
Towards a Property-based Testing Environment with Applications

to Security-Critical Software �

George Fink Calvin Ko Myla Archer

Karl Levitt

Department of Computer Science, University of California, Davis

g�nk@cs.ucdavis.edu

Abstract

We consider an approach to testing that

combines white-box and black-box techniques.

Black-box testing is used for testing a program's

e�ects against its speci�cation. White-box test-

ing is essential if subtle implementation errors

are to be identi�ed, e.g., errors due to race

conditions. Full white-box testing is a large

task. However, for many properties, only a

small portion of the program is relevant | hence

property-based testing has the potential to sub-

stantially simplify much of the testing work. The

portion of a program that relates to a given prop-

erty can be identi�ed through slicing. We de-

scribe the ongoing development of a Tester's As-

sistant, which in the long term, will include a

speci�cation-driven slicer for C programs, a test

data generator, a coverage analyzer, and an exe-

cution monitor. The slicer and execution moni-

tor are described in this paper, and applications

to Unix security are indicated. Security is an im-

portant application of property-based testing be-

cause of the subtle undetected security errors in

delivered operating systems. It is also a promis-

ing application because of the (unexpectedly)

concise speci�cations that capture most security

requirements, and because of the operating sys-

tem support for execution monitoring.

�The work reported here is being supported in part
by ARPA under contract USNN00014-94-1-0065 and by

the Lawrence Livermore National Laboratory under work

order LLNL-IUTB234584.

1 Introduction

White-box testing involves the generation of test

data based on program code. Black-box testing,

traditionally, has involved the generation of test

data based on program speci�cations. White-

box testing is essential if subtle errors are sus-

pected, especially those based on race conditions,

internal program state, or "windows" where the

program is exposed/vulnerable to actions that

could cause failure. Block-box testing, on the

other hand, helps focus testing activities on the

expected behavior of the program. The general

opinion of the testing community is that the judi-

cious combinations of these techniques is needed.

This paper explores the combinations of black-

box and white-box testing, but employs speci�-

cations, the basis for black-box testing, to slice

a program to yield the subset of the program

relevant to the properties required by the speci-

�cations. We call this technique property-based

testing.

Not surprisingly, the program properties

which are to be to the focus of the testing ef-

fort depends on the applications; furthermore, a

given application might involve numerous prop-

erties.

For software intended to implement a secure

operating system, for example, the critical prop-

erties are those that related to preservation of the

security state of the system to the unauthorized

release of information, or to the preservation of

the integrity of �les. The portion of the pro-

gram which addresses these critical properties is

often signi�cantly smaller than the whole pro-

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2006 2. REPORT TYPE

3. DATES COVERED
 00-00-2006 to 00-00-2006

4. TITLE AND SUBTITLE
Towards a Property-based Testing Environment with Applications to
Security-Critical Software

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California (Davis),Department of Computer Science,1
Shields Avenue /2063 Kemper Hall,Davis,CA,95616

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
see report

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

10

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Security
Specifications

Regression
 Test Suite

Slicing

Coverage Analysis

Execution Monitoring

Source
 CodeTester’s

 Assistant
 (TA)

Security Assurance

Figure 1: Overview of the Tester's Assistant

gram; therefore property-based testing is a more

e�cient testing scheme than classical white-box

or black-box methods.

Speci�cations are necessary in order to de-

scribe the properties which drive the testing pro-

cess. We have found that it is relatively easy to

specify most security-related properties. It is not

necessary, in general, to provide a full speci�ca-

tion of the program's behavior, as in the work de-

scribed in [OT89], and as we demonstrate below

for security speci�cations. In some instances, no

speci�cation of the program itself is necessary for

detecting security-related
aws. Certain generic

aws [Spa92] been shown to be the cause of many

security problems. These generic
aws can be

captured in speci�cations for use in property-

based testing. By not requiring full speci�ca-

tions, property-based testing is relatively easy

to apply to systems that do not typically come

with full speci�cations.

There are three main uses of speci�cations in

testing. The �rst, slicing, identi�es the subset

of the program that governs behavior relating

to a speci�cation. The second, execution mon-

itoring, uses a speci�cation to construct oracles

which detect when an execution exhibits behav-

ior violating the speci�cation. The third, the

use of speci�cations for test data generation, the

traditional use of speci�cations in testing, is not

emphasized in property-based testing, as the role

of a speci�cation in this case is mostly subsumed

by its role in slicing.

Speci�cations are useful for all these purposes,

whether or not the speci�cations are written in a

formal language. However, requiring the partial

speci�cations to be written in a formal language

enables the use of automatic tools to process the

speci�cation.

We are developing an environment, the

Tester's Assistant (See Figure 1) for property-

based testing, to demonstrate the usefulness of

the methodology. The Testers Assistant has

modules for slicing, data
ow testing, test data

generation, and execution monitoring1. The pri-

mary examples to which the Tester's Assistant is

1A side e�ect of the use of the Tester's Assistant is

a test suite that can later be used for regression testing.
Through coverage monitoring, test data can explicitly be

associated with paths, which can also aid in regression

testing

being applied are UNIX utility programs, which

are all written in C (e.g., login and rdist), all of

which are security critical. Our techniques redis-

covered the known security
aws in several util-

ity programs, including Rdist; to date we have

discovered no new security
aws in UNIX al-

though the testing of other programs is ongo-

ing. In addition to testing sequential programs,

the Tester's Assistant is being designed to ad-

dress concurrent and distributed systems as well.

Many of the known security
aws appear in con-

current or distributed programs on multi-tasking

UNIX machines.

Section 2 outlines the security model used in

property speci�cations. Section 3 de�nes slicing

and discusses the issues associated with it. Sec-

tion 4 describes how speci�cations can be used

to monitor program execution. Section 5 applies

the Tester's Assistant methodology to several

example programs. Section 6 sketches out the

Tester's Assistant implementation and reports

on current progress. Finally, Section 7 spells out

some conclusions and future plans.

2 Security Speci�cations

The Tester's Assistant is heavily reliant upon

speci�cations and, in particular, an e�ective

model for security speci�cations. In this section,

a model for UNIX security is introduced, and ex-

amples of the various kinds of speci�cations are

given.

In UNIX, some programs have privileges be-

yond those needed to complete their job. (Fig-

ure 2) This happens because the granularity of

the access control mechanism may not be �ne

enough. To determine that these programs do

not indeed exceed their intended privilege, we

test them with respect to their security speci�ca-

tions, which we provide. For example, in UNIX,

the \/bin/passwd" program is a setuid root pro-

gram, which means the program will run with

superuser privileges no matter who executes the

program. Therefore, /bin/passwd can poten-

tially do anything in a UNIX system (e.g., plant

a trojan horse, kill any process, shut down the

system). We want to assure that the program is

Unsafe

Behavior

Safe

Behavior

Trusted

 Programs

 Trusted

Programs

Figure 2: Security requirements distinguish pro-

grams which behave safely from those who do

not. For some tasks, it is necessary to breach a

security requirement; these tasks are assigned to

\trusted" programs which can transcend the se-

curity requirements arbitrarily, but are expected

not to exhibit unsafe behavior.

appropriately restricted in what it can do in the

system. Conversely, we want to ensure that cru-

cial activities such as user authentications take

place. Without speci�cations, there is no assur-

ance that the absence of authentication routines

will be noticed during the testing process.

A motivating factor behind the model is the

desire to require only minimal speci�cations to

be provided. There are several reasons for this:

speci�cations are hard to write; if large, they

are hard to understand; it is di�cult to retro�t

speci�cations onto pre-existing code; �nally, it is

desirable to test programs written by others, for

which you do not possess full speci�cations.

Our model divides security speci�cations into

three categories, plus an additional category of

safety speci�cations; these categories are not im-

mutable, but they provide a convenient frame-

work from which to de�ne the speci�cations.

The primitives of the speci�cations are users, ob-

jects, and access rights and restrictions.

The �rst category describes general system re-

quirements. These are properties expressed as

predicates which, in general, programs should

not violate. An example of a system requirement

is that the �le that stores password information

is not accessed, as this would be a breach of

security2. However, it is obvious that in some in-

stances this requirement must be violated; when

some program needs to perform an authentica-

tion of a user, a check is necessary against the

information in the password �le. The system

requirements form a strong barrier between pro-

grams and the system.

The second category of speci�cations de�nes

the interface between programs and the system.

Within the context of the interface, programs are

allowed to violate �rst category speci�cations.

Each system call that is related to security has a

security-related speci�cation. Some system calls

have pre-conditions: predicates that must be sat-

is�ed if the system call is to be used in a secure

manner. For example, the setuid system call,

which gives access permission to a process, re-

quires that the user be authenticated. This as-

sertion results in the speci�cation shown below:

� pre-condition: authenticated(uid)

� setuid(uid)

� post-condition:

permission-granted(uid)

This speci�cation says that the user should

be authenticated before the setuid system call

is made, and that after the system call is made,

permissions have been granted for that user. The

post-condition is information that is added to

the security state after execution, and can help

validate (or invalidate) other requirements and

pre-conditions.

Library routines are also dealt with in this

manner. Although it may be possible to break

down library routines into their component com-

putations and system calls, it is more e�cient to

assume that the standard libraries operate cor-

rectly, and to specify the library functions in the

2In UNIX, note that this �le (/etc/passwd) is in fact

globally readable; other information kept in the �le needs
to be generally available. This makes it more di�cult to

detect security breaches related to the password �le, as

the UNIX security policy allows read access.

same way as system calls are speci�ed. The cor-

rectness of the libraries can be established in an

independent test run. An important set of li-

brary routines to de�ne for the security model

is the password library, a set of routines which

de�ne a standard interface to the password �le.

The third category is program-speci�c speci�-

cations. Such a speci�cation details when a pro-

gram is allowed to circumvent the restrictions of

the �rst and second category of speci�cations.

For example, to allow users to change their pass-

words or new accounts to be created, special

permission must be given in order to write to

the /etc/passwd �le. The program to change

passwords, /bin/passwd, is given a speci�cation

which exactly speci�es the scope of the changes

it can make.

passwd(U:uid)

write(password_file.U.password)

Informally, the speci�cation says that when a

user executes the \passwd" program, that in-

stance program can write only to the password

�le and only the entry corresponding to the pass-

word of that user.

The �nal category of speci�cation describes

safety properties, which have been enumerated

many times [Lut93] [Spa92]. Safety proper-

ties cover common programming mistakes which

can cause
aws. These properties are necessary

to handle the well-behavedness property, de-

scribed in the next section.

3 Slicing for Security Proper-

ties

Slicing is an abstraction mechanism in which

code that might in
uence the value of a given

variable or set of variables is extracted from the

full source code of a program. Weiser [Wei84]

originally implemented slicing for FORTRAN

programs. A criterion for the slice is selected.

In the simplest scenario, a criterion is a vari-

able and a location in the program. There are

two essential characteristics that are required of

a slice with respect to such a criterion: it must

be executable, and for the same input values, the

variable must have identical values at the cor-

responding location in the slice and the original

program. More complex criteria can involve mul-

tiple variables, multiple locations, and include

the behavior of the program after arriving at the

location.

A slice of a program is produced by generat-

ing control and data
ow graphs of the program,

then �nding a closure with respect to the \de-

pends upon" property, starting with the nodes

that correspond to the slicing criteria. For sim-

ple imperative languages, generation of the
ow

graphs and the resultant slice is relatively easy.

More complicated language constructs such as

procedures, gotos, and pointers require alter-

ations in the slicing algorithm. Interprocedural

slicing [LC92] and slicing for programs with arbi-

trary control
ow [BH92] have been studied. In

order to slice C code, the problems of pointers

and pointer aliasing need to be addressed.

Weiser noted that slices are implicitly used in

debugging [Wei82]. In the Tester's Assistant, the

uses of slices are made explicit. Slicing impacts

the other testing algorithms (e.g., coverage) by

enabling an algorithm to be utilized on a sub-

set of the original program (the slice), giving an

increase in e�ciency. For example, given that a

slice possesses the two essential characteristics,

code instrumentation in order to measure cov-

erage with respect to a speci�cation need only

be added to the subprogram designated by the

slice. Alternatively, the slice could be compiled

and executed in isolation from the rest of the

program.

Implicitly, by using slices as the base unit for

testing programs for security holes, we are as-

suming that testing a slice is equivalent to testing

the whole program. The equivalency of a slice to

a program with respect to some narrow crite-

rion does not necessarily imply the equivalency

of test results, although in the Tester's Assistant

we have attempted to bridge the gap by relying

on the completeness of the model de�ned by the

security speci�cations to describe the properties

of interest. For properties that have not been

de�ned, e.g., in our model, properties related to

program correctness (rather than security), test-

ing program slices will give very little informa-

tion. A test of a (correct) slice that was created

with respect to a speci�cation tests that speci�-

cation, but not necessarily anything else.

An aspect of a programwhich potentially jeop-

ardizes the correctness of slices is unexpected

side-e�ects which make the
ow graphs very dif-

�cult or impossible to calculate. This di�culty

arises when slicing C programs because the lan-

guage allows virtually unlimited pointer arith-

metic and also allows many forms of pointer (and

function) aliasing.

To address this, we make the powerful as-

sumption that pointers are well-behaved. A

pointer is well-behaved if, once assigned to an

object in memory, it does not, through pointer

addition or typecasting, try to refer to a dif-

ferent object in memory. A program is well-

behaved if all of its pointers are well-behaved.

Lo [Lo92] showed that static analysis can es-

tablish the well-behavedness property in many

cases. The well-behavedness property can also

be a�rmed through testing with respect to ap-

propriate safety speci�cations. Unfortunately,

much of the power of C as a language derives

from being able to do ill-behaved operations.

However, in many cases, this ill-behavedness is

used in very speci�c ways in which it is pos-

sible to deduce an underlying well-behavedness

property. For example, the use of void point-

ers and type casting to implement generic data

structures and the use of pointer arithmetic for

array indexing are both classic ways in which

what appears to be ill-behaved code is actually

well-behaved.

Using a slice as an intermediary between a

speci�cation and coverage monitoring and test

data generation changes the nature of the latter

two tasks. Using a speci�cation to generate a

slice changes the way it is used to generate test

data. Because slices tend to be small, it is feasi-

ble to use symbolic evaluation to create test data

for most paths in a slice. This is an indirect use

of a speci�cation in test data generation. Spec-

i�cations are also used in test data generation

to identify partitions and interesting data values

(e.g. /etc/passwd for �lenames) in the input

domains from which test data should be drawn.

However, by de�nition, a slice contains all code

relevant to a given property, so coverage mea-

sures are only necessary for paths contained in

the slice.

Slicing typically is performed to examine the

behavior of a set of variables at a speci�c point

in the program. When we slice for properties,

the slicing criteria become more complex. In the

simpler cases this involves the values of variables

at di�erent points in the program in a cumula-

tive way, i.e., the union of the individual slices.

In other cases, the desired slice is the intersec-

tion of slices, or is decided by a more complex

boolean formula. For example, when attempting

to slice with respect to the setuid speci�cation

given above, the slice will contain all data paths

which traverse the setuid but do not traverse

the authentication routine. The speci�cation of

setuid indicates that paths which traverse both

are secure, and thus do not need further test-

ing. Determining slices in this manner is called

dicing [LC91].

The current version of the Tester's Assis-

tant slicer does a data-
ow breakdown of the

program, and can �nd simple slices. Signi�-

cantly, interprocedural and pointer analysis are

not complete, so slices do not cross procedural

boundaries and have to make limiting assump-

tions about pointer behavior. The primary cost

in slicing is producing the data-
ow representa-

tion. The largest example to which the slicer has

been applied is the rdist server, which required

over three thousand data-
ow nodes and took

between seven and eight seconds to execute.

4 Execution Monitoring

In this section we present our approach to moni-

toring the results of test runs to determine if the

results are as expected. We show that for the

testing of trusted programs in a UNIX environ-

ment (i.e., programs that typically run outside of

the kernel, but use kernel services), the kernel,

through its audit services, provides data that is

useful in the analysis of test runs.

A test run of a program needs an oracle that

indicates whether or not the execution produced

the correct results. Manual inspection of the out-

put of an execution is infeasible in many situa-

tions, and at best error-prone, especially if cor-

rect behavior must satisfy numerous security re-

quirements. An executable oracle derived from

the security requirements is desirable.

The use of speci�cations as oracles to test

programs is not new: Richardson [OT89] and

Sankar [SH94] [San89] used speci�cations to

generate assertion-checking functions. What is

unique about our approach is the relative (small)

size of the speci�cations, and the ability to as-

sociate them with a slice of the program. For

certain programs, in addition to adding predi-

cate assertions, we track an abstract \state" of

the program (for instance, the current uid).

Testing programs with respect to security

speci�cations has a distinctive characteristic as

compared with the testing with respect to gen-

eral properties. Most security speci�cations cap-

ture \safety" properties { i.e., bad things should

not happen. In current operating systems, the

state can be changed only through invocation of

system calls to the kernel. The logs of all system

calls made by the program contains data perti-

nent to the results of the test. Therefore, system

audit trails, which record all the system calls to

the kernel, can be used as a basis for checking

whether a program conforms to its security spec-

i�cations.

A signi�cant advantage of using auditing for

testing programs is that auditing is a service

available in most current operating systems (e.g.,

Sun Solaris). For many utility programs, we can

directly check the results of a test without instru-

menting the program, thus obviating the need to

insert assertion-checking functions into the pro-

gram source code. Moreover, auditing is done

outside of the tested program, guaranteeing that

neither the program nor its test data/results are

tampered with. Auditing has been used for in-

trusion detection systems, where audit trails are

analyzed in real time to detect attacks on com-

puter systems.

In our scheme, the program in question is in-

voked by the test driver with appropriate test

input. (See Figure 3.) With auditing enabled

properly, actions of the program are recorded as

KERNEL

Run-time assertion
Checker

Test
Driver

succeedfail

program
Tested Raw

Audit
Trail

Figure 3: Architecture of the execution monitor.

audit trails and saved into �les3.

The audit trails, which consist of a sequence

of audit records arranged in temporal order, are

�ltered and preprocessed by the run-time asser-

tion checker to yield records associated with the

execution of the program by the run-time asser-

tion checker. The checker then checks the results

of the test by matching the audit records against

audit-trail rules, which are derived from the se-

curity speci�cations describe in Section 2.

In Sun BSM audit trails, an audit record sig-

nals an occurrence of an event, which is identi-

�ed by the event ID in the record. In general, an

action/operation referred to the security speci�-

cation may correspond to one or more events.

For instance, the following events all indicate

a write to a �le: AUD OPEN W, AUD OPEN RW,

AUD OPEN TW, AUD OPEN TRW. Therefore, a reg-

ular expression of events is used to represent a

high level operation in the security speci�cation.

If the acceptability of an action with respect to

3In Sun OS, auditing is carried out by an audit dae-

mon, which collects events de�ned by an audit speci�ca-

tion and records then as audit trails.

a security requirement depends on the current

state of the program (e.g., authentication must

precede the setuid call), state changes associated

with program variables from which state changes

of the program can be inferred are also included

in the audit-trail results.

Even large programs have unexpectedly sim-

ple behavior with respect to security, and o�er

conformance to security properties which can be

checked from audit trails. One example is the

rdist program, which has a vulnerability that

enables a user to change the permission bits of

any �le. However, from a security perspective,

it is clear that rdist should not change the per-

missions of any �les not owned by the process

which calls rdist, a property that is easily stated

and checked at runtime just by analysis of audit

trails. Another example is the infamous send-

mail program, which has been the source of many

security problems4. The basic function of Send-

4One of the vulnerabilities, employed by the internet
worm, enables any users in a remote host to obtain a root

shell in the host running sendmail. The most recently

discovered vulnerability enables an attacker to cause root

mail is to deliver mail messages to users. In a

networked environment, it also has to route mail

to destination hosts. Sendmail should only have

append access to a user's mailbox �le, and the

ability to execute a program on behalf of a user

when a mail message arrives (e.g., vacation pro-

grams). It should not write to other �les (e.g.,

the password �le, system programs). Again, it

is easy to check whether sendmail exceeds the

expected behavior from the audit trails, thus en-

abling security testing.

On the other hand, using auditing as a basis

for testing programs has limitations. Most cur-

rent auditing systems do not record all parame-

ters of system calls; hence, not all the informa-

tion about an event is recorded. For instance,

how a program modi�es a �le cannot be inferred

from the audit trails. In addition, some speci�-

cations, like authentications, are hard to check

in this manner.

Fortunately, since in the course of slicing we

are parsing and regenerating the source of the

program, it is simple to add code to the pro-

gram for the purpose of monitoring the adher-

ence to speci�cations. Additionally, information

from the slice can be used to insert monitoring

code at exactly those locations which can in
u-

ence the speci�cation assertion.

5 Examples

To apply the methodology of property-based

testing, we take as examples UNIX system

programs, and consider security-based proper-

ties. Security properties are easily isolatable

from other program properties, and in general,

that portion of the program which deals with

security-related objects (e.g., �lenames and user

ids) is a signi�cantly smaller subset, so slicing

is particularly useful. Picking system programs

provide us with a large example suite, many of

which have already exhibited
aws. We can both

compare the ability of the Tester's Assistant in

detecting these known
aws and also test the sys-

tem's ability to �nd previously unknown
aws.

to execute any program he wants, perhaps a program with

a Trojan Horse.

Finally, these examples provide a fairly represen-

tative sample of the range of speci�cations and

programs relevant to computer security.

To illustrate, Figure 4 is a slice of the

MINIX [Tan87] login program with respect to

the setuid system call. The original program

contains 337 lines, the slice only 20, demonstrat-

ing the e�ectiveness of slicing in this case5.

The mapping of the abstract concept of au-

thentication to source code in the MINIX login

program is an example of the di�culty in general

of mapping speci�cations to appropriate slicing

criteria. While this slice can be produced by slic-

ing the code with respect to the setuid system

call, the additional information in the speci�ca-

tion that deals with authentication is necessary

in order to accurately produce an oracle that

checks the adherence to the setuid speci�cation.

Two other interesting examples of property-

based testing are the UNIX utility rdist, and

the UNIX network service fingerd. Rdist was

found to have a
aw that would allow a user to

alter the permissions on any �le in the system.

Although rdist is a very large program, its
aw

can be detected with a simple security require-

ment: that no �le be altered unless its �le name

is entered as input to the program.

Fingerd was the cause of many security

breaches. The
aw that caused the security

breach was found to be a string over
ow error.

This is a violation of a well-behavedness prop-

erty, which will be found by testing for well-

behavedness requirements.

6 Architecture of the Tester's

Assistant

The �ve components of the Tester's Assistant

are the speci�cation language, the slicer, the

data
ow coverage instrumenter, the execution

monitor, and the test data generator. A human

tester would use the system by selecting spec-

i�cations to test against, and some initial test

data for the program to be tested. The execu-

tion monitor detects when an incorrect execution

5Line counts generated using the UNIX wc command.

The loop exit, a call to exec(), is not shown.

for (;;) {

bad = 0;

write(1, "login: ", 7);

n = read(0, name, 30);

if ((pwd = getpwnam(name)) == NULL) bad++;

if (bad || strlen(pwd->pw_passwd) != 0) {

write(1, "Password: ", 10);

n = read(0, password, 30);

if (bad && crypt(password, "aaaa") ||

strcmp(pwd->pw_passwd, crypt(password, pwd->pw_passwd))) {

write(1, "Login incorrect\n", 16);

continue;

}

}

setuid(pwd->pw_uid);

}

Figure 4: Slice of MINIX login with respect to setuid().

occurs. If no incorrect execution occurs, slices

of the program are examined for their data
ow

coverage information, and more test data is gen-

erated as a result of this analysis.

All of the components coordinate through a

common data-
ow program representation. To

generate the data
ow representation and correct

the instrumentation necessary for coverage anal-

ysis and monitoring, the ELI [W+93] system is

used. ELI is a text processing and compiler con-

struction toolkit. In ELI, high-level speci�ca-

tions are converted into high-performance exe-

cutable translators and compilers. Using ELI,

we are able to quickly prototype the Tester's As-

sistant.

The data
ow representation has been imple-

mented. The slicer is partially implemented:

it is operational on single-procedure programs

using most of C's operations and properties.

Inter-procedural slices generated by algorithms

from [LC92] will greatly increase the number of

programs we can analyze. Pointer anti-aliasing

will be introduced to make slices more e�cient.

Currently, the slicer makes worst case assump-

tions about pointer aliasing, though the well-

behavedness assumption limits the scope of the

aliasing assumptions. Library and system calls

are being speci�ed as necessary. Slicing criteria

are currently limited to a single variable and/or

system call. Technical tasks for the short term,

technical tasks are to improve the slicing algo-

rithm and to provide a richer language for ex-

pressing slicing criteria. A harder problem to be

addressed is to produce templates or other de-

vices for automatically associating complex con-

cepts in the speci�cation (like authentication) to

source code.

7 Discussion

We are investigating the technique of property-

based testing, whereby speci�cations are used

to slice a program to an executable subset rel-

evant to the speci�cation. Traditional methods

are used to derive test data for the slice. The

speci�cations are reused as an oracle, when the

data is applied to the slice. A testing environ-

ment, the Tester's Assistant, is being developed

to evaluate the e�ectiveness of property-based

testing for C programs.

Our initial application has been UNIX utility

programs, a major source of security problems

in UNIX. Although we have not captured all

security-relevant behavior of UNIX in our spec-

i�cations, the speci�cations we have written to

represent integrity requirements have been sur-

prisingly easy to produce and are very concise

{ typically just a few lines of predicate logic

with respect to security properties. The reduc-

tion in program size due to slicing has proved

to be substantial. With the use of system audit

trails in execution monitoring, results of many

test runs can be analyzed without instrumenting

the tested program, which simpli�es the analysis

of test data.

At the current moment, work is continuing on

the development of the Tester's Assistant. We

are broadening the set of examples the Tester's

Assistant can and will be applied to, includ-

ing, in the farther future, extending the slicer

to handle concurrent constructs. In the mean-

time, we are also studying other applications

(e.g., safety properties) where the speci�cations

might be easy to write and the bene�ts of slicing

are substantial.

References

[BH92] Thomas Ball and Susan Horwitz. Slicing
programs with arbitrary control
ow. De-
partment of Computer Science, University
of Wisconsin-Madison, December 1992.

[LC91] Panas E. Livadas and Stephen Croll. The
C-Ghinsu tool. Technical Report SERC-TR-
55-F, University of Florida, December 1991.

[LC92] Panas E. Livadas and Stephen Croll. Pro-
gram slicing. Technical Report SERC-TR-
61-F, University of Florida, October 1992.

[Lo92] Raymond Waiman Lo. Static Analysis
of Programs with Application to Malicious
Code Detection. PhD thesis, University of
California, Davis, 1992.

[Lut93] Robin R. Lutz. Targeting safety-related er-
rors during software requirements analysis.
In Proceedings of the First ACM SIGSOFT
Symposium on the Foundations of Software
Engineering, pages 99{105, December 1993.

[OT89] Debra J. Richardson Owen O'Malley and
Cindy Tittle. Approaches to speci�cation-
based testing. In Proceedings of the First
ACM SIGSOFT '89 Third Symposium on
Testing, Analysis, and Veri�cation(TAV3),
pages 86{96, December 1989.

[San89] S. Sankar. Automatic Runtime Consistency
Checking and Debugging of Formally Speci-
�ed Programs. PhD thesis, Stanford Univer-
sity, August 1989. Also Stanford University
Department of Computer Science Technical
Report No. STAN{CS{89{1282, and Com-
puter Systems Laboratory Technical Report
No. CSL{TR{89{391.

[SH94] S. Sankar and R. Hayes. Adl | an inter-
face de�nition language for specifying and
testing software. Technical Report CMU-
CS-94-WIDL-1, Carnegie-Mellon University,
January 1994.

[Spa92] Eugene H. Spa�ord. Common system vul-
nerabilities. Future Directions in Intrusion
and Misuses Detection, 1992.

[Tan87] Andrew S. Tanenbaum. Operating Systems {
Design and Implementation. Prentice{Hall,
1987.

[W+93] William Waite et al. Eli system manuals.
Unpublished Manuals, 1993.

[Wei82] Mark Weiser. Programmers use slices when
debugging. Communications of the ACM,
July 1982.

[Wei84] Mark Weiser. Program slicing. IEEE
Transactions on Software Engineering, SE-
10(4):352{375, July 1984.

