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The optimal employment of autonomous wide area search munitions is

addressed. The scenario considered involves an airborne munition searching

a battle space for stationary targets in the presence of false targets. Targets

are modelled with uniform, Poisson, and normal distributions. False targets

are modelled with Poisson distributions. All relevant parameters can be ex-

tracted from intelligence information on the enemy’s order of battle and the

sensor performance specification. Analytic weapon effectiveness measures

are derived using applied probability theory. The effectiveness measures

derived in this paper handle time-varying parameters which characterize

the battle space environment and the performance of the munition’s sen-

sor. This allows the formulation and solution of optimization problems

that maximize the probability of a target attack while at the same time

constraining the probability of a false target attack. Optimal schedules for

controlling the sensor threshold during the flight are derived and compared

to the optimal constant-threshold results. An increase in weapon effective-

ness is demonstrated when the sensor threshold is dynamically controlled

during the flight.
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Nomenclature

c Receiver Operating Characteristic Curve Parameter

C Events involving Classified Encounters

E Events involving Encounters

H Hamiltonian

L Integrand of Cost Functional

PFTA Probability of a False Target Attack

PFTE Probability of a False Target Encounter

PFTR Probability of a False Target Report

PTA Probability of a Target Attack

PTE Probability of a Target Encounter

PTR Probability of a Target Report

r Search Radius

R Terminal Radius

t Time

T Mission Duration

v Velocity

w Swath Width

x Dynamic Poisson Parameter

y Probability of a Target Attack when no False Targets exist

z Probability of a False Target Attack

α False Target Density

β Target Density

λ Costate

µ Rate of Encounters

ρ Radius

σ Standard Deviation

τ Time
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I. Introduction

Several types of autonomous wide area search munitions are currently being developed

for high risk air-to-ground missions. These airborne munitions will deploy to a battle space

and autonomously search, detect, classify, and attack targets. In this paper, the presence of

false targets in the battle space is acknowledged up front and analytic weapon effectiveness

measures are derived based on target and false target probability distributions as well as the

munition’s sensor characteristics. All relevant parameters can be extracted from intelligence

information on the enemy’s order of battle and the sensor performance specification. This

has been done for wide area search munitions in the past; however, the problem parameters

were assumed constant.3 The results of Ref. 3 are now generalized to handle time-varying

parameters. This then allows one to address the optimal control of the sensor threshold to

maximize the probability of a target attack without unduly increasing the probability of a

false target attack. The latter is crucial for making autonomous operation acceptable to the

war fighter.

The battle space geometries considered are rectangular and circular. In a rectangular

battle space of length l and width w, the munition covers the area using a constant velocity

v starting at initial time t = 0 and ending at final time t = T . The sensor footprint is

rectangular with swath width w and incremental swath length vdt as shown in Figure 1(a).

Hence, the munition covers the battle space in one sweep. In a circular battle space of

radius R, the munition covers the area using concentric annuli of thickness dr as shown in

Figure 1(b). The munition starts at the origin and progresses outward. This method of

concentric annuli approximates an outward spiral search pattern.

(a) Rectangular Battle Space (b) Circular Battle Space

Figure 1. Battle Space Geometries
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The scenarios considered involve one munition searching for stationary targets among

a field of false targets. In operations research, the distribution of false targets in a battle

space is often modelled using a Poisson distribution.1–3 Three such scenarios involving a

Poisson field of false targets are examined. The first scenario addresses the case when a

single target may appear anywhere within a rectangular battle space with equal probability,

thus the target encounter is modelled with a uniform distribution. The second scenario

addresses the case when target encounters occur at an expected rate in a rectangular battle

space, thus target encounters are modelled with a Poisson distribution. Finally, the third

scenario addresses the case when specific information is available about a target (i.e., position

coordinates with some error). The target is modelled with a circular-normal distribution and

the corresponding battle space is defined as circular. In all three scenarios, flight altitude

and speed are constant, and the munition covers the entire search area.

A. Sensor Performance

When a sensor encounters an object, it compares the image to a stored template or pattern

and either declares the object a target or a false target. In practice, detected objects are

classified to a certain level of discrimination. For example, one may classify on object as

either air breathing or ballistic. A finer level of discrimination may be a specific type of

air-breathing or ballistic object. Regardless of the level of discrimination, there is a point

where the sensor reports a detected object as either a target thereby authorizing an attack,

or a false target thereby commanding no attack. Sensor performance is judged by how often

the sensor is correct. The probability of a target report, PTR, is the probability the sensor

correctly reports a target when a target is encountered. The probability of a false target

report, PFTR, is the probability the sensor correctly reports a false target when a false target

is encountered. Together, PTR and PFTR determine the entries of the binary “confusion

matrix” shown in Table 1 which can be used to determine the outcome of a random draw

each time an object is encountered in simulation.

Table 1. Confusion Matrix

Encountered Object

Target False Target

Declared Object

Target PTR 1 − PFTR

False Target 1 − PTR PFTR

The expression (1 − PTR) represents the probability the sensor reports a false target

when a target is encountered. This type of error results in a target not being attacked.
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The expression (1 − PFTR) represents the probability the sensor reports a target when a

false target is encountered. This type of error results in a false target being attacked. For

this binary confusion matrix, true positive fraction is PTR, and false positive fraction is

(1 − PFTR). A Receiver Operating Characteristic (ROC) curve is a plot of true positive

fraction versus false positive fraction that starts at (0, 0), then monotonically increases to

(1, 1). The ROC curve model adapted from Ref. 4 is used:

(1 − PFTR) =
PTR

(1 − c) PTR + c
(1)

where the non-dimensional scalar parameter, c ∈ [1,∞), depends on the sensor and data

processing algorithm. It also depends on the munition speed (dwell time), and engagement

geometry, which includes flight altitude and look angle. A family of ROC curves parame-
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Figure 2. Family of ROC Curves.

terized by c is shown in Figure 2. As c increases, the ROC improves. As c → ∞, the area

under the curve approaches unity indicating perfect identification. For all examples in this

paper, the ROC parameter will be c = 100.

The operating point on a ROC curve is the ordered pair [PTR, (1 − PFTR)]. For a given

sensor and algorithm, the operating point is determined by the sensor’s threshold. Setting

the threshold is tantamount to setting PTR. The value for (1 − PFTR) is calculated using

Eq. (1). Given a ROC curve, the goal is finding the optimal PTR – either constant, or as a

function of time or space.
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B. Optimal Control Problem Formulation

An operator wants the probability of a target attack, PTA, in a battle space to be high and

the probability of a false target attack, PFTA, to be low. Therefore, PTA and PFTA become

weapon effectiveness measures. Unfortunately, increasing PTR by reducing sensor threshold

with a view to increase PTA also increases (1 − PFTR) and consequently PFTA. This state

of affairs is modelled by the ROC. Thus, the operator’s objectives are competing, and a

trade-off situation arises. To ensure PFTA stays low, a constraint is imposed on it. The

optimization problem statement is then

Maximize: PTA

Subject to: PFTA ≤ PFTAmax

where PFTAmax
is set by the designer or mission planner.

To solve the posed optimization problem, expressions are developed for PTA and PFTA

for the considered scenarios. This involves integrating probability density functions parame-

terized by PTR, velocity, and search width, as well as data on the battle space environment

concerning target and false target densities. The latter are obtained from knowledge of the

order of battle. Velocity and search width are assumed constant, so the decision variable

is PTR. The explicit ROC model given by Eq. (1) is used; however, the discerned trends

will apply to any ROC. With an inequality constraint, the unconstrained problem is solved

first to see if the constraint is met. If PFTA < PFTAmax
, the unconstrained solution is used.

Otherwise the constraint is active and the constrained problem is solved with an equality

constraint. Since the decision variable PTR is a probability, it is bounded by [0, 1].

To provide a benchmark, constant-threshold problems are solved first. Holding PTR

constant yields a static (parameter) optimization problem and closed-form solutions are

possible. More importantly from an operational point of view, using a constant sensor

threshold (i.e. a constant PTR) is the easiest way to employ a wide area search munition. The

dynamic-threshold problem and consequently the dynamic-PTR problem can be formulated

as a text book optimal control problem.5,6

II. Scenario 1: One Uniformly-Distributed Target

and a Poisson Field of False Targets

The scenario when one target is uniformly distributed over a battle space among a Poisson

field of false targets is considered. With an expendable munition, the probability of an

attack occurring during the time interval [t, t + dt] is conditioned on the probability of no

attacks occurring prior to t. The probabilities in Ref. 3 were calculated assuming constant

parameters. The probabilities are re-derived for time-varying parameters.
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In the infinitesimal interval [t, t + dt], like that shown in Figure 1(a), three events can

occur: a target is attacked, a false target is attacked, or an attack does not occur. Assuming

no attacks occurred prior to t, the probability of a target attack occurring in the time interval

[t, t + dt] is

PTR (t) · PTE (t) (2)

where PTE (t) is the probability of a target encounter in the infinitesimal footprint. Similarly,

the probability of a false target attack is

[1 − PFTR (t)] · PFTE (t) (3)

where PFTE (t) is the probability of a false target encounter in the infinitesimal footprint.

Finally, the probability of no attack occurring during [t, t + dt] is

[1 − PTR (t)] · PTE (t) + PFTR (t) · PFTE (t) . (4)

The classification probabilities, PTR (t), 1−PTR (t), PFTR (t), and 1−PFTR (t), are specified.

The encounter probabilities, PTE (t) and PFTE (t), are determined from the respective target

and false target distributions. For one uniformly-distributed target,

PTE (t) =
w (t) v (t) dt

As

(5)

where the battle space or area searched, As, is

As ≡

∫ T

0

w (t) v (t) dt. (6)

For a Poisson field of false targets,

PFTE (t) = α (t) w (t) v (t) dt (7)

where α (t) is the mean false target density at time t. Indeed, the false target density in the

battle space need not be constant and could vary from place to place thereby being time

dependent.

Formulae for the probabilities of no previous attacks prior to t are now given. Detailed

derivations are given in the Appendix. For one uniformly-distributed target, the probability

of no target attack occurring prior to time t is

PTA (t) = 1 −
1

As

∫ t

0

PTR (τ) w (τ) v (τ) dτ. (8)
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For a Poisson field of false targets with density α (τ), 0 ≤ τ ≤ t, the probability of no false

target attacks occurring prior to time t is

PFTA (t) = e−
R t

0 [1−PFTR(τ)]α(τ)w(τ)v(τ)dτ (9)

The probability of a target attack can now be calculated as

PTA =

∫ T

0

PTR (t) · PTE (t) · PFTA (t)

=

∫ T

0

1

As

PTR (t) w (t) v (t) e−
R t

0 [1−PFTR(τ)]α(τ)w(τ)v(τ)dτdt (10)

and the probability of a false target is

PFTA =

∫ T

0

[1 − PFTR (t)] · PFTE (t) · PTA (t) · PFTA (t)

=

∫ T

0

[1 − PFTR (t)] α (t) w (t) v (t) ×

(

1 −

∫ t

0

1

As

PTR (τ) w (τ) v (τ) dτ

)

e−
R t

0 [1−PFTR(τ)]α(τ)w(τ)v(τ)dτdt. (11)

The problem of finding the optimal PTR (t), 0 ≤ t ≤ T , assuming w, v, and α are constant

is now addressed. Recall [1 − PFTR (t)] is determined from PTR (t), because they are related

by the ROC.

A. Constant-Threshold

When the sensor threshold is constant during the flight, PTR and consequently PFTR are

constant, and closed-form solutions are obtained when evaluating the integrals in Eq. (10)

and Eq. (11). The probability of a target attack is

PTA = PTR

1 − e−(1−PFTR)αwvT

(1 − PFTR) αwvT
(12)

and the probability of a false target attack is

PFTA = 1 − PTA − (1 − PTR) e−(1−PFTR)αwvT . (13)

The ROC model in Eq. (1) is invoked to reduce the problem to a one-dimensional search for

P ∗
TR. The goal is maximizing PTA subject to PFTA ≤ PFTAmax

.

To show an example, values are needed for the constants c, w, v, α, and T . Units are time

units. Assuming c = 100, αwv = 50 [1/time] and T = 0.5 [time], the outcome probabilities
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are plotted versus PTR. Figure 3 shows the best unconstrained solution is P ∗
TRu

= 0.723

with a corresponding P ∗
TAu

= 0.535 and P ∗
FTAu

= 0.318. The subscript u is used to denote

unconstrained solutions. If PFTA is bounded by PFTAmax
= 0.2, the best constrained solution

is P ∗
TR = 0.563 with a corresponding P ∗

TA = 0.483. In Figure 3, the outcome probability

functions are smooth and well-behaved. The function for PTA has only one peak and never

crosses the line where PTA = PTR. The function for PFTA is monotonically increasing in

PTR, so any constrained solution will be unique. Finally, the function for the probability of

no attack occurring is monotonically decreasing in PTR as expected.
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Figure 3. Outcome probabilities versus probability of a target report. The scenario involves
one uniformly-distributed target among a Poisson field of false targets. Probability of a target
report is constant throughout the flight, c = 100, αwv = 50 [1/time], and T = 0.5 [time].

The constant-threshold optimization problem can be solved for a number of PFTAmax
val-

ues and a plot of P ∗
TR versus PFTAmax

can be generated. Figure 4 illustrates the sensitivity of

the solution to changes in the upper bound PFTAmax
. For PFTAmax

> 0.32, the unconstrained

solution is used.
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Figure 4. Optimal probability of a target report versus maximum allowable probability of a
false target attack. The scenario involves one uniformly-distributed target among a Poisson
field of false targets. Probability of a target report is constant throughout the flight, c = 100,
αwv = 50 [1/time], and T = 0.5 [time].

B. Dynamic-Threshold

When PTR, and consequently PFTR, are dynamic, an optimal control problem is on hand.

The state variables become

x =

∫ t

0

αwv [1 − PFTR (τ)] dτ (14)

y =

∫ t

0

1

T
PTR (τ) dτ (15)

z =

∫ t

0

αwv [1 − PFTR (τ)] [1 − y (τ)] e−x(τ)dτ (16)

and the cost functional integrand, L, is

L = −
1

T
PTR (t) e−x(t). (17)

Obviously,

PTA = −

∫ T

0

L [PTR (t) , x (t)] dt. (18)
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The states equations are

ẋ = αwv [1 − PFTR (t)] (19)

ẏ =
1

T
PTR (t) (20)

ż = αwv [1 − PFTR (t)] [1 − y (t)] e−x(t) (21)

After applying Eq. (1) for the ROC model, the Hamiltonian, H, becomes

H =
(

λy − e−x
) 1

T
PTR + αwv

PTR

(1 − c) PTR + c

[

λx + λz (1 − y) e−x
]

(22)

and the costate differential equations become

λ̇x = λzαwv
PTR

(1 − c) PTR + c
(1 − y) e−x −

1

T
PTRe−x (23)

λ̇y = λzαwv
PTR

(1 − c) PTR + c
e−x (24)

λ̇z = 0 (25)

Taking the partial derivative of H with respect to the decision variable PTR gives

∂H

∂PTR

=
(

λy − e−x
) 1

T
+

[λx + λz (1 − y) e−x] αwvc

[(1 − c) PTR + c]2
(26)

Solving ∂H
∂PTR

= 0, the optimal control is

P ∗
TR (t) =

c ±

√

{λx(t)+λz [1−y(t)]e−x(t)}αwvcT

[e−x(t)−λy(t)]

c − 1
. (27)

Only the “minus” root is of interest, since the “plus” root puts PTR outside of [0, 1] for all

time. One is also interested in the optimal unconstrained solution, P ∗
TRu

, which is

P ∗
TRu

(t) =
c −

√

λx (t) αwvcTex(t)

c − 1
. (28)

Taking the derivative of Eq. (28) with respect to t gives

Ṗ ∗
TRu

(t) =

√

αwve−x(t)

4cTλx (t)
[P ∗

TR (t)]2 > 0. (29)
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Therefore, P ∗
TRu

is monotonically increasing. At the terminal point where λx (T ) = 0,

P ∗
TRu

(T ) = c
c−1

> 1. Thus, the constraint PTR ∈ [0, 1] becomes active prior to the end

and remains active until time T . This represents, for the unconstrained problem, a “go for

broke” tactic in the end game.

Assuming c = 100, αwv = 50 [1/time], and T = 0.5 [time], the constrained problem can

be solved for a number of PFTAmax
values. Figure 5 shows optimal solutions as a function

of time for three values of PFTAmax
. As PFTAmax

decreases, the optimal solution flattens out

approaching a constant-threshold solution.
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Figure 5. Optimal probability of a target report versus time. The scenario involves one
uniformly-distributed target among a Poisson field of false targets. c = 100, αwv = 50 [1/time],
and T = 0.5 [time].

The objective function values of the dynamic solutions can be compared to those of the

constant solutions. Figure 6 shows, for the assumed parameters, that the optimal dynamic

solution is at most 3.4 percent better than the optimal constant solution. Depending on the

application, this improvement may or may not be worth the added complexity.
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Figure 6. Optimal probability of a target attack versus maximum allowable probability of a
false target attack. The scenario involves one uniformly-distributed target among a Poisson
field of false targets. c = 100, αwv = 50 [1/time], and T = 0.5 [time].

III. Scenario 2: Poisson Fields of Targets and False Targets

The scenario when targets are also modelled with a Poisson distribution is considered.

For this scenario the battle space consists of a Poisson field of targets and a Poisson field

of false targets. The derivation of probabilities is similar to the previous scenario with the

following changes. For a Poisson field of targets,

PTE (t) = β (t) w (t) v (t) dt (30)

where β (t) is the mean target density at time t. The probability of no target attacks

occurring prior to time t is

PTA (t) = e−
R t

0 PTR(τ)β(τ)w(τ)v(τ)dτ . (31)

The probability of a target attack can now be calculated as

PTA =

∫ T

0

PTR (t) · PTE (t) · PTA (t) · PFTA (t)

=

∫ T

0

PTR (t) β (t) w (t) v (t) e−
R t

0 {[1−PFTR(τ)]α(τ)+PTR(τ)β(τ)}w(τ)v(τ)dτdt (32)
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and the probability of a false target attack is

PFTA =

∫ T

0

[1 − PFTR (t)] · PFTE (t) · PTA (t) · PFTA (t)

=

∫ T

0

[1 − PFTR (t)] α (t) w (t) v (t) e−
R t

0 {[1−PFTR(τ)]α(τ)+PTR(τ)β(τ)}w(τ)v(τ)dτdt (33)

The parameters w, v, α, and β are assumed constant.

A. Constant-Threshold

When PTR and consequently PFTR are constant, closed-form solutions are obtained when

evaluating the integrals in Eq. (32) and Eq. (33). The probability of a target attack is

PTA =
PTRβ

(1 − PFTR) α + PTRβ

{

1 − e−[(1−PFTR)α+PTRβ]wvT
}

(34)

and the probability of a false target attack is

PFTA = 1 − PTA − e−[(1−PFTR)α+PTRβ]wvT (35)

To show an example, values must be provided for the various constants. Units are time and

distance units. Invoking the ROC model in Eq. (1) and assuming c = 100, w = 0.2 [distance],

v = 50 [distance/time], α = 10 [1/distance2], β = 1 [1/distance2], and T = 0.5 [time],

the outcome probabilities are plotted versus PTR. Figure 7 shows the best unconstrained

solution is P ∗
TRu

= 0.513 with a corresponding P ∗
TAu

= 0.793 and P ∗
FTAu

= 0.161. If PFTA is

bound by PFTAmax
= 0.1, the best constrained solution is P ∗

TR = 0.292 with a corresponding

P ∗
TA = 0.711.

Like the previous scenario, the function for PTA has only one peak. Unlike the previous

scenario, the values of α and β can skew the function for PTA above or below the line where

PTA = PTR. However, the function for PFTA is still monotonically increasing. Thus, any

constrained solution will be unique.

B. Dynamic-Threshold

When PTR, and consequently PFTR, are dynamic, the state variables become

x =

∫ t

0

{[1 − PFTR (τ)] α + PTR (τ) β}wvdτ (36)

z =

∫ t

0

[1 − PFTR (τ)] αwve−x(τ)dτ (37)
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Figure 7. Outcome probabilities versus probability of a target report. The scenario involves
a Poisson field of targets and a Poisson field of false targets. Probability of a target report
is constant throughout the flight, c = 100, w = 0.2 [distance], v = 50 [distance/time], α = 10
[1/distance2], β = 1 [1/distance2], and T = 0.5 [time].

and L is

L = −PTR (t) βwve−x(t). (38)

Since both targets and false targets have Poisson distributions, the state x represents a

combined dynamic Poisson parameter. Hence there is no need for a separate y state. The

state equations are

ẋ = {[1 − PFTR (t)] α + PTR (t) β}wv (39)

ż = [1 − PFTR (t)] αwve−x(t) (40)

After applying Eq. (1) for the ROC model, the Hamiltonian becomes

H =
(

λx − e−x
)

PTRβwv +
(

λx + λze
−x

)

αwv
PTR

(1 − c) PTR + c
(41)

and the costate differential equations become

λ̇x =

[

λzα
PTR

(1 − c) PTR + c
− PTRβ

]

wve−x (42)

λ̇z = 0 (43)
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Taking the partial derivative of H with respect to the decision variable PTR gives

∂H

∂PTR

=
(

λx − e−x
)

βwv +
(λx + λze

−x) αwvc

[(1 − c) PTR + c]2
(44)

Solving ∂H
∂PTR

= 0, the optimal control is

P ∗
TR (t) =

c ±

√

cα[λx(t)+λze−x(t)]
β[e−x(t)−λx(t)[

c − 1
(45)

which is real-valued only if
[

e−x(t) − λx (t)
]

> 0. Once again, only the “minus” root is used.

One is also interested in the optimal unconstrained solution, which is

P ∗
TRu

(t) =

c −

√

cαλx(t)

β[e−x(t)−λx(t)]

c − 1
. (46)

Taking the derivative of Eq. (46) with respect to t gives

Ṗ ∗
TRu

(t) =

√

(wv)2
αβe−2x(t)

4cλx (t) [e−x(t) − λx (t)]
[P ∗

TR (t)]2 > 0. (47)

Therefore, P ∗
TRu

is monotonically increasing and P ∗
TRu

(T ) = c
c−1

> 1. Thus, the “go for

broke” tactic appears again for this unconstrained problem.

Assuming c = 100, w = 0.2 [distance], v = 50 [distance/time], α = 10 [1/distance2],

β = 1 [1/distance2], and T = 0.5 [time], the constrained problem is solved for a number of

PFTAmax
values. Figure 8 shows optimal solutions as a function of time for three values of

PFTAmax
. Once again, as PFTAmax

decreases, the optimal solution flattens out approaching a

constant-threshold solution.

The objective function values of the dynamic solutions are compared to those of the

constant solutions. Figure 9 shows, for the assumed parameters, that the optimal dynamic

solution is at most 3.6 percent better than the optimal constant solution. Depending on

the application, this improvement may or may not be worth the added complexity. These

first two scenarios involved constant ratios of targets to false targets, regardless of the sensor

footprint position. The next scenario involves non-constant ratios of targets to false targets.
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Figure 8. Optimal probability of a target report versus time. The scenario involves a Pois-
son field of targets and a Poisson field of false targets. c = 100, w = 0.2 [distance], v = 50
[distance/time], α = 10 [1/distance2], β = 1 [1/distance2], and T = 0.5 [time].
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Figure 9. Optimal probability of a target attack versus maximum allowable probability of
a false target attack. The scenario involves a Poisson field of targets and a Poisson field of
false targets. c = 100, w = 0.2 [distance], v = 50 [distance/time], α = 10 [1/distance2], β = 1
[1/distance2], and T = 0.5 [time].
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IV. Scenario 3: One Normally-Distributed Target

and a Poisson Field of False Targets

The scenario when one target is normally distributed over a circular battle space among

a Poisson field of false targets is now considered. The ratio of targets to false targets depends

on the sensor footprint position. The normal distribution is circular, centered at the origin

with variance σ2. The derivation of probabilities is similar to the first scenario with the

following changes. For one normally-distributed target,

PTE (r) =
1

2πσ2
e−

r2

2σ2 2πrdr. (48)

The probability of no false target attacks occurring prior to reaching radius r is

PFTA (r) = e−
R r

0 2π[1−PFTR(ρ)]α(ρ)ρdρ, (49)

and the probability of no target attack occurring prior to reaching radius r is

PTA (r) = 1 −

∫ r

0

PTR (ρ)

σ2
e−

ρ2

2σ2 ρdρ. (50)

The probability of a target attack can now be calculated as

PTA =

∫ R

0

PTR (r) · PTE (r) · PFTA (r)

=

∫ R

0

PTR (r)
r

σ2
e−

r2

2σ2 · e−
R r

0 2π[1−PFTR(ρ)]α(ρ)ρdρdr (51)

and the probability of a false target attack is

PFTA =

∫ R

0

[1 − PFTR (r)] · PFTE (r) · PTA (r) · PFTA (r)

=

∫ R

0

[1 − PFTR (r)] 2πrα (r) ×

[

1 −

∫ r

0

PTR (ρ)
ρ

σ2
e−

ρ2

2σ2 dρ

]

e−
R r

0 2π[1−PFTR(ρ)]α(ρ)ρdρdr. (52)

The parameter α is assumed constant.
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A. Constant-Threshold

If PTR and consequently PFTR are constant, closed-form solutions are obtained when evalu-

ating the integrals in Eq. (51) and Eq. (52). The probability of a target attack is

PTA =
PTR

2σ2
[

(1 − PFTR) απ + 1
2σ2

]

(

1 − e−[(1−PFTR)απ+ 1
2σ2 ]R2

)

(53)

and the probability of a false target attack is

PFTA = 1 − PTA −

(

1 − PTR + PTRe
−R2

2σ2

)

e−(1−PFTR)απR2

(54)

To show an example, values must be provided for the various constants. Units are distance

units. Invoking the ROC model in Eq. (1) and assuming c = 100, α = 5 [1/distance2],

σ2 = 0.25 [distance2], and R = 5 [distance], the outcome probabilities are plotted versus

PTR. Figure 10 shows the best unconstrained solution is P ∗
TRu

= 0.788 with a corresponding

P ∗
TAu

= 0.615 and P ∗
FTAu

= 0.385. If PFTA is bound by PFTAmax
= 0.20, the best constrained

solution is P ∗
TR = 0.057 with a corresponding P ∗

TA = 0.057. This is a significant reduction in

performance.
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Figure 10. Outcome probabilities versus probability of a target report. The scenario involves
a normally-distributed target and a Poisson field of false targets. Probability of a target report
is constant throughout the flight, c = 100, α = 5 [1/distance2], σ2 = 0.25 [distance2], and R = 5
[distance].

Like the scenario with one uniformly-distributed target, the function for PTA has one

peak and never crosses the line where PTA = PTR. However, as a result of the changing

ratio of targets to false targets, the function for PFTA is not necessarily increasing. Figure 10
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shows PFTA increases, then decreases, then increases again. For values of PFTA above the

local minimum at PFTA = 0.385, the unconstrained solution is used. On a plot of P ∗
TR versus

PFTAmax
, a discontinuous jump appears as shown in Figure 11.
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Figure 11. Optimal probability of a target report versus maximum allowable probability of a
false target attack. The scenario involves a normally-distributed target and a Poisson field of
false targets. Probability of a target report is constant throughout the flight, c = 100, α = 5
[1/distance2], σ2 = 0.25 [distance2], and R = 5 [distance].

B. Dynamic-Threshold

When PTR, and consequently PFTR, are dynamic, the state variables become

x =

∫ r

0

2παρ [1 − PFTR (ρ)] dρ (55)

y =

∫ r

0

PTR (ρ)
ρ

σ2
e−

ρ2

2σ2 dρ (56)

z =

∫ r

0

2παρ [1 − PFTR (ρ)] [1 − y (ρ)] e−x(ρ)dρ (57)

and L is

L = −PTR (r)
r

σ2
e−

r2

2σ2 e−x(r). (58)

The state equations are

ẋ = 2παr [1 − PFTR (r)] (59)

ẏ = PTR (r)
r

σ2
e−

r2

2σ2 (60)

ż = 2παr [1 − PFTR (r)] [1 − y (r)] e−x(r) (61)
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After applying Eq. (1) for the ROC model, the Hamiltonian becomes

H =
(

λy − e−x
)

PTR (r)
r

σ2
e−

r2

2σ2 + 2παr
PTR

(1 − c) PTR + c

[

λx + λz (1 − y) e−x
]

(62)

and the costate differential equations become

λ̇x = λz2παr
PTR

(1 − c) PTR + c
(1 − y) e−x − PTR (r)

r

σ2
e−

r2

2σ2 e−x (63)

λ̇y = λz2παr
PTR

(1 − c) PTR + c
e−x (64)

λ̇z = 0 (65)

Taking the partial derivative of H with respect to the decision variable PTR gives

∂H

∂PTR

=
(

λy − e−x
) r

σ2
e−

r2

2σ2 +
[λx + λz (1 − y) e−x] 2παrc

[(1 − c) PTR + c]2
(66)

Solving ∂H
∂PTR

= 0, the optimal control is

P ∗
TR (r) =

c ±

√

[λx(r)+λz [1−y(r)]e−x(r)]2παcσ2e
r2

2σ2

[e−x(r)−λy(r)]

c − 1
. (67)

Once again, only the “minus” root is used. One is also interested in the optimal unconstrained

solution, which is

P ∗
TRu

(r) =
c −

√

λx (r) 2παcσ2e

h
x(r)+ r2

2σ2

i
c − 1

. (68)

Taking the derivative of Eq. (68) with respect to r gives

Ṗ ∗
TRu

(r) = −

√

√

√

√

2παcr2

4 (c − 1)2
σ2λx (r) e

h
x(r)+ r2

2σ2

i {

λx (r) e

h
x(r)+ r2

2σ2

i
−

(c − 1)

c
[P ∗

TR (r)]2
}

. (69)

Unlike the previous scenarios, it is unclear whether P ∗
TRu

is increasing or decreasing.

Assuming c = 100, α = 5 [1/distance2], σ2 = 0.25 [distance2], and R = 5 [distance], the

constrained problem is solved for a number of PFTAmax
values. Figure 12 shows as PFTAmax

decreases, the sensor is “turned off” earlier in the search.
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Figure 12. Optimal probability of a target report versus radius. The scenario involves a
normally-distributed target and a Poisson field of false targets. c = 100, α = 5 [1/distance2],
σ2 = 0.25 [distance2], and R = 5 [distance].

The objective function values of the dynamic solutions are compared to those of the

constant solutions. Figure 13 shows the poor performance of the constant-threshold solution

when PFTAmax
< 0.385. Unlike the previous two scenarios where dynamic-threshold solu-

tions were only a few percent better than constant-threshold solutions, there is substantial

improvements when PFTAmax
< 0.385. Since the dynamic problem allows the sensor to be

“turned off” at some point, the solutions are similar to those at smaller R values. In essence,

one learns how far out in radius to search. The dynamic problem “recognizes” the benefit

of staying close to the origin when a target is normally distributed. The constant-parameter

problem forces one to arbitrarily pick R then optimize PTR based on R. Thus, one must

settle for poor performance when R is chosen too large.
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Figure 13. Optimal probability of a target attack versus maximum allowable probability of a
false target attack. The scenario involves a normally-distributed target and a Poisson field of
false targets. c = 100, α = 5 [1/distance2], σ2 = 0.25 [distance2], and R = 5 [distance].

V. Conclusion

Three scenarios were considered involving an airborne munition searching for stationary

targets among a field of false targets. Targets were modelled using uniform, Poisson, and

normal distributions. False targets were modelled using Poisson distributions. The control

variable was the probability of a target report, which is linked to the probability of a false

target report via the sensor’s Receiver Operating Characteristic curve. Optimization prob-

lems were formulated that maximize the probability of a target attack while at the same

time constraining the probability of a false target attack. Generalized expressions for these

two probabilities were derived for all three scenarios. Both constant and dynamic-threshold

solutions were given for a sample instance of each scenario. For the two scenarios involving

constant target to false target ratios, the optimal dynamic threshold was only a few percent

better than the best constant threshold. For the scenario where target to false target ratio

changed during the search, the optimal dynamic threshold was substantially better than the

optimal constant threshold.

Future work will include parameterizing Receiver Operating Characteristic curves by

area coverage rate and formulating problems for air vehicles with multiple warheads. These

generalizations will open the solution space to planar regions and expand the applications to

unmanned combat air vehicles and general sensor craft. As autonomous unmanned vehicles

become more and more prevalent in combat environments, more basic research involving

analytic effectiveness measures (like the work presented here) is needed.
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Appendix

Formulae for probabilities of events are derived when parameters vary with time or space.

Specifically, one is interested in the probability of no target attacks and the probability of no

false target attacks prior to a time t or radius r. For example, no target attacks happen if no

targets were encountered or all targets encountered were misclassified. One can denote by

Pc a general classification probability which can assume the role of PTR, 1 − PTR, PFTR, or

1−PFTR depending on the application. Events involving only encounters are denoted E , and

events involving classified encounters are denoted C. The number of events occurring in a

given area is subscripted along with the applicable area. For example, 1 classified encounter

in ∆A1 is denoted C1,∆A1 .

A. Uniform Distribution

Consider the case of searching for one uniformly-distributed target. The air vehicle flies a

straight path as illustrated in Figure 1(a); however, its classification probabilities, search

width, and velocity are allowed to vary with time. The probability of no encounters (and

hence no classification) during [0, t] is

P (E0,A) = 1 −
1

As

∫ t

0

w (τ) v (τ) dτ (70)

where

As =

∫ T

0

w (τ) v (τ) dτ. (71)

To calculate the probability of exactly one classified encounter occurring during [0, t], divide

the time interval into n short time periods of length τ1, . . . , τn such that

n
∑

i=1

τi = t (72)

Let the mean probability of classification, search width, and velocity in the ith interval be

Pci
, wi, and vi respectively. The incremental area is given by

∆Ai = wiviτi (73)

and the search area is given

As =
n

∑

i

∆Ai. (74)
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The probability of exactly one classified encounter occurring during [0, t] requires considering

all the permutations where one classified encounter could occur. That is

P (C1,A) = P (C1,∆A1) + P (C1,∆A2) + · · · + P (C1,∆An
) (75)

so

P (C1,A) =
w1v1τ1

As

Pc1 +
w2v2τ2

As

Pc2 + · · · +
wnvnτn

As

Pcn
=

1

As

n
∑

i=1

wiviτiPci
. (76)

Taking the limit as τi → 0, i = 1, . . . , n, n → ∞ such that
∑n

i=1 τi = t gives

P (C1,A) =
1

As

∫ t

0

Pc (τ) w (τ) v (τ) dτ. (77)

Now calculate the joint probability of no encounters and one classified encounter during [0, t].

The two events are mutually exclusive, thus one must sum the two individual probabilities

P (E0,A ∩ C1,A) = 1 −
1

As

∫ t

0

w (τ) v (τ) dτ +
1

As

∫ t

0

Pc (τ) w (τ) v (τ) dτ

= 1 −
1

As

∫ t

0

[1 − Pc (τ)] w (τ) v (τ) dτ. (78)

For the probability of no target attack prior to time t, Eq. (78) is used with Pc (τ) =

1 − PTR (τ) giving

PTA (t) = 1 −
1

As

∫ t

0

PTR (τ) w (τ) v (τ) dτ (79)

B. Poisson Distribution

Let µ (τ) be the rate of encounters at time τ . Divide the time interval [0, t] into n short time

periods of length τ1, . . . , τn such that

n
∑

i=1

τi = t (80)

Let the mean rate of occurrence and mean probability of classification in the ith interval be µi

and Pci
respectively. The standard Poisson probability law requires, “If an area is subdivided

into n subareas and for i = 1, . . . , n, Ei denotes the event that at least one or more encounters

occur in the ith subarea, then, for any integer n, E1, . . . , En are independent events.”3 Hence,
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the probability that exactly ji encounters occur in the interval τi, i = 1, . . . , n is

P (j1, . . . , jn) =
n

∏

i=1

e−µiτi
(µiτi)

ji

ji!

= e−
Pn

i=1 µiτi

n
∏

i=1

(µiτi)
ji

ji!
(81)

The probability of no encounters occurring (and hence no classification) during [0, t] is

P (E0,A) = e−
Pn

i=1 µiτi (82)

Let j = 1. The probability of one classified encounter in the ith interval is

P (C1,∆Ai
) = e−

Pn
i=1 µiτi

(µiτi)
1

1!
Pci

. (83)

The probability of exactly one classified encounter occurring during [0, t] requires considering

all the permutations where one classified encounter could occur. That is

P (C1,A) = P (C1,∆A1) + P (C1,∆A2) + · · · + P (C1,∆An
) (84)

So,

P (C1,A) = e−
Pn

i=1 µiτi
(µ1τ1)

1

1!
Pc1 + e−

Pn
i=1 µiτi

(µ2τ2)
1

1!
Pc2 + · · · + e−

Pn
i=1 µiτi

(µnτn)1

1!
Pcn

= e−
Pn

i=1 µiτi

n
∑

i=1

µiτiPci
(85)

The probability of exactly two classified encounters occurring during [0, t] requires consider-

ing all the permutations where two classified encounters could occur. That is

P (C2,A) = P (C1,∆A1 ∩ C1,∆A2) + P (C1,∆A1 ∩ C1,∆A3) + · · · + P (C1,∆A1 ∩ C1,∆An
) +

P (C1,∆A2 ∩ C1,∆A3) + P (C1,∆A2 ∩ C1,∆A4) + · · · + P (C1,∆A2 ∩ C1,∆An
) +

...

+P
(

C1,∆An−1 ∩ C1,∆An

)

+

P (C2,∆A1) + P (C2,∆A2) + · · · + P (C2,∆An
) (86)
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So,

P (C2,A) = e−
Pn

i=1 µiτi
(µ1τ1)

1

1!
Pc1

[

(µ2τ2)
1

1!
Pc2 + · · · +

(µnτn)1

1!
Pcn

]

+

e−
Pn

i=1 µiτi
(µ2τ2)

1

1!
Pc2

[

(µ3τ3)
1

1!
Pc3 + · · · +

(µnτn)1

1!
Pcn

]

+

...

e−
Pn

i=1 µiτi
(µn−1τn−1)

1

1!
Pcn−1

(µnτn)1

1!
Pcn

+

e−
Pn

i=1 µiτi

[

(µ1τ1)
2

2!
P 2

c1
+ · · · +

(µnτn)2

2!
P 2

cn

]

=
1

2
e−

Pn
i=1 µiτi [2µ1τ1Pc1 (µ2τ2Pc2 + · · · + µnτnPcn

) +

2µ2τ2Pc2 (µ3τ3Pc3 + · · · + µnτnPcn
) +

· · · + 2µn−1τn−1Pcn−1µnτnPcn
+

(µ1τ1Pc1)
2 + (µ2τ2Pc2)

2 + · · · + (µnτnPcn
)2]

= e−
Pn

i=1 µiτi
(
∑n

i=1 µiτiPci
)
2

2
(87)

In general, the probability of exactly j classified encounters occurring during [0, t] is

P (Cj,A) = e−
Pn

i=1 µiτi
(
∑n

i=1 µiτiPci
)
j

j!
(88)

Taking the limit as τi → 0, i = 1, . . . , n, n → ∞ such that
∑n

i=1 τi = t yields

P (Cj,A) = e−
R t

0 µ(τ)dτ

(

∫ t

0
Pc (τ) µ (τ) dτ

)j

j!
(89)

Equation (89) can be used to determine the probability of either no false target attacks or

no target attacks occurring up through time t. In the case of no false target attacks, the

possible mutually exclusive events are

no encounters

1 encounter correctly classified

2 encounters correctly classified
...

∞ encounters correctly classified
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Thus,

P (E0,A ∩ C1,A ∩ . . . ∩ C∞,A) = P (E0,A) + P (C1,A) + · · · + P (C∞,A)

= e−
R t

0 µ(τ)dτ + e−
R t

0 µ(τ)dτ

(

∫ t

0
Pc (τ) µ (τ) dτ

)1

1!
+

· · · + e−
R t

0 µ(τ)dτ

(

∫ t

0
Pc (τ) µ (τ) dτ

)∞

∞!

= e−
R t

0 µ(τ)dτ
[

1 +
(
R t

0 Pc(τ)µ(τ)dτ)
1

1!
+ · · · +

(
R t

0 Pc(τ)µ(τ)dτ)
∞

∞!

]

= e−
R t

0 µ(τ)dτe
R t

0 Pc(τ)µ(τ)dτ

= e−
R t

0 [1−Pc(τ)]µ(τ)dτ (90)

To calculate the probability of no false target attacks, let Pc (τ) = PFTR (τ) and µ (τ) =

α (τ) w (τ) v (τ) in Eq. (90) giving

PFTA (t) = e−
R t

0 [1−PFTR(τ)]α(τ)w(τ)v(τ)dτ (91)

where α (τ) is the false target density. To calculate the probability of no target attacks, let

Pc (τ) = 1 − PTR (τ) and µ (τ) = β (τ) w (τ) v (τ) in Eq. (90) giving

PTA (t) = e−
R t

0 [PTR(τ)]β(τ)w(τ)v(τ)dτ (92)

where β (τ) is the target density. The integrals in Eq. (91) and Eq. (92) serve as Poisson

parameters, which are assumed constant in the literature. These integrals are “dynamic Pois-

son parameters”. When formulating optimal control problems, states are used to represent

the integrals.

C. Normal Distribution

Consider the case of searching for one normally-distributed target in a circular disc of radius

r. Normally-distributed refers to circular normal distribution with standard deviation σ.

The classification probabilities vary with radius. The probability of no encounters (and

hence no classification) searching a disc of radius r from the origin outward using concentric

annuli of thickness dρ is

P (E0,A) = 1 −

∫ 2π

0

∫ r

0

1

2πσ2
e−

ρ2

2σ2 ρdρdθ = 1 −

∫ r

0

1

σ2
e−

ρ2

2σ2 ρdρ. (93)
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To calculate the probability of one classified encounter, divide the disc of area A into n

concentric annuli of area A1, . . . , An such that

n
∑

i=1

Ai = A (94)

Each Ai is calculated using

Ai = 2πρi∆ρi (95)

where ρi is the radius of the annulus and ∆ρi is the thickness. The search begins at the

origin of the disc and progresses outward such that ρi < ρi+1, i = 1, . . . , n − 1. Let the

mean probability of classification in the ith annulus be Pci
. The probability of one classified

encounter during the sweep of A requires considering all the permutations where one classified

encounter could occur. That is

P (C1,A) = P (C1,∆A1) + P (C1,∆A2) + · · · + P (C1,∆An
) (96)

so

P (C1,A) = 2πρ1∆ρ1
1

2πσ2
e−

ρ2
1

2σ2 Pc1 + · · · + 2πρn∆ρn

1

2πσ2
e−

ρ2
n

2σ2 Pcn
=

n
∑

i=1

1

σ2

ρi∆ρie
−

ρ2
i

2σ2 Pci
.

(97)

Taking the limit as ∆ρi → 0, i = 1, . . . , n, n → ∞ such that
∑n

i=1 Ai = A yields

P (C1,A) =

∫ r

0

Pc (ρ)

σ2
e−

ρ2

2σ2 ρdρ. (98)

Now calculate the joint probability of no encounters and one classified encounter during the

sweep of A. The two events are mutually exclusive, thus one must sum the two individual

probabilities

P (E0,A ∩ C1,A) = 1 −

∫ r

0

1

σ2
e−

ρ2

2σ2 ρdρ +

∫ r

0

Pc (ρ)

σ2
e−

ρ2

2σ2 ρdρ

= 1 −

∫ r

0

[1 − Pc (ρ)]

σ2
e−

ρ2

2σ2 ρdρ. (99)

For the probability of no target attack prior to radius r, Eq. (99) is used with Pc (ρ) =

1 − PTR (ρ) giving

PTA (r) = 1 −

∫ r

0

PTR (ρ)

σ2
e−

ρ2

2σ2 ρdρ (100)
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