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Abstract 

 
A scenario where multiple air vehicles are required to prosecute geographically dispersed targets is 

considered.  Furthermore, multiple tasks are to be successively performed on each target, i.e. the targets must be 
classified, attacked, and verified as destroyed.  The optimal, e.g. minimum time, performance of these tasks requires 
cooperation amongst the vehicles such that critical timing constraints are satisfied, that is, a target must be classified 
before it can be attacked, and an air vehicle is sent to a target area to verify its destruction only after the target has 
been attacked.  In this paper, the optimal task assignment/scheduling problem is posed as a mixed integer linear 
program (MILP).  The solution of the MILP assigns all tasks to the vehicles and performs the scheduling in an 
optimal manner, including staged departure times.  Coupled tasks involving timing and task order constraints are 
automatically addressed. When the air vehicles have sufficient endurance, the existence of a solution is guaranteed.  
 
Keywords:  Linear Programming, Military, Optimization, Planning, Scheduling 
 
Introduction 
 
In this paper, the optimization of air-to-ground operations is undertaken (Chandler et al, 2001).   A scenario where 
multiple Unmanned Air Vehicles (UAVs) are required to service geographically dispersed targets is considered.  
Moreover, multiple tasks must be successively performed on each target, viz., the targets must be classified, 
attacked, and the damage inflicted on the targets must be assessed. The floating timing constraints are critical:  A 
target cannot be attacked before it is classified, and a UAV will be sent to the target area only after the target attack 
has been executed. Multi-role UAVs are considered s.t. each UAV can perform all of the tasks. A case in point: 
Autonomous Wide Area Search Munitions (WASM) are small UAV’s, each with a turbojet engine and sufficient 
fuel to fly for thirty minutes.  WASM are deployed in groups from aircraft flying at higher altitudes; they are 
typically deployed in groups of four, although larger teams are certainly possible.  They are individually capable of 
autonomously searching for, recognizing, and attacking targets. The ability to network, that is, to communicate 
target information to one another, and consequently to cooperate, will greatly improve the weapon system’s 
effectiveness of future UAV teams.   The insertion of this technology into WASM systems under development is 
currently being investigated.  Thus, the problem is posed of planning the performance of the UAVs’ tasks such that 
critical timing constraints are satisfied. This entails optimal assignment and scheduling. 
 
In (Schumacher et al, 2002, Schumacher et al, 2003a, Schumacher et al, 2003b) a time-phased network optimization 
model was used to perform task allocation for a team of UAVs.  The model is run simultaneously on all air vehicles 
at discrete points in time, and assigns each vehicle one or more tasks each time it is run.  The network optimization 
model is run iteratively so that all of the known targets will be prosecuted by the resulting allocation.  The model is 
solved each time new information is brought into the system, typically because a new target has been discovered or 
an already-known target’s status has been changed, thus achieving feedback action.  Classification, attack, and battle 
damage assessment tasks can all be assigned to different vehicles when a target is found, resulting in the target being 
more quickly serviced.  A single vehicle can also be given multiple task assignments to be performed in succession, 
if that is more efficient than having multiple vehicles perform the tasks individually.  In (Schumacher et al, 2003a), 
variable path lengths are included to guarantee that feasible trajectories will be calculated for all tasks.  This method 
is computationally efficient and scales well, however the iterative procedure is heuristic and suboptimal.  Tabu 
search can be used to solve difficult combinatorial optimization problems, e.g., the vehicle routing problem with 
fixed time windows (Toth et al, 2002), and (Gendreau et al, 1994, Glover and Laguna, 1997, O’Rourke et al, 2000).  
In this paper a solution method for air vehicle routing combinatorial optimization problems with floating time 
windows, as described above, is developed. Moreover, we feel that there is an urgent need to develop an exact 
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solution method against which heuristic methods, which are applicable to larger problems, can be benchmarked - 
see, e.g., (Hooker, 1995), where this is strongly advocated.  
 
This paper addresses the optimal formulation for solving the coupled multiple-assignment and scheduling problem. 
Continuous timing variables are introduced.  This, in turn, leads to the formulation of the optimization problem as a 
Mixed Integer Linear Program (MILP)  (Nemhauser and Wolsey, 1988) and allows the optimal solution to be found 
while satisfying all timing constraints.  A preliminary version of  the MILP formulation for task assignment and 
scheduling given here was first presented in (Schumacher et al. 2004a).  In this paper, time is treated as a continuous 
variable and a rigorous optimal task assignment/scheduling algorithm is developed. This requires the solution of a 
mixed integer linear program (ILOG 1999).   
 
The formulation presented here can be solved optimally for some realistic problem sizes, e.g., a team of five UAVs 
servicing three targets, without requiring approximate solution.  Loiter, if it is needed, is not handled at target 
waypoints.  Rather, the method presented here allows staged departure times, before vehicles begin their tour of 
targets and tasks.  This obviates the need for loiter in potentially dangerous target areas. Also, our MILP formulation 
is flexible enough to allow the consideration of many interesting cost functions, e.g., mission completion in 
minimum time, shortest total paths lengths traveled by the vehicles, or maximization of the number of air vehicles 
which survive the mission.  
 
The method presented here can also accommodate fixed time windows, as in the Vehicle Routing Problem (VRP) 
(Toth et al, 2002), although arbitrary fixed time windows can make the problem, independent of solution 
methodology, infeasible. Moreover, the MILP presented here can also accommodate dynamic and logical constraints 
on task performance, as is the case in scheduling problems (Pinedo, 2002). In this work, without fixed time 
windows, feasibility is guaranteed, as long as the number of air vehicles exceeds the number of targets, even with 
three or more tasks per target, provided the air vehicles have sufficient endurance.   
 
Nomenclature 
 
i = Start node index 

j = Arrival node index 

J = Cost function  

k = Task index 

n =  Number of targets 

( )kv
ijt ,  = Time required for air vehicle v to fly from node i  to node j to perform task k at node j  

( )k
jt  = Time of completion of task k on target j 

T = Maximum endurance of any UAV 

Ti,j = Flight time between nodes i and j 

Tv = Endurance of UAV v 

v = Air vehicle index  

w =  Number of UAVs 

( )kv
jix ,

,  = Binary task assignment variable for the task of air vehicle v flying from node i to node j to perform 

task k on node j 

( )v
wnix 1, ++  =  Binary assignment variable for the task of air vehicle v flying from node i to the sink node 

 
Scenario 
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Consider n geographically dispersed targets with known position and w Air Vehicles (AV).  We assume 1+≥ nw .  
We then have n+w+1 nodes: n target nodes, w source nodes (the points of origin of the AVs), and one sink node. 
Nodes 1,…,n are located at the n target positions. Nodes n+1,…, n+w are located at the vehicle initial positions. 
Node n+w+1 is the “sink”.  An air vehicle with no future target assignments is relegated to the sink, i.e. will 
continue to search. A vehicle located at the sink cannot be reassigned.  
 
• Spatial outlay:  The flight time of AV v from node i to node j to perform task k at node j  is ( ) 0, ≥kv

ijt .  The 

indices i=1,…,n+w, j=1,…n, and v = 1,…,w. The index k designates the task to be performed at node j.  Thus, it 
is acknowledged that the time to travel from node i to node j depends on the particular AV v’s airspeed and the 
assigned task k.   

 
• The tasks: Three tasks must be performed on each target.  
 

1. k=1 – Classification 

2. k=2 – Attack 

3. k=3 – Target Damage Assessment (Verification) 

Furthermore, once an AV attacks a target, it is destroyed and can no longer perform additional tasks. This is 
certainly the case for powered munitions and the WASM mission, but if the AV was a reusable aircraft, one would 
have to modify the problem formulation and account for the AVs’ depletion of its store of ammunition following 
each attack.  
 
 The three tasks must be performed on each target in the order listed. This results in critical timing 
constraints, which set this problem apart from the classical Vehicle Routing Problem (VRP) (Toth et al, 2002).  In 
the latter, rigid time windows for the arrival of the vehicles can be specified, however, the coupling brought about 
by the need to sequence the various tasks is absent. Evidently, our problem features some aspects of job shop 
scheduling (Pinedo, 2002).  
 
In the operational scenario considered, the number of pre-specified problem parameters ( )kv

ijt ,  is 3wn+3n(n-1)w = 

3n2w.  When Euclidean distances are used, the dimension of the parameter space is reduced to 0.5n(n-1)+wn= 
0.5n(n+2w-1).   Finally, the endurance of AV v is .,...,1, wvTv =  
 
Figure 1 illustrates a scenario where one stationary ground targets is engaged by three AVs. The potential target’s 
position is known at the beginning of the optimization, but not the classification.  First, the target will be overflown 
and imaged, then it will be attacked, and finally an AV will overfly the target for verification purposes.  
 
Mixed Integer Linear Programming 

 
The Mixed Integer Linear Programming (MILP) model uses a discrete approximation of the real world based on 
nodes that represent discrete start and end positions for segments of a UAVs path. Nodes representing target 
positions range from 1…n and nodes for initial UAV positions range from n+1…n+w. There is also an additional 
logical node for the sink n+w+1. The sink node is used when no further assignment for the UAV is in the offing; it 
goes to the sink when it is done with all of its tasks, or when it is not assigned another task.  In practice, when a 
UAV enters the sink it is then used for performing search of the battlespace. The MILP model requires the 
information on the costs (or times) for a UAV to fly from one node to another node.  These known flight times are 
constants represented by ( )kv

ijt , , the time it takes UAV v to fly from node i to node j to perform task k. The flight 

times are positive real numbers, ( ) 0, ≥kv
ijt . 

 
 
Decision Variables 
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The binary decision variable ( ) 1, =kv
ijx if AV v is assigned to fly from node i to node j  and perform task k at node j, 

and 0 otherwise; i = 1,…n+w, j = 1,…,n, v = 1,…,w, and k = 1,2,3.  For i=n+1…n+w, only ( )kv
jvnx ,

,+  exist.  These 

variables correspond with the first task assignment each vehicle receives, starting from its unique source node.  Only 
vehicle v can do a task starting from node n+v.  For task assignments k=1,3, i ≠ j and for task assignment k=2 we 
allow i = j; the latter allows for an AV to perform the target classification task, and immediately thereafter attack the 
target. Thus far, we have wn(3n+1) binary decision variables.  
 We also have the following additional binary decision variables. The decision variable ( ) 11, =++

v
wnix if AV 

v is assigned to fly from node i to the sink node n+w+1, and is 0 otherwise; v=1,…,w and i = 1,…,n+w. This adds 
(n+1)w binary decision variables. Entering the sink can also be thought of as being re-assigned to the search task.  
 
Continuous decision variables: 
 The time of performance of task k on target j is ( ) 0>k

jt ; k = 1,2,3 and j = 1,…,n.  Thus, we have 3n 

continuous decision variables. We also have w additional continous decision variables: the time AV v leaves node j 
= n + v is tv; v = 1,…,w. In total we have w[n(3n+2)+1] binary decision variables and 3n+w continuous non-
negative decision variables.  

 
Cost Functions 

 
Possible cost functions include: 
 

1. Minimize the total flight time of the AVs 
( ) ( )∑ ∑ ∑ ∑=

= =

+

= =

3

1 1 1 1

,
,

,
,

k

w

v

wn

i

n

j

kv
ji

kv
ji xtJ         (1) 

2. Alternatively, minimize the total engagement time. The target j is visited for the last time at time ( )3
jt . Let tf 

be the time at which all targets have been through Verification. Introduce an additional continuous decision 
variable 1

+ℜ∈ft .  The cost function is then ftJ = and we minimize J subject to the constraints  

 ( ) njtt fj ,,1,3 K=≤          (2) 

We also add a small weight to the time of performance of each individual task, to encourage each 
individual task to be completed as quickly as possible.  Then 

 ( ) ( ) 3,2,1,,,1, ==+= knjtctJ k
j

k
jf K ,       (3)   

where ( ) 0>k
jc  is a small weight on the completion time of each individual task. To weight the time of 

performance of individual tasks more heavily, one could use  ( ) ( ) .3,2,1,,,1, === knjtcJ k
j

k
j K  

3. An additional cost function: The number ns of surviving UAVs, which end up in the sink.  Thus, the cost  
( )∑ ∑==

=

+

=
++

w

v

wn

i

v
wnis xnJ

1 1
1,  

and the optimization problem considered is snJ =max . 
 

Constraints 
 

Inclusion of all of the required constraints is critical to automatically enforcing the desired vehicle behavior.  
 

1. Mission completion requires that all three tasks are performed on each target exactly one time.  Similar to 
linear assignment problems (Nemhauser and Wolsey, 1988) the following must hold:  

( )
nj

k
x

w

v

wn

jii

kv
ij ,...,1

3,1
,1

1 ,1

,
=
=

∑ =∑
=

+

≠=
,        (4) 
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and 
( ) njx

w

v

wn

i

v
ij ,...,1,1

1 1

2, =∑ =∑
=

+

=
         (5) 

This yields 3n constraints. 
 
2. Not more than one AV is assigned to perform a specific task k on a specified target j: 
 

( ) ;,...,1,1
,1

,
, wvx

wn

jii

kv
ji =≤∑

+

≠=
         (6) 

where j=1,…,n and k=1,3, and  
 

( ) njwvx
wn

i

v
ji ,,1;,...,1,1

1

2,
, K==≤∑

+

=
        (7) 

This yields 3n constraints. This constraint is redundant with Constraint 1, and will not be included in the 
examples. However, this constraint could be important with modifications to the cost function and Constraint 1.  
For example, if more targets were available than could be attacked by the available number of vehicles, it would 
be physically impossible to complete all tasks on all targets. In that case, we could make the cost function the 
value of targets killed, and we would not include Constraint 1, but would then need Constraint 3, to prevent 
unnecessary duplicate attacks on a single target.  
 
3. An AV v, coming from the outside, can visit target j at most once: 

( )
nj
wv

x
k

wn

jii

kv
ij ,...,1

,...,1
,1

3

1 ,1

,
=
=

∑ ≤∑
=

+

≠=
        (8) 

This, and Condition 4 below, eliminate the possibility of loops. In addition, each AV v can only enter the sink 
once: 

( ) wvx
wn

i

v
wni ,...,1,1

1
1, =≤∑

+

=
++          (9) 

This yields (n+1)w constraints. 
 
4. AV v leaves node j at most once: 

( ) ( ) ;,...,1,1
3

1
1.

,1

, wvxx
k

v
wnj

n

jii

kv
ij =∑ ≤+∑

=
++

≠=
       (10) 

where j=1,…,n. This yields nw constraints.  
 
5.  A munition is perishable. Thus, an AV v can be assigned to attack at most one target.  

( ) .,...,1,1
1 1

2, wvx
n

j

wn

i

v
ij =∀∑ ≤∑

=

+

=
        (11) 

This yields w constraint equations. 
 
6. If AV v is assigned to fly to target j for Verification, it cannot possibly be assigned to attack target j: 

( ) ( ) ;,...,1,1
,1

3,
,

,1

2,
, wvxx

wn

jii

v
ji

wn

jii

v
ji =∑−≤∑

+

≠=

+

≠=
       (12) 

where j = 1,…,n.  Condition 3 renders Condition 6 redundant; we do however include Condition 6, because it 
holds in its own right, but also in the case where one would choose not to have recourse to the assumption 
which yields Condition 3. 
 
7. Continuity Constraints.  These Constraints ensure that proper flow balance is maintained at each node.  
 7.1  If AV v enters target (node) j for the purpose of performing task 3, it must also exit target j: 

 ( ) ( ) ( )∑
=

+++∑
≠=

∑
+

≠=
≤

3

1
,1,

,1

,
,

,1

3,
,

k

v
wnjx

n

jii

kv
ijx

wn

jii

v
jix       (13) 
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where j=1,…,n; v=1,…,w. 
 
 7.2  If AV v enters target (node) j for the purpose of performing task 1, it must also “exit” target (node) j: 

 ( ) ( ) ( ) ( )∑ ++∑∑ ≤
=

++
≠=

+

≠=

3

1
1,

2,
,

,1

,
,

,1

1,
, ,

k

v
wnj

v
jj

n

jii

kv
ij

wn

jii

v
ji xxxx .     where j=1,…,n; v=1,…,w.  (14) 

 
 7.3.  A munition is perishable. Thus, if AV v is assigned to fly to target (node) j to perform task k=2, then, 
at any other point in time, AV v cannot also be assigned to fly from target j to a target i, ji ≠ , to perform any 
other tastk at target i; recall that according to our Simplifying Assumption, AV v can enter target j not more 
than once. Thus 

 ( ) ( ) ( )∑
=

∑
+

=
−≤+++∑

≠=

3

1
,

1

2,
,11.

,1

,
,

k

wn

i

v
jixv

wnjx
n

jii

kv
ijx      (15) 

where j=1,…,n; v=1,…,w. 
 
 7.4.  If AV v is not assigned to visit node j, then it cannot possibly be assigned to fly out of node j. Thus 

 ( ) ( ) ( ) .,
3

1 ,1

,
,

3

1
1.

,1

,
,∑ ∑∑≤+∑

=

+

≠==
++

≠=k

wn

jii

kv
ji

k

v
wnj

n

jii

kv
ij xxx   where j=1,…,n; v=1,…,w.  (16) 

 
 7.5.  All AVs leave the source nodes. An AV leaves the source node even if this entails a direct assignment 
to the sink.  

 ( ) ( ) .,...,1,1
3

1
1.

1

,
, wvxx

k

v
wnvn

n

j

kv
jvn =∀∑ =+∑

=
+++

=
+       (17) 

 
 7.6.  An AV cannot attack target (node) i, coming from target (node) i, unless it entered target (node) i to 
perform a classification. Thus 

 ( ) ( )∑
=
=

∀≤
+

=

wn

j

v
ij

v
ii wv

ni
xx

1

1,
,

2,
, .

,...,1
,...,1

,         (18) 

 
8. Timing Constraints 
Nonlinear equations which enforce the timing constraints are easily derived, and are given in (Schumacher et al 
2003c).  We are however interested in an alternative, elegant formulation which uses linear inequalities, so that a 
MILP formulation is achieved.  
 
Thus, let  

 { } .max 1
w
vvv TT =≡          (19) 

Then the linear timing constraints become: 

 ( ) ( ) ( ) ( ) ( ) wTxxttt
wn

ill

v
il

kv
ji

kv
jii

k
j ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
∑−−++≤
+

≠= ,1

1,
,

,
,

,
,

1 2.       (20) 

 ( ) ( ) ( ) ( ) ( ) wT
wn

ill

v
ilxkv

jixkv
jititk

jt ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
∑
+

≠=
−−−+≥

,1

1,
,

,
,2,

,.1       (21) 

 

 ( ) ( ) ( ) ( ) ( ) wTxxttt
wn

ill

v
il

kv
ji

kv
jii

k
j ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
∑−−++≤
+

≠= ,1

3,
,

,
,

,
,

3 2.       (22) 

 ( ) ( ) ( ) ( ) ( ) wTxxttt
wn

ill

v
il

kv
ji

kv
jii

k
j ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
∑−−−+≥
+

≠= ,1

3,
,

,
,

,
,

3 2.       (23) 

for i=1,…,n; j=1,…,n; ji ≠ ;v=1,…w; k=1,3.  In addition,  
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 ( ) ( ) ( ) ( ) ( ) wTxxttt
wn

ill

v
il

v
ji

v
jiij ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
∑−−++≤
+

≠= ,1

1,
,

2,
,

2,
,

12 2.       (24) 

 ( ) ( ) ( ) ( ) wT
wn

ill

v
ilxv

jixv
jititjt ⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
∑
+

≠=
−−−+≥

,1

1,
,

2,
,22,

,.12       (25) 

 ( ) ( ) ( ) ( ) ( ) wT
wn

ill

v
ilxv

jixv
jititjt ⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
∑
+

≠=
−−++≤

,1

3,
,

2,
,22,

,.32       (26) 

 ( ) ( ) ( ) ( ) ( ) wTxxttt
wn

ill

v
il

v
ji

v
jiij ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
∑−−−+≥
+

≠= ,1

3,
,

2,
,

2,
,

32 2.       (27) 

for i=1,…,n; j=1,…,n; ji ≠ ;v=1,…w. 
Also, 

 ( ) ( ) ( ) wTxttt kv
jvn

kv
jvnv

k
j ⎟

⎠
⎞⎜

⎝
⎛ −++≤ ++

,
,

,
, 1.        (28) 

 ( ) ( ) ( ) wTxttt kv
jvn

kv
jvnv

k
j ⎟

⎠
⎞⎜

⎝
⎛ −−+≥ ++

,
,

,
, 1.        (29) 

for all j=1,…,n; k = 1,2,3; v = 1,…,w. 
 

These timing constraints operate in pairs. They are loose inequalities which do not come into play for assignments 
( )kv

jix ,
,  which do not occur, but effectively become hard equality constraints for assignments which do occur. Thus 

the time that a task k is performed on target j by AV v will be equal to the time that the preceding task was 
performed by AV v at node i, plus the time it will take AV v to fly from node i to node j. A similar constraint applies 
if AV v left its source node n+v to fly to node j.  
 

Furthermore, 
( ) ( ) njtt jj ,...,1,21 =≤          (30) 

( ) ( ) njtt jj ,...,1,32 =<           (31) 

The timing constraints thus add 2n[(6n-1)w+1] linear inequality constraints.  The timing constraints (20)-(31) are 
critical for the MILP formulation of the optimization problem at hand.  

 
Extensions  

Additional constraints can be included.  
9. A vehicle’s assigned path duration cannot be longer than its endurance Tv: 

( ) ( ) ,
3

1 1 ,1

,
,

,
, v

k

wn

i

n

ijj

kv
ji

kv
ji Txt ≤∑ ∑ ∑

=

+

= ≠=
     wv ,,1K=        (32) 

This yields w constraints. 
10. It is fairly easy to specify additional rigid time window constraints akin to the VRP, e.g., for time critical 

targets one could demand that the attack on target j take place after time ( )2
jt , and not before time ( )2

jt , i.e. 

 ( ) ( ) ( )222
jjj ttt ≤≤ ,     nj ,,1 K=         (33) 

11. Numerous other constraints can also be included, such as: specific vehicles performing certain tasks, 
minimum time delays between tasks, simultaneous completion of attack tasks, and requiring the vehicle 
that classifies a target to also attack it. Logical constraints are easily included.  With some constraints 
included, such as vehicle endurance (Constraint 9), the existence of a solution is no longer guaranteed.  

12. Hetergeneous vehicles: For some applications, a set of heterogeneous vehicles would be used, with 
different capabilities. Some might be sensor platforms with no attack capability. Or some vehicles might 
simply have used all their ordinance, or not be carrying the proper ordinance to attack certain targets. In 
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such cases, we add the constraint ( ) 0,
, =kv
jix for any combination where vehicle v cannot perform task k on 

target j.  
13.  Partially prosecuted targets:  If this algorithm was used for task assignment by a group of UAV’s, 
additional targets and tasks could be added to the overall task list while some previously-known targets were 
already partly prosecuted. In this case, less than three tasks would be required for some targets, when the 
assignments were recalculated. For already completed tasks, we modify Constraint 1 such that  

 ( )
nj

k
x

w

v

wn

jii

kv
ij ,...,1

3,1
,0

1 ,1

,
=
=

∑ =∑
=

+

≠=
,        (34) 

and 

 ( ) njx
w

v

wn

i

v
ij ,...,1,0

1 1

2, =∑ =∑
=

+

=
        (35)  

for any target j and task k that have already been completed.  
 
Examples 
  
    One Target and Three UAVs 
 
We first consider  the case of one target and three AVs, i.e. n=1 and w=3, as the problem is small enough to be 
described in detail and allow the reader to follow the mechanics of MILP.  
 
We have 18 binary decision variables and 6 continuous decision variables. Minimizing the time the final task occurs 
will add an additional continuous decision variable t, for a total of 25 decision variables. In this single-target case, 
we could exclude the additional variable and simply minimize 3

1t , but the additional variable will be included to 
demonstrate the additional variable which would be required for 2≥n .  The State Transition Diagram is given in 
Figure 1.  
 
There are 18 binary decision variables: 
 

 
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ⎟
⎠
⎞⎜

⎝
⎛=

⎟
⎠
⎞⎜

⎝
⎛=

,,,,,,...,

,,,,,...,

1,3
1,4

3,2
1,3

2,2
1,3

1,2
1,3

3,1
1,2106

2,1
1,2

1,1
1,2

2,3
1,1

2,2
1,1

2,1
1,151

xxxxxxx

xxxxxxx
       (36) 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
⎟
⎠
⎞

⎜
⎝
⎛=

⎟
⎠
⎞

⎜
⎝
⎛=

3
6,4,2

5,3,1
5,218,17,16

3
5,1,2

5,1,1
5,1,3,3

1,4,2,3
1,415,...,11

xxxxxx

xxxxxxx
  

There are 7 continuous decision variables: 

( ) ( ) ( ) ( )( ),,,,,,,,..., 3
1

2
1

1
13212519 tttttttxx =        (37) 

 
We wish to minimize  

( )2423221.025 xxxxJ +++=           (38) 
subject to the following constraints: 
 
From Constraint 1: 

13211185

11296

11074

=+++++
=++

=++

xxxxxx
xxx
xxx

         (39) 

 
From Constraint 7.5: 
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118121110

117987

116654

=+++
=+++

=+++

xxxx
xxxx
xxxx

          (40) 

 
Thus we have 6 equality constraints, plus the following inequality constraints. 
From Constraint 2:  

13211185

11296

11074

≤+++++
≤++

≤++

xxxxxx
xxx
xxx

         (41) 

 
From Constraint 3: 

1121110

1987

1654

≤++
≤++

≤++

xxx
xxx
xxx

          (42) 

 
Constraints 4-6 drop out in the 1-target case.  
The Continuity Constraints give: 
From 7.1: 

1512

149

136

xx
xx
xx

≤
≤
≤

           (43) 

 
From 7.2: 

15310

1427

1314

xxx
xxx
xxx

+≤
+≤
+≤

           (44) 

 
From 7.3: 

111315

18214

15113

≤++
≤++

≤++

xxx
xxx
xxx

          (45) 

 
From 7.4: 

121015

9714

6413

xxx
xxx
xxx

+≤
+≤
+≤

          (46) 

 
From 7.5: 
The equality constraints given by Eq. 36.  
 
From 7.6: 

103

72

41

xx
xx
xx

≤
≤
≤

           (47) 

 
With only 1 target node, the Constraints associated with Eq (20-23) and (26,27) are not meaningful. So we are left 
with the following timing constraints: 
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From Eq (24,25): 

( ) ( )
( ) ( )wTxxtxx

wTxxtxx

4122,1
1,12223

4122,1
1,12223

−−−+≥

−−++≤
 

( ) ( )
( ) ( )wTxxtxx

wTxxtxx

7222,2
1,12223

7222,2
1,12223

−−−+≥

−−++≤
        (48) 

( ) ( )
( ) ( )wTxxtxx

wTxxtxx

10322,3
1,12223

10322,3
1,12223

−−−+≥

−−++≤
 

 
From Eq (28,29): 

( ) ( )
( ) ( )wTxtxx

wTxtxx

411,1
1,21922

411,1
1,21922

−−+≥

−++≤
 

( ) ( )
( ) ( )wTxtxx

wTxtxx

711,2
1,32022

711,2
1,32022

−−+≥

−++≤
         (49) 

( ) ( )
( ) ( )wTxtxx

wTxtxx

1011,3
1,42122

1011,3
1,42122

−−+≥

−++≤
 

 
and 

( ) ( )
( ) ( )wTxtxx

wTxtxx

512,1
1,21923

512,1
1,21923

−−+≥

−++≤
 

( ) ( )
( ) ( )wTxtxx

wTxtxx

812,2
1,32023

812,2
1,32023

−−+≥

−++≤
         (50) 

( ) ( )
( ) ( )wTxtxx

wTxtxx

1112,3
1,42122

1112,3
1,42123

−−+≥

−++≤
 

 
and finally, 
 

( ) ( )
( ) ( )wTxtxx

wTxtxx

613,1
1,21924

613,1
1,21924

−−+≥

−++≤
 

( ) ( )
( ) ( )wTxtxx

wTxtxx

913,2
1,32024

913,2
1,32024

−−+≥

−++≤
         (51) 
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( ) ( )
( ) ( )wTxtxx

wTxtxx

1213,3
1,42124

1213,3
1,42124

−−+≥

−++≤
 

 
Also, from Eq (30,31), we have: 

ε−≤ 2322 xx                 (52) 
and 

ε−≤ 2423 xx            (53) 
where 0>ε is a small  positive constant. We will set 1.0=ε .  This enforces a small delay between each task being 
performed on a target.  
 
Finally, from Eq (2), we have 

2524 xx ≤ .           (54) 
Thus the full set of constraints contains 6 equality constraints and 51 inequality constraints, for 57 total constraints. 
A few of them are redundant for this case, but might not be for a more complex problem.  
 
Let us make the simplifying assumption that the time to travel from node i to node j to perform task k is independent 

of which task is required, and which vehicle is performing the task. Then ( )kv
jit
,

, simply becomes  jit , .  For this 

example, let  
 

39.51,4

24.41,3

61.31,2

1.01,1

=

=

=

=

t

t

t

t

 

 
We will set T =Tv= 100 as the endurance of all of the AVs, so that endurance is not a constraint, and feasibility is 
guaranteed.   Then the optimal assignment is: 
xi = 1, i=1,4, 9,14,18 
xi =0, i=2,3,5,…,8,10,…,13,15,16,17 
xi =0, i=19,20,21.  
x22 = 3.61 
x23=3.71 
x24 = 4.24 
x25 = 4.24 
 
This corresponds with all 3 vehicles immediately leaving their source nodes (x19-x21=0), and vehicle 1 performing 
classify and attack on the target at t=3.61 and 3.71 respectively, with vehicle 2 performing verification at T=4.24.  
Vehicle 3 flies direction to the sink (it is not assigned to this target, but continues to search).  
 
Suppose that it takes longer for a vehicle that has just classified a target to complete an attack on that target. Then 
we might have the initial conditions  

39.51,4

24.41,3

61.31,2

11,1

=

=

=

=

t

t

t

t

 

In this case, the assignment is identical, except that the attack occurs at t=4.61and the verification at t=4.71.  This is 
an example where the verification had to be delayed so that it occurred after the attack.  
 
Finally, suppose that Vehicle 3 is closer to the target initially, and we have the initial conditions  
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50.41,4

24.41,3

61.31,2

11,1

=

=

=

=

t

t

t

t

 

 
Then the optimal assignment is: 
xi = 1, i=4,8,12,13,15 
xi =0, i=1,2,3,56,7,9,10,11,14,16,17,18 
xi =0, i=19,20,21.  
x22 = 3.61 
x23 = 4.24 
x24 = 4.50 
x25 = 4.50 
 
This assignment requires all 3 vehicles to immediately leave their source nodes and proceed to the target . Vehicle 1 
performed the classification, vehicle 2 the attack, and vehicle 3 the verification. WASMs 1 and 3 then proceed to the 
sink, in other words, continue to search for other targets. 
 
MILP Size 
 
For n targets, w vehicles, and m=3 tasks per target, the problem size scales as follows:  There are  
n(n-1)wm+nwm+2nw+mn+2w+1 decision variables.  Of these, 3+nm+1 are continuous timing variables, and the 
rest are binary decision variables. The number of constraints likewise grows rapidly. There are  
12*(n-1)*n*w+9*n*w+2*n*w*m+2*n*m+3*w constraints.  Of these, m*n+w are equality constraints. The rest are 
inequality constraints, including 7*n*w+2*w inequality non-timing constraints, and  
12*(n-1)*n*w+2*n*w+2*n*w*m+m*n inequality timing constraints.  
 
The size of the MILP expands rapidly as problem size increases. However, some practically-sized problems are 
amenable to optimal solution with this mixed-integer linear program formulation.  For n=2, w=3, there are 51 binary 
decision variables, 10 continuous decision variables, 9 linear equality constraints, and 174 linear inequality 
constraints. For n=2, w=4, there are 68 binary decision variables, 11 continuous decision variables, 10 linear 
equality constraints, and 230 linear inequality constraints.  For n=2, w=5, there are 85 binary decision variables, 12 
continuous decision variables, 11 linear equality constraints, and 286 linear inequality constraints.  Problem size and 
complexity grow much more rapidly with an increased number of targets. For n=3, w=4, there are 136 binary 
decision variables, 14 continuous decision variables, 13 linear equality constraints, and 485 linear inequality 
constraints.  The growth of constraints and variables is linear in the number of vehicles, but quadratic in the number 
of targets.   For some operational scenarios involving larger problem sizes, optimal solutions may not be found 
within the available computation time.  However, useful feasible solutions satisfying all constraints can still be 
found (ILOG 1999).   
 
Two Tasks per Target 
 
A similar MILP formulation with the classification and attack tasks combined as a single task, resulting in two tasks 
per target, was presented in [14].  The data used for an interesting example of an assignment and scheduling 
computation with two tasks per target is given below.  The data for the MILP problem is specified  by the distances, 
or flight times Tij, between the nodes.  It is here tacitly assumed that the listed times are not vehicle and/or task 
dependent. For the following examples, let Tij be specified as: 
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⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

10.8167   12.7279   5.8310    8.2462    
9.2195    10.2956   5.0990    4.4721    
3.6056    3.1623    8.6023    10.0000   

10.4403   10.0000   8.4853    3.1623   
5.0990    8.0623    3.6056    9.2195    

0         3.0000    5.0000    7.2801   
3.0000        0         7.2111    7.0711    
5.0000    7.2111        0         5.8310    
7.2801    7.0711    5.8310       0         

, jiT  

 
where the start node i is indexed down the rows, and the end node j is indexed over the columns. So the time for a 
vehicle to fly from node 4 to node 3, T43 = 3.0, and so on.  The sink position does not matter, as it only exists 
conceptually - the time to reach it is not meaningful in the optimization problem under consideration. In practice, a 
vehicle that is assigned to the sink continues to search for potential targets along a predefined search path.  
 
In this case, an assignment ( ) 1, =kv

iix  is not possible for any v or k, as that would require a vehicle to both attack and 
verify the same target, which is not possible in the WASM scenario, where the vehicle is used up when performing 
an attack. The solution for this example scenario is given in Figure 3.  This solution illustrates interesting behavior, 
with Vehicle 5 (orange) performing three verification tasks, and Vehicle 4 performing a verification, followed by a 
classify/attack task.  Larger problems will be more computationally difficult to solve.  However, any problem 
physically feasibly for a typical WASM team of four vehicles (i.e. with three targets or less) can be solved quickly 
enough for on-line implementation.  A more detailed discussion of problem size and computation time as a function 
of scenario parameters can be found in (Schumacher et al. 2004b). 
 
Path Planning and Task Assignment Coupling 
 
So far we assumed that the path length from node i to node j is known ahead of time and we focused on the task 
assignment problem.  Artificially decoupling the path planning and task assignment aspects of the UAV cooperative 
control problem can result in a lack of feasible solutions. Including coupling between these aspects of the problem is 
thus essential.  We accommodate this critical coupling in our formulation by allowing the variables tv to represent a 
delay before a vehicle leaves its source node. This can also be thought of as adding loiter to a path, or otherwise 
extending the path length taken to perform the vehicle’s first task. 
 
In the example presented earlier, we assumed that all tasks required the same amount of time for a vehicle to 
accomplish, given identical starting and ending points.  To illustrate an example that demonstrates infeasibility, we 
will need to discuss more precisely differences in path planning based on task, for which our formulation allows. We 
will examine the path planning and task assignment for the WASM scenario studied in (Schumacher et al, 2002, 
Schumacher et al, 2003a, Schumacher et al, 2003b).  For this scenario, classify, attack, and verification paths all have 
different constraints. Classify paths must approach a target from one of the preferred Automatic Target Recognition 
(ATR) aspect angles (Chandler and Pachter, 2001), and the task is completed at the proper sensor standoff distance, 
not when the vehicle is directly over the target. Attack paths can approach the target from any angle, and are 
completed when the vehicle is directly over the target. Verification paths can approach from any angle, and are 
completed when the vehicle is at the sensor standoff distance from the target. If path planning is decoupled from 
task assignment, and minimum length paths are calculated for all of the tasks, then, for some initial conditions, there 
will be no feasible assignment that completes all of the required tasks, using the calculated paths.  
  
This is illustrated in Figure 4.  Attack and Verification paths are illustrated as straight, dashed lines connecting the 
vehicles and the targets.  Due to the desired approach angles, classification paths  (presented as solid lines), form 
two sides of a triangle. Turning radius is neglected in the illustration. Although turning radius is important for 
calculating the true paths, neglecting it does not change the fundamental nature of the problem. As Figure 4 
illustrates, for any combination of target node j and vehicle start node i, the minimum length path for classification is 
longer than the minimum length path for verification. Clearly, if the vehicles are collocated at a point (x1,y1), and the 
targets are collocated at another point (x2,y2), then all paths for a particular task k will be the identical, irrespective of 
target node j or vehicle start node i, and all of the “classify” paths will be longer than all of the “verify” paths. If the 
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targets and vehicles are then allowed to spread out from (x1,y1) and (x2,y2), then, as long as the vehicles and targets 
each remain within some small region of each other, all of the “classify” paths will still be longer than all of the 
“verify” paths. For some values of the turn radius and sensor standoff distance, all minimum-distance “classify” 
paths will also be longer than all minimum-distance “attack” paths. For nearly-collocated vehicles, a similar 
difficulty arises when comparing minimum-distance “attack” and “verify” paths. The paths are identical, but the 
“verifies” would occur first, because of the sensor standoff distance. The results of the attacks on the targets would 
be tested before the attacks had occurred, which is obviously unacceptable.  
 
In Figure 4, if the vehicles can only choose among the illustrated paths, plus additional paths connecting the two 
target locations at the ends of the initial paths, there is no assignment possible that will classify, attack, and verify 
both targets in the appropriate order. No matter which two vehicles are assigned the classify and attack tasks, the 
third vehicle’s minimum-length verify paths will arrive before the vehicle is classified or attacked. Clearly, the 
inclusion of loiter to delay the verification task is required.  
 
Suppose that the nominal vehicle and target data are: 

 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

 5.0    5.4 
 5.1    5.1 
 5.4    5.0 

  0     2.0 
 2.0      0  

, jiT  

for “verify” tasks, but with the additional task-dependent variations that classifies take 2.0 longer due to flying 
smoothed triangular paths, and attacks take 0.4 longer due to covering the additional sensor standoff distance. In this 
case, all of the minimum-distance verification paths are shorter than the minimum-distance attack paths, which are 
in turn shorter than all of the minimum-distance classification paths. Using only the minimum-distance paths 
calculated in a decoupled manner, there is no feasible assignment. Using our MILP algorithm to perform the 
assignment allowing loiter, we now find the optimal assignment schedule: 
 
Vehicle 1 leaves its start node immediately, classifying Target 1 at t=7.0, and attacking Target 1 at t=7.4.  Vehicle 3 
leaves its start node immediately, classifying Target 2 at t=7.0, and attacking Target 2 at t=7.4. Vehicle 2 does not 
leave its start node immediately, but loiters for t=2.4, before then proceeding to verify Target 1 at t=7.5, and then 
verifying Target 2 at t=9.5.   The MILP algorithm presented here has been implemented into the MultiUAV high 
fidelity UAV operation simulation and visualization package, thus endowing the UAV teams with higher 
“intelligence” [http://www.isr.us/research_sim_muav.asp accessed 6 December 2005]. 
 
Conclusions 
 
This paper presents a Mixed Integer Linear Program (MILP) formulation for finding the optimal solution to a 
difficult multiple-task assignment and scheduling problem where the tasks are coupled by timing and task 
precedence constraints. Preserving linearity and casting this scheduling aspects - dominated combinatorial 
optimization problem into a MILP formulation, without having recourse to direct enumeration or time discretization, 
is a major contribution of this paper. This formulation allows staged vehicle departure times to guarantee that timing 
constraints are satisfied, and directly incorporates the varying task completion times into the optimization. Optimally 
staged departures bring about a guarantee of feasibility, without a need to loiter.  Indeed, feasibility is guaranteed, 
provided that the number of UAVs employed exceeds the number of targets, and the UAV endurance is sufficiently 
high.  Moreover, the formulation is flexible enough to allow for various alternative performance functionals, e.g., 
minimum time to mission completion, minimum path length traveled by the air vehicles, or minimum number of air 
vehicles required to accomplish the mission.  This is a rigorous formulation, which allows a true optimal solution for 
a very challenging assignment and scheduling problem.  Solution results were presented for practical problem sizes, 
with real-time implementable optimal solutions obtainable for many realistic problems.  Our exact solution could 
serve as a test bed for heuristic methods currently employed for air vehicles operations optimization.  
 
Note: This is declared a work of the U.S. Government and is not subject to copyright protection in the United States. 
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Figure 1 – State Transition Diagram for 1 Target, 3 Tasks per Target, 3 Vehicles 
 
 

Figure 2 – State Transition Diagram for 2 Targets, 3 Tasks per Target, 3 Vehicles 
 
 

Figure 3 – Task Assignments for n=4 Targets, 2 Tasks per Target, w=5 Vehicles 
 
 

Figure 4 – Minimum-Time Paths with 2 Targets, 3 Tasks per Target, 3 Vehicles 
 


