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Abstract

This paper considers numerical algorithms for finding local minimizers of metric multidimensional scaling
problems. The two most common optimality criteria (STRESS and SSTRESS) are considered, the leading
algorithms for each are carefully explicated, and a new algorithm is proposed. The new algorithm
is based on Newton’s method and relies on a parametrization that has not previously been used in
multidimensional scaling algorithms. In contrast to previous algorithms, a very pleasant feature of the
new algorithm is that it can be used with either the STRESS or the SSTRESS criterion. Numerical
results are presented for the metric STRESS problem. These results are quite satisfying and, among
other things, suggest that the well-known SMACOF-I algorithm tends to stop prematurely.
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1 Introduction

Multidimensional scaling (MDS) is a general term for a vast collection of data analytic techniques. As defined
by de Leeuw and Heiser [11], scaling refers to techniques that construct a configuration of points in a target
metric space from information about interpoint distances, and MDS is scaling in the case that the target
space is Euclidean. Kruskal and Wish [29] provided an elementary introduction to basic MDS methodology,
as well as many enlightening examples.

The present paper addresses two very specific, but very important problems in MDS. As in classical
MDS [42, 43, 19], two assumptions are made about the nature of the information provided about the
interpoint distances. Formally, a symmetric n x n matrix A = (§;;) is called a dissimilarity matrix if
6;j > 0 (nonnegative elements) and §;; = 0 (zero diagonal elements). From a given dissimilarity matrix A,
a two-way MDS algorithm constructs a configuration of points in a Euclidean space of specified dimension
p. For a configuration z;,...,z, € R?, the n X p configuration matrix X is the matrix whose rows are the
gf,i=1,...,n. From X it is easy to compute the Euclidean interpoint distance matrix D(X) = (d;;). The
objective of two-way MDS is to construct a configuration for which the interpoint distances d;; somehow
approximate the given dissimilarities 6;;.

To each possible configuration corresponds a matrix of interpoint distances. Historically, MDS techniques
that minimize some measure of discrepancy between the set of interpoint distance matrices and the given
dissimilarity matrix A have been termed metric. In contrast, nonmetric techniques minimize some measure
of discrepancy between the set of interpoint distance matrices and a set of dissimilarity matrices whose
elements have the same rank ordering as the given §;;. Early MDS techniques, e.g. the methods of Torgerson
[42], were exclusively metric. However, since the pioneering work of Shepard [38, 37] and Kruskal (27, 28], the
psychometric and statistical communities have tended to emphasize nonmetric MDS. Nevertheless, metric
MDS has remained critically important, because solving nonmetric MDS problems typically involves repeat-
edly solving metric MDS subproblems. In recent years, there has been renewed interest, e.g. by de Leeuw
(8], in developing efficient methods for solving these subproblems. Furthermore, in the last decade, tech-
niques related to MDS have been studied by computational chemists, e.g. Crippen and Havel [6], interested
in deducing molecular structure from information about interatomic distances. Because procedures such as
NMR spectroscopy do not distort distances in the nonlinear ways that human perceptions of psychophysical
phenomena typically do, it is metric MDS that is of interest in this context. Thus, the study of metric MDS
remains of fundamental importance.

The classical metric approach of Torgerson [42] having fallen from favor, most modern formulations
of metric MDS entail the minimization of one of two measures of the discrepancy between distances and
dissimilarities. The STRESS criterion, proposed by Kruskal [27] for nonmetric MDS, is based on the squared
errors between the distances and the dissimilarities. The SSTRESS criterion, popularized by Takane, Young,
and de Leeuw [40] for nonmetric MDS, is based on the squared errors between the squared distances and
the squared dissimilarities. Thus, both the metric STRESS (r = 1/2) and SSTRESS (r = 1) problems are

special cases of the following constrained optimization problem:

minimize Y, ; wij [(d%)" - (63)7] "
subject to D € Dyp(p),

where the w;; are nonnegative weights and D,(p) is the set of all n x n matrices whose elements can be

realized as the interpoint distances of n points in RP. In practice, one often sets each w;j = 1; however, one

can use the weights either to accomodate missing data (by setting the appropriate w;; = 0) or to weight

more reliably measured dissimilarities more heavily. In most applications, the dimension of the configuration

space is small; in the case of molecular conformation, of course, one always sets p = 3.

The purpose of the present paper is to describe an implementation of Newton’s method for the efficient
solution of Problem (1) in the special cases r = 1 and r = 1/2. In Section 2 we discuss several fundamental
concepts in metric MDS and numerical analysis. This section provides the necessary background for our
review of the leading metric MDS algorithms (Section 3) and for our description of a more efficient algorithm
(Section 4). We present numerical results in Section 5 and assess what we have accomplished in Section 6.



2 General Considerations

Because it is not obvious how to write the constraint D € D,(p) in Problem (1) as standard equality or
inequality constraints, it cannot be managed by the standard techniques of mathematical programming.
Therefore, virtually all treatments of MDS problems employing either STRESS or SSTRESS parametrize
the distances by expressing them in terms of the configuration coordinates, i.e. by writing

P
df; = d%(X) = Z(‘”ik - z;i)’. (2)
k=1

Substituting (2) into (1) eliminates the constraint but complicates the objective function, resulting in the
unconstrained optimization problem

minimize Ei<j w;; [(Zizl(xik - fjk)z)r - (537‘)r]2~ (3)

Henceforth, we restrict attention to this parametrization of the metric STRESS and SSTRESS problems.

The remainder of this section discusses several fundamental issues from the theory and practice of un-
constrained optimization that are germane to the efficient solution of Problem (3). We believe that an
appreciation of these issues is essential to our critique of previous algorithms (Section 3) and our presenta-
tion of a new algorithm (Section 4). More detailed discussions of these issues can be found in the well-known
book by Dennis and Schnabel [13].

Let us begin with a comment about the distinction between local and global minimizers. Ideally, we would
like to find a global minimizer of Problem (3). Unfortunately, whereas the science of local optimization is
highly advanced, the science of global optimization is still in its infancy. To date, all of the important methods
proposed for metric MDS have been iterative algorithms for finding local minimizers. In this paper, we are
content to improve on these algorithms. Typically, one attempts to find a “good” local minimizer by finding
a good initial configuration from which to start iterating. It has also been suggested that global minimizers
might be more readily obtained by exploiting the geometry of the cone of distance matrices (Glunt, Hayden,
and Liu [16] demonstrated that all of the local minimizers of the metric SSTRESS problem lie on the surface
of a sphere, the global minimizer being the one of greatest norm) or by parametrizing the configuration in
a larger (than p) number of dimensions. Thus far, effective algorithms based on these ideas have not been
forthcoming. Finally, several researchers have applied global optimization methods to the metric STRESS
problem. The modularized DG-II package of Havel [22] attempts to improve on a local minimizer by the use
of simulated annealing. A detailed study by Groenen [20] suggests that tunneling methods are preferable to
simulated annealing.

In the modern theory of computational optimization, Newton’s method continues to be the method
of choice for finding local solutions of unconstrained optimization problems. Under well-known standard
assumptions about smoothness and nonsingularity, it is not difficult to establish local and fast (quadratic)
convergence of the method. Critics of Newton’s method direct their comments to the need for calculating
second derivatives, the need for solving a linear system of equations at each iteration, the implied need for
smoothness and nonsingularity, and the implied nonglobal convergence. While the general theory is sharp,
and all of the above may be valid criticisms across the full spectrum of applications, experience has shown
that, in a particular application, not all of these criticisms need apply or be restrictive. What is at issue in
the present paperis the applicability of these criticisms to the metric STRESS and SSTRESS problems of
MDS.

Users of optimization algorithms are often (and understandably) confused by the distinction between
local and global convergence. What is at issue here is not the type of minimizer, but where the algorithm
must start in order that convergence to a local minimizer be guaranteed. Theory tells us that, if Newton’s
method starts sufficiently near an isolated local solution, then the sequence of iterates will rapidly converge
to that solution. However, this property does not preclude the possibility of choosing a starting point from
which the sequence of iterates may fail to converge to any local minimizer. Modifications of locally convergent
methods that eliminate this undesirable possibility are called globalization strategies, and algorithms that
are guaranteed to converge to a local minimizer from (essentially) every starting point are said to be globally
convergent.



Actually, decades of experience have demonstrated that the semi-local properties of Newton’s method are
usually quite good — much better, in fact, than the local theory predicts. Convergence and fast convergence
are usually not restricted to very small neighborhoods of solutions, as many vendors of awkward hybrid
methods would have us believe. Consider that any superlinearly convergent algorithm gives arbitrarily good
linear decrease in error in neighborhoods of solutions. Unless the objective function is highly nonlinear, these
neighborhoods may be quite large. Hence, Newton’s method can be particularly effective for optimizing
mildly nonlinear functions by virtue of exhibiting very fast linear convergence in large neighborhoods of
solutions. Nevertheless, Newton’s method per se is not globally convergent. Two fundamental globalization
strategies for Newton’s method, line searches and trust regions, are discussed in Chapter 6 of Dennis and
Schnabel [13]. Both are based on the idea that each step taken by the algorithm should decrease the value
of the objective function.

Extensive experience with Newton’s method has also demonstrated that damping the Newton step, i.e.
choosing step length less than one, often improves the global behavior of Newton’s method. However, not
choosing step length one locally may preclude the fast convergence. Concern for these two aspects of Newton’s
method has resulted in the so-called backtracking line-search strategies, in which one always considers the
full Newton step before damping, and one implements damping in a manner that ensures the full Newton
step near the solution. It should also be noted that many unconstrained optimization algorithms allow steps
of length greater than one.

Line-search strategies retain the Newton step direction but alter its length. In contrast, trust-region
strategies constrain the step length but allow other choices of the step direction. This is accomplished by
searching for steps that minimize a quadratic approximation to the objective function at the current iterate,
subject to an upper bound on the step length. Because there is no finite way of exactly solving this quadratic
subproblem, various approximate solutions have been suggested. The most commonly used are the “hook”
step of Hebden [23] and Moré [32], and the “double dogleg” step due to Powell [35].

In general, the presence of a singular Hessian matrix at a solution dramatically slows — and may even
preclude — the local convergence of Newton’s method. Moreover, if the solutions are not isolated, then the
Hessian matrix is necessarily singular at a solution. For this reason, we prefer problem formulations that yield
isolated solutions. Notice, however, that the objective function in Problem 3 is invariant under isometric
transformations of the configuration, so that every minimizer belongs to a connected set of minimizers. What
has happened is that the reparametrization from (1) to (3) introduced a considerable amount of redundancy.
To develop an efficient algorithm for solving Problem (3), it is desirable to remove this redundancy. As we
shall see in Section 3, different researchers have addressed this need in different ways.

Finally, we consider the computational issues of calculating second derivatives and solving systems of
linear equations at each iteration of Newton’s method. A critical issue in deciding to use the method is
the viability of performing these computations. It is certainly naive to believe that this viability can be
determined by looking at only one iteration. Rather, the complete picture must be considered. Discarding
Newton’s method in favor of an algorithm that produces cheap iterates is of no value if the number of
iterations needed to solve the problem is prohibitively large. This is often the case for gradient methods,
unless only a very limited amount of accuracy is needed. It follows that whether or not Newton’s method
will be successsful in a particular application can only be decided by careful study of the application, in
conjunction with careful numerical experimentation.

3 Previous Algorithms

We now review the most important of the algorithms that have been proposed for metric MDS. Historically,
researchers have developed completely different algorithms for the metric STRESS and SSTRESS problems.
In contrast, we believe that one of the attractive features of our approach is that we have developed a single
algorithm that works well on both problems.

Our primary emphasis in this section is on the numerical algorithms that have been used to generate
sequences of iterates. However, we are also concerned with the approaches that different researchers have
taken to isolate local minimizers, and with the devices that they have used to obtain starting points for their
algorithms.



3.1 STRESS

The STRESS criterion is the objective function in Problem (3) obtained by setting r = 1/2. Let us write

the STRESS criterion as )

p 1/2
o(X) =) w (E(m - 7B;‘Ic)2> - &ij
i<j k=1

Kruskal [28, 26] proposed minimizing ¢(X) by an ad hoc gradient method in which the step length is
determined by the angle between the present and preceding gradients. Guttman [21] observed that the
stationary equation Vo(X) = 0 can be written as X = C(X)X, where the matrix-valued function C
depends on the dissimilarity matrix A, and suggested that the sequence defined by the Gutiman transform
Xk+1 = C(X*)X* should converge to a stationary point of ¢. This turned out to be essentially correct, and
all of the algorithms for which convergence has been demonstrated are based on this idea.

The first rigorous analysis of convergence was supplied by de Leeuw [7] and elaborated upon by de Leeuw
and Heiser [10] and de Leeuw [8]. Despite the fact that o is not everywhere differentiable (because the square
root function is not differentiable at the origin, o is not differentiable at X if some d;; (X) = 0, i.e. if some
points in the configuration coalesce), the Guttman sequence is globally convergent to a connected set of local
minimizers. In fact, de Leeuw (1984) [9] proved that ¢(X) is differentiable at all local minimizers, so that
differentiability can be assumed for local convergence analysis. (Note that a consequence of this fact is that
points cannot coalesce in optimal STRESS configurations.) The first such analysis was undertaken by de
Leeuw [8], who concluded that “in almost all cases convergence is linear, with a convergence [constant] close
to unity.” (p. 163). This analysis explains the empirically observed fact that convergence of MDS algorithms
is usually very slow.

To establish convergence, de Leeuw [8] assumed that the configurations were centered at the origin. (This
can be ensured by starting with a centered configuration, since this property is preserved by the Guttman
transform.) This assumption removes some, but not all, of the isometric indeterminacy that characterizes
Problem (3). De Leeuw subsequently observed that

“The discussion in the previous sections shows that at least part of the difficulty with proving
actual convergence of our iterations comes from the rotational indeterminacy of multidimensional

scaling. ...If we eliminate rotational indeterminacy, then we eliminate these difficulties.” (p.
175).

If rotational indeterminacy is eliminated (de Leeuw suggested rotating to principal components), then local
minimizers may be isolated and de Leeuw obtained the rate at which the Guttman sequence converges to an
isolated local minimizer.

Actually, there were other reasons to anticipate the linear convergence of the Guttman sequence. If
differentiability of o(.X) is assumed, then it is well-known that the sequence can be written as the iterates of
a weighted gradient algorithm, X**1 = X* — (1/2)V+ Vo (X*), for a certain fixed matrix V+. In contrast,
the method of steepest descent is a gradient algorithm that produces iterates of the form X*+! = X¥ _
a,Vo(X*), where oy is a (positive) real number. It is generally understood that gradient algorithms, which
do not exploit information about second derivative behavior, typically exhibit linear rates of convergence.

Despite the slow convergence of gradient methods, their use has been strongly emphasized in the MDS
literature. For example, Kruskal [26] distinguished between unconstrained optimization methods whose
memory requirements are linear (Class 1, e.g. gradient methods) and more than linear (Class 2, e.g. Newton’s
method) in the number of variables, and commented:

“Although Classes 1 and 2 have both been used in this field, Class 1 has been used much more
often. In addition to the high cost of memory during computing, this may be due to the fact
that high accuracy solutions are almost never needed in this field due to the substantial random
error which we typically find in the data. Since the solution is meaningful only up to a certain
level due to random error in the input, there is no need to obtain a solution which is accurate to
a much higher level. Hence the higher speed of convergence for Class 2 methods does not have
so great an attraction.” (p. 315).



A more modern assessment of these issues is long overdue. First, both computers and computational math-
ematics have advanced enormously in the last seventeen years. Second, the problems of molecular confor-
mation are very different from the problems of psychology. The number of objects is typically much greater
(a protein molecule may contain thousands of atoms), and the dissimilarities are typically much more accu-
rate. Third, the good semi-local properties of Newton’s method when applied to mildly nonlinear objective
functions (fast linear convergence in large neighborhoods of solutions) imply that there can be considerable
gains from using Newton’s method even when high accuracy is not required.

One fairly conservative possibility for accelerating the convergence of the Guttman sequence is to modify
the step choice in the corresponding gradient algorithm. This is precisely the motivation for Kruskal’s [28, 26]
angle-dependent gradient method. De Leeuw and Heiser [10] presented a simple device that “approximately
halves the number of iterations required to obtain a given precision, at no extra cost.” (p. 513). De Leeuw
(1988) [8] suggested that this improvement was what could generally be expected from such modifications,
and concluded that “one should always study the second derivatives of the loss function at the stopping
point of the algorithm.” (p. 179).

In Sections 4 and 5, we will argue that it is desirable to study the second derivative at each iteration
of the algorithm. The present aversion to so doing appears to be largely due to the perception that it
is a prohibitively expensive course of action. Thus, recent advances have attempted compromises. One
such compromise is the gradient method of Barzilai and Borwein [1], which determines step length using a
Rayleigh quotient that approximates an eigenvalue of the Hessian matrix. Local convergence properties of
this method were established by Raydan [36].

Glunt, Hayden, and Raydan [17] applied the Barzilai and Borwein method to the problem of minimizing
o(X). The authors assumed that the starting configuration is centered, in which case all subsequent config-
urations are necessarily centered; however, they did not attempt to remove rotational indeterminacy. They
refer to this new algorithm as the spectral gradient method, and they found that its use decreased the cpu
time required by de Leeuw’s [8] implementation of the Guttman sequence (which they called the majorization
algorithm) by a factor of 10-20. Even greater acceleration is obtained with use of a preconditioner (Glunt,
Hayden, and Raydan [18]).

In its present form, the spectral gradient algorithm has faster local convergence than the majorization
algorithm, but it sacrifices global convergence. The lack of global convergence requires construction of a
good starting configuration; however, as Glunt, Hayden, and Raydan {17] point out, even globally convergent
methods require good starting configurations to obtain “good” local minimizers. Because their technique for
constructing a starting configuration for the spectral gradient method involves solving a metric SSTRESS
problem, and is actually the same technique employed by Glunt, Hayden, and Liu [16], we defer discussing it
until Section 3.2. Virtually all of the methods that have been proposed in the MDS literature for constructing
starting configurations involve solving an MDS problem that is presumed to be easier than whichever one is
actually under investigation.

3.2 SSTRESS

The SSTRESS criterion is the objective function in Problem (3) obtained by setting » = 1. Computationally,
it is considerably more manageable than the STRESS criterion (in particular, it is everywhere smooth), and
was in fact proposed for this reason. However, there is no analogue of the Guttman transform for SSTRESS.
For this reason, the methods proposed for the metric SSTRESS problem have differed from those proposed
for the metric STRESS problem.

For the special case of dimension p = n, an extensive analysis of the metric SSTRESS problem was
provided by Glunt, Hayden, Hong, and Wells [15]. In this case, the dimension of the solution is not con-
strained, the constraint set D,(p) is convex, and a global minimizer of SSTRESS in the unweighted case can
be obtained using the authors’ Modified Alternating Projection (MAP) algorithm. Of course, the solution
1s typically of very high dimension. Because most applications require a low-dimensional configuration, e.g.
p = 2,3, the configuration constructed by the MAP algorithm is not of much interest per se.

Until recently, the best algorithm for the case of dimension p < n — 1 was the one proposed by Browne
[5]. To understand the basis for this algorithm, it is necessary to briefly digress and consider the classical
metric scaling technique of Torgerson [42].

Given a dissimilarity matrix A, let A*A denote the matrix whose elements are the squared dissimilarities.



Let 7: A — B denote the linear operator defined by

1 _ _ -
b,'j = _i(aij —a; —a; +a.,),

often called “double centering” by psychometricians. Then a well-known embedding theorem from classical

distance geometry states that an n x p configuration matrix X satisfies D(X) = A if and only if T(A*A) =

X XT. Thus, the cone of distance matrices is parametrized by the cone of positive semidefinite matrices of

rank < p, and a configuration matrix can be obtained from a positive semidefinite matrix by factorization.
In case A is not a distance matrix, Torgerson [42] proposed solving the optimization problem

minimize  tr [(B —T(A* A))2]

_ (4)
subject to B € Q,(p),

where tr(-) denotes the trace operator. Equivalently, the objective function in this problem is the square
of the Frobenius norm (the L? norm on R"X") of B — 7(A % A). This function was subsequently dubbed
STRAIN, making Problem (4) the metric STRAIN problem. The metric STRAIN problem has the very
attractive feature that one can compute an explicit global solution B*. Let

A > >

denote the eigenvalues of 7(A x A), let A = diag(}A;,...,),), and let UAUT be the spectral decomposition
of 7(A x A). Define A by A; = max(\;,0)fori=1,...,pand A; =0 for i =p+1,...,n. Then B* = UAUT.
For further details about the metric STRAIN problem (and the embedding result on which it is based), see
the review article by Trosset [44].

We now return to Browne’s [5] algorithm for the metric SSTRESS problem. Given a dissimilarity matrix
A, the SSTRESS criterion in the unweighted case is

F(X) =tr (A« A= D(X)« D(X))*].

To eliminate isometric indeterminacy, Browne introduced a “duplicate” configuration matrix Y and penalized
X for departures from Y. The discrepancy between X and Y was measured using the STRAIN criterion.
Then, for a constant “deceleration” scalar a € (0, 1], Browne proposed minimizing the objective function

FXY) = F(X) +4—Zkr [(YYT - XXT)z] . (5)
Thus, Browne added free variables to the metric SSTRESS problem in an attempt to make it easier to solve.

Browne suggested choosing the initial X configuration to be the solution to the metric STRAIN problem.
His algorithm for minimizing (5) involves alternately minimizing f*(X,,Y) for X, fixed to obtain Y,, = X,,,
then minimizing f*(X,Y,) for Y, fixed to obtain X,;;. This is the method of variable alternation for
reducible nonlinear programming; in the context of MDS, it is usually called the method of alternating least
squares (ALS).

To accomplish the nontrivial minimization subproblem in the ALS formulation, Browne’s algorithm uses
Newton’s method. Because this fact has been emphasized in the MDS literature, we stress that Browne’s
algorithm is not equivalent to applying Newton’s method to the (unweighted) metric SSTRESS problem. In
fact, when ALS converges, it usually does so at only a linear rate.

The superiority of Browne’s algorithm over its predecessors was described by Glunt, Hayden, and Liu
[16], who stated:

“A number of algorithms have been proposed for the solution of the [metric SSTRESS] prob-
lem by researchers in multidimensional scaling. An algorithm due to de Leeuw and Takane was
modified by Browne (1987) by adding a Newton Raphson step (henceforth called the NR method)
and resulted in the best algorithm known to us for finding a local minimum solution of the [metric
SSTRESS] problem. [NR] either finds the global minimum (about 90% of the time in our exam-
ples) or a local minimum with objective function near the global minimum. Furthermore, NR is
orders of magnitude faster than competing algorithms and hence NR is our current yardstick for
measuring success.” (p. 770).



Measured by the Browne yardstick, the algorithm subsequently proposed by Glunt, Hayden, and Liu
(16] is extremely impressive. In its first phase, the MAP algorithm is used to (approximately) solve the
metric SSTRESS problem with p = n. (Glunt, Hayden, Hong, and Wells [15] had found that MAP was
approximately four times faster than Browne’s algorithm for solving this problem.) The MAP solution is
then used to produce a starting point for the second phase, in which a penalty term is added to the objective
function (to remove translation invariance) and a local minimizer is obtained by use of “a standard (say
quasi-Newton) unconstrained nonlinear optimization routine, with analytic gradient computed by ....” (p.
788). Glunt, Hayden, and Liu found that this “two-phase” algorithm was approximately ten times faster
than Browne’s algorithm.

Let us make several observations about the algorithm of Glunt, Hayden, and Liu [16]. First, it is not
at all clear that the expense of using the MAP algorithm in the first phase is justified. Let A° denote the
given dissimilarity matrix and let D° € D,(p) denote the distance matrix obtained from the MAP algorithm.
Then Glunt, Hayden, and Liu (and also Glunt, Hayden, and Raydan [17] for the metric STRESS problem;
see Section 3.1) chose, as a starting configuration matrix X°, a configuration that solves the metric STRAIN
problem with A = D®. We see no obvious reason why this should be superior to Browne’s [5] considerably
less expensive choice of a configuration that solves the metric STRAIN problem with A = A?, the original
dissimilarity matrix.

Second, although Glunt, Hayden, and Liu [16] were quite careful to remove translation invariance, their
penalty function does not remove rotational invariance. This was overlooked by the authors, who mistakenly
believed that the Hessian matrix of their objective function is necessarily positive definite at local minimizers.
Of course, it is not difficult to modify the penalty function so that rotational invariance is also removed.
This was done, for example, by Tarazaga and Trosset {41}, who used the parametrization B = X X7 to
study optimization problems defined on the set of symmetric positive semidefinite matrices of rank < p. The
difficulty with this entire approach, however, is that it demands a great deal of the penalty function. In
practice, devices of this sort tend to lead to a deterioration of the local behavior of the algorithm.

Finally, although Glunt, Hayden, and Liu [16] emphasized their use of the analytic gradient vector, they
declined to use the analytic Hessian matrix. In fact, they opined that “The formula for the Hessian appears
too complicated to be computationally helpful in the general case.” (p. 779). This was also the opinion of
Glunt, Hayden, and Raydan [17] with regard to the metric STRESS problem. As we have already remarked,
however, extensive numerical experimentation is usually required to determine whether or not it pays to
compute second derivatives. We now consider an algorithm that, it turns out, makes extremely efficient use
of such information.

4 A New Algorithm

We begin by writing Problem (3) as a standard nonlinear least-squares problem. To do this, let m =
n(n — 1)/2 denote the number of interpoint dissimilarities (or distances), define G, : R**? — R™ to have

component functions of the form
P r
(Z(m - xjk)2> - () (6)

k=1

for i < j, and let W € R™>™ be the diagonal matrix whose diagonal elements are the weights w;; assoclated
with the corresponding interpoint dissimilarities §;;. Then Problem (3) can be written as the nonlinear
least-squares problem

minimize f.(X) = $G.(X)TWG,(X). (M)

In Section 2, we remarked that the objective function f.(X) is invariant under isometric transformations
of the configuration matrix X. For reasons discussed there, we want to remove the unnecessary degrees
of freedom that result from translational and rotational invariance. As illustrated by each of the methods
reviewed in Section 3, there is a long tradition in MDS of removing translational invariance by centering the
configuration at the origin. Rotational invariance has variously been removed by expensive procedures such
as principal component analysis or simply ignored. We propose to abandon these traditions and make use
of an elementary device that has so far been neglected by MDS researchers.



In an early article concerned with finding molecular configurations that minimize the Lennard-Jones
potential energy function, Hoare and Pal [25] described an elementary way of removing translational and
rotational invariance in R®. One simply constrains one point in the configuration to lie at the origin, specifies
two coordinate axes, constrains a second point to lie along the first specified axis, and constrains a third
point to lie in the plane determined by the two axes. Thus, for X € R**3, we parametrized Problem (7) by
setting

0 0 0
Zq 0 0
g I3 0
X = T4 Tz Tg . (8)

Unless the selected points are collinear, this parametrization removes the isometric invariance of f,.(X).
In general, one selects p points, fixing p — k + 1 coordinates of point k, for £ = 1,...,p. So long as the
selected points are not contained in a subspace of dimension p— 2, this parametrization removes the isometric
invariance of f.(X).

Most of our numerical experiments have been performed for X € R™**3. In these experiments, we have
found that collinearity of the selected points is virtually never encountered. In theory, of course, it may
be that the three selected points are collinear in the minimizing configaration. One way of dealing with
this possibility is to reparametrize, using a different triple of points, whenever the original triple is nearly
collinear. If one can afford the expense of computing the metric STRAIN solution, then one can examine it
to discover a triple that is almost certainly not collinear. (This also allows one to determine whether or not
the dissimilarity matrix actually is a distance matrix of dimension less than p, e.g. all points collinear.) For
the remainder of this paper, we assume that the points have been labelled in such a way that we are fixing
the indicated coordinates of the first p points.

The parametrization defined by (8) appears to be quite standard in the literature on minimizing the
energy of molecular configurations. For example, Northby [34] used it quite casually to preclude translation
or rotation of the configuration. This parametrization is rarely used in MDS. (The only example of which we
are aware is by Groenen [20], who exploited it for global optimization of the metric STRESS problem by a
multi-level single-linkage clustering algorithm.) One possible explanation of this fact is that MDS researchers
may have been unduly influenced by Torgerson’s [42] formulation of the metric STRAIN problem. Young’s
and Householder’s [46] original solution of the embedding problem (the case in which the dissimilarity matrix
actually is a distance matrix) placed the nth point of the configuration at the origin. Torgerson observed
that, with “fallible data,” different solutions are obtained according to which point is labelled the nth.
As an antidote, he introduced the double centering operator that we have denoted by r, which leads to
configurations that are centered at the origin. Thus, for the metric STRAIN problem, configurations are
centered in order to specify a solution that does not depend on the indexing of the points. However, it is
quite clear that solutions to Problems (1), (3), and (7) do not depend on the indexing of the points. Hence,
there is no substantive reason to require that solutions to the metric STRESS or SSTRESS problems be
centered at the origin. Of course, if a centered solution is desired for aesthetic reasons, then one can always
translate a noncentered solution after it has been obtained.

The parametrization defined by (8) reduces the number of free variables in Problem (7), from np to N =
np—p(p+1)/2. Thus, the simplified problem has objective function f, : RN — R, with G, : R¥ — R™ again
having component functions defined by expression (6). The simple structure of f, makes it a straightforward
matter to derive analytic expressions for V£, and V2f,. These expressions are not expensive to evaluate; in
fact, f., Vf,, and V2 f, can be computed in O(N) floating point operations. Using this analytic information
may result in algorithms with smaller truncation errors and better stability properties — see Boggs and
Dennis [3] for an error analysis.

Because Problem (7) is a nonlinear least-squares problem, it can be solved reasonably efficiently by
applying any good general nonlinear least-squares algorithm. Such algorithms have been developed by
Moré, Garbow, and Hillstrom [33], by Dennis, Gay, and Welsch [12], and by Boggs, Byrd, Donaldson, and
Schnabel [2]. These algorithms, however, incorporate conservative precautions and very delicate globalization
strategies designed for highly nonlinear problems. In contrast, the nonlinearity of the residual functions in



Problem (7) is very mild. When the above algorithms are applied to mildly nonlinear problems, they tend
to require more computation and result in longer run times than are necessary. Therefore, it makes sense to
develop a more specialized algorithm for Problem (7).

It is important to appreciate that the Hessian matrix V%f,(X) is completely dense. In many appli-
cations, it is considerably less expensive to compute an alternative matrix, VG,(X) - VG,(X)T. Using
this alternative matrix leads to the Gauss-Newton algorithms, which are particularly effective on so-called
“small residual” problems. See Chapter 10 of Dennis and Schnabel (13] for a discussion of the well-known
Levenberg-Marquardt version of this algorithm.

In numerical analysis, a small residual problem is one for which the value of the objective function at
the solution is small compared to a typical value of the objective function. For example, fr(X*) << f.(X?)
would be suggestive of a small residual problem. In this relative sense, Problem (7) is typically a small
residual problem. However, the availability and density of the Hessian matrix render negligible the relative
savings from using the matrix VG,(X)- VG, (X)T instead of the complete Hessian matrix V2 £.(X). In fact,
for very large problems, VG,.(X) € RVNxm g considerably more difficult than V2f.(X) € RN*N o store
and to use in forming matrix-vector products. In this way, Problem (7) differs from most small residual
nonlinear least-squares problems.

All of the above considerations combine to suggest the viability of simply applying Newton’s method
to Problem (7). The specific algorithm that we implemented can be summarized as follows, where Gi :
RN — R denotes the ith component function of f. and I denotes the N x N identity matrix. To facilitate
implementation, we indicate relevant sections of Dennis and Schnabel (13]. Their Appendix A provides
pseudocode for these modules.

Globalized Newton’s Method Algorithm
1. Construct an initial configuration X°.
2. Specify the convergence tolerances and a radius p® > 0 for the initial model trust region. Set k = 0.

3. Compute the gradient Vf,(X*) and the Hessian

H* = f: [VGL(X¥) - VGLXMT + GL(X*F) - V26 (xH)] .
i=1

4. Determine the step direction s* by minimizing the local quadratic model for f. in the model trust
region, i.e. solve the subproblem

minimize  fr(X*) + VF(X5)Ts + sTH*s/2
subject to ||s]ly < pF.

See Dennis and Schnabel [13], Section 6.4. Because there is no finite method for exactly solving this
subproblem, we settle for an approximate solution. OQur preference is for the hook-step solution of
Hebden [23] and Moré [32]. See Dennis and Schnabel [13], Section 6.4.1 and Algorithms A6.4.1 and
A6.4.2.

5. Determine the step length a* by performing a backtracking line search on f.. (It is somewhat nontra-
ditional to backtrack from a trust-region step, but extensive numerical experimentation revealed that
doing so slightly improves the overall performance of the algorithm on these problems.) See Dennis
and Schnabel [13], Section 6.3.2 and Algorithm A6.3.1.

6. Set X*+1 — Xk 4 okgk,
7. Check convergence. See Dennis and Schnabel [13], Section 7.2 and Algorithm A7.2.1.

8. Update the radius of the model trust region, i.e. compute p**+1. See Dennis and Schnabel [13], Section
6.4.3 and Algorithm A6.4.5.

9. Set k — k + 1 and go to Step 3.
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We investigated two strategies for constructing the initial configuration X°. These strategies represent
two possible compromises in the unavoidable tradeoff between the quality of f.(X°) and the expense of
computing X°. Historically, MDS researchers have eschewed inexpensive initial configurations and have
attempted to obtain initial configurations located near desired solutions. The primary reason for this is
concern about local minimizers — it is certainly plausible that better initial configurations will allow the
algorithm to find better local minimizers.

In this spirit, our first strategy for constructing an initial configuration was to compute (a transla-
tion/rotation of) the metric STRAIN solution. As described in Section 3.2, this is precisely how Browne [5]
constructed initial configurations and is very similar to the strategy employed by Glunt, Hayden, and Liu [16]
and Glunt, Hayden, and Raydan [17]. This construction requires computing the spectral decomposition of
the symmetric n x n matrix 7(A * A). Although modern methods for computing the spectral decomposition
are very efficient (we employed a k- step Arnoldi method with implicit filtering; see Sorensen [39] for details),
the fact that the matrix 7(A x A) is extremely dense means that implementing this strategy may still be
fairly expensive when n is large, as is often the case for molecular conformation problems.

In case computing resources are limited, we also investigated a second, less expensive strategy for con-
structing an initial configuration. This construction proceeds sequentially, beginning with the placement of
the first point at the origin. In general, the jth point is placed at a location determined by the preceding
p points. Specifically, given z;_p,...,z;_1, the coordinates of z; are determined by solving the elementary
least-squares problem

minimize Y321 wi; (Tho, (2 — 2002 — (82)7]". (9)

Notice the similarity of Problems (9) and (3). Solving Problem (9) optimizes the location of z; with
respect to x; (i = j—p,...,j — 1), either approximating the p dissimilarites é;; with the p distances d;; (the
STRESS criterion, for r = 1/2) or approximating the p squared dissimilarites 6,-2]- with the p squared distances
d?j (the SSTRESS criterion, for r = 1). This construction turns out to be considerably less expensive than
computing the metric STRAIN solution, and our experience suggests that the algorithm typically converges
to the same local minimizer from either initial configuration.

When points in a configuration coalesce, i.e. when the algorithm steps to a configuration matrix X*
with two or more identical rows, the performance of the algorithm deteriorates and numerical difficulties are
sometimes encountered. Naturally, we would prefer to avoid such configurations. For the STRESS problem,
de Leeuw [9] has shown that points cannot coalesce at local minimizers, so there is no reason to ever consider
such configurations. (In contrast, points can coalesce at local minimizers of the SSTRESS problem, and also
at solutions of the STRAIN problem. This is one argument that can be advanced for preferring the STRESS
criterion.) We found that, in practice, configurations with coalescing points are rarely encountered if all
points in the initial configuration are distinct. For this reason, we actually implemented a slightly modified
version of our second strategy for choosing an initial configuration. If solving Problem (9) placed z; too
close to any previous points, then the location of £; was perturbed. We required that no interpoint distance
in the initial configuration be smaller than the smallest (strictly positive) dissimilarity, i.e.

min d;;(X°) > min 6;;.
i ij
This condition was easy to enforce, and in practice it effectively inhibited the coalescence of points in
subsequent configurations X*.

We experimented with several implementations of globalization strategies. Both of the standard trust-
region implementations performed extremely well. Extensive numerical experimentation suggested that
the hook-step implementation of Hebden [23] and Moré [32] slightly outperformed the double dogleg step
implementation of Powell [35]. When a line-search method was used instead of a trust-region method,
the overall performance of the algorithm deteriorated. For this reason, our algorithm uses the hook-step
implementation of the trust-region method to determine a step direction. Notice, however, that we then
backtrack from the hook step. As we have already remarked, backtracking from a trust-region step is
somewhat nontraditional, but extensive numerical experimentation suggested that it marginally improved
the overall performance of the algorithm.

Following Section 7.2 of Dennis and Schnabel [13], our convergence criterion combined three different
conditions, developed to answer the following heuristic questions:
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1. “Have we solved the problem?”

2. “Have we ground to a halt, either because the algorithm has converged or simply because it has
stalled?”

3. “Have we exhausted our resources?”

To ascertain if the problem has been solved, we check to see if we have found a stationary configuration,
i.e. a configuration at which the gradient of the objective function is sufficiently close to zero. In case the
problem is badly scaled, we employ a relative measure of magnitude. Let typz; denote the user’s estimates
of typical magnitudes of the coordinates of X, and let typf denote the user’s estimate of a typical magnitude
of fr(X). Then the condition suggested by Dennis and Schnabel [13] is

IV £ (X*))i [ max(|[X*)il, typz:)
1GEN T max((f (X5)), typf) <e. (10)

To ascertain if the algorithm has ground to a halt, we check to see if the size of the step is sufficiently
close to zero. Again, we employ a relative measure of magnitude, viz.

I[s*];]

12“:‘?5\/ max(|[X*];|, typz:) ~

(11)

Finally, we limit resources by limiting the number of iterations. The algorithm continues until either
condition (10) or condition (11) is satisfied, or until the maximum number of iterations is reached.

5 Numerical Experiments

The algorithm presented in Section 4 was tested on several large, unweighted metric STRESS problems. For
small problems, algorithmic efficiency is obviously less important. Currently, the most important source of
large metric MDS problems is computational chemistry. For this reason, our test problems were designed to
approximate molecular structure and configurations were constructed in p = 3 dimensions.

There were several reasons for our focus on the STRESS criterion. First, STRESS problems appear
to be more difficult than SSTRESS problems. Second, it is our impression that SSTRESS has declined in
popularity in recent years. Third, STRESS seems particularly suitable for molecular conformation because,
unlike SSTRESS, points cannot coalesce in optimal STRESS configurations. Fourth, unlike SSTRESS, there
is an established computer program, SMACOF-I [24], for minimizing the STRESS criterion. The SMACOF-
I program, which is an implementation of the majorization method discussed in Section 3.1, provides a
“gold standard” to which our algorithm can be compared. It should be noted that SMACOF-I is highly
regarded in the literature. For example, McFarlane and Young {31] recently stated that “In the context of an
interactive and dynamic graphics system, the method of choice is SMACOF-I .. .; it is the fastest algorithm
that optimizes the [STRESS criterion).” (p. 26).

We began by selecting three molecules: Cranbin (n = 394 atoms), Deoxyribonucleic acid (n = 566
atoms), and Glycopeptide antibiotic (n = 122 atoms). Configuration coordinates in R> for these molecules
are available from the Brookhaven Protein Bank. From these coordinates, we computed the Euclidean
interatomic distances, J,-j. These distances were then perturbed to obtain dissimilarities.

For each molecule, we constructed three dissimilarity matrices, each having a different magnitude of error.
The true interatomic distances Jij were multiplied by errors drawn from a lognormal distribution, an error
model proposed by Wagenaar and Padmos [45] that was recently employed by Groenen [20]. Specifically,
for each d_ij, we generated a pseudorandom number z;; from a standard normal distribution. We then set
o = g(log 10)/1.95996, for g = 1,2,3, and &;; = d;; exp(oz;;).

For each of the nine dissimilarity matrices that we obtained, we attempted to solve the metric STRESS
problem in p = 3 dimensions using three different algorithms: our implementation of Newton’s method,
described in Section 4; and each of the two updating schemes available in SMACOF-I, “Guttman transforms”
and “relaxed updates.” Heiser and de Leeuw {24] argued that the latter scheme squares the convergence
constant, thereby halving the number of iterations required for convergence by the Guttman sequence.
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For each of the nine dissimilarity matrices, we also considered three strategies for choosing an initial
configuration: the metric STRAIN solution, which happens to be the default initial configuration computed
by SMACOF-I; the less expensive configuration described in Section 4; and five randomly generated con-
figurations. In order for the randomly generated configurations to be meaningful, it is important to ensure
that they are reasonably scaled.

Given a dissimilarity matrix A, a fairly natural way to generate a random initial n x p configuration
matrix Y is to do the following. Let m = n(n —1)/2, let S = 3", . 6;, and let 0? = S/(2pm). For each
configuration coordinate, generate a pseudorandom number z;; from a standard normal distribution and take
Yij = 0zj. It is easily verified that this procedure produces configurations for which the expected squared
interpoint distance equals the average squared dissimilarity in A.

To perform the indicated numerical experiments, we had to overcome several technical obstacles. First, it
was necessary to slightly modify SMACOF-I so that sufficient memory was allocated to solve the very large
problems that we considered. Despite the fact that SMACOF-I does not require second derivatives and our
algorithm does, the size of the problems that we were able to consider on our platform (Sun SparcStation
10) was smaller for SMACOF-I than for our algorithm.

A more serious difficulty is the convergence criterion used by SMACOF-I, which stops when an iteration
fails to decrease the value of the STRESS function by at least e5. (The value of €3 can be specified by the
user; the SMACOF-I default is €3 = 1075.) This criterion may stop the algorithm prematurely, as failure
to take a step that sufficiently decreases the value of the objective function does not necessarily mean that
one is near a local minimizer. We addressed this difficulty by using each solution found by SMACOF-I as
an initial configuration for our algorithm, thereby establishing if further decrease was possible.

Finally, it should be noted that these experiments required a certain amount of recoordinatization.
Configurations must be centered if they are to be used as initial configurations for SMACOF-I, whereas our
algorithm uses a different parametrization.

Because SMACOF-I was written in single precision, all of our experiments were performed using 32-bit
IEEE floating point arithmetic. In consequence, the STRESS values that we obtained are presumed to have
only 3-4 accurate digits. Naturally, our algorithm produces more accurate solutions when it is run in double
precision. We specified typical values to be typz; = 0.1 and typf = £,(X°)/10, and the radius of the initial
model trust region to be

p° = ||diag(typz:)V £ (X°)|2 = ||V £ (X°)|[2/10.
Our algorithm stopped if either condition (10) or condition (11) was satisfied. We used tolerances of ¢; = 10~°
and e = 1073, Typically, the algorithm stopped because (10) was satisfied. The stopping criterion tolerance
for SMACOF-I was €3 = 2 x 107%. Each run of each algorithm was permitted a maximum of 250 iterations.

The results of our experiments are tabled in the Appendix. From these tables, several patterns emerge.
First, the hope that SMACOF-I’s relaxed updating scheme requires approximately half as many iterations as
Guttman transforms appears to be overly optimistic. Using the STRAIN solution as the initial configuration
(the default for SMACOF-I), the ratio of the number of iterations for relaxed updates to the number of
iterations by Guttman transforms ranged (over the nine dissimilarity matrices) from 0.5926 to 2.0541, with
a median of 0.7353.

Next, it is quite interesting to note that the number of SMACOF-I iterations does not increase greatly
with decreasing quality of the initial configuration. The median ratio of the number of iterations from the
inexpensive initial configuration to the number of iterations from the STRAIN solution was actually less
than unity (0.5833 for Guttman transforms, 0.6800 for relaxed updates). For random initial configurations,
the corresponding median ratios were only 1.0556 for Guttman transforms and 1.1071 for relaxed updates.
This phenomenon may be due to one or more of several possible causes. First, it may be a consequence of
excellent global, but slow local, convergence properties of SMACOF-I. Second, it may be that SMACOF-1
is finding different local minimizers from different initial configurations. Third, it may be that SMACOF-I
is stopping prematurely. We do not attempt an exhaustive examination of these possibilities in this report.
However, we will argue below that SMACOF-I does have a tendency to stop prematurely.

In contrast to SMACOF-I, the number of Newton iterations varies dramatically with the initial con-
figuration. From the STRAIN solution, the number of iterations until convergence ranged (over the nine
dissimilarity matrices) from 12 to 29. The median ratio of the number of iterations from the inexpensive
initial configuration to the number of iterations from the STRAIN solution was 2.5625. From random initial
configurations, the number of iterations until convergence was never less than 158 and the algorithm failed to
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converge in 250 iterations on several occasions. The median ratio of the smallest number of iterations from
one of five random initial configuration to the number of iterations from the STRAIN solution was 7.6957.
These results clearly illustrate the fast local convergence of Newton’s method and the virtue of starting from
a good initial configuration.

The most intriguing results have to do with the quality of the solutions obtained by the different algo-
rithms from the different initial configurations. When solutions obtained by SMACOF-I were used as initial
configurations for our algorithm, Newton’s method always took additional steps and usually decreased the
value of the objective function. From the SMACOF-I solutions obtained using Guttman transforms (relaxed
updates) from the STRAIN solution, our algorithm took a median of 18 (18) additional steps and further
decreased the STRESS value by a median of 0.77 (0.45) percent. Considering the stringency of the tolerances
in the convergence criteria, this an appreciable amount. When other SMACOF-I solutions were used, the
numbers of additional steps and the relative decreases in STRESS were typically even greater.

For each dissimilarity matrix, starting SMACOF-I from different initial configurations typically produced
different final STRESS values. In comparison, for each dissimilarity matrix our algorithm typically produced
fairly homogenous final STRESS values regardless of the initial configuration. (Recall that the reported
STRESS values cannot be presumed to have more than 3-4 accurate digits.) In particular, our algorithm
typically recovered roughly the same final STRESS value when started from SMACOF-I solutions with
rather different STRESS values. These results strongly suggest that SMACOF-I has a tendency to stop
prematurely.

To some extent, SMACOF-I’s tendency to stop prematurely can be counteracted by specifying an ex-
tremely stringent tolerance for its convergence criterion. We suspect, however, that the actual difficulty
is more fundamental, as it is well known that the stopping criterion used by SMACOF-I (requiring each
iteration to decrease the value of the objective function by at least the specified tolerance) has a general
tendency to induce this behavior. Even more interesting is the question of whether the convergence crite-
rion is entirely to blame or whether the algorithm itself is partially responsible. We believe that, because
the STRESS function is extremely shallow (i.e. fairly large regions of configurations have very slowly vary-
ing STRESS values), any algorithm that fails to exploit second order information will experience difficulty
actually locating a minimizer.

6 Discussion

Both the metric STRESS and SSTRESS problems are mildly nonlinear, but completely dense, least-squares
problems for which local minimizers can be efficiently obtained by the methods of modern numerical opti-
mization. These problems are well-suited to a straightforward application of Newton’s method. Accordingly,
we believe that the second order algorithm that we have presented represents a substantial improvement on
the first order methods most commonly used in current practice. An additional, very appealing feature of
this approach is that the same algorithm can be used with either the STRESS or the SSTRESS criterion.

Historically, MDS researchers have been reluctant to use second order methods because of their perception
that memory is too expensive to warrant storing the Hessian matrix. This perception is challenged by our
algorithm’s ability to efficiently solve very large metric STRESS problems. In fact, as we have already noted,
the size of the problem required to exhaust the memory available on our platform was greater for our second
order algorithm than for the well-known first order algorithm SMACOF-1. Nevertheless, one can always pose
a problem so large that it is impossible to store the Hessian matrix. For such problems, another advantage
of our approach is that it is easily modified to exploit the limited memory quasi-Newton methods that have
been developed for large-scale optimization. (See Gilbert and LeMaréchal [14] and Liu and Nocedal [30] for
an Introduction to these methods.) In preliminary testing, we have efficiently solved extremely large metric
STRESS problems using a limited memory BFGS variant of our algorithm.

This paper has focussed exclusively on algorithms for finding solutions that correspond to fixed dissim-
ilarity matrices. It is the fact that the dissimilarities are fixed that is the defining characteristic of metric
MDS. Although metric MDS is a central mathematical problem of MDS, in most applications it does not
represent the entire problem. For this reason, we conclude by briefly considering the importance of metric
MDS and the potential role of the algorithm that we have presented.

In computational chemistry, MDS is sometimes used to construct molecular configurations from measure-
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ments of interatomic distances. Because a physical molecule actually does exist in R3, dissimilarity matrices
that lead to configurations with small objective function values are to be expected and preferred. Therefore,
instead of simply solving the metric MDS problem defined by setting the dissimilarites equal to the mea-
sured interatomic distances, it is standard practice to begin by smoothing the data, obtaining a dissimilarity
matrix that is more nearly a distance matrix. Nevertheless, and regardless of the exact procedure by which
the dissimilarites are obtained, the solution of a metric MDS problem is an important component of the
complete analysis.

Algorithms for solving metric MDS problems play a clearly defined role in Havel’s [22] modularized DG-11
package for the determination of protein structure from distance constraints obtained from nuclear magnetic
resonance (NMR) spectroscopy. The majorization module of DG-II finds local minimizers of metric STRESS
problems using de Leeuw’s [8] majorization algorithm, described in Section 3.1. It would be a simple matter
to replace this module with an implementation of the Newton method algorithm that we have proposed.

A slightly different approach to determining molecular structure is the data box algorithm of Glunt,
Hayden, and Raydan [17], in which the dissimilarities are allowed to vary subject to bound constraints
determined by the error structure of the measurement process. (For an algorithm that can be applied if the
distances rather than the dissimilarities are bound-constrained, see Boggs, Tolle, and Kearsley [4].) The data
box algorithm employs the method of alternating least squares (ALS), whereby one alternately optimizes
the dissimilarity variables for a fixed configuration and the configuration coordinates for a fixed dissimilarity
matrix. The latter subproblems are metric STRESS problems, which the authors solve using their spectral
gradient algorithm. It would be a simple matter to substitute the Newton method algorithm for the spectral
gradient algorithm.

Finally, as defined by Kruskal [27], nonmetric MDS allows the dissimilarities to vary subject to order
constraints. As exemplified by the popular ALSCAL algorithm of Takane, Young, and de Leeuw [40], ALS is
often used to solve nonmetric MDS problems. This means that, like the data box algorithm, many nonmetric
MDS algorithms entail solving metric MDS subproblems. Again, it would be a simple matter to use the
Newton method algorithm to solve these subproblems.

Thus, metric MDS problems appear in a variety of contexts. Many of these contexts involve large
configurations and/or the successive solution of repeated metric MDS subproblems. Accordingly, one can
reasonably anticipate that the very efficient Newton method algorithm for solving these problems will find
a variety of applications.
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Appendix: Results of Numerical Experiments

The following tables report numbers of iterations and final STRESS values for the numerical experiments
described in Section 5. Each table corresponds to one of nine dissimilarity matrices. For each dissimilarity
matrix, seven initial configurations were generated: the metric STRAIN solution, the inexpensive (Cheap)
initial configuration described in Section 4, and five random initial configurations. Each row in each table
corresponds to one initial configuration.

From each initial configuration, three algorithms were used to solve the metric STRESS problem: the
algorithm proposed in Section 4 (Newton), SMACOF-I with Guttman transforms, and SMACOF-1 with
relaxed updates. For our algorithm, we report the number of iterations (Iter) and the final STRESS value.
For example, consider the table for the Cranbin molecule with ¢ = 1. From the metric STRAIN solution,
our algorithm converged in 13 iterations to a configuration with a STRESS value of 3356.61.
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For the two SMACOF-I algorithms, we report the number of iterations (It-1) and the final STRESS
value (Stress-1). For example, from the metric STRAIN solution for Cranbin with ¢ = 1, SMACOF-I with
Guttman transforms converged in 27 iterations to a configuration with a STRESS value of 3463.58 and
SMACOF-I with relaxed updates converged in 25 iterations to a configuration with a STRESS value of
3466.35. We also report the number of iterations (It-2) and the final STRESS value (Stress-2) obtained
by starting our algorithm from the solution obtained by SMACOF-I. Thus, in the preceding example, from
the solution obtained by SMACOF-1 with Guttman transforms, our algorithm took 15 additional steps and
decreased the STRESS value from 3463.58 to 3356.53; from the solution obtained by SMACOF-I with relaxed
updates, our algorithm took 18 additional steps and decreased the STRESS value from 3466.35 to 3356.45.

If an algorithm stopped because the maximum number of iterations (250) was reached, then the number
of iterations is reported as 250 and no STRESS value is reported. To facilitate interpretation, the reported
STRESS values are the computed STRESS values multiplied by 10%. Because single precision arithmetic
was used, these values should be construed to have 3-4 accurate digits.

Cranbin, g=1

Newton SMACOF-I, Guttman transforms | SMACOF-I, Relaxed updates
Iter Stress | It-1  Stress-1 It-2 Stress-2 | It-1 Stress-1 It-2  Stress-2
Strain 13 3356.61 27  3463.58 15 3356.53 25  3466.35 18  3356.45
Cheap 121  3356.59 41 371213 19 3356.44 40 3715.03 40 3356.62
Random | 219 3356.67 89 391529 159 3356.24 51 3723.99 226 3356.82
Random | 194 3356.62 56  3821.28 147 3356.80 49 3665.21 213 3357.36
Random | 250 — 45 374143 191 3356.03 36 3688.70 107 3356.87
Random | 183 3356.61 71 397098 212 3356.31 60 3731.75 186 3356.44
Random | 197 3356.62 | 31 3600.30 214 3356.49 | 29 3818.09 145 3356.37

Cranbin, g=2

Newton SMACOF-I, Guttman transforms { SMACOF-I, Relaxed updates
Iter Stress | It-1  Stress-1 It-2 Stress-2 | It-1 Stress-1 It-2  Stress-2
Strain 12 3492.08 36 3545.62 18 3489.77 24  3546.67 16 3490.30
Cheap 77  3492.34 21 3625.96 96 3492.52 21 352641 93 3490.76
Random | 175 3492.02 27 3670.84 126 3491.26 26 3506.19 145 3491.40
Random | 220 3492.21 67 3940.87 243 3492.79 41 3719.92 140 3491.09
Random | 235 3491.98 72 3593.05 118 3492.16 41 3618.18 109 3492.86
Random | 244 3492.06 38 3766.69 199 3490.69 37 3603.03 231 3489.61
Random | 219 3492.19 44 3697.08 145 3491.44 33 3564.30 218 3491.56

Cranbin, g=3 |

Newton SMACOF-I, Guttman transforms | SMACOF-I, Relaxed updates
Iter Stress | It-1  Stress-1 It-2 Stress-2 | It-1  Stress-1 It-2  Stress-2
Strain 16 4191.81 81 4211.96 35 4191.53 48 4210.67 26 4191.58
Cheap 41 4192.36 17 430355 195 4192.37 17 4333.25 232 4191.75
Random | 163 4191.99 49 441031 137 4191.84 41 422138 242 4191.94
Random | 223 4191.87 52 434989 216 4191.56 29 4221.12 99 4191.63
Random | 228 4191.69 54  4264.91 248 4192.78 31 4313.75 213 4192.09
Random | 250 — 24 4741.30 219 4192.16 22 433827 227 4191.73
Random | 250 — 43  4639.14 239 4191.27 41 4226.51 248 4191.99
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| Deoxyribonucleic acid, g=1 ]

Newton SMACOF-I, Guttman transforms | SMACOF-I, Relaxed updates

Iter Stress | It-1 Stress-1 It-2 Stress-2 | It-1 Stress-1 It-2  Stress-2

Strain 29 3751.12 43  3811.26 18 3750.99 28 3809.96 39  3751.62
Cheap 117 3751.42 39  3908.92 59 3751.26 32 3901.68 48 3751.51
Random | 209 3751.12 61 384147 249 3756.15 38 3841.14 250 —
Random | 250 — | 96 3892.18 191 3755.50 72 3891.78 239 3751.52
Random | 250 — | 29 3852.61 218 3754.71 25 3861.31 225 3751.85
Random | 250 — | 54 3959.23 250 — | 49 391153 241 3751.58
Random | 214 3752.07 39 3898.98 192 3758.60 31 3881.71 212 3751.95

[ Deoxyribonucleic acid, g=2 |

Newton SMACOF-I, Guttman transforms | SMACOF-I, Relaxed updates

Iter Stress | It-1  Stress-1 [t-2 Stress-2 | It-1 Stress-1 It-2  Stress-2

Strain 26 3799.74 | 27 3800.10 18 3793.96 | 26 3804.24 16  3799.77
Cheap 63 3799.21 13 3853.66 59 3798.38 13 3810.19 63 3798.28
Random | 250 — | 31 3916.85 250 — | 27 401168 227 3795.86
Random | 213 3798.99 [ 28 3859.18 234 3793.63 | 27 3833.83 223 3795.03
Random | 250 — | 36 391282 195 3797.02 | 30 3811.45 250 —
Random | 163 3799.14 | 39 3812.82 178 3792.19 | 36 3903.63 246 3794.56
Random | 250 — | 39 3880.97 242 3796.10 | 33 3880.97 241 3795.47

Deoxyribonucleic acid, g=3 ]

Newton SMACOF-I, Guttman transforms | SMACOF-I, Relaxed updates

Iter Stress | It-1  Stress-1  It-2 Stress-2 | It-1  Stress-1 It-2 Stress-2

Strain 20  5096.57 34 5100.42 19 5096.36 25 5174.04 18 5096.21
Cheap 51  5098.66 17 5118.60 50 5098.55 17 5132.66 51 5095.01
Random | 233 5098.38 25 5138.20 201 5096.41 24 5138.20 215 5095.77
Random | 221 5097.23 36 510462 219 5097.86 33 5104.83 189 5097.23
Random | 236 5096.20 38 5182.18 192 5099.16 36 518242 221 5095.36
Random | 250 — | 89 514455 185 5098.05 70 5144.55 250 —
Random | 229 5095.45 42 531746 250 — | 40 5133.07 239 5095.37
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| Glycopeptide antibiotic, g=1 |

Newton SMACOF-I, Guttman transforms | SMACOF-I, Relaxed updates

Iter Stress | It-1  Stress-1 It-2 Stress-2 | It-1 Stress-1 It-2  Stress-2
Strain 23 3002.20 31 317119 41 3002.21 20 3009.68 6 3002.84
Cheap 51  3000.59 54 3117563 112 3005.87 23 313631 208 3005.78
Random | 240 3004.27 27  3194.01 241 3005.68 24 312439 234 3005.11
Random | 216 3001.03 51 3183.93 140 3008.95 22 312597 144 3005.52
Random | 173 2999.92 50 3187.22 116 3005.34 22 3167.22 121 3008.75
Random | 181 3005.81 22 3170.75 157 3005.12 21 311393 135 3007.75
Random | 158 3005.60 29 315447 169 3006.08 23 3114.01 79 3007.74

| Glycopeptide antibiotic, g=2 |

Newton SMACOF-I, Guttman transforms | SMACOF-I, Relaxed updates

Iter Stress | It-1  Stress-1 It-2 Stress-2 | It-1 Stress-1 It-2  Stress-2

Strain 24 3126.98 42 3128.90 8 3126.08 35 3129.38 12 3126.71
Cheap 48 3125.93 22 3436.67 11 3128.29 21 3436.98 22 3127.02
Random | 217 3126.75 23 3424.70 156 3127.94 21 332831 17 3126.40
Random | 167 3126.99 89 3329.54 129 3128.37 96 3229.72 18  3126.57
Random | 212 3126.08 27 342731 134 3126.94 22 3332.69 38 3126.72
Random | 183 3127.00 29 3229.37 181 3126.03 23 3231.74 42 3126.61
Random | 188 3126.18 21 3439.29 189 3126.19 21 3416.71 112 3127.10

Glycopeptide antibiotic, g=3 }

Newton SMACOF-I, Guttman transforms | SMACOF-I, Relaxed updates

Iter Stress | It-1  Stress-1 It-2 Stress-2 | It-1 Stress-1 It-2  Stress-2

Strain 23 3816.61 37 384537 34 381569 | 76 382459 23 3816.15
Cheap 63 381545 | 89 3921.57 89 3815.58 | 31 3921.75 61 3815.65
Random | 187 3816.91 29 392199 111 3815.86 | 28 3917.11 115 3815.57
Random | 191 3816.12 27 392358 250 — 18 3919.83 132 3815.64
Random | 177 3815.96 38 398799 153 3815.25 21 3896.54 121 3815.42
Random | 198 381599 | 39 3916.14 162 3816.32 | 31 3917.57 148 3815.59
Random | 199 3815.63 37 3918.25 241 3815.26 | 32 3900.48 250 —
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