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Abstract— Modern phased array radars are able to adaptively
modify their performance to the environment. To make full use of
this capability, scheduling algorithms need to be designed. This
paper poses the problem of adaptive waveform scheduling for
detecting new targets in the context of finite horizon stochastic
dynamic programming. The result is a scheduling algorithm that
minimises the time taken to detect new targets, detecting these
targets in accordance with importance, while minimising the use
of radar resources.

I. INTRODUCTION

Modern phased array radars, with flexible waveform gen-
eration and beam steering capability, are able to adaptively
modify their performance to suit a variety of environments.
This power has not yet been fully exploited, in part because
of the lack of suitable scheduling algorithms. This paper
describes an optimal waveform selection algorithm for the
detection of new targets. It does not examine the problem
of maintaining tracks on established targets. In the rest of
this paper we will use the term “target detection” to refer
to the identification of new targets, rather than the detection
on subsequent scans of targets already under track.

Phased array radars can direct their beam in any direction
without inertia. Thus the radar can switch between the tasks of
tracking existing targets and acquiring new targets essentially
instantaneously. Such a radar thus achieves the multi-mission
capability of target acquisition and target tracking, unlike typ-
ical mechanically scanned radars. This flexibility also allows
the system designer to consider the task of searching for new
targets separately from, and independently of, that of updating
established tracks, even if the same radar is performing both
tasks.

In general, a waveform can be tailored to achieve good
Doppler or good range resolution, but not both simultaneously.
This is a problem in heavy clutter environments, typified by an
airborne radar seeking to detect slow moving ground targets or
by a littoral radar attempting to detect submarine periscopes in
the presence of sea clutter. In both cases the part of the return
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ble to the clutter can be orders of magnitude larger
at from the target or targets of interest. Waveforms, to a
or lesser extent, smear the clutter into the target region,

ducing detectability. Once a track has been established
rget, the appropriate choice of waveform can be based
track state estimates. This problem has been examined
s such as [3], [17], [9], [14], [8].

problem we are considering in this paper is the detec-
new targets, so the results in the works cited above are
ectly applicable. The efficient search for new targets
n examined in [19] and [18] and an overview of these
and related work, can be found in [2, Ch 14]. While
orks provide guidelines for parameter selection in a
of cases, they do not pose the problem adaptively.
mapping and optimal scheduling would permit the

g of waveforms and beam shapes to best match the
g environment of the radar. These techniques, alone or
bination, offer the possibility of adaptive adjustment
ensor modes to optimise performance. Because of the
ta rates, manual optimisation of the performance of
rn radar by pulse tailoring is not possible. There is
ant potential for improvement in new target detection if
e waveform selection is considered part of the detection
.
simplest schemes for adaptive waveform management
a cost function to the clutter/target environment for

dividual pulse and select the waveform that optimises
t function on a pulse by pulse basis. While such a
” scheme would radically improve performance over

tional fixed waveform radars, more can be gained by
ling waveforms over a number of pulses, so as to
e the sum of the costs over these pulses.
is paper we pose the adaptive waveform scheduling

for new target detection as a stochastic dynamic pro-
ing problem of the type known as a partially observed
decision problem. Solutions of this type of problem are

l control policies that maximise an objective function.
framework, the adaptive waveform selection problem
et detection becomes the selection of which sequence

eforms to use to maximise the overall rewards of target
n. These rewards could take into account factors such
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as timeliness of detection or target importance and/or threat. In
addition, the location of targets already under track can also be
incorporated in the reward structure, as well as a clutter map
if known, to prevent radar resources being wasted on known
scatterers. In the most general case, the overall reward for
target detection could be a combination of all of these types
of factors.

The result is an adaptive waveform selection algorithm that
minimises the time taken to detect new targets, detecting these
targets in accordance with importance, while minimising the
use of radar resources.

II. PROBLEM OUTLINE

Methods for waveform selection to improve both detection
and tracking performance have been examined in [15], [14]
and [9]. In these works, the problem was one of both acquiring
and tracking a single target in clutter. In this paper we will
only consider the problem of detecting new targets, rather
than tracking established targets. Once a target is detected and
confirmed, it is handed over to the track update process and
is no longer a concern of the target detection process.

We pose the problem of optimal adaptive waveform selec-
tion for target detection as a finite horizon stochastic control
problem. While we only consider detection performance here,
this approach can be extended to consider both detection
and tracking. The problem of optimal beam scheduling to
maximise tracking performance using this type of approach
was examined in [10].

The problem posed in [10] used an infinite horizon as they
were concerned with tracking performance. Since we are only
considering the detection problem it is appropriate to use
a short, finite horizon. Unlike [10], the short time horizon
allows us to assume that the scene does not change during
this interval, i.e. the targets do not move appreciably. This
assumption is reasonable as the number of dwells used to
confirm a track on a new target is typically very small, see
for example [18] and [6].

In addition, we will consider the detection problem in each
radar beam to be independent of other beams. That is, a target
detection in one beam does not provide any information on the
likelihood of a detection in a neighbouring beam. This implies
that the beams are spaced with minimal overlap. While this
is not always true, it is a reasonable assumption and provides
a useful starting point for developing this adaptive waveform
selection method. Therefore, in the remainder of this paper
we will consider the detection problem in a particular beam
in isolation.

The format of the remainder of this paper is as follows.
The next section sets up the problem of adaptive waveform
selection for target detection as a stochastic control problem.
Section IV shows how the effect of the choice of waveform
on the probability of detection is incorporated into the model.
Section V discusses a number of choices for the objective
function that is to be maximised, while an optimal solution
method is outlined in Section VI.
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III. STOCHASTIC CONTROL PROBLEM

ivide the area covered by a particular radar beam into a
range-Doppler space, with the cells in range indexed by� � � � � and those in Doppler indexed by 
 � � � � � � � � .
ke no assumptions about the number of targets that may
ent, thus the number of possible scenes or hypotheses
he radar scene is � � � . Let the space of hypotheses
oted by � . In a very simple example, the range space
e divided into two cells (i.e. a target is either near or
Doppler into three cells (i.e. a target is either receding,

ry or approaching) then the set of hypotheses, � , has
ents corresponding to all the possibilities ranging from

ets present to 6 targets with one in each cell. Note, we
that the resolution of the radar and the size of the

e such that at most one scatterer can be distinguished
cell.

state of our model is then � � � � � ! where ! " � , i.e.
e of the possible scenes, and is fixed over the time

l of interest.
radar provides noisy measurements # � � � " � of
e scene, � " � . The probability of receiving a
lar measurement # � � � � ' will depend on both the
derlying scene and on the choice of waveform used to
e the measurement.� � � be the control variable that indicates which wave-
chosen at time � to generate measurement # � � + � � ,( � � � " - . Then . � ( � � � � � � 2 3 4 � ( � � � � � 4 7 3 9 : is the

ement probability matrix where

2 3 4 � ( � � � � � = ? � # � � + � � � ' C � � ! � ( � � � � �
r words, 2 3 4 � ( � is the probability of a detection in all the
nsidered to have a scatterer present under hypothesis
that the true scene is given by hypothesis ! and is

d with waveform ( .
e F � H ( � I � � ( � � � � � � � � ( � J � L where J + � is the

um number of dwells that can be used to detect and
targets for a given beam. Then F is a sequence of

rms that could be used for that detection process. Let

M � � � � O Q
RS

T V W X � � � ( � � � � Z

X � � � ( � � � � is the reward earned when the scene �
rved using waveform ( � � � . This cost function will
y express the capacity of the waveform to discriminate
al targets in the particular clutter environment expressed� . Then the aim of our problem is to find the sequence
satisfies

M [ � � � � \ ^ `a O Q
RS

T V W X � � � ( � � � � Z � (1)

, our original aim was to design an optimal waveform
n algorithm that can adapt to the actual state of the
cene. However, knowledge of the actual state is not
le. Instead, we only have access to noisy measurements



of the scene. To handle this, let � � � � � � � � 	 � � � � 	 � � � 	 � � � � �
and � � � � � � � � 	 � � � � 	 � � � 	 � � � � � and then define

� � � � � �� ! # � $ � & ( � � 	 � � * + �
that is, the vector , � � � is the conditional density of the state
given the measurements and the controls. Using Bayes’ rule
and the Law of Total Probability the following recursion can
be derived for , � � / � � [7], [13]

� 0 � � / � � � ! # � $ � 3 ( � � 6 + 	 � � �
� 7 8 : 8 � 6 + = > 0 = � � � � � � � 0 � � �@ � A C 7 : 8 � 6 + = > � � � � � � � � � � � �

Let FG � 3 	 � � be the matrix with the vector � 7 0 > � � � � � � A C down
the diagonal and zeros elsewhere, then in matrix notation

, � � / � � � FG � � � � / � � 	 � � � � � , � � �J K FG � � � � / � � 	 � � � � � , � � � (2)

where
J

is a column vector of ones. Note, that the denominator
of (2) isJ K FG � � � � / � � 	 � � � � � , � � � � ! # � � � � / � � ( � � 	 � � �
which is not a function of , � � � .

The conditional state density vector , � � � is also known as
the information state and it is a sufficient statistic for the true
state $ . That is, our original stochastic control problem in
terms of $ can be rewritten in terms of , [1]. In other words,
the optimal control policy O P that is the solution of (1) is also
the solution of

Q P � , � � � � � S U VW X Z
[\

� ] ^ ` � , � � � 	 � � � � � b (3)

where , � � � is the a priori probability density of the scene.

IV. CALCULATING THE MEASUREMENT PROBABILITIES

The key feature of this model for waveform selection is the
manner in which the measurement probabilities vary with the
choice of waveform. Recall that the measurement probability7 0 � � � � � � � is

7 0 � � � � � � � � ! # � � � � / � � � 3 ( $ � & 	 � � � � �
which is the probability of obtaining the detection pattern
described by hypothesis 3 when the true scene is & and is
measured by waveform � � � � .

To illustrate how the measurement probabilities will vary
with waveform choice consider the simple case when there is
only a single cell in range and three in Doppler space. These
three correspond to receding targets, (near) stationary targets
and approaching targets. The set of possible scenes f is then& � � no targets present& � � a single, receding target& � h a single, stationary target& � i a single, approaching target& � j a receding target and a stationary target& � k a receding target and an approaching target& � l a stationary target and an approaching target& � m a receding, a stationary and an approaching target
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If the chosen waveform � � � � has relatively good
r resolution then

7 n n � � � � � � � ! # � � � � / � � � � ( $ � � 	 � � � � �
high. However, the hypotheses that correspond to

in which other targets are present, as well as a receding
will also be moderately high as noise and clutter may
e detections in the other cells also. That is, 7 0 n � � � � � �j 	 k 	 m will be significant. The remaining hypotheses,� � for 3 � � 	 h 	 i 	 l all do not contain a receding target

will be the least likely as they require that the true
s not detected and that clutter or noise produces a false
n another cell.
he other hand, suppose the chosen waveform has very
oppler resolution then we might find that

7 0 n � �
m3 , i.e. the waveform provides no useful information

he scene.

V. OBJECTIVE FUNCTION

ill consider two basic forms for the objective function� , ` � , � � � 	 � � � � � , in the adaptive radar scheduling
. The first, more simple function is

` � , � � � 	 � � � � � � \
� A C

� � � � � u w x � � � � � � � (4)

� � � � � u w x � � � � � � � is set to � when � � � � � is sufficiently
This function is at a maximum when the entropy is
sed. Therefore, maximising this objective function will
e a sequence of waveforms that determines the scene
rately as possible over the allowed number of dwells.
clusion of a discounting factor, y �

, � { y { � , in
ue function (3) would modify the solution so that the
ccurate estimate of the scene was obtained as quickly
ible.
second form of the objective function allows the inclu-
information such as a known clutter map and allows

e targets to be classified according to their importance.
case

� � � 	 � � � � � � \
� A C

� � � � � u w x � � � � � � � \
~ > � ` ~ > � � ~ > � � & � (5)

� ~ > � � & � � � if cell � � 	 � � contains a scatterer under
esis & and ` ~ > � is a weight on the importance of
g a scatterer in that cell. For cells that correspond

s of known clutter or “uninteresting” targets such as
g targets that are far from the radar, this weight would
ll. For “interesting” targets such as those at close range
approaching the radar this weighting factor would be
he use of the second form of the objective function

yields the optimal sequence of waveforms to detect
ets as accurately as possible with the more important
detected more quickly and accurately than those of

portance. A discount factor can be included if it is also
that the detection be performed as quickly as possible.



VI. SOLUTION METHOD

The stochastic control problem given by equations (3) and
(2) belongs to the class of problems known as Partially
Observed Markov Decision Problems (POMDP). An overview
of these types of problems and methods for solving them can
be found in [13] and [12]. There are a number of algorithms
for finding both optimal and near-optimal solutions to these
types of problems over a finite horizon. A survey of optimal
algorithms for finite horizon problems can be found in [4].

The various algorithms make use of the fact that over a finite
horizon the objective function of a POMDP is piecewise linear
and convex. Thus the objective function for a given horizon,
can be represented by a set of vectors. The various solution
methods provide different ways of finding this set of vectors.
As the size of the adaptive waveform selection problem is
large, we will use the highly efficient refinement of the Witness
algorithm [11] known as Incremental Pruning [5].

The dynamic programming algorithm [1] shows that the
solution of the problem (3) can be found by proceeding
backwards with the recursion� � � � � � � � 
 � � � � � � �� � � � � � � � 
 � � �� � � � � � � ! � � � � � � " # � � � � %� � ' ) � � � � � �* � � ' ) � � � % . � � 0 " � 
 � 2 . " 5 5 5 " 8
where � �* is the solution of (2) when # is used at dwell � % . ,
generating observation : . The terminal cost � � � � � � � , does not
depend on # since no further scans are made. The key result
here is that is it possible to define a new objective function;�

in terms of a given objective function
�

. That is, we can
write;� � � � 
 � ? A� � � BC � � � " # � % E* � F G I � : J � " # � � � � �* � LM 5 (6)

In [5] it is shown that this can be broken into a series of
simpler combinations of other objective functions;� � � � 
 � ? A� � � � � � � �� � � � � 
 E * � �* � � �� �* � � � 
 .J O J � � � " # � % G I � : J � " # � � � � �* � 5
Over a finite horizon, the objective function

�
can be ex-

pressed as
� � � � 
 � ? A S � T � U W

for some finite set of vectorsX
. This means that is it possible to write� �* � � � 
 � ? AS � T YZ � U W� � � � � 
 � ? AS � T Y � U W;� � � � 
 � ? AS � \T � U W

for some finite sets of vectors
X �* ,

X �
and ;X

for all # ] ^ and: ] O . These sets have a unique representation of minimum
size and [5] provides an efficient method for generating these
sets given

X
.
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VII. EXAMPLE

rder to calculate _ a b � # � � � � we need to make some
tions about the likelihood of a detection in a cell when
re scatterers in nearby cells. A common assumption in
g in clutter problems is that a target located in a given
ll not effect a detection in any other. While this is an
idealised assumption, we will use it here as it allows
omparison with other work in this area.

rmation State Recursion

r the independence assumption above, the probability
t existence in a cell now only depends on detections in
and not on measurements in neighbouring cells. Thus
inal information state recursion (2) (which is a vector

th c d f ) reduces to g i independent scalar equations.j k l m � � � n
 G I � o k l m J p � " q � s ) �o k l m is the event that there is a target in cell � u " v � . In
ords, j k l m � � � is the probability of the existence of a
n cell � u " v � given all the information available up to
Let : k l m � � % . � be the measurement in the cell � u " v �� % . (i.e. either a detection, z k l m or no detection, ;z k l m )

e recursion for j k l m isl m � � % . � 
 .{ G I � : k l m � � % . � J o k l m " # � � � � j k l m � � �
{ 
 G I � z k l m J o k l m " # � � � � j k l m � � � %G I � ;z k l m J ;o k l m " # � � � � � . 2 j k l m � � � �m is the complementary event that there is no target in" v � .

surement Probabilities

the probability of a detection in cell � u " v �m J o k l m " # � 
 G k l m~ � # � and the probability of a falseI � ;z k l m J ;o k l m " # � 
 G k l m� � # � . To calculate G k l m~ � # � and� we use the receiver model described in [15]. In this
all targets have a Swerling 1 distribution and the
additive, white and Gaussian with known power. The

on to other models is straightforward.
r the model of [15], when there is no target present,

put of the matched filter receiver is a complex Gaussian
variable with zero mean and variance given by� �� 
 c g � �g � is the known, ambient noise power and � is the
of the transmitted pulse. For convenience, we will� is the same for all possible waveforms as was done in

5] and [9], although this is not required by our model.
matched filter output in a cell centred on � u � " v � � when
et return has an actual time delay of u and Dopplerv is still zero mean and Gaussian, however the variance
by � �) 
 c g � � % c � �� � � � � u � 2 u " v � 2 v �



where � �� is the variance of the amplitude of the target return
and � is the ambiguity function. The ambiguity function
specifies the output of the matched filter in the absence of
noise. It is given by the equation [16]

� � � � � 	 
 �� 
 � � � � 	 � � � � 	 � � ���
� � � � 	 � � � � � � 	 � � � �  " � � ����

�
where � � % 	 is the transmitted baseband signal.

Recall, the magnitude square of a complex Gaussian random
variable & ( * � , � � � 	 is exponentially distributed, with the
density - 
 & � ( �. � � � / 1 3 � 4 6
so, if there is no target in the cell centred on � � � � 	 under
hypothesis 8 and the detection threshold is 9 then

: ; <  = � > 	 
 � @A �. � �B D E G � � -. � �B 	 � -

 D E G � � 9. � �B 	
 : =

for all > since the energy of the transmitted pulse is assumed
to be the same in all cases.

In the case when a target is present in a cell, assuming its
actual location in the cell has a uniform distribution: ; <  L � > 	 
 �� M � �

O ; P <  P Q � R � @A �. � �S D E G � � -. � �S 	 � - � � U � � U

 �� M � �

O ; P <  P Q � R D E G � � 9. � �S 	 � � U � � U
where M is the resolution cell centred on � � � � 	 with volume� M � .
C. Objective Function

Under the independence assumption, it can be shown that
the first form of the objective function

V � X � Z 	 � > � Z 	 	 
 ]^ Q ` a ^ � Z 	 b d e � a ^ � Z 	 	
reduces to

V � X � Z 	 � > � Z 	 	 
 ] ; <  g a ; <  � Z 	 b d e � a ; <  � Z 	 	 j
� � � a ; <  � Z 	 	 b d e � � � a ; <  � Z 	 	 k l

The second form of the objective function discussed in Section
V becomes

V � X � Z 	 � > � Z 	 	 
 ] ; <  g V ; <  a ; <  � Z 	 b d e � a ; <  � Z 	 	 j
� � � a ; <  � Z 	 	 b d e � � � a ; <  � Z 	 	 k

where V ; <  is a weighting factor that reflects the importance
of detecting a scatter in cell � � � � 	 .
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VIII. CONCLUSION

osing the target detection problem as a stochastic dy-
programming problem we are able to produce schemes
imal waveform selection over a finite horizon. We are
le to develop a flexible framework that can be extended
mber of ways. These include changes to the way the
n probabilities are calculated to remove the idealised
tion that nearby scatterers do not interfere with one
. This framework can also be extended to consider
g as well as detection performance.
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