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Abstract

Motivation: Protein sequence alignment plays a critical role
in computationd biology asit is anintegral part in many andysis
tasks designed to solveproblemsin comparativegenomics, structure
andfunction prediction, and hanology modeling.

Methods: We have devdoped novd sequence alignment algo-
rithms that compute the alignment between a par of sequences
based onshort fixed- or variable-length high-scoring subsequences.
Our algorithms build the alignments by repeatedly seleding the
highest scoring pars of subsequences and wsing them to construct
small portions of the final alignment. We utili ze PS-BLAST gen-
erated sequence profiles and employ a profile-to-profile scoring
scheme derived from PICASSD.

Results: We ewluated the performance of the computed align-
ments on two recently pullished benchmark datasets and compared
them against the alignments computed by exsting state-of-the-art
dynamic programmning-based profile-to-profile local and dobd se-
guence alignment algorithms. Our results show that the new algo-
rithms achievealignments that are comparable or better to those
achievel by exsting dgorithms. Moreover, our results also showed
that these algorithms can be used to provide better information asto
which of the aligned pasitions are more reliable—a critical pieceof
information for comparative modeling appi cations.

Suppl. Data http://bioinfo.cs.umn.edw/supp ements/win-aln/

1 Introduction

Alignment algorithms serve & the most basic sequence anal-
ysismethods in computational biology and have awide range
of applicaions deding with sequence database seaching,
comparative modeling, protein structure and function predic-
tion.

The aurrent state-of-the-art sequence dignment algo-
rithms have awell defined optimal dynamic programming
based solution, introduced decales ago. These optimal algo-
rithms, Smith-Waterman [35] and Needleman-Wunsch [27]
solve the locd and dobal sequence dignment problems re-
spedively. Over the yeas, alignment methods have advanced
with several variations of the optimal alignment method use
of gap modelingtechniques[13], heuristics[1, 29], and more
recently the use of profile [12, 7, 2] and structure informa-
tion[18].

In recet yeas, there has been a considerable reseach

effort in developing kernel-based methods for building ds-
criminatory models for remote homology detection and fold
recogntion. This reseach has led to the development of a
number of protein string kernels that determine the similar-
ity between a pair of proteins as a function o the number of
sufficiently similar short subsequences that they share. These
string kernels have proven to be extremely effedivein buld-
ing very acarrate models, and these methods are anong the
best performing schemesfor remote homology predictionand
fold remogrnition[22, 21, 3] .

Motivated by these developments in string kernels, the
work in this paper is designed to addressthe question as to
the extent to which, ideas motivated by these string kernels
can be used to build alignments between a pair of sequences.
Toward this goal, we developed a set of windaw-based align-
ment algorithms that are heuristic in nature. Our methods
incrementally constructed the dignment by using the highest
scoring pairs of residues between the two sequences at eat
step. The residue pair scoring was borrowed from string ker-
nel theory where to score the residue pairs in consideration,
we examined short subsequences, referred to a wmers cen-
tered aroundead of the two residues. We introduced several
heuristics to identify aligned residue pairs using the wmers
couped with profile information.

We determined the quality of our alignment methods
by evaluation on a template-based [7, 31] and a model-
based dataset [8, 5]. Our empiricd results on the two
datasets showed the competitive performance of our intro-
duced schemesto state-of-the-art methods. We dso eval uated
our methods by determining the reliability of the digned po
sitions[17, 4, 32, 25, 36]. The positive results for some of our
alignment algorithms on such a reliability metric is very en-
couraging due to far reading applications, like comparative
modeling.

2 Methods
2.1 Sequence Profiles and Profile Scoring

The dignment algorithms that we developed take advantage
of evolutionary information by uilizing PS-BLAST [2] gen-
erated sequence profiles.

The profile of asequence X of length m is represented by
two m x 20 matrices. Thefirst isits paosition-spedfic scoring
matrix PS9M x that is computed diredly by PS-BLAST us-
ing the scheme described in [2]. The rows of this matrix cor-



respondto the various positionsin X and the alumns corre-
spondto the 20 dstinct aminoadds. The secondmatrix isits
positi on-spedfic frequency matrix PSPV x that contains the
frequencies used by PS-BLAST to derive PSM x. These
frequencies (also referred to as target frequencies [26]) con-
tain bah the sequence-weighted observed frequencies (also
referred to as effedivefrequencies[26]) and the BLOSUM62
[15] derived-pseudacourts[2].

Many different schemes have been developed for deter-
mining the similarity between profiles that combine infor-
mation from the original sequence, pasition-spedfic scoring
matrix, or position-spedfic target and/or effedive frequen-
cies[26, 37, 24]. In our work we use ascheme that is derived
from PICASS0 [14, 26] that was recently used in developing
eff edive remote homology detedion and fold recogrition al-
gorithms [30]. Spedficdly, the similarity score between the
ith pasition o protein’s X profile, andthe jth pasition o pro-
tein'sY profileis given by

20
Sxy(i,4) = lZ PSMMx (i,1) PSMy (4, 1) +
=1

D

20
PSAMy (4,1) PSM x (4, 1),
=1

where PSAM x(i,1) and PSMx (4,1) are the values cor-
respondng to the Ith amino add at the ith pasition
of X's position-spedfic scoring and frequency matrices.
PSAMy (4,1) and PSMy (4,1) are defined in a similar fash-
ion.

2.2 Window-based Alignments

The overall methoddogy d the dignment algorithms devel-
oped in thiswork isto incrementally construct the dignment
by using various heuristics to identify the pairs of aigned
residues. The key ideashared by these dgorithmsis that they
determine whether or not a pair of residues shoud be digned
together by examining the (short) subsequences, referred to
as wmers, that are centered aroundead of the two residues.
Given a sequence X of length m and a user-suppgied pa-
rameter w, the wmer at positioni of X (w < i < m — w)
is defined to be the (2w + 1)-length subsequence of X cen-
tered at position 4. That is, the wmer contains z;, the w
amino adds before, and the w amino adds after z;. A pair
of wmers are cmpared by computing their ungapped align-
ment scores. Given two sequences X and Y, the ungapped
alignment score, wscore(z;, y;), between apair of wmers at
positionsi and j of X andY, respedively is given by

wscore(z;, ;) = Z Sx,y(i+k,j+k), 2

k=—w

where Sx v (i+k, j+k) isthe dignment score between z; 4
andy;4, andis computed using Equetion 1

2.2.1 Central Alignment Scheme (CA). Thisisthe
simplest alignment algorithm that we developed and com-
putes the dignment by progressvely aligning the pairs of
residues that have the highest positive wscore values subjed
to the constraint that they do nd conflict with the portion o
the dignment that has been constructed thus far.

Spedficdly, given two sequences X and Y of length m
and n, respedively and a value for w, it starts by computing
theset S, of residue-pairsthat are candidatesfor inclusionin
the dignment by considering orly the pairsthat have positive
wscore values, That is,

Sw = {(zi,y;) | wcore(zi,y;) > 0}, ©)]

wherew < i <m-—-wandw < j < n—w. Thenit per-
forms aseries of iterationsin which it performs the following
threesteps: First, it extradsfrom S,, theresidue-pair with the
highest wscore value (z;-, y,+): Seoond, it aligns ;- against
y;=: Third, it removes from S,, all residue-pairs that canna
be part of avalid alignment given that ;- and y;- have been
aligned with ead other. This process terminates when S,
beomomes empty. Positions that do nd belongto any of the
seleded residue pairs are left unaligned (i.e., aligned against
spaces).

The residue pairs that need to be removed are: (i) (zi-, yi)
VI, (it) (zx,y,+) Yk, (i) (zk,3) V(E > i* AL < j*), and
(iv) (zx, y1) Y(k < 3* Al > j*). Thefirst two condtions re-
move from S,,, al residue-pairsinvaving z;- or y;«, asthese
pasitions have now been aigned, whereas the last two cond-
tions remove the residue-pairs that if aligned, will i ntroduce
inversionsin the dignment.

2.2.2 Subset Alignment Scheme (SA). A limitation
of the central alignment scheme is that it may leave alarge
number of residues unaligned because (i) it only considers
the residue-pairs with pasitive wscores, and (i) it will not
alignthefirst and last w positions of the two sequences (S,
contains only pairsinvavinginterior residues).

To address this problem we developed the subset align
ment scheme (SA), which can be cmonsidered an extension to
the CA scheme. Spedficdly, the SA scheme modifies the
secondand third steps of the CA algorithm as follows. Dur-
ing the second step, in addition to including the (z;-, y;-)
pair in the dignment, it also includesin the dignment all pre-
viously unaligned residue-pairs of the form (z;«4x, y;=+)
for —w < k < +w. That is, it can paentialy include dl
residue-pairs involved in (z;«,y;-)’s wmer. Note that due
to the incremental nature of the dgorithm, the second step
esentialy extends the dignment aroundthe (zi« 4k, Yj=+k)
residue-pair until it encourters a residue (from either X or
Y) that has alrealy been aligned. We will refer to this asthe
alignment extension operation. During the third step the SA
algorithm removes from S, al residue-pairs that are now in
conflict with all aligned residue-pairs that were seleded in
secondstep.



2.2.3 Central and Subset Alignment Scheme
(CSA). A patentia problem with the SA scheme, isthat it
may align a pair of residues (x4, y;++%) With ead cther,
evenwhen S, contains residue-pairs with higher wscore val-
ues for either or both of the two residues. This happens, be-
cause SA’s alignment extension operation extends the dign-
ment as on as it extrads the highest scoring residue pair
from S,, and there may be some higher-scoring wmers for
these positionsin S,,.

For this reason, we developed a hybrid scheme that com-
bines the CA and SA approaches. Spedficdly, the new
scheme first computes a CA alignment and then augments it
by applying the dignment extension approach used by SA to
ead pair of its aligned residues.

2.2.4 Variable wmer Alignment Scheme. Thedign
ment schemes, CA, SA, and CSA were discussed in the con-
text of afixed length wmer. The potential drawbadk of this
schemeisthat if w is st to arelatively large value, it may fail
to identify positive scoring subsequences; whereas if it is ®t
toolow, it may fail to reward residue-pairsthat haverelatively
longsimilar subsequences.

For thisreason we extended the dgorithms to also operate
with variable length wmers. The key diff erence from the use
of fixed length wmers centered aroundresidue pairs x; and
y; isthe faa that we define length w* in the range of 1 to w,
such that

w* = argmax Kscore(z,y;), (4
K=1

where Kscore isthe (2 + 1) —subsequence score as defined

in Equation 2

Our alignment schemes gart by computing the set §’,,, of
residue pairsthat are candidatesfor inclusionin the dignment
by considering oy pairs that have paositive w*score values.
With this change dl steps of our alignment algorithms remain
same. Note that the SA scheme using the variable length
wmers will have its alignment extension operation extended
till amaximum length of w*.

As a notation reference we dencte the variable wmer
alignment algorithmsby CA”, SA?, and CSA” to distinguish
them from the fixed wmer alignment algorithms dencted in
this gudy by CA?, SAf, and CSAZ.

3 Materials
3.1 Evaluation Methodo logies and Metrics

We eval uated the performance of the proposed window-based
alignment algorithms by considering (i) the quality of the
alignment itself and (ii) the extent to which the inherent or-
dering of the digned pairs of residues can be used to identify
portions of the dignment that are more reliable than others.
In order to asessalignment quality we used two widely used
methoddogies, often referred to as template-based [7] and
model-based [8], whereas the reli ability was assessed by fol-
lowing a methoddogy that was recently proposed in the con-
text of comparative modeling [36].

3.1.1 Template-based Approach. The first method
for evaluating alignment quality compares the diff erences be-
tween the dignment generated to template dignments[7, 31,
8]. Thesetemplate di gnments are generally derived from var-
ious dructural aignment programs and are considered to be
the gold standard.

We use threequality scores, namely the developer’'s score
(fp) [31], the modeler's core (far) [31] and the Cline score
(CS) [4] to compare the template dignments with the gen-
erated alignments. The developer’'s sore is the number of
corredly aligned residue pairs in the generated alignment di-
vided by the length of the template dignment. (The length
of an alignment is defined as the number of aligned residue
pairs.) The modeler's sore computes the ratio of corredly
aligned residue pairs with the length of the generated align-
ment. The Cline score was developed to addressthe issues
with fa; and fp by pendizing bah uncer-alignment and
over-alignment, and aso crediting regions in the generated
alignment that may be shifted by a few pasitions relative to
the reference dignment [7, 4]. The steps for computation of
the Cline score can be foundin the study [4].

Notethat the fp and f,, scores are eguivalent to the more
traditional measures of recall and predsion [9], respedively
that are used extensively to measure prediction performance
In the rest of the discusdon we will primarily refer to fp
and f»,s by the more intuitive names of recdl and predsion,
respedively.

3.1.2 Model-based Approach. An dternative to us-
ing a template-based approadc is to buld a structural model
from the dignment and evaluate the similarity between the
model and the template structure [8, 28]. Starting from the
alignment between a pair of proteins (one protein considered
to be the query protein, the second considered to be the tar-
get protein whose 3D structure is known), a model protein
is creaed which consists of the cabonapha, C, atoms of
the query protein. The aomic coordinates of this model pro-
tein are the aomic coordinates of the target protein i.e., for
every aligned pair of residues, the query protein has its C,
atomic coordinates replaced by the correspondng atomic co-
ordinates of the target protein. The similarity between the
two structures (the model protein and target protein) after a
structural super-imposition [23], is used as an asesament of
sequence dignment quality.

In our study, we mmputed this dmilarity using the
L Gscore [5] that takes into acournt the common segments
between the pair of proteins. LGscore computes the sim-
ilarity between two protein structures (model and template
structure) based onthe common segments between them. [t
is desirable to have long common segments with high struc-
tural similarity. The LGscore measure was used to evalu-
ate the structures obtained by threading methods [28] in the
CAFASRP2 [10] and LiveBench [3] experiments as well as a
sequence dignment quality measure [8].

Note that instead of LGscore other structural similarity
methods or protein modeling asessnent measures can be



used for evaluating the quality of the model (e.g rmsd mea
sure [19], global distance test score (GDT) [38] and Max-
Sub [34]). However, for this gudy we show only the re-
sults using the LGscore method die to similarity in results
obtained when tested with the other measures.

3.1.3 Reliability of Aligned Regions. In compara-
tivemodelingand several other applications, it isessentia not
only to align residue pairs but also to provide some reliabil -
ity index or confidence measure associated with the digned
residue pairs. While building protein structure models us-
ing comparative modeli ng strategiesit isimportant to include
only those regions where the dignment is considered to be
good a reliable[17, 4, 32, 25, 36].

One of the reliability assessnent measures cdculated a
smocthed profile-derived alignment score. The scorefor eah
of the digned residue in the template dignment was com-
puted using a triangudar smoothing window of size5. The
reli ability was assessed by setting upathreshold value for the
smoothed profile-derived score [36]. Our approach for relia-
bilit y assesgment was very simil ar to this method

Usingthe template-based benchmarkswe evaluated the re-
liability of the digned residue pairs by ranking the digned
pairs in the query alignment. We score the digned pasitions
using fixed length wscores. The reliability measure is com-
puted as the recdl at different percent levels of incorredly
aligned residue pairs (up to 5%). The nation o a hit is de-
fined as having the same digned residue pairs in bah the
guery and template dignments. The differencein ou relia-
bility scheme was the use of a profile-to-profile scoring func-
tionsequally weighted at all positi ons of the wmer rather than
using a smoathing wmer [36].

3.2 Datasets

For the template-based assesament scheme we used a dataset
creaed to evaluate the various profile-to-profile scoring func-
tionsfor protein sequence dignment [7]. The dataset consists
of 588 reference dignment pairs having high structural sim-
ilarity but low sequenceidentity (< 30%). This dataset was
seleded to have ahigh pairwise structural simil arity usingthe
consensus of FSSP[16] and CE [33].

For the model-based evaluation scheme, we used a bench-
mark creded from SCOP 1.39 filtered to only contain do-
mainswith lessthan 50% pairwise sequenceidentity [8]. This
dataset contains of 9983 potein domain pairs, such that 1903
belongto the same famili es, 3101 share only the same super-
family, and 4979share only the same fold. Due to the non
symmetricd nature of models built from alignments, eah
pair of sequences were evaluated twice—lealing to a bench-
mark of 19966 donain pairs.

3.3 Profile Generation

The position spedfic score and frequency matrices used by
the profile-based scoring method o Equation 1 were gen-
erated using the latest version o the PS-BLAST algorithm
(available in NCBI's blast release 2.2.10), and were derived

from the muilti ple sequence dignment constructed after five
iterations using an e value of 103, The PS-BLAST was
performed against NCBI's nr database that was downloaded
in November of 2004and contained 2,171,938 sequences.

In the casein which PS-BLAST could na produce mean-
ingful alignments for certain pasiti ons of the query sequence,
the correspondng rows of the two matrices are derived from
the scores and frequencies of BLOSUMG62.

4 Results

In this sdion, we evaluate the performance of the incre-
mental window based alignment schemes using the various
benchmark datasets and evaluation metrics discusss in Sec
tion 3

4.1 Assessment of Incremental Window-

based Alignments

Table 1 provides an extensive set of results ill ustrating the
performance of the CA, SA, and CSA schemes on the
template-based dataset for diff erent values of w andfor fixed-
and variable-length wmers. Note that the column labeled
“CS<15%" shows the CS results for the subset of sequence-
pairs that have lessthan 15% sequenceidentity (i.e., a subset
that isinherently harder to alignwell).

4.1.1 Central vs Subset vs Combined. Theresults
of Table 1 show that with resped to the CS scores, SA tendsto
perform better than either CA or CSA, whereas CA performs
consistently the worst. The only exception is for variable-
length wmers, in which SA’s performance is comparable to
that of CSA. Therelative advantage of SA is more evident if
we aonsider the subset of sequence-pairs with lessthat 15%
sequence identity, for which its CS scores are mnsistently
higher than those adieved bythe other schemes (SA achieves
a score of 0.649 whereas CA and CSA adhieves <cores of
0.614and 0628 respedively).

By looking at the performance of the various hemesin
terms of recdl, we can seethat SA’s higher CS-based perfor-
manceisdueto thefad that it achieves sgnificantly better re-
cdl values than the other schemes. This was to be expeded,
as it was one of the motivation behind the development of
SA. Also, the predsion-based results show that CA achieves
somewhat better predsions than CSA, whereas SA’s pred-
sionis comparable or better to that of the other schemes.

4.1.2 Fixed vs Variable Length Alignments. Ana
lyzing the performance of alignment methods that use fixed
length wmers compared to the methods that use variable
length wmers, we natice that for the CA and CSA schemes,
for the same wmer length the recdl as well as the predsion
scores have higher values. Note that the higher recdl is ex-
peded, because the methods using a variable wmer sizewin-
dow will have ahigher flexibilit y in all owing larger number of
wmers (with a positive score) to be picked for the candidate
set S

Ancther key observation is that SAY performs better in



terms of recdl than SA”. Thisis becaise for the same value
of w, the w* value seleded by SA” may be smaller than w
(i.e., the value used by SAY). Asaresult, SAY’s alignment
extension operations will i nvolve longer windows, which can
produce longer alignments than SA”?, and thus higher recdl
values.

Table 1: Alignment Accuracy Results on a Template-based
Dataset.

fm  fo CS CS<isy
(predsion) (recdl)
fixed
central
wmer = 2 0.805 Q791 Q803 Q600
wmer = 3 0.799 Q776 Q794 Q596
wmer = 4 0.791 Q756 Q782 0587
wmer =5 0.776 Q732 Q764 Q572
subset
wmer = 2 0.802 0835 (0826 0626
wmer = 3 0.805 (0842 (0831 (642
wmer =4 0.805 Q842 0832 0644
wmer =5 0.802 (0838 (0828 0649
combined
wmer = 2 0.791 (0822 (0816 (0619
wmer = 3 0.785 (0819 (0814 (0623
wmer =4 0.779 Q811 Q808 0624
wmer =5 0.767 Q798 Q798 0624
variable
central
wmer = 2 0.799 Q804 Q809 (0595
wmer = 3 0.802 Q807 Q812 Q605
wmer = 4 0.805 Q797 Q810 0611
wmer =5 0.805 Q797 Q807 0614
subset
wmer = 2 0.798 (0827 Q820 (615
wmer = 3 0.798 (0834 (0825 (0629
wmer =4 0.798 (0836 0827 0634
wmer =5 0.794 (0832 (0823 0636
combined
wmer = 2 0.795 (0822 Q813 Q600
wmer = 3 0.797 Q827 Q820 0614
wmer =4 0.800 0831 0824 (621
wmer =5 0.800 Q0832 (0825 0628

In the table f,, denotes the Modeler's sore, fp denotes
the Developer's score, CS denates the Cline score, and
CS<15% denates the Cline score for a subset of sequence
pairs sharing lessthan 15% sequenceidentity.

4.1.3 Sensitivity of Schemes with respect to vary-
ing wmer size Looking at the performance atieved by
the various schemes in Table 1 as w ranges from two to five,
we seethat in general, SA’s and CSA’s performance does

nat significantly change (e.g., CS scores gay within a tight
range), whereas CA/’s performance tend to deteriorate with
increasing w. This latter behavior is due to the fad that as
we increase the wmer size fewer wmers will have aposi-
tive score and hence will not be included as part of the set
Sw. We see adired effed of this leading to a deaease in
the recdl scores. Also increease in the wmer size does lead
to adeaeasein predsion score aswell. Thisisbecaisefor a
larger wmer window the pasitive scoring wmers may not be
due to the more “central” paositions. Evidence of this can be
seen by comparing the behavior of the CA” schemein which
bath the predsionand recdl scores gay the same.

Anocther key observation is that the schemes that utili ze
variable length wmerstendto perform better for larger values
of w. Thisis because of the flexibility associated with using
avariable length wmer.

4.1.4 Alternative Performance Assessment For
this dataset too, we performed a thorough mrameter study
by varying wmer lengths for our alignment schemes. We ob-
served similar results as sen in T:B1 for the template-based
dataset. In Table 2 we report only the best results achieved
rather than showingresultsfor varyingwmer sizesasdorein
Table 1.

Firstly, we natice the differencein the L Gscore values for
the family, superfamily andfold pairs clealy showingthe dif-
ficulty nature of the threesets of problems, with thefold-pairs
being the hardest to model followed by the superfamily and
family level pairs.

Simil ar to the template-based results, the S A scheme has
the best L Gscore & the family, superfamily andfold levelsfor
bath the variable and fixed wmer setting. A surprising fadt
was that the performanceresults as measured by the L Gscore
did na deaease with increasing wmer lengths. In faa, we
observed that the use of a higher wmer sizeof 5 for the fixed
length scheme adieved the best results of 1.53 and 4.29 for
the fold and superfamily level problems. We dso observe
sightly better performance for the variable wmer schemes
compared to the fixed wmer schemes.

The performance of the C'S A” alignment methodwas the
lowest for bath the family and superfamily level pairs which
contrasts the results seen previously on the template-based
dataset in Table 1.

4.2 Comparison with Earlier Results

4.2.1 Template-based Benchmark. Table 3 shows
the comparative performance of our window based schemes
against some of the best profile-to-profile scoring techniques
studied previously [7]. In the table we show results for the
schemes pdap, correlp and coach. pdap uses dot product
to compute the simil arity between two profiles, correlp com-
putes the Pearson correlation between the profile mlumns,
whereas coad [6] uses an asymmetricd complex dot product
between the HMM profile and a pasition frequency matrix.
We show results of these schemes as pubished previ-
oudly [7] using SAM T99 mrofiles (The performance of these



Table 2: Alignment Accuracy Results on a Model-

based Dataset.
Alignment Scheme Family Superfamily Fold
CAT (2 14.86 166 004
SA’ (5) 16.44 429 153
CSAY (2) 15.47 253 0203
CA” (5) 15.10 243 012
SA” (5) 16.48 405 105
CSA” (5) 14.05 232 014

The numbersin the parameter indicate the wmer
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length for the various alignment schemes.

alignment methods using SAM T99 profiles is 3-4% better
than the PS-BLAST based profiles [7]) Our methods show
comparable performance to these dignment methods using
SAM T99templates.

We dso compare the results of the window based align-
ment methods to alocd Smith-Waterman [35] alignment al-
gorithm implementation (SW-PS3M) using the same profile-
to-profile scoring function as used for the window based
alignments (Equation 1). Within this locd alignment frame-
work we use an affine gap model alongwith a zeo-shift pa-
rameter [37] to maintain certain necessary requirements of a
good opimal alignment. We optimize the gap modeling pa-
rameters (gap opening (go), gap extension (ge)) and the zeo
shift value (z9 to oltain highly optimal aignments for com-
parative purpases.

We observe in Table 3 that the incremental window-
based alignment schemes perform very competitively when
compared to our fully optimized SW-PS3M implementation.
Also ndice the superiority of our optimized SW-PSSM im-
plementation to the dignment methods using pdap, correlp
and coach as their profile-profile scoring functions. The dif-
ferencein the SW-PS3M resultswith the other standard align-
ment techniques may be due to the use of a more sensitive
PICASS0O based profile-to-profile scoring function. Further,
these results verify that we ae cmparing ou novel win-
dow based ali gnment methodsto afully optimized SW-PSM
alignment algorithm.

The performance of the window-based scheme is adu-
aly very promising. We seled one of the better performing
schemes (SA7) and compare it to the optimized SW-PSSV
algorithm using the CS score. Figure 1 shows that the com-
parative performance of the two methods acdoss the 588
alignment pairsin the dataset.

4.2.2 Model-based Benchmark. Our results in Ta
ble 4 reiterate the dosenessin performance of the incremen-
tal window based ali gnment method to the highly optimized
SW-PS3M aignment algorithm for the family, superfamily
andfold level subsets.

Table 4 also shows results for the optimized locd (locd
sequence dignment using a global scoring matrix), global

Central Alignment Scheme (Fixed Length wmer = 3)

Figure 1. Cline Score Comparison o SW-PS3V scheme
against SA/ scheme for the 588 alignment pairs in the

template-based dataset

Table 3;: Comparative Performance with Earlier Results
on Template-based Dataset.

Alignment Scheme  fis  fp CS CS<i5%
SAY (3) 0.805 0842 0831 0642
SAY (4) 0.798 0836 0827 0634
SW-PSM 0.803 0852 (0841 0689
pdap (T99) 0.806 0829 0832 0697
correlp (T99) 0.794 0835 (0829 0702
coach (T99) 0.797 0830 Q829 0697

The optimized SW-PSM results are adieved us-
inggo = 3.0, ge = 0.75, zs = 1.0. In the table
pdap, correlp, coach use adat product, correlation
function, and a HMM based profile-profile scoring
function. T99 denotes the use of SAM T99 based
profiles respedively.

(global sequence dignment using a global scoring matrix),
PS (3D-PSM [20] based global sequence di gnment against
a profile [11] obtained from PI-BLAST), SSP$ [8](3D-
PS3M based global sequence dignment against a profile
obtained from PS-BLAST using semndary structure in-
formation) and structural (alignment using structural super-
impasition bylgscore?) alignment methods puldished previ-
oudly [8]. The structural alignment sets up a higher reference
quality score for the benchmark. Using sequence di gnment
techniqueswe would like to achieve these highlevels of aca-
ragy. The results shown in Table 4 for the various previously
pubished schemes, as well as for our methods are the best
adieved after optimization o the various parameters.

We further analyzethe data by annaatingamodel asbeing
corred based onthe LGscore value. As dore in the study [8]
we usetheless srict L Gscore autoff (10~3) to define a orrea
model and a more stringent cutoff (10~°) to identify models
of higher quality. The percentage of models corred based



on these autoffs are shown in Table 5. Both the incremental
window-based alignment methods, as well as the SW-PS3V
alignment method, are ale to pick the corred models with
similar degrees of acaracgy. Our techniques also seam to
identify a higher percentage of corred models when com-
pared to the previously studied schemes, espeadly PS and
SSP$, bath of which also incorporate some profile informa-
tion. As e from Table 5 our methods are ale to pick a
larger fradion o higher quality models for the family and
superfamily levels.

4.2.3 Reliability Performance. Table 6 shows the
reliability performance for the window based alignment
schemes in comparison to the optimized SW-PS3V based
alignment scheme. These results correspondto the average
recdl scores obtained for al the dignment pairs at different
error rates using the procedure described in Sedion 31.3.

Thoughthe SW-PS3M algorithm showed dlightly better
performance in terms of the overall alignment quality (Ta-
ble 3 and Table 4), it isinteresting to nae the window-based
schemes using variable length wmers showed far better per-
formance a the lower error rates. In particular before see
ing any incorred predictions in the ranked aligned pasitions,
the dignment methods using variable length wmers have a
recdl around 0260 compared to the recdl of 0.205 for the
SW-PS3M algorithm. Note that the recdl performance of
the CSA scheme is dightly better than the CA scheme and
slightly worse compared to the SA alignment scheme. These
results can be explained by the fad that the high scoring
residue pairs aligned by CA are dso aligned by the CSA
scheme.

Table 4: Comparative Performancewith Earlier Re-
sults on a Model-based Dataset.

Alignment Scheme Family Superfamily Fold

SAT (5) 16.44 429 153
SA® (5) 16.48 405 105
SW-PS9M 16.66 438 202
locd 141 20 0.7
global 151 29 14
PS 1538 33 14
SSP$ 16.0 41 26
structural 194 91 80

The optimized SW-PS3M results are adieved
usinggo = 3.0, ge = 0.75, zs= 3.0. All the
results are optimized for their relevant parame-
ters

5 Conclusion

In this gudy we developed agorithms that identify the
aligned pairs of residues using an incremental approach.
These dgorithms cgpture the most similar pairs of subse-
quences as part of the final alignment. The concepts from

Table 5. Fradion o Corred Models based on the
LGscore.

LGscore <1073 <107°
Alignment Scheme Fm S Fd Fm S H
SAT (3) 74 27 5 55 8 O
SAY (3) 74 28 4 55 8 0
SW-PSSM 74 27 6 56 8 O
locd 66 10 1 46 2 0
global 70 12 1 49 3 0
P 72 18 4 50 4 0
SSP$ 73 21 6 53 5 O
structural 86 60 51 66 21 21

The optimized SW-PS3M results are adieved using
go= 3.0,0e=0.75, zs= 3.0. All theresults are op-
timized for their relevant parameters. Fm, Sf and Fd
denate the family-level, superfamily-level and fold-
level performanceresults respedively.

Table 6: Reliability Assesanent: Recdl for the first k% er-
rors.

Method % 1% 2% 3% 4% 5%
CAf(3) 0176 0281 0365 0434 Q494 Q541
SA7(3) 0186 0297 0384 Q459 Q0519 Q563
CSAY (3) 0180 0286 Q370 0438 Q498 0545
CA” (3) 0254 0364 Q450 Q515 Q566 Q603
SA”(3) 0260 0368 0454 0521 Q572 Q612
CSA” (3) 0.260 0367 Q454 0520 Q571 Q610
SW-PS9/  0.205 0320 Q405 Q480 Q541 Q586

The optimized SW-PS9M results are adieved using
go = 3.0, ge = 0.75, zs = 3.0. The numbers in the
parenthesis represent the wmer width used for the results
shown.

string-kernel theory (use of ungapped subsequences, scored
using profiles) played an integral role in the design o these
alignment algorithms.

Our comprehensive experimental study onthe template-
based and model-based benchmark datasets howed com-
parable performance to a fully optimized Smith-Waterman
profile-based implementation. In terms of the reliability per-
formanceof the digned residue-pairswe naticethat the dign-
ment schemes using variable length wmers had very promis-
ing results. Amongst the window-based schemes we no-
ticed that the subset alignment, SA using bah the fixed and
variable wmers showed the best performance. The sensitiv-
ity analysis dore by varying the wmer size showved the SA
schemes to have arobust performance

The simplicity of our methods and competitive dignment
quality as well as aligned region reliability will | ead to the
applicdion o our algorithms in key bioinformatic problems,



espedally comparative modeling.
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