Apogee motors will transfer large geostationary satellites into their final orbit, still within the next decade. 60% of a GEO satellite mass are propellants and 90% of these propellants are consumed by the apogee motor. An increase of motor performance and motor efficiency offers significant mass savings for the satellites. Therefore, an optimum performing apogee motor is still an element of strategic importance for the competitiveness of a large geostationary satellite.

The need for developing a new High Performance Bi-propellant Apogee Motor is driven by the customers' requirements and the demand for higher performance, lower prices, not restricted to the US export licenses and high reliability. The dominating features for the new development are therefore performance, price, non-itar components and reliability. The benefit for the customers will be in the strategic field (independency for Europe) and in the commercial field (mass gain and therefore more payload and competitive price on the world market).
Report Documentation Page

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

1. REPORT DATE 13 JUL 2005
2. REPORT TYPE N/A
3. DATES COVERED -

4. TITLE AND SUBTITLE New European Apogee Motor - Advanced Propulsion Technology

5. AUTHOR(S)

6. AUTHORIZING OFFICER(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) EADS Space Transportation Lampoldshausen Germany

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES
See also ADM001791, Potentially Disruptive Technologies and Their Impact in Space Programs Held in Marseille, France on 4-6 July 2005. The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

<table>
<thead>
<tr>
<th>a. REPORT</th>
<th>b. ABSTRACT</th>
<th>c. THIS PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>unclassified</td>
<td>unclassified</td>
<td>unclassified</td>
</tr>
</tbody>
</table>

17. LIMITATION OF ABSTRACT UU

18. NUMBER OF PAGES 2

19a. NAME OF RESPONSIBLE PERSON

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18
Two essential elements for a high performance motor are the core objective of the work: injector technology and combustion chamber technology. Both components will use the most advanced materials, processes and techniques.

The injector system is the heart of the motor providing the propellants mixed to achieve highest performance. Ignition is obtained by hypergolic reaction of the atomized propellants. The atomization is achieved through a Micro-Showerhead type injector delivering the appropriate droplet size for effective and stable combustion over the large EAM operation box.

The development objectives for the combustion chamber are low specific weight, high specific strength over a large temperature range, low CTE, a good chemical and erosion resistance with hypergolic propellants for an attractive price. The answer to these requests is the application of a ceramic material. Using the fiber-reinforced C/SiC for the combustion chamber an all-in-one chamber and nozzle configuration is feasible to produce the unit without any weld seams. The corresponding manufacturing technologies have to be established to respect the various diameters from chamber, throat to the wide geometry of the nozzle extension by filament winding process. A sophisticated technology is used to combine the ceramic chamber material to the metallic injector head system. This interface technology has to be compatible with the specified vibration loads and thermal conditions during motor life. The combustion chamber must provide sufficient compatibility with respect to the propellants (MMH / N₂O₄) and their derivates, long-term use and tightness and permeability. A high performance coating system is under development to satisfy the complex technical requirements and to respect commercial constraints. Specific Non-Destructive Inspection methods (NDI) have to be developed for C/SiC materials to verify and to validate the manufactured combustion chamber and nozzle expansion.

These specific motor characteristics will make the EAM a highly competitive apogee engine which is very attractive to customers of satellite industry throughout the world.