AIAA Guidance, Navigation, and Control Conference and Exhibit AlAA 2005-5829
15 - 18 August 2005, San Francisco, California

Assignment of Cooperating UAVs to Simultaneous
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A problem of assigning multiple unmanned aerial vehicles (UAVs) to simultaneously
perform cooperative tasks on consecutive targets is posed as a new NP-hard combinatorial
optimization problem. The investigated scenario consists of multiple ground moving targets
prosecuted by a team of heterogeneous UAVs carrying designated sensors and/or weapons.
To successfully prosecute each target it first needs to be simultaneously tracked by multiple
UAVs, from significantly different line of sight angles to reduce the position estimate errors,
and then attacked by a different UAV carrying a weapon. Even for small sized scenarios, the
problem has prohibitive computational complexity for classical combinatorial optimization
methods due to timing constraints on the simultaneous tasks and the coupling between
task assignment and path planning for each UAV. A genetic algorithm (GA) is proposed
for efficiently searching the space of feasible solutions. A matrix representation of the GA
chromosomes simplifies the encoding process and the application of the genetic operators.
To further simplify the encoding, the chromosome is composed of sets of multiple genes,
each corresponding to the entire set of assignments on each target. Simulation results
confirm the viability of the proposed assignment algorithm for different sized scenarios. The
sensitivity of the performance to variations in GA tuning parameters is also investigated.

Nomenclature
C set of genes for each chromosome
f fitness function
G set of ground targets
J cost function
Ji cost of best assignment from the set of Ny initial random solutions
N, number of genes in each chromosome
N¢ number of chromosomes in a GA population
nf upper bound on number of feasible assignments
Ny number of generation a GA is run
N number of assignment stages
Ny number of ground targets
N, number of stand-in UAVs
Pe crossover probability
Pm mutation probability
T radius of stand-in UAV circular tracking trajectory
T'maz maximum range of stand-in UAV sensor
Roin minimum turn radius of the stand-in UAV
Tmin minimum range of stand-in UAV sensor
S set of assignment stages
T flight weapon minimum flight time
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7%k start time of assignment on target m by UAVs i, j, k

i;nk time the task performed by a UAV trio 4, j, k on target m at stage [ is completed
Uu; steering input for the i-th stand-in UAV

v set of UAVs

Vg minimum detection speed

V; speed of the i-th stand-in UAV

x; horizontal position of the i-th stand-in UAV

:cii"k binary decision variable

Yi vertical position of the i-th stand-in UAV

Q@ angular footprint of stand-in UAV sensor

AT tracking duration

¥ offset angle from the heading of the moving target
Q target region of detectability

Wmaz maximum turning rate of the stand-in UAV

i heading of the i-th stand-in UAV

P target heading angle

Abbreviations

CGMTE  cooperative ground moving target engagement
CMTAP cooperative multiple task assignment problem

CTP capacitated transhipment problem

GA genetic algorithm

GAP generalized assignment problem

GMTI ground moving target indication

LOS line of sight

MILP mixed integer linear programming

SMTAP simultaneous multiple task assignment problem
TSP travelling salesman problem

UAV unmanned aerial vehicle

VRP vehicle routing problem

I. Introduction

MANY combinatorial optimization problems are concerned with pairing between agents and tasks. The
simplest one is the classical assignment problem consisting of such optimal pairing, without assigning
an agent more than once and ensuring that all tasks are completed. Such a problem can be easily solved
by the Hungarian algorithm.! When an agent can be assigned to more than one task, or there are resource
limitations to process a given task by an agent, the problem becomes much more complicated and cannot be
solved in polynomial time. Such problems include the travelling salesman problem (TSP),? the generalized
assignment problem (GAP),3 and the vehicle routing problem (VRP).% In all of these classical problems the
minimum cost assignment is sought, where: in the TSP, the tour is of one agent between a finite number of
cities; in the GAP m agents need to perform n jobs, such that each job is assigned to exactly one agent and
the resource of each agent is limited; and in the VRP m vehicles, with a given capacity, are dispatched from
a single depot to deliver to n customers, each requiring a specified weight of goods, and then return to the
depot.

In recent years a different class of problems denoted cooperative multiple task assignment problem (CM-
TAP) has been studied.® This kind of problem arises for example when a group of unmanned aerial vehicles
(UAVs) are assigned to perform multiple consecutive tasks such as classification, attack, and kill verifica-
tion on multiple ground targets. For solving such problems, emerging algorithms of different classes have
been proposed, including: mixed integer linear programming (MILP),%7 iterative capacitated transhipment
problem (CTP) algorithm,® and iterative auction.” 1°

Stochastic search methods!'! might be considered in order to avoid the computational complexity of the
combinatorial optimization methods described above and thus speed up the convergence to a good feasible
solution. The genetic algorithm (GA) is such an approach that also does not require explicit computation of
the gradients of the cost function.'? Assuming that the search space is not extremely rugged,'® the GA will
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often quickly yield good feasible solutions and will not be trapped in any local minimum; however, it may not
yield the optimal solution. Another key attribute of the method is the possibility of parallel implementation.
The application of GAs to classical combinatorial optimization problems such as TSP, GAP, and VRP has
been widely studied.'* 16 Recently, the GA methodology was used to solve the CMTAP showing promising
results.®

A cooperative ground moving target engagement (CGMTE) was recently studied as a cooperative as-
signment problem using a MILP formulation.!” In the CGMTE scenario, several UAVs cooperatively track
and attack mobile ground targets using doppler radars and GPS-guided weapons. This scenario features
joint and overlapping tasks, where multiple vehicles have to perform coordinated actions simultaneously to
successfully complete a mission. We denote this class of a problem as simultaneous multiple task assignment
problem (SMTAP). In Ref. 17, the issues of path planning and task timing constraints were addressed
using agent availability time windows in the MILP formulation. This method provides good solutions to the
CGMTE problem, but due to the computational complexity can only be used for relatively small problem
sizes. For more complex problems involving more than a few vehicles and targets, the solution time of the
MILP becomes impractical for on-line implementation. Also, it requires for the cost function to be linear.
In this paper, we use a similar process of calculating time windows and vehicle paths to determine assign-
ment costs, but use a GA to efficiently search the space of possible solutions and provide the cooperative
assignment. The GA also enables handling non linear cost functions, such as minimum group prosecution
time.

The remainder of this manuscript is organized as follows: In the next section, the CGMTE is presented
and associated tasks and UAV path planning issues are discussed. Then, the problem is posed as a new
combinatorial optimization problem and its computational complexity is analyzed. This is followed by the
derivation of a GA allowing efficient search of the solution space. A simulation section consisting of an
analysis of a representative sample run and a Monte Carlo study is then presented. Concluding remarks are
offered in the last section.

II. Cooperative Ground Moving Target Engagement

A. Scenario

In the CGMTE scenario, a stand-off UAV, with a wide-area ground moving target indication (GMTI) doppler
radar, and several smaller stand-in UAVs, with small-area GMTI doppler radars and GPS-guided ground-
attack weapons, must cooperatively track and prosecute moving ground targets. A very large number of
potential targets could be simultaneously tracked by the stand-off vehicle, but we will assume that targets
to be prosecuted are nominated to the UAV team by a human supervisor or outside agent. In order to
meet the potentially severe timing constraints of such a scenario, the computation of an efficient set of task
assignments and corresponding vehicle paths must be automated for practical implementation. Thus, we
focus on the cooperative task planning required to track and attack the assigned targets.

The stand-off UAV is located outside of the region of interest and has a powerful GMTI doppler radar
with an assumed 360-degree sensor footprint able to view the entire field of interest. For purposes of this
assignment algorithm, the off-board vehicle is assumed to travel in a tight circular orbit such that its line-
of-sight (LOS) to targets is approximately fixed. The vehicle can track any ground moving target within the
region of interest, as long as the component of the target’s velocity, relative to the terrain in the direction of
the stand-off UAV, is above the required minimum detection speed vg. For simplicity, we will assume that
the stand-off UAV can provide continuous coverage of the region of interest, although gaps in coverage could
be incorporated into the path planning algorithms. The stand-in UAV can similarly track ground targets
using a GMTT doppler radar, with much smaller area coverage, and can also release a weapon on a target.

To reduce the position uncertainty each target must be simultaneously tracked by two vehicles with
sufficient angular separation. Thus, during an attack a target inside the region of interest is tracked by a
stand-in vehicle cooperating with either a stand-off vehicle or with another stand-in UAV. Let

vV =1{0,1,..,N,} (1)

be the set of cooperating UAVs where 0 denotes the unarmed stand-off UAV and there are N, stand-in
UAVs carrying GPS-guided munitions. We assume that the vehicles fly at a constant speed, and that fuel
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constraints are not a factor during a task assignment. Let
G:{].,...,Nt} (2)

be the set of ground targets nominated to the UAV team for prosecution. This set of targets must be
serviced by the N, + 1 cooperating UAVs. For simplicity we assume that throughout the engagement the
targets have a constant velocity, i.e. constant speed and heading. Let

S={1,2,..,Ns} (3)

be the set of stages in which the assignment of three vehicles to each target is made. Since each target need
be serviced by a UAV trio only once then Ny = Nj.

B. Tasks

The CGMTE requires that two or more UAVs with doppler radars track a moving ground target while an
additional UAV launches a GPS-guided munition. The sensed target position and associated error ellipses
from each tracking UAV are fused to form an accurate GPS location of the target, to which the munition
is guided. In order to reduce the error covariance in the position estimate of the moving target, the UAVs
tasked to perform the tracking must have sufficient LOS separation to the target, preferably near orthogonal
views. Therefore, we require at least a 45 degree separation between the look angles of the two vehicles
tracking a target, restricting the tracking regions and time windows. In addition, a moving target can only
be detected and tracked by the doppler radars if the LOS view to the target is within some offset angle, ~,
from the heading of the moving target, 1. Thus, the region of detectability is

Q={Y—-7Yv+1u{r+y—v,71+¢+7} (4)

Fig. 1 shows the heading of the target and the associated angular regions in which UAVs can be located
to detect the target’s motion.

Figure 1: Region of detectability based on target heading

Complicating matters further, each stand-in UAV has a limited sensor footprint with minimum and
maximum ranges (Tmin, 'maz), and a maximum angle away from the body y-axis («) that the radar can
view. Due to the configuration of the radar antenna array, the footprint is pointed out the wing of the UAV.
Fig. 2 shows a stand-in UAV tracking a target and the associated sensor footprint relative to the orientation
of the UAV. The sensor can scan on either side of the UAV, but not both at the same time. The dark area
in this figure corresponds to the sensor footprint while the light grey area corresponds to the target’s region
of detectability (plotted in Fig. 1).

In total, each target m € G requires three overlapping tasks: two simultaneous tracking tasks, from
two separate UAVs, and an attack task, performed by a third stand-in UAV. The simultaneous cooperative
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Figure 2: Sensor footprint (dark gray region) and detection cones (light gray region)

tracking tasks must begin before the weapon is launched, and continue until the weapon strikes the target.
Thus, the tracking duration AT™ must satisfy

AT™ > tright (5)

where t¢ign+ is the flight time of the weapon. For simplicity we assume that weapons are launched at a
fixed distance from the target, resulting with a weapon flight time, ¢ ¢;;4n¢, that is known and fixed.

C. Path Planning

Path optimization for the stand-in UAVs in the CGMTE is subject to numerous constraints. For this paper,
we simplify the constraints by assuming that relative to the UAVs the targets are approximately fixed in
position. We also restrict the cooperative tracking tasks to using a circular orbit with a pre-specified radius
r¢. This path-planning strategy is suboptimal, but allows sufficient freedom to exercise the task assignment
function. Improved path planning with fewer constraints is a subject of on-going research.

Although six degree-of-freedom dynamics are used in the vehicle simulation, for the purposes of path
planning the UAV dynamics are modeled as a Dubin’s car.!® Thus, UAV i € V\{0} is assumed to fly with
constant altitude and constant speed, and to have continuous-time kinematics given by:

T; = v;C080;
{ Yi = vising; (6)
d)i = WmaaUi

where (x;,y;) is the position of the UAV, v; is the (constant) flight speed, ¢; is the heading, wmax
is the maximum turning rate, and u; is the steering input where |u;| < 1. The minimum turn radius is
Roin = ’U/wmcm:-

Path planning is performed in several steps:

1. Calculate the set of all feasible times 77", , that vehicles ¢, j,k € V (i # j # k) can begin performing the
specified tasks on target m € G for a duratlon of AT™. This involves calculating the minimum time
at which a vehicle can begin tracking the target, and adding loiter to the path before tracking begins if
a delay is needed to satisfy timing constraints. For most vehicle and target initial conditions, any task
start time that is later than the minimum one is feasible. However, due to the dynamic constraints of
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the vehicle in some special cases continuous elongation of the vehicle path is not feasible.'® Determining
the feasible time windows does not require calculation of a path for every possible start time.

2. Select the combination of time windows that allows minimum task completion time. Once the set
of all possible times 177 ), that vehicles 4,7,k € V' can perform the required tasks on target m € G
have been calculated, We select the combination resultlng in the earliest possible completion of target
prosecution, while satisfying all constraints. Let t o’ i) denote the time the task, performed by a UAV
trio, on target m at stage [ € S is completed. For the fused estimate of the target position to have
suﬂi(nent accuracy, the look angles of the tracking vehicles must be substantially separated (at least
45 degrees, as discussed earlier).

3. Calculate paths that meet the time windows specified in the previous step. Once specific start and
stop times for each task are known, paths are calculated to meet those exact timing constraints. The
vehicles’” position at the end of these tasks, and the completion times, are saved and used as the new
initial conditions for calculating vehicle paths for succeeding tasks.

ITII. Combinatorial Optimization Problem

In this section the CGMTE is posed as a combinatorial optimization problem and its computational
complexity is analyzed.

A. Performance Criterion

We choose the performance criterion as the minimum time for the team to accomplish the required tasks on
all targets. Thus, the the group objective is to minimize the longest participation time of one (or more) of
its members

J =mazxt; >0 (7)

1%

Let xi ;nk € {0,1} be a decision variable that is 1 if at stage [ € S a trio of vehicles i, j,k € V,i £ j £ k

performs the required tasks on target m € G and is 0 otherwise. This cost is computed using the path
optimization algorithm discussed in the previous section. Note that for [ > 2 computing tl mk might be
dependent on the assignment at stage [ — 1 since some or all of the stand-in UAVs may have part1c1pated in
previous tasks. We assume that the vehicles have no resource limitations, and thus can participate as much
as needed in the group assignment. Thus, the cost function to be minimized is

N, N, N,

maxztzz “]nk Qe o LES (8)

m=1 ¢=0 j=0 k=1

B. Problem Constraints

The cost function of Eq. 8 is mlmmlzed under the set of constraints given next.
First, the decision variable x k must be binary

i;nke{()l} ., lesS, meG, i,jkeV (9)

Next, it must be ensured that at each stage exactly one target m € G is serviced by the UAV group. Thus,

Ni N, N, N,

NN N am=1, 1es8 (10)

m=1i=0 j=0 k=1

Third, at all stages each target m € G is serviced exactly once, resulting with

DN meG (11)

=1 i=0 j=0 k=1
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Finally, it must be maintained that a vehicle is not assigned to multiple tasks on a target, i.e. three different
vehicles service each target,

N, N, N, N, Ny, N,
DM YD YA =0 e meG 2

i=0 j=1 i=0 j=0 i=0 j=0

C. Computational Complexity

Solving the combinatorial optimization problem posed above requires searching the space of feasible solutions.
The computational complexity is mainly dependent on the number of possible solutions since the path
planning, described in the previous section, is performed independently at each stage.

Theorem 1 ny is the upper bound on the number of different feasible assignments where

ng = [N2(N, - 1)/2]"" Ngl N, >2 (13)

Proof: The number of target prosecution sequences is Np!. The number of different trio combinations
servicing each target is N2(N, —1)/2. Since the assignment of a trio of vehicles is independent at each stage
l € S and is independent from the target prosecution sequence then Eq. 13 is obtained.

Let different stand-in UAVs participate in two consecutive assignments. It is immediately evident that
changing the order of these two tasks does not make any change to the group assignment. Thus ny is an

upper bound on the number of different group assignments. O
107 ‘
——N =2
\'
-==N =
\
N =
15 Y
100 e N, = . *
\“<>\\
k3

Figure 3: Upper bound on the number of assignments

The upper bound on the number of feasible assignments is plotted in Fig. 3 for different UAV team
sizes. It is apparent that even for a relatively small number of targets and vehicles the number of feasible
assignments is very large. Note that since the CGMTE is in the class of SMTAP it has a lower number of
feasible assignments than a corresponding CMTAP (with 3 consecutive tasks per target) since the need to
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perform tasks on a target simultaneously instead of consecutively prohibits a vehicle from servicing the same
target more than once. However, the path planning and timing constraints are more complicated due to the
severe coupling between the trajectories of the different UAVs.

IV. Genetic Algorithm

In this section we present a GA for solving the CGMTE, posed as a combinatorial optimization problem
in the previous section. Due to the computational complexity of the problem, finding an optimal solution
for this problem is intractable for relatively small size scenarios. The proposed GA enables obtaining good
feasible solutions even for relatively large sized problems. The encoding of the GA chromosome is a major
part of the solution process. The special encoding for the CGMTE is presented in the next section. Then,
the application of the different genetic operators is discussed.

A. Encoding

An important part of applying a GA to an optimization problem is the solution encoding in the chromosome.
Usually a string is employed for the encoding, while here for simplifying the encoding process and the
application of the genetic operators we use a matrix.
Let
C={1,2,...N.} (14)

be the set of each chromosomes’ genes, where N, = 3N;. Thus, each chromosome matrix is composed of

two rows and NN, columns corresponding to genes. Every 3 genes define a simultaneous task on one target.
The first two of three genes in each set define the vehicles performing the cooperative tracking while the
third gene defines the vehicle performing the attack by releasing a weapon.

An example chromosome is given in Fig. 4 where 6 vehicles (including the stand-off UAV denoted as
vehicle 0) perform simultaneous tasks on 4 targets. The encoded assignment is as follows: vehicles 4 and
5 track target 2 until the weapon released by vehicle 2 hits it. Next, vehicle 2 together with the stand-off
UAV track target 3 while vehicle 4 is responsible for the attack phase. At the same time target 1 is tracked
by the stand-off UAV and vehicle 3 and attacked by vehicle 1. Then, vehicle 2 together with the stand-off
UAV track target 4 until the weapon released by vehicle 1 hits it. Note that since the stand-off UAV can
track multiple targets simultaneously then the tasks on targets 3 and 1 are independent. However, it can
be easily seen that the tasks on targets 2,3, and 4 are dependent since vehicle 2 participates in all of them.
Thus, these targets can not be prosecuted simultaneously, only in order.

Vehicle | 542|024 3|0]1]0|2]|1
Target || 2 |2 |23 |33 || 1|11 4|44

Figure 4: Example of chromosome representation.

B. Genetic Operators

We initialize the algorithm with Ny chromosomes and maintain a constant size solution population through-
out the different stages. Off-line, the process of producing new generations can be repeated until some
stopping criterion is met, e.g. the fitness of the best chromosome hasn’t improved for a given number of
iterations. For an on-line implementation the algorithm can be run for a specific allotted time. In this study
the generations have been progressed for a given number of generations, denoted IN,. For creating a new
population of solutions we employ the genetic operators: selection, crossover, mutation, and elitism.

In the selection stage two parent chromosomes are chosen from the population based on their fitness.
Thus, the better the fitness, the higher is the probability of a chromosome to be reproduced to the next
generation. As a selection tool we apply the Roulette wheel procedure. We evaluate the fitness of each
chromosome solution using Eq. 8

f=1/J (15)

Crossover is performed at a single point across the chromosome, selected using a uniform distribution.

In order to preserve the validity of the chromosome the crossover location is chosen in a quanta of 3 genes.
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Thus, the first child solution consists of the first 3z € C genes (columns) from the first parent and N, — 3z
genes from the second parent; and vice versa for the second child. We apply this operator with a probability
Pe-

The mutation operator, applied with a probability p,,, involves randomly changing one of the genes in the
child chromosome. We mutate only the identity of one of the three vehicles participating in the simultaneous
task. The identity of the new vehicle is selected randomly and we enforce that Eq. 12 is held, i.e. that three
different vehicles service each target. The application of this operator prevents the algorithm from getting
trapped in a local minimum.

In order to avoid the possibility of losing the best solutions, when propagating to the new generation,
we employ the elitism genetic operator and keep the best N, chromosomes from the previous generation.
The rest of the new chromosomes (Ny — N ) are obtained by repeatedly producing children, by the methods
described above, until the new population is filled.

V. Simulation Study

In this section the performance of the GA algorithm in solving the CGMTE is analyzed using simulations.
The area of interest where the targets and stand-in UAVs are located is 110km wide and 170km long. The
simulation parameters are given in Table 1. In the next subsection a sample scenario consisting of 6 UAVs
performing the simultaneous tasks on 3 targets is illustrated. Then, a Monte Carlo study is presented for
comparing the results of the GA to a random search method for different sized problems. The sensitivity of
the GA to tuning parameters is also investigated.

GA ‘ Scenario ‘ Sensor
N, =4 N, € {5,10} | rpmin = 20km
Ny =50 N; € {3,5} Tmaz = D0km
Ny =50 vy = 10m/s a = 60deg

Pm € {0,0.033,0.066,0.1} | r, = 30km
pe €{0.7,0.8,0.9,1} | tsigne = H0sec

Table 1: Simulation parameters.

A. Sample Run

To illustrate the mission scenario discussed in this paper a sample scenario with 6 UAVs (1 stand-off and
5 stand-in UAVs) and 3 targets is examined. The location and heading of the targets and stand-in UAVs
is plotted in Figs. 5 with the stand-off UAV located north of the region of interest. Fig. 5(a) shows the
initial positions of the targets and stand-in UAVs. Each target is shown with an associated detectability
region (outlined in black) and cooperative tracking region (solid wedge). The cooperative tracking region is
the intersection of the detectability region with the LOS angles that have more than 45 degrees separation
from the stand-off vehicle LOS. The assignment chromosome for this example is shown in Fig. 6.

As shown in Fig. 5(b), vehicle 5 cooperatively tracks target 3 with the assistance of the stand-off vehicle,
while vehicle 3 performs the attack. Then, vehicle 2 cooperatively tracks target 1 with the assistance of the
stand-off vehicle, while vehicle 4 performs the attack task, as illustrated in Fig. 5(c). Finally, as shown in
Fig. 5(d), vehicles 1 and 5 track target 2 while vehicle 3 performs the attack. In this figure, vehicle 2 is still
tracking target 1. Although vehicle 4 had released a weapon on target 1 in Fig. 5(c¢), that weapon is still in
flight at the time of Fig. 5(d), so vehicle 2 must continue to track the moving ground target. The vehicles
use loiter maneuvers as necessary to coordinate task timing and meet the required time windows. Loiter can
be added by looping or adding turns to the flight path, as demonstrated by vehicles 1 and 5. In addition,
before an attack task, a vehicle can loiter indefinitely (subject to fuel constraints) by circling a target just
outside of the attack range, until the necessary cooperative tracking has been established. This behavior is
demonstrated by vehicle 3, which exhibits a substantial period of loiter between attacking targets 3 and 2.
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0.50 55.60

y

A

(a) Initial positions

165.00 204.40

(c) Second attack (d) Final attack

Figure 5: Simulated CGMTE.

Vehicle || 0|53 1| 0|2]|4]1
Target || 3 |3 |3 || 1|1 |1} 2|2]2

Figure 6: Example of chromosome representation.
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B. Monte Carlo Simulations

A Monte Carlo study, consisting of 25 runs for each set of parameters, is used in this subsection to compare
the performance of the GA to a random search algorithm. The random variables are the initial position and
detection heading of the targets and the position and heading of the members of the UAV team. The first
generation of GA chromosomes is composed of Ny random solutions, used to initialize the algorithm. We
define J; as minJ over this initial set of random solutions, where J is defined in Eq. 8. Note that J; is
different for each set of initial conditions. To enable comparison, the results for each run are normalized by
J1 and an ensemble average is taken over the set of runs. Also, the same seed has been used to obtain the
same initial conditions and Ny initial solutions for the sets of Monte Carlo runs. Note that in all the cases
investigated the standard deviation of the solutions were in the same order of magnitude and small, thus
validating that enough Mont Carlo runs have been performed.

In Figs. 7 and 8 the mean of J/.J; is plotted as a function of the number of iterations for a scenario with
N, =5, Ny = 3. The number of iterations corresponds to algorithm run time since it represents the number
of feasible assignments being evaluated by the path optimization subroutine. Note that compared to the run
time of the path optimization subroutine the overhead of applying the genetic operators is negligible. The
results are plotted for the GA with different tuning parameters p,, and p.; and also for the random search
algorithm. Note that due to the normalization method discussed above all the curves in the plots start at
the point (50,1).

—p, = 0.7
0.95, ---p. =084
i p. =09

0.9

0.85

0.8

E(1)

0.75f

0.65f

0.6

500 1000 1500 2000 2500
Iteration

Figure 7: Solution quality comparison for N, = 5, N; = 3 with p,, = 0.066

From Fig. 7, plotted for a mutation probability p,, = 0.0666, it is evident that the GA provides monotoni-
cally improving solutions that are considerably better than the random search method. The affect of changing
the crossover probability is apparent and the best results are obtained for a crossover probability p. = 0.8.
Note that with a crossover probability that is too large (p. = 1) or too small (p. = 0.7) the quality of the
results deteriorates. For p. = 1 not enough good solutions mitigate as is to the next generation of solutions,
while for p. = 0.7 there are not enough perturbations around candidate solutions.

Plotting in Fig. 8 for p. = 0.8 the results are obtained for different values of mutation probability p,,. It is
apparent that if the mutation operator is not active, i.e. p,, = 0, then the GA quickly converges to solutions
with a quality that is even worse than random search. This is caused since without the mutation operator
the algorithm gets trapped in some local minimum. Using the mutation operator too often (p,, = 0.1) also
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Figure 8: Solution quality comparison for N, = 5, N; = 3 with p, = 0.8

deteriorates the results since too many perturbations are performed around good solutions.

In Fig. 9 the quality of the results, obtained with the GA after 2500 iterations, as a function of the
tuning parameters p,, and p. are plotted. The contours represent results of equal quality. It is apparent that
the best results are obtained with p, = 0.8,p,, = 0.066 and that for p,, = 0.066,p. € {0.8,0.9} the results
are almost the same. Note that the coarse contours are due to the computational complexity of the problem
restricting the number of data points. However, the qualitative sensitivity to these tuning parameters is
clearly evident.

A similar comparison between the GA (with p. = 0.8,p,,, = 0.066) and random search is plotted in
Fig. 10 for a scenario of with N, = 10, N; = 5. For comparison, the results for the previous scenario
(N, = 5,N; = 3) are also plotted. Although the GA was not tuned for the larger sized scenario, it
still substantially outperformed the random search algorithm. Note that such large sized scenarios are
computationally infeasible for optimization methods such as MILP and thus optimal solutions can not be
obtained. However, since the GA offers solutions that are monotonically improving over time then it can be
used to obtain suboptimal solutions for a given allotted computation time.

VI. Conclusions

A new combinatorial optimization problem of assigning a group of UAVs to simultaneously perform tasks
on multiple targets has been posed and solved. The scenario of interest consists of multiple ground moving
targets prosecuted by a team of heterogeneous UAVs carrying designated sensors and/or weapons. Even
for small sized scenarios, the problem has prohibitive computational complexity for classical combinatorial
optimization methods due to timing constraints on the simultaneous tasks and the coupling between task
assignment and path planning for each UAV. Using Monte Carlo simulation the performance of the GA was
compared to random search for different sized scenarios and the sensitivity of the GA to tuning parameters
was studied. It was shown that the GA can efficiently search the space of feasible solutions and substantially
outperform random search. Since one of the main features of the GA is in providing monotonically improving
solutions, it can be applied to large sized scenarios that are computationally intractable for other optimization
methods such as MILP. Moreover, it enables dealing with nonlinear cost functions, such as minimum overall
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Figure 10: Solution quality for different sized scenarios
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group prosecution time.
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