and decide
how, in general, the airliners could plan their own safe movement.
Fig.1.1 illustrates how the airport airspace is structured and thus the
fist task of the design is formal specification of the above structure.
As a formal framework used for formal specification of the airport
airspace structure, Scenario knowledge base framework proposed in
[FinRep-2005] is used. Let us outline the airport airspace structure in
terms of scenario knowledge base framework.

2.1.1 Scenario knowledge base
Scenario Knowledge base (SKB) is used in this Addendum for
formal specification of the constraints imposed by the rules
determining constraints implied by the existing airport airspace
structure and thus determining admissible trajectories of the airliners
in "normal" situations. It is important to note that this SKB ignores
potential conflicts between airliners that may occur if at least a
couple of airliners finds out in the same element of the airport
airspace topology (structure). Resolving of such conflict is a separate task to be solved according to a
special algorithm. This algorithm takes into account initial airliners configuration1 and temporal
aspects of its evolution. Thus, structure of the airport airspace is specified by SKB determining
admissible trajectories of airliners (have in mind analogy with railway tracks) whereas airliners
configuration at given time instant determines positions of all airliners at this time instant (have in
mind analogy with positions of the trains on railway track network at a given time instant).

1 Airliners configuration at a time point is understood as the set of positions in terms of airport airspace

structure elements (corridors, waiting circle, etc.) of the airliners operating within airport airspace at this time
point.

Action

Input data (state), initial
data (entry point of a

corridor, etc.)

Fig.2.1. Graphical representation
of a Simple Behavior Model

Precondition

Result (exit point of a
corridor, etc.)

 14

Let us recall [FinRep-2005] that the basic notion of the SKB framework is Simple Behavior Model that
is constituted by the following elements:
1. Input state, or, what is the same in its essence, input data; in the task in question this notion

corresponds to an element of the airspace structure (corridor, landing circle, etc.) interpreted as a
resource to be used by an airliner;

2. Precondition, which determines admissibility of the resource usage; it could be formalized as a set
of rules, a set of formulae of the first order logic, etc. Within the airspace deconfliction task
aprecondition is true if (a) the corresponding resource is not blocked (is free for use) at the entry
time and during the time of its usage; and (2) the entering airliner possesses the needed fuel
capacity in a trajectory achieving the final goal if the airliner uses this resource. Let us note that the
element "precondition" is intended for taking into account the availability of the "resource" during
a time interval what is determined by airliners configuration at given time moment and its
evolution during some time interval;

3. Action that is movement of an airliner along this element of the airport airspace structure from an
entry point to corresponding exit one.

4. Result, or, what is the same, output of action; like "input data" result corresponds to the position of
an airliner achieved by it as a result of the above action; for example, a result could be achievement
of the entry point of an element of the airport airspace structure.

Depending on application, the listed elements of the Simple Behavior Model may conceptually be
interpreted in other ways. In this Report, the aforementioned interpretations are used.
Scenario knowledge Base consists of a structured set of Simple Behavior Models, at that structuring is
made via identifying and uniting the same states (entry points of the corridors). In the developed SKB
software tool, this procedure is carried out automatically by means of the software tool. An example of
SKB corresponding to the airport airspace structure given in Fig.1.1 is presented in Fig.2.2.
One of the basic tasks to be solved in the airspace deconfliction problem that uses SKB formal model
is search (inference) for scenarios possessing some specific properties, for example, leading from an
entry point of an element of the airport airspace structure to the exit point of other such element. The
developed SKB software tool is provided with several variants of inferences, i.e.:
 "Top–down" inference ("forward chaining"); it starts from the known position ("state") of an

airliner at the starting time point. (Let us note that hijacked airliner may be situated out of the
airport airspace structure.) Additional data have to determine the truth values of the preconditions
in time. This specification determines formally the constraints (achievability of that or this corridor
and admissibility of their usage depending on whether each corridor is occupied or free of use
during given time interval or, at least, during a part of the above time interval). "Top–down"
inference is capable to determine all admissible paths (sequences of actions) and sequences of
achievable states (entry points of the elements of the airport airspace structure) for given initial
configuration of airliners and truth values of preconditions during some time intervals. It is
important to note that if an airliner use "top–down" inference to plan its trajectory independently of
the plans of other airliners, conflicts may occur. Such conflict should be resolved by a particular
algorithm (this algorithm is described conceptually in the next section). Thus, "top–down"
inference ("forward chaining") results in computation of all the admissible sequences of the airport
airspace structure elements (corridors, waiting circles, etc.) leading from given position ("state") of
an airliner through intermediate ones to achievable ones (intermediate positions are also
achievable). It is important to note that only some of the achievable positions may correspond to
the desired ones forming the set of airliner goals. Therefore, "top–down" inference may result in
redundant set of achievable positions.

"Top–down" inference is organized as a step by step procedure. Let us denote the set of positions
obtained from the state 0X at the step k (i.e. by using no more than k inference steps) as

),(0 kXD-TopX .

 15

 "Bottom–up" inference ("backward chaining"); this type of inference starts from a goal (target, or
desired position of an airliner within the airport airspace structure) or from a set of such desired
positions to be achieved. It is also performed step by step. At every step, it determines a set of
positions from which the target position (or a set of desired positions) is achievable, while taking
into account the airport airspace structure represented in terms of SKB and truth value of
preconditions of actions to be carried out along the path to the desired positions. At the first step,
"bottom–up" inference determines the set of the airliner positions from which the desired set is
achievable, while using no more than one action. At the k-th step, it determines the set of airliner
positions, from which the desired positions are achievable, while using no more than k actions. Let
us denote this set as),(kX d

Up-BX , where dX is a desired position of airliner. If several positions

united into a set dX are desired then the set),(kdXX Up-B corresponds to the set of positions
inferred by k-step "bottom–up" procedure. The latter is interpreted as the set of starting airliner
positions from which the desired set dX of airliner position is achievable, while using no more
than k actions.

 Combined inference alternating "top–down" and "bottom–up" steps (each of them may be used as
first). This inference consists in joint use of "top–down" (starting from the initial airliners position)
and "bottom–up" (starting from the set of desired positions) inferences. This inference may lead to
the situations when either),(0 kXX D-Top ⊂),(kdXX Up-B , or),(kdXX Up-B ⊂),(0 kXX D-Top .
In both situations, the basic steps of combined inference are completed and at final step only the
trajectories that pass through the positions which set is determined as),(0 kX dX,X Int =

=),(0 kXD-TopX ∩),(kdXX Up-B . Further details of the final step of combined inference are
omitted here, because it may be organized in several ways, which need to be validated through
simulations.

Thus, use of SKB formalization of the airport structure specification and a variant of inference
(combined inference is preferable because it is more efficient) make it possible to generate the
sequences of admissible trajectories (sequences of actions, i.e. transitions). These formal models
together with the deconfliction algorithms and interaction protocols of distributed entities involved in
the airspace deconfliction task (pilots' software, dispatcher's software and resource manager's
software) establish a foundation for multi-agent airspace deconfliction system designed below.

2.1.2. Deconfliction Algorithm
Below the developed and partially implemented (for verification and validation purposes) airspace
deconfliction algorithm is described in semi-algorithmic manned. Some aspects associated with its
multi-agent implementation are omitted here. This very important aspect is described below in the
sections devoted to the design of the agent interaction protocols.
Input data:

 1A , 2A ,..., NA – N "normal" airliners operating within the airport airspace;

 0t –value of the time at which the positions of airliners are given (below it also corresponds to the
time of a hijacked airliner appearance);

)),,(,,(00 tjitAX ji ∆ –position of j-th airliner within airport airspace structure (as a rule, all of

them are situated within elements of the airport airspace structure), where iX –the name of
corridor occupied by the airliner jA at the time 0t and),,(0tji∆ is the time lasted from the entry

of airliner jA into corridor iX till the time 0t ;

 jD – desired position of the airliner jA (or jD if the desired position is a set of them);

 16

 iP –plan of moving of airliner jA from the current position to the desired position; the set of these

plans of all "normal" airliners, P= },...,,{ 21 NPPP , are conflict–free.

 Formal model of the airport airspace in form of SKB is available for each airliner operating within
the airport airspace.

 There is no hijacked airliner;
1. Appearance of the hijacked airliner. An event informing about appearance of the hijacked airliner at
the time 0t arrives from dispatcher responsible for air traffic control (hereinafter–dispatcher, for
brevity). It is assumed that it is moving in straight-line with a constant velocity and course. This
information is broadcasted to all "normal" airliners. While having this information and based of
emergency separation standards, dispatcher detects elements of the airport airspace structure which are
overlapped by hijacked airliner and computes corresponding time intervals. The detected structure
elements are declared by dispatcher as forbidden for use by "normal" airliners during computed time
intervals.
2. Changing of the state of SKB. While taking into account information about hijacked airliner and
forbidden elements of the airport airspace structure, new state of SKB is formed. The SKB change
concerns changes of precondition truth values according to the aforementioned information. This new
state of SKB may lead to origin of the conflicts in the existing plans of the normal airliners if their
routs assume use of forbidden corridors, waiting circles, etc.
3. Conflict detection. Existing plans of the airliners are analyzed in order to detect conflicts (if any)
with the hijacked airliner. After this, the set of "normal" airliners N is split into two subsets, 1N and

2N . The subset 1N ⊂N contains the names of airliners whose plans have no conflicts with the

Fig.2.2. Graphical representation of the scenario knowledge base represented as a structure of the set
of simple behavior model for the airport airspace structure represented in Fig.1.1.

 17

hijacked one, and the subset 2N ⊂N contains the names of airliners whose plans are conflicting with
it.

4. Search for plans having no conflict with hijacked airliner. For each iA ∈ 2N , the set of conflict–
free plans (with hijacked airliner) is built. This task is solved on the basis of current state of SKB, in
which presence of the hijacked airliner is reflected. Let us note that new plans of the airliners

iA ∈ 2N may be conflicting with the existing plans of the airliners iA ∈ 1N . Let us denote the set of
new conflict–free plans of iA ∈ 2N as iR . If the set of plans iR for airliner iA ∈ 2N is empty then a
new alternative goal should be selected for it (for example, leaving the airport airspace intended for
landing in other airport, or use of the highest echelons), and then, the set of plans *

iR for alternative
goal is computed.

5. Selection of preferable plan by each airliner. For each iA ∈ 2N the most preferable plan iR ∈ iR

or iR ∈ *
iR is selected (for example that plan which realization is optimal in respect to required fuel

consumption). Each such plan is represented in terms of a sequence of resources (corridors, circles,
etc.) assumed for use and time interval of each resource usage. Further on, airliner iA sends request to
Resource management software to reserve needed resources during computed time intervals.1. While
having reservation requests from all iA ∈ 2N received, Resource manager checks whether conflicts
within the plans of all airliners, both iA ∈ 1N and iA ∈ 2N exists. Each conflict is mapped the set

jG of airliners involved into conflict number j.

6. Ordering of conflict resolution. Resource manager software determines the order according to
which the set of detected conflicts should be resolved. This procedure is heuristic–based. The
following heuristics are used to order the detected conflicts:
• Time when conflict starts, priority=1: the earlier a conflict occurs the higher is its priority;
• Fuel capacity, priority=2: the less planned fuel reminder at the time of destination of a desired

position is the higher of the airliner priority is;
• Total number of airliners involved in the conflict, priority 3: The larger the number of conflicting

airliners in a group jG is the higher is its priority.

7. "Normal" airliners conflict resolution. For selected conflict and group jG of conflicting airliners,
the conflict is resolving. Conflict resolution task is solved based of heuristics. In this procedure, the
following heuristics are used:
 The rest of the time which an airliner may spend within the waiting circles in its way to the desired

position up to the time of the fuel exhaust; priority=1: the less the rest of the fuel capacity the
higher priority.

 The rest of the fuel at the time of the desired position achievement; priority=2: The less the fuel rest
the higher priority.

Preference is paid to an airliner according to rules determined over the heuristic truth values. For
winning airliner the resource during requested time interval is reserved.

Item 7 is repeated while all the conflicts between the airliners of group jG are resolved. After this ,the

next conflict for next group 1+jG is resolved in the same way.

1 Corresponding protocol is described below

 18

2.1.3. Deconfliction Algorithm in Case of Hijacked Airliner Course Change

This algorithm is organized in the same way as algorithm described in previous subsection with the
only difference that is caused by new state of SKB since new course of hijacked airliner results in new
elements of the airport airspace that have to be forbidden for use by "normal" airliners and normal
airliners situated in new positions. New state of SKB is computed by dispatcher software. Before
initiation of the algorithm in question, the followings have to be done:
 Cancel all previously imposed reservations of the resources caused by existence of hijacked airliner

having previous course;
 Compute new plans of "normal" airliners starting from the current positions with ignorance of new

blockings of resources (names of resources and forbidden time intervals of their use) since they are
not so far computed. It is necessary because resource availability is changed after change of course
of the hijacked airliner.

2.2. Roles of Multi-agent Airspace Deconfliction System
This section presents specification of the airspace deconfliction system components in terms of roles
and the tasks performed by them as it is assumed by Gaia methodology implemented within Multi-
agent System Development Kit 3.0 used, it turn, for multi-agent system technology support. This
specification takes into account multi-agent architecture of the system implementation with emphasis
on distributed character of performance.

2.2.1. Role: Pilot Assistant

The main functionalities of this role are (a) generation of the current plan for achievement of the
desired position; (2) re-planning if a conflict is detected; (3) negotiation with the dispatcher (more
precisely, with the dispatcher assistant role) (4) negotiation with the resource manager role, (5)
negotiation with the assistants of the pilots of other "normal" and also (6) providing the assisted pilot
with some important information, in particular, information about impossibility of conflict–free
achievement of the desired position. For this role, the identifier "Pilot" is further used.

2.2.2. Role: Resource Owner
The main functionalities of this role are (1) management of the airport airspace resource usage, (2)
detection and prevention of the conflicts and (3) participation in negotiations with pilot assistant and
dispatcher assistant roles according to a number of protocols outlined below. For this role, the
identifier "Resource Owner" is further used.

2.2.3. Role: Dispatcher Assistant
Dispatcher assistant role is responsible for (1) informing all the participants of the airspace
deconfliction system (performing Pilot and Resource Owner roles) concerning detection of the
hijacked airliner and attributes of its movement and modification of the hijacked airliner course, (2)
coordination of the re-planning procedures performed by Pilot role and (3) simulation of the
coordinated airliner behavior for verification of its validity and approval of the latter. For this role, the
identifier "Dispatcher" is further used.

2.3. Meta–model of Multi-agent Airspace Deconfliction System
The aforementioned meta–model comprises declaration of the roles, protocols and agent classes as
well as declaration of their interaction. Let us outline this meta–model illustrated in Fig.2.3.
Agent classes (left hand upper part of Fig.2.3)
1. PA_agent (Pilot Assistant agent) – an agent class assisting the pilots and performing the "Pilot"

role. The total number of instances of this agent class is equal to the number of "normal" airliners
operating in the airport airspace.

2. RM_agent (Resource Management agent) – the agent class responsible for management of the
airport airspace resources. It performs the role of the Resource_Owner. In the system the single

 19

instance of this agent class responsible for management of the total resources of the airport airspace
is used.

3. D_agent (Dispatcher agent) –the agent class performing the role Dispatcher. In the system single
instance of this agent class is used.

Allocation of the roles to the agent classes.
This allocation is presented in Fig.2.3 and it was described above.
Protocols (left hand bottom space of Fig.2.3)
NHA_protocol (Notification about Hijacked Airline protocol). It supports notification of the
components of the multi-agent airspace deconfliction system about appearance of a hijacked airliner.
Dispatcher role initiate this protocol performance intended for notification of agents performing the
Pilot and Resource_Owner roles and also for sending to them information about hijacked airliner, its
position and course. This protocol also sends to them information about resources to be forbidden for
use by "normal" airliners and time intervals when forbidden resources are unavailable.
JSV_protocol (Joint Schedule Verification protocol). Resource_Owner initiates this protocol
performance. It is intended for verification of the existing plans of the "normal" airliners with regard to
the existence of conflicts with the hijacked airliner as well as with the other "normal" airliners.
According to their plans, agents performing the Pilot role inform agent performing the
Resource_Owner role about needed resources mapped the time intervals of their usage.

/Note: At the first step, Resource_Owner role analyzes only existence of the conflicts betwen plans of
normal" airliner and hijacked one, because it is assumed that, till this time, the plans of "normal" airliners are
conflict-free./

CRO_protocol (Conflict Resolution Ordering protocol). This protocol is used by Resource_Owner
role for imposing an order according to which the detected conflicts are to be resolved. This is done in
dialogs with agents performing the Pilot role. Practically, Resource_Owner role selects a conflict to be
resolved at the forthcoming step mapped the list of conflicting airliners.
CR_protocol (Conflict Resolution protocol). This protocol is intended for detection of an airliner
which should be granted the preference to use the requested resource for which other airliners are also

Fig.2.3. Meta–model of multi-agent airspace deconfliction system specified by the means of MASDK 3.0.

 20

compete during the same or overlapping time interval. The participants of this protocol are conflicting
instances of agent class PA_agent of the group jG .

DC_protocol (Deconfliction Completion protocol). When the conflicts are resolved, instance of the
agent class D_agent verifies and approves the proposed plans of the "normal" airliners (if any) and
sends to the latter permission to execute the proposed plans.
CRR_protocol (Clear Resource Reservations protocol). This protocol serves for canceling of the
resource blocking when the hijacked airliner changes its course. This information is sent to the
instances of the PA_agent agent class.
SA_protocol (Situational Awareness Protocol). The instances of PA_agent agent class inform each
other and instances of RM_agent and D_agent classes about their transitions from one element of the
airport airspace structure to other ones.

2.4. Formal Specification of the Protocols
2.4.1. NHA_protocol

Airspace deconfliction system performance is initiated by this protocol. According to it, Dispatcher
role informs other participants of the task solution about appearance of hijacked airliner and forward
to them corresponding information. Additionally, Dispatches sends list of forbidden resources mapped
to time intervals when these resources are unavailable. Fig.2.4 represents this protocol in terms of
entities involved in its performance and types of messages they exchange with. The latter are as
follows:
 Inform_airliners message type– it is sent from Dispatcher role to all agent instances performing the

Pilot role. This message is intended to inform airliners about appearance of a hijacked airliner and
forbidden resources. While receiving this message, instances of PA_agent agent class transform
current state of their SKB recording in it information about resources forbidden for use during
given time intervals.

 Inform_resource_owner message type– it is sent from Dispatcher role to Resource_Owner role to
inform the latter about appearance of a
hijacked airliner and resources forbidden for
use. While receiving this information,
Resource_Owner records in its mental model
information about unavailable resources during
given time interval.

2.4.2. JSV_protocol

This protocol is intended to change the plans of
airliner, while taking into account the information
about unavailability of the resources to be
occupied by hijacked airliner and reserve
resources for new plans.
Types of messages:
 Check_and_Replan message type– Resource_Owner sends query to all instances of PA_agent

agent class, while asking them to check their current plans in order to detect potential conflicts, if
any, and re-plan their trajectories if necessary. The latter checks their plans according to current
state (after receiving information about hijacked airliner) of own SKB. If it detects conflict(s) it re-
plans own movement using inference mechanism of SKB.

 Replanning_Failed message type– this type of message is used by instances of PA_agent agent
class to inform Resource_Owner about detection of conflicts and existence of no admissible plans
(The reasons of absence may be various: too small capacity of fuel, unavailability of waiting
resources, etc.). To resolve such kind of conflict, an intervention of the human–dispatcher is
required who is responsible for proposal of non-standard solution like use of non-standard corridors

Fig.2.5. JSV_protocol specified by the means of
MASDK 3.0..

 21

of the airport airspace structure, selection of landing in other non-typical airport (e.g., military
airport), etc.

 Verify_Plan message type– instances of PA_agent agent class request Resource_Owner to reserve
resources. Resource_Owner stores this information in its mental model and uses it later to verify
whether there exist conflicts between (new and old) plans of the "normal" airliners.

2.4.3. CRO_protocol

While having information about potential conflicts between plans of various "normal" airliners,
Resource_Owner is responsible for management of these conflict resolutions. As a rule, several
conflicts exist and in this case it is important to decide, which conflict is the most important to resolve

it first of all. This task is implemented in terms of argumentation–based auction involving bargaining
of conflicts taking into account properties of plans of airliners composing each conflict. Criteria of
winner (winner corresponds to a conflict selected) were described above.
Types of messages:
 Inform_About_Conflict message type– Resource_Owner sends to the instances of PA_agent agent

class message notifying about existence of conflicts with the plans of other "normal" airliners,
while requesting information needed to start auction.

 Inform_about_situation message type – instances of PA_agent agent class send to
Resource_Owner the requested information, which then is transformed by the latter into proposals
corresponding to each conflict. Then, Resource_Owner simulates auction and determines winner
over the set of conflicts, thus determining which conflict has to be resolved first of all.

2.4.4. CR_protocol

This protocol supports interaction (in form of argumentation–based auction) of instances of PA_agent
agent class to select a preferable airliner to whose the resource that is the subject of bargaining should
be granted.
Types of messages:
 Start_auсtion_between_airliners

type of messages –
Resource_Owner sends to all
instances of PA_agent agent class
notification about start of the
auction intended bargaining for
resource inspired conflict.

 Inform_about_necessity message
type– instances of PA_agent agent
class send to Resource_Owner their
arguments justifying importance of

Рис.2.6. SA_protocol specified by the means of
MASDK 3.0.

Fig.2.7. CR_protocol specified by means of MASDK
3.0.

Fig.2.8. DC_protocol specified by the means of MASDK 3.0.

 22

conflicting resource for this particular airliner. Resource_Owner accumulate these arguments and
then, based of heuristic rules, determines winner, i.e. airliner which is granted the resource that was
the subject of auction.

 Inform_about_winner message type – Resource_Owner notifies the instances of PA_agent agent
class about auction winner. The winner, an instance of PA_agent agent class, uses this information
to construct its plan of the desired position achievement.

2.4.5. DC_protocol

When all the conflicts are resolved, Resource_Owner forwards the total plan of moving of all the
"normal" airliners operating in the airport airspace to the instance of the D_agent agent class for
approval.
Message types:
 New_Plans message type – Resource_Owner sends to the instance of the D_agent agent class new

plans of "normal" airliners.
 Replanning_Failed message type– Resource_Owner notifies the instance of the D_agent agent

class about absence of the conflict–free plans. This information is also forwarded to the
corresponding instances of PA_agent agent class.

 Execute_Plan message type– instance of the D_agent agent class notifies the instances of
PA_agent agent class about approval of their plans and permission to perform them.

2.4.6. CRR_protocol

This protocol is performed in case if hijacked
airliner changes its course.
Message type:
 Clear_Reservations message type –

Resource_Owner notifies instance of the D_agent
agent class about necessity to cancel resource
unavailability caused by existence of the hijacked
airliner.

2.4.7. SA_protocol

This protocol intends to keep informed other components of the multi-agent airspace deconfliction
system about current positions of the "normal" airliners when they transit from one element of the
airport airspace to other ones.

Message types:
 New_Position message type – an

instance of PA_agent agent class
notifies Resource_Owner about
transition into new corridor,
waiting circle, etc.

 New_Position_D message type–
an instance of PA_agent agent
class notifies the instance of
D_agent agent class about
transition into new corridor,

waiting circle, etc.
 Inform_others message type– the instance of D_agent agent class forwards this information to the

instances of PA_agent agent class.

Fig.2.9. CR_protocol specified by the means of
MASDK 3.0.

Fig.2.10. CR_protocol specified by the means of MASDK 3.0.

 23

2.5. Conclusion on Chapter 2
The results of this Chapter are as follows:
1. Formal representation of the airport airspace structure in terms of Scenario Knowledge Base
framework and constrained movement of the airliners in termas of inference within Scenario
Knowledge Base framework.
2. Algorithm of airspace deconfliction specifically designed for distributed implementation within
multi-agent architecture.
3. Completely designed formal specification of the meta–model of multi-agent airspace deconfliction
system representing formally the roles of the system entities solving the airspace deconfliction task in
distributed manner, protocol of their ineractions and messages with which they exchange, and basic
classes of agents assigned particular roles discovered due to the developed task decomposition.

 24

Chapter 3. Formal Specification of Agent Behavior
Abstract. This Chapter continues in depth development of the design project of multi-agent
airspace deconfliction system. It starts from the formally specified meta–model of the system in
question (see Chapter 2) and then designs in depth the services provided by each agent class
performing the assigned roles. These specifications determine agent classes behavior in terms of
the list of services provided by each agent, their functionalities and algorithms implementing each
of them (how it is assumed by Gaia methodology). Formal specification of services is done in
terms of state machines. Materials described in Chapter 2 and Chapter 3 present complete
implementation–oriented design project of a multi-agent airspace deconfliction system that is the
main objective of the research on Addendum 3. Design of the multi-agent system in question is
carried out with support of graphical means of MASDK 3.0 software tool.

3.1. PA_agent agent class

3.1.1. Behavior Meta–Model
Meta–model of any agent behavior determines the set of services provided by corresponding agent and
scheme of their use during participation of an agent in performance of a protocol. At the next stage the
services are specified formally in terms of particular state machines. The following services
composing the meta–model of PA_agent agent class are provided by it:
 Clear_Resource_Reservations – this service is initiated by the message issued by CRR_Protocol. It

erase records from SKB concerning resource reservation stored in the agent memory.
 Receive_Hijacked_Airliner_Info – this service is initiated by the message issued by NHA_protocol.

It stores data about hijacked airliner and marks the resources it occupies and will occupy.
 Plan_Verification – this service is initiated by the message issued by JSV_protocol. It checks the

existing plan in order to detect conflicts in context of information about hijacked airliner and if a
conflict exists the service generates new plan.

 Conflict_Resolution_Ordering – this service is initiated by the message issued by CRO_protocol. It
collects information about conflict represented in input message and conveyed it to the instance of
D_agent agent class in order to use this information in conflict resolution ordering procedure.

Fig.3.1. PA_agent: behavior meta–model specified by the means of MASDK 3.0.

 25

 Conflict_Resolution – this service is initiated by the message issued by CR_protocol. It collects
information about conflict represented in input message and conveys it to the instance of D_agent
agent class. The latter selects an airliner to be granted the resource that is the subject of a conflict.

 Deconfliction_Completion – this service is initiated by the message issued by DC_protocol. This
message approves new "normal" airliner plan.

 New_Position_Notification – this service is initiated by the message issued by SA–protocol aiming
at notification of the agents about transition of the airliner in new element of the airport airspace
structure.

 Airliner_Moved – this service receives notification of an instance of the PA_agent agent class about
its transition into new element of the airport airspace structure.

3.1.2. PA_agent Agent Class Service Specification

Clear_Resource_Reservations

This service is specified by the state machine containing single state:
 Clear – this state deletes all records about resource reservation made earlier from SKB.

Receive_Hijacked_Airliner_Info

This service is specified by the state
machine containing single state:
 Mark_Resources_Reserved_For

_Hijacked – this state computes
the trajectory of particular
airliner, detects availability of
the resources and create the
records in SKB representing
resources captured and to be
captured by hijacked airliner.

Plan_Verification

This service is specified by the state
machine containing three states:

 Check_Plan_and_Replan – this
state checks the current plan in

Fig.3.2. Specification of
Clear_Resource_Reservations. service

Fig.3.3. Specification of Receive_Hijacked_Airliner_Info
service.

Fig.3.4. Specification of Plan_Verification service.

 26

order to detect conflicts within SKB. If a conflict is detected this state builds new plan that is not
used the reserved resources. This is done by use of inference mechanism dealing with the
knowledge represented in current state of SKB.

 Failed –this state is executed if conflict(s) is detected but new admissible plan cannot be built. This
state is responsible for sending a message notifying about the aforementioned fact.

 Send_Plan_to_RM – this state sends message about successfully built new conflict–free plan.
Along with notification, new or previously built plan is also sent.

Conflict_Resolution_Ordering

This service is specified by the state machine containing
two states:
 Collect_Airliner_Params – this state performs collection

of the information about the rest of the fuel of the
airliner after achievement of the desired position;

 Send_Params – this state sends the aforementioned
information.

Conflict_Resolution
This service is specified by the state machine containing
three states:
 Collect_Airliner_Params – this state is responsible for

collection of the following information: the rest of the
fuel of the airliner after its achievement of the desired position and the time interval that the airliner
may fly in the waiting circles before the conflict occurs;

 Send_Params – this state is responsible for sending of the collected information;
 Mark_Resource – this state receives message containing information about an airliner that win in

bargaining for resource. In the airliner SKB (mental model), information about resource reserved is
recorded.

Fig.3.5. Specification of
Conflict Resolution Ordering. Service. Fig.3.6. Specification of Conflict_Resolution service.

Fig.3.7. Specification of
Deconfliction_Completion service.

 27

Deconfliction_Completion

This service is specified by the state machine containing single state:
 Mark_Plan_As_Approved – it receives a message approving the proposed plan. After this, the

airliner is permitted to perform its plan.

New_Position_Notification

This service is specified by the state machine containing two states:
Send – this state provides notification of the instance of the RM_agent agent class about new position
of airliner;
Send_To_D –this state provides notification of the instance of the D_agent agent class about new
position of airliner.

Airliner_Moved

This service is specified by the state machine containing single state:
 Receive_Info – this state receives information about transition of an airliner from one corridor,

waiting circle, etc. to another one.

3.2. RM_agent agent class

3.2.1. Behavior Meta–Model

The following services composing the meta–model of RM_agent agent class are provided by it:
 Process_Hijacked – this service is initiated by the message issued by NHA_protocol. In RM_agent

mental model, it marks resources occupied and to be occupied by hijacked airliner and initiates
conflict resolution procedures.

 Unblock_Resources – this service deletes from agent mental model all records corresponding to
resource reservation and prepares information to be sent to the instances of the PA_agent agent
class requiring to cancel the existing resource reservations.

 Verify_All_Plans – this service sends queries to all instances of the PA_agent agent class to check
the existing plans in order to detect conflicts if any.

 Process_Conflict – this service processes a selected conflict for winner selection (as a result of a
step of argumentation–based auction).

 Select_Conflict_To_Process – this service processes all the conflicts in order to select one of them
to be resolved first of all (as a result of a step of argumentation–based auction).

Fig.3.8. Specification of New Position Notification service. Fig.3.9. Specification of. Airliner_Moved
service.

 28

 Deconfliction_Finished – this service processes completion of the deconfliction procedure.
 Airliner_Moved – this service receives information about transition of an airliner from one element

of the airport airspace (corridor, circle, etc.) to another one.

3.2.2. RM_agent Agent Class Service Specification
Process_Hijacked

This service is specified by the state machine containing six states:
 Get_Hijacked_Info – this state receives from DA_agent information about attributes (position,

course) of the hijacked airliner.
 Verify – this state generate nested

query of the Verify_All_Plans
service.

 Emergency – this state is initiated

Fig.3.11. Specification of the Process_Hijacked service.
Fig.3.12. Specification of the
Unblock_Resources service.

Fig.3.10. RM_agent: behavior meta–model

 29

if some airliners do not capable to find new conflict–free plans, that means that a conflict requiring
to produce a non-standard decision (dispatcher is responsible for such decision). This query is sent
to dispatcher and completes the process.

 Select_Conflict – this state generates nested query of the Select_Conflict_To_Process service.
 Process_Conflict – this state generates nested query of the Process_Conflict service.
 Finish_ Deconfliction – this state generates nested query of the Deconfliction_Finished service.

Unblock_Resources

This service is specified by the state machine containing single state:
 Clear – this state informs the instances of the PA_agent agent class about the necessity to cancel in

their mental models information concerning resource reservation.

Verify_All_Plans

This service is specified by the state
machine containing six states:
 Request_Airliners – this state is

responsible for broadcasting of the
message informing instances of
PA_agent agent class about the
necessity to check and re-plan their
trajectories.

 Wait_Message – this state
implements waiting of the replies
from the instances of the PA_agent
agent class.

 Failed – this state is initiated in case
if a message about absence of a
conflict-free plan is received from an
instance of the PA_agent agent class.
It is responsible for saving of this
information in the DA-agent mental
model.

 Succeeded – this state is initiated in
case if a message about successful
building of the conflict–free plan
from an instance of the PA_agent
agent class is received. The service
is finished when such messages
have received from all the instances
of the PA_agent agent class.

Process_Conflict

This service is specified by the state
machine containing three states:
 Start_Auction – this state initiates

auction among instances of the
PA_agent agent class of group jG

involved in conflict number j. This
auction is aimed to decide to which
airliner the resource that is the

Fig.3.13. Specification of the Verify_All_Plans service.

Fig.3.14. Specification of the Verify_All_Plans service .

 30

subject of conflict is granted.
 Receive_Airliner_Situation – this state is responsible for receiving and saving information from

particular instance the PA_agent agent class.
 Select_Winner – this state is responsible for winner selection among the instances the PA_agent

agent class of group jG involved in conflict number j and informing all the auction participants
about winner, which is granted resource that was a subject of bargaining.

Select_ Order_of_Conflict_To_Process

This service is specified by the state machine containing three states:
 Start_Auction – this state initiates the auction among all the instances of the PA_agent agent class

aiming to select a conflict that should be deconflicted first of all.
 Receive_Airliner_Info – this state is responsible for receiving information about conflicts from the

instances of the PA_agent agent class.
 Select_Conflict – this state is responsible to make decision what conflict should be resolved first of

all.

Select_Conflict_To_Process

This service is specified by the state machine containing three
states:
 Check_Result – in this state, RM_agent checks the re–

planning results.
 Inform_Dispatcher_Failed – this state implements the

sending information about the absence of a conflict–free
plan for a conflict to DA_agent.

 Inform_Dispatcher – this state is responsible for sending
new conflict–free plans of all the airliners to DA_agent.

Fig.3.15. Specification of the
Select_Order_of_Conflict_To_Process service

Fig.3.16. Specification of the
Select_Conflict_To_Process service

Fig.3.17. Specification of the
Airliner_Moved service.

 31

Airliner_Moved

This service is specified by the state machine containing single state:
 Receive_Info – this state is responsible for receiving information about transition of an airliner from

one element of the airport airspace to another one.

3.3. D_agent agent class

3.3.1. Behavior Meta–Model
The following services composing the meta–model of D_agent agent class are provided by it:
 Airspace_Deconfliction – this service is initiated by dispatcher. He inputs attributes of movement

of the hijacked airliner. Then, a procedure analyzing existence of potential conflicts between
hijacked airliners and "normal" ones is performed and if a conflict exist the re-planning procedure
is initiated.

 Process_New_Plans – this service performs processing (simulation) and approval of new "normal"
airliner plans.

 Airliner_Moved – this service receives information about transition of an airliner from one element
of the airport airspace to another one.

3.3.2. DA_agent Agent Class Service
Specification
Airspace_Deconfliction

This service is specified by the state
machine containing two states:
 Inform_Airliners – this state is

responsible for notification of the
instances of the PA_agent agent class.

 Inform_RM – this state is responsible for
notification of the RM_agent agent class.

Process_New_Plans
This service is specified by the state
machine containing four states:

Fig.3.18. D_agent: behavior meta-model Fig.3.19. Specification of the
Airspace_Deconfliction service

Fig.3.20. Specification of the Process_New_Plans service.

 32

 WaitForResult – this state corresponds to waiting of the RM_agent reply.
 Process_Plans –this state is initiated if new airliner plans are received. It provides these plans

processing.
 Failed – this state is responsible for processing of exception when conflict–free plans do not exist.

 Confirm_Plans – this state
performs broadcasting of the
plan approvals to the instances
of the PA_agent agent class
and permission to start their
performance.

Airliner_Moved

This service is specified by the
state machine containing two
states:
 Receive_Info – this state

receives information about
transition of an airliner from

one element of the airport airspace to another one.
 Inform_Others – this state is responsible for re-translation of the received information to other

instances of the PA_agent agent class.
3.4. Conclusion on Chapter 3
The main result presented in this Chapter, together with the results of previous Chapter, presents
complete design project of the multi-agent airspace deconfliction system specified formally in terms of
Gaia methodology and developed through use of graphical means of MASDFK 3.0 software tool. This
formal specification is represented in XML language, which is generated automatically from its
graphical representation developed within MASDK 3.0 software tool.

Fig.3.21. Specification of the Airliner_Moved service

 33

Chapter 4. Simulation Results: Validation of Deconfliction Algorithm
Abstract. This Chapter outlines simple software designed for verification and validation of the
airspace deconfliction algorithm and graphical representation of the results in real–time mode.

4.1. Software Prototype: Simplified Implementation
Software prototyping was intended verification and validation of the basic algorithm of the airspace
deconfliction that is planning of collective conflict–free behavior of the "normal" airliners when
hijacked airliner appears within airport airspace. This algorithm was described in section 2.1.
"Verification", which was the main objective of the simulation prototype, is understood here as
checking of correctness and convergence of this algorithm, because it is of iterative character.
"Validation" is understood as assessment of the planning and re-planning algorithm efficiency
depending on some parameters like the number of "normal" airliners operating within airport airspace
and "complexity" and redundancy of the airport airspace structure. It is important to note that, in
practical situations, this algorithm has to be completed during several seconds. An objective was also
to develop recommendations in regard how this algorithm should be improved to meet the practical
requirements.
The developed software was not organized as multi–agent system (software entities interaction
protocols were not implemented). Nevertheless, the basic structure of the algorithm was preserved:
instead of agents, the instances of the corresponding C++ software classes and, instead of message
exchange, calls of the object methods were used. One of the basic components of the developed
software prototype are Scenario Knowledge Base and inference of admissible sequences of airliner
transition aimed to achieve the desired position. These components were implemented by use of
previously developed (during previous two quarters of the research on the 1993P project) software
tool, which makes it much easier implementation of the software prototype as a whole. Let us note that
as inference mechanism, the "top–down" (forward chaining reasoning) approach was used.
Separation standards were modeled by a sphere of given diameter with the airliner in the central point.
Different separation standards were used for "normal" airliners and hijacked one. In the simulation
procedure diameter of the sphere around the hijacked airliner was assigned value of 5 km. However,
this value is an attribute of the software and its value can be changed by user of the software
prototype.
In the developed software prototype, the following specifications of its components and particular
initial data were used:
 Specification of Scenario knowledge base presented by XML file (it is assumed by the developed

SKB software tool). This file corresponds to the graphical specification airport airspace structure
depicted in Fig.1.1.

 Specification of "normal" airliners initial positions (at the moment when hijacked airliner appears
in the airport vicinity) and plans of their moving (landing and take-off) according their goals
predefined by air traffic dispatcher.

 Characteristics of trajectory of hijacked airliner at the time of its appearance (position and course).
The results of the simulation concern new conflict–free trajectories of "normal" airliners specified in
terms of sequences of transition from one element of the airport airspace structure to another one
assigned pair of times corresponding entry to and exit from corresponding element respectively. If
conflict–free plan does not exist (was not found by the algorithm) then corresponding message is
generated. It is worth to note that practically, the developed algorithm makes it possible to plan
"normal" airliners trajectories in the routine situation when a hijacked airliner is absent.
Several case studied differing in the total number of the "normal" airliners operating within airport
airspace were simulated. First of all, the algorithm was simulated for small number of such airliners,
and later on, as the algorithm was tested and corrected for improving, the number of airliners was
increased.

 34

Fig.4.1. Visualization of the situation with 3 "normal" airliners within airport airspace structure

(3D projection)

Fig.4.2. Visualization of the situation with 3 "normal" airliners within airport airspace structure

(view from above)

Examples of visual representation of a situation at time points are given in Fig.1–Fig.4. Fig.4.1
presents a snapshot of the visualization of a situation within airport airspace in 3D way for the case
when three "normal" airliners and single hijacked one are operating within airport airspace structure1.
Fig.4.2 and 4.3 present the same situation but for vertical view (view from above) and horizontal side

1 We intend to demonstrate this software prototype when this demonstration is appropriate for US Air Force
representatives.

 35

Fig.4.3. Visualization of the situation with 3 "normal" airliners within airport airspace structure

(horizontal side view)

views respectively. Fig.4.4 presents a snapshot of the visualization of a situation within airport
airspace in 3D way for the case when five "normal" airliners and single hijacked are operation in the

airport zone.
The testing results proved that algorithm is working stable and there was no case when it gets caught
in an endless loop. The number of iteration depends on the number of "normal" airliner and
experimentally evaluated complexity was close to quadratic. But this cannot so far be generalized on

Fig.4.4. Visualization of the situation with 5 "normal" airliners within airport airspace structure
(3D projection)

 36

general case because experiments were too limited. However, it seems that such a complexity may be
achieved through use of "good" heuristics. Discovery of such heuristics, evaluation of their impact on
speed of algorithm and quality of the resulting plans should be the subject of further research. In this
research, machine learning-based approach to heuristics generation may found out very productive.
Of course, the time spent for plans generation has to depend on "complexity" and "dimension" of the
airport airspace structure. However, it is not clear so far, how this dependency should look like.
For the airport airspace structure depicted in Fig.1.11 and for five "normal" airliners, when a standard
Pentium 4 computer is used, the total re-planning time is close to 1 minute. Of course, this time is not
so far satisfactory, but there exist a number of ways to speed this algorithm.2 It is also necessary to
take into account the fact that in practice the deconfliction task is solved in parallel by many
computers situated in the airliners and in dispatcher working place. This may considerably speed the
deconfliction task solving.

4.2. Software Prototype Interface
Developed software prototype was intended for real–time demonstration of the airspace deconfliction
system operation. It makes possible visually observe airport airspace and "normal" and hijacked
airliners flights in 3D space and quickly simulate and evaluate deconfliction algorithm performance.

The user is provided with the capability to change projection of 3D picture and its scaling up and
down. "Normal" airliners are depicted with green circles whereas the hijacked one is depicted with red
one. An element of the airport airspace structure (corridor, waiting and landing circles) is colored in
green if it is occupied by "normal" airliner whereas if it is occupied by hijacked airliner it is colored in
red. If a situation when separation standards between "normal" and hijacked airliners are broken
occurs then the corresponding corridor is colored in crimson.

1 Let us note that this structure should be assessed as very complex. At least, it is more complex than such

structure used in particular airports of Moscow and St. Petersburg, Russia.
2 Let u remind that development of re-planning algorithm or even more so an optimal one is out of the main

objective of this project.

 37

5. Report Conclusion

The main result of the Addendum 3 is completely designed multi–agent airspace deconfliction system
supporting distributed mode of solving deconfliction task with minimal intervention of the air traffic
dispatcher. The design project of this system is formally specified in terms of XML language. Exactly
this task was the main objective of the Addendum 3 and it is completely fulfilled.
Particular results of the research on Addendum 3 are as follows:
1. An abstract but typical structure of an airport airspace that was then used as a case study for
justification of the main conceptual and design solutions concerning multi-agent airspace deconfliction
system was developed. This structure is specified formally in terms of Scenario Knowledge Base
framework providing a number of useful properties of the resulting formalization. The most important
properties are automatic satisfaction of constraints imposed by airport airspace structure which are
resulted from rules and regulations adopted in practice of air traffic control. This structure and its
formal specification may be further used as a testbed for investigation, verification and validation of
various airspace deconfliction algorithms.
2. The main assumptions and admissible simplifications of the airspace deconfliction problem are
analyzed. The proposed problem statement that admits the proposed assumptions and simplifications,
nevertheless, preserves the basic features and peculiarities of the real–life situations. On the other
hand, the proposed problem statement makes it easier the study of the problem peculiarities and
investigation of the potential approaches to as well as algorithm and architectures of airspace
deconfliction system design.
3. Developed typical scenario of airspace deconfliction task within homeland security scenario
determining basic entities involved in distributed task solving, their roles and coordination of their
distributed performance forms grounded conceptual basis for the task decomposition and its design
and implementation within multi-agent framework.
4. Joint formal representation of the airport airspace structure in terms of Scenario Knowledge Base
and constrained movement of the airliners in terms of inference within Scenario Knowledge Base
framework provide potential efficiency of the airspace deconfliction system from real–life perspective.
5. Distributed algorithm of airspace deconfliction specifically designed for multi-agent
implementation may be considered as a first version that can be significantly improved due to
involving more heuristics, which can be generated based of machine learning approach.
6. Completely designed formal specification of the meta–model of multi-agent airspace deconfliction
system representing formally the roles of the system distributed entities, protocol of their interactions
and messages, with which they exchange, are typical for various statements of the airspace
deconfliction problem and thus can be reused.
7. Formal specification of services provided by agent classes proposed in the designed project of
multi-agent airspace deconfliction system represented in terms of state machines also may be reused in
the class of applications comprising more general air traffic control problem.
In design of the deconfliction system, an experience accumulated during fulfillment of the Project
1993P was widely used. In particular, experience in development of multi-agent systems for data and
information fusion for situation assessment, in use of Gaia methodology for multi-agent system design
and implementation as well as experience in multi-agent technology embodied in MASDK 3.0
software tool provide the necessary knowledge, skill and software making it possible to successfully
complete this research during two quarters.
Further research should first of all concerns the following topics:
1. Software implementation of the designed multi-agent airspace deconfliction system.
2. Improvement of the distributed deconfliction algorithm via use of more grounded heuristics that
may be generated experimentally on the basis of machine learning techniques. Other way of the
deconfliction algorithm speed up concerns improvement of the inference mechanism used within SKB
for inference of admissible conflict–free plans of "normal" airliners. In particular, it would be

 38

interesting to implement inference mechanism combining "Top–Down" and "Bottom–Up" reasoning
within Scenario Knowledge Base framework.
3. Development of more realistic model of airport airspace structure and models of movement of
airliners including hijacked one.
4. In depth investigation of the task complexity depending on the number of the airliners operating
within airport airspace and on the structure of the latter.

 39

References

[FinRep-2005] Final Report on Extensions 1 and 2 of Project 1993P. May 2005.
[Moscow] http://www.radioscanner.ru/avia/maps/bykovo.zip.
[Pulkovo] http://www.radioscanner.ru/avia/maps/pulkovo.zip.
[Report-97] Safety Analysis of Air Traffic Control Upgrades. Final Report. Project Manager Prof.

Nancy Leveson, UW, 1997. http://citeseer.ist.psu.edu/cache/papers/cs/17038/ftp:
zSzzSzftp.cs.washington.eduzSzpubzSzsafetyzSzfinal.pdf/leveson97safety.pdf.

	SF298.pdf
	REPORT DOCUMENTATION PAGE
	Form Approved OMB No. 0704-0188
	11. SPONSOR/MONITOR’S REPORT NUMBER(S)

