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ABSTRACT

In recent years, there has been dramatic progress in both speech
and language processing, in many cases leveraging some of the
same underlying methods. This progress and the growing tech-
nical ties motivate efforts to combine speech and language tech-
nologies in spoken document processing applications. This paper
outlines some of the issues involved, as well as the opportunities,
presenting an overview of the special double session on this topic.

1. INTRODUCTION

Human language technology (HLT) provides important tools for
making use of the vast amount of information in documents avail-
able via the web, and significant recent progress has been made
in areas such as text retrieval, analysis, summarization and trans-
lation. While much of this work has focused on text documents,
speech and video signals are also increasingly available. We refer
to such signals – including TV and radio broadcasts, congressional
records, oral histories, voicemail, call center recordings, etc. – as
“spoken documents”. As speech recognition technology improves,
language processing for spoken audio has attracted increased inter-
est. And because is takes longer to listen to audio than to read text,
spoken documents are clearly a prime candidate for automatic in-
dexing, information extraction, and other such technologies.

Over the last decade, the speech processing and natural lan-
guage processing communities have developed largely indepen-
dently, though many of the algorithms stem from the same funda-
mental theory. With the growing importance of spoken document
processing, there is now a need to bridge this gap. This session
takes a step towards this goal, by introducing speech researchers
to downstream applications that could be applied to speech (and
video), and by providing language processing researchers with
insights into what speech has to offer beyond word information.
Many of the papers in this session raise issues in applying text-
based technologies to spoken documents. The differences between
written and spoken documents have implications for both speech
and language processing modules. In addition, since HLT is ulti-
mately needed for human processing of information, we include
two papers on assessing of the impact of technology on human
performance in various information processing tasks.

Despite little interaction between the speech and language pro-
cessing communities, there has been some technology exchange
through work in dialog systems, and both communities are lever-
aging advances in machine learning. Hence, we expect the session
will also bring to light a wealth of shared algorithmic methods
that could be useful in both fields, and where cross-fertilization is
likely to provide mutual benefits. A few such shared techniques are
highlighted in this overview; we encourage our readers to search
for more examples in the papers in this session.

The goal of this paper is to set the context for the session,
providing background on the various technologies and raising is-
sues that cut across the relevant fields. In Section 2 we give an
overview of the state-of-the-art in large vocabulary speech recog-
nition, to provide perspective on what might be available for spo-
ken document processing. In Sections 3 and 4, we outline issues
in speech processing that impact language processing, including
information beyond the words and methods for handling speech
recognition errors. In Section 5 we discuss some common threads
in the methods used in speech and language processing. Finally,
in Section 6 we provide an overview of the eleven invited papers
in this special double session.

2. LARGE VOCABULARY SPEECH RECOGNITION

Most HLT applications require the ability to accurately tran-
scribe unrestricted, open-vocabulary speech. Since the mid-1990s,
progress in large vocabulary recognition has been driven by an-
nual evaluations conducted by NIST for automatic transcription
of broadcast news (BN), conversational telephone speech (CTS),
and recently multi-party meetings [1]. Evaluation conditions have
become more difficult over the years, by the imposition of fac-
tors such as runtime limits, automatic segmentation requirements,
and broadening of data sources. Nevertheless, word error rates
(WERs) have declined from around 30% for BN and above 50%
for CTS, to below 10% and 15%, respectively. These improve-
ments are due in part to availability of increasing amounts of train-
ing data, which now comprise more than 2000 hours for both En-
glish BN and CTS. But there have been many research achieve-
ments as well, including techniques that make use of cheaper and
therefore larger data sources (e.g. training on errorful transcrip-
tions). In addition, the availability of more data has spawned the
development of more sophisticated models. The systems have
achieved remarkable convergence, across both sites and domains.
In the paragraphs below, we overview key elements typically
found in the NIST-evaluated systems.

Front ends use cepstral analysis in combination with dimen-
sionality reduction techniques, such as heteroscedastic LDA, start-
ing from up to third-order delta features or the concatenated cep-
stral vectors from several adjacent frames. Recent developments
are discriminatively trained feature extraction methods such as
fMPE [2] or multi-layer perceptrons [3]. A host of techniques are
used to reduce mismatch between trained models and test data, and
to reduce inter-speaker variability in training. Standard techniques
include vocal-tract length normalization, adaptation of acoustic
models using maximum likelihood linear regression (MLLR), and
speaker-adaptive training based on MLLR. The acoustic models
are mixtures of Gaussians, typically with several hundred thou-
sand to a million distributions with diagonal covariances; recently
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systems have started to use full covariances and fewer Gaussians.
Distributions are clustered by decision trees, using phone context
and other features. Once clustered, Gaussians are trained using
discriminative criteria such as maximum mutual information or
minimum phone error [4], which reduce WER over maximum like-
lihood training.

Language modeling is dominated by four- and five-gram mod-
els, typically kept to manageable size by entropy-based pruning.
Recent developments with grammar-based language models have
not found widespread use yet, mainly due to computational con-
straints. A new development is trainable, continuous vector space
representations for the vocabulary that employ neural networks as
smooth conditional probability estimators [5]. Attempts to adapt
the LM to topics, dialog structure, or other higher-level aspects of
the domains have shown only very marginal improvements so far,
and are not generally used. Instead, one typically builds separate
LMs from a variety of sources, including web text collections [6],
and interpolates them with globally optimized weights.

Decoding typically proceeds in multiple stages, allowing pro-
gressively more expensive models, and iterative normalization and
adaptation. Cross-adaptation makes use of multiple recognizers
that differ in signal processing, pronunciation models or acoustic
modeling approaches, and lets one subsystem adapt to the output
of another. This helps avoid the reinforcement of recognition er-
rors, and is similar to co-training used for weakly supervised train-
ing of taggers and parsers [7]. Finally, the outputs of different sub-
systems and decoding stages are combined by tallying up “votes”
(i.e., posterior probabilities) for competing word hypotheses.

Despite significant advances, it is still true that mismatches
between training and test data in terms of acoustics or speak-
ing style degrade recognition accuracy considerably, for example,
when recognizing new genres of broadcast shows, or when run-
ning a CTS-based recognizer on meetings. Better robustness and
portability thus remain key goals for future research. In addition,
performance on non-English speech is typically a couple of years
behind that in the corresponding English tasks, due to the longer
history of work on English, greater availability of resources, and
differences in the languages themselves.

3. SPEECH VS. TEXT: BEYOND WORDS

Spoken language differs from text in terms of stylistic factors [8],
as well as in terms of what information is conveyed explicitly.
Most notably, spoken language does not contain explicit punctua-
tion, capitalization, or formatting. If the spoken document involves
spontaneous speech (e.g. meetings, conversations), then high rates
of disfluencies (e.g. filled pauses, restarts, repetitions and self-
corrections) are often present [9]. Such factors pose difficulties
for automatically processing spoken documents, though humans
do not find it particularly difficult. Of course, humans can make
use of semantics, context and world knowledge that is far beyond
what current systems can model. However, humans also make use
of acoustic cues to speaker identity, emphasis and structural orga-
nization of the words. Such information is not typically expressed
in the transcripts produced by a speech recognition system, but it
may be easier to extract and represent than semantic and pragmatic
knowledge. Hence, many researchers believe that automatic lan-
guage processing could benefit from a richer representation of the
audio signal that incorporates this information. Efforts at defining
such a representation, promulgated as “Rich Transcription” by the
DARPA EARS program, are in their early stages, but evidence for

its utility is growing.
Several types of beyond-words information, or “metadata”,

can enrich the representation of speech. For example, audio di-
arization, annotation of structural information (analogous to punc-
tuation in written text), and annotation of higher level discourse
information such as dialog acts and topic boundaries. In the EARS
program, the term “metadata” has to date referred to information
that can be construed (more or less) by a human listener who only
has access to the audio. We note that the term “metadata” is also
used elsewhere in the speech and language community to include
supplemental information, such as radio production notes [10] or
thesaurus terms [11]. In this case, the information is not encoded
in a person’s voice, but it is also of use for downstream language
processing applications. In this paper, we focus on information
available from the speech signal, because of the connections to
and reliance on signal processing.

Audio diarization critically includes indexing of speakers [12],
since speaker information is important for resolution of some pro-
nouns and provides a cue to topic and sentence boundaries. In
some applications it is also of interest to label particular speak-
ers, for example key political figures, since interpretation and use
of spoken information can depend on who the source is. Other
types of audio information that may be of interest include chan-
nel changes (e.g., telephone channel for a call-in speaker), music,
advertising segments, and so on.

For lower-level structural metadata, one could use a surface-
form representation that imitates orthographic transcription, e.g.,
automatically detected punctuation plus hyphens to mark self-
correction points [13]. Alternatively, one could represent the un-
derlying structure (interruption points, edit regions, boundaries of
sentence-like units (SUs)) [14], which is closer to the acoustic cues
in the signal and richer in terms of the representation of disflu-
encies, but requires some revision of text processing technology
to handle the new representation. We argue that speech is suffi-
ciently different from text that there are modifications needed in
models in any case, and hence there may be only a small added
cost to using the richer structural representation. Further, many of
the techniques required for detecting surface form punctuation in-
volve language processing technology that is arguably better left to
the end application. That said, many results demonstrate that some
use of language cues is critical to achieving good performance in
detection of structural metadata [14, 15, 16].

Higher-level metadata, such as labeling of topics, dialog acts,
emotion, speaker state, and so on, is not currently a focus in the
DARPA “Rich Transcription” paradigm. But in the broader com-
munity, there is significant and growing interest in recovering such
information from speech. Automatic detection of dialog acts is
important for intelligent human-computer interfaces [17] and for
understanding human-human conversations [18, 19]. Both topic
boundaries [20] and dialog acts [21, 18, 19] are a focus in recent
work on meeting understanding. Emotion detection [22], once a
“fringe” topic in speech processing, is now of great interest for
such varied applications as call-center triage, games, tutoring sys-
tems, in-car navigation systems, and even home health monitoring.

For all of these tasks, prosodic features (duration, fundamen-
tal frequency, energy and voice source characteristics) can play a
helpful role. Prosodic cues mark various levels of segmentation
and salience in speech, as well as intent (as in distinguishing ques-
tions vs. statements). Prosodic cues have also proved to be useful
for speaker identification [23]. A challenge in modeling prosody,
because it plays a role at many levels, is factoring out or normaliz-



ing features to account for effects at different levels.
Since text processing systems productively make use of punc-

tuation, it makes sense to use detected structural metadata in au-
tomatic language processing systems operating on speech, and
there are a few examples indicating that such information is use-
ful. Work in parsing spontaneous speech has shown that detec-
tion of interruption points and edit regions is needed for good per-
formance, e.g., [24, 25], but incorporating (quantized) sentence-
internal prosody cues as words is not as effective as using punc-
tuation [26]. However, this work assumes known sentence bound-
aries. When sentences must be automatically segmented, there is
a clear benefit for parsing from using explicit metadata detection
algorithms rather than a simple pause-based segmentation [27].
Work in dialog systems has successfully incorporated prosodic
metadata for both parsing and control of the dialog manager [28].

4. HANDLING ERRORFUL TRANSCRIPTS

On top of missing orthographic cues and stylistic differences, the
transcripts produced by a speech recognition system have errors
(as surveyed above) and often important names and places are
missed because they are absent from the recognizer vocabulary.
Speech and language researchers working on dialog systems have
also long recognized that better understanding results can be ob-
tained if more than one hypothesis is passed from the recognizer to
the understanding module. Options for representing recognizer al-
ternatives include N-best sentence hypotheses, word lattices, con-
fusion networks [29], or simply augmenting a single hypothesis
with word confidence estimates.

None of these alternatives addresses the problem of out-of-
vocabulary (OOV) words, since the correct word will not appear in
any of the alternative hypotheses. The paper in this session by Van
Thonget al. [10] considers possible representations for handling
this problem within the context of a retrieval application. Other
results in named entity detection [30] and dialog systems [31] in-
dicate that language context combined with recognizer confidence
estimates can provide sufficient clues to detect names, even when
these are obscured by recognition errors. Once a candidate OOV
word is detected, the system can back off to a phonetic representa-
tion to allow for new vocabulary items [32, 33].

5. COMMON THEMES

Many of today’s HLT systems use a statistical approach, typically
involving (among other things) a language model to estimate the
probability of a given sequence of words. In speech recognition,
a language model is used to distinguishing between acoustically
confusable word sequences and to bias the result to be consis-
tent with the target task domain. In machine translation and text
summarization, a language model is used to rank the outputs of a
translation (or compression) model and generate well-formed sen-
tences. In information extraction, a language model may be used
to characterize word sequence cues to names and other important
information. Recent work in video annotation has explored cross-
media language models [34]. In most systems, the n-gram initially
explored in speech recognition is the model of choice because of
its relative simplicity, but in some applications (including meta-
data extraction [14]) there is increasing interest in alternative ap-
proaches, e.g. conditional random fields and maximum entropy
models.

Consistent with increased use of statistical techniques, lan-
guage processing technology has moved with speech technology
towards reliance on data-driven learning with ever-increasing de-
mands for data. As demand outstrips the availability of task-
dependent annotated data, researchers have turned towards weakly
supervised and unsupervised training techniques – a highlighted
theme in the past two HLT-NAACL meetings. In addition, re-
searchers have looked towards methods of harvesting text data
from the web and other easily available sources [6, 35, 36].

Speech and language research also have in common the em-
phasis on evaluation metrics. Speech recognition has long been
driven by the goal of minimizing word error rate, and the parsing
community has adopted a standard metric for several years now,
which arguably led to the significant advances in that field. How-
ever, the subjectivity of language has posed problems in defining
standard scoring metrics for tasks such as translation, generation,
and summarization. With the introduction of the BLEU score [37]
in machine translation, there is now much interest in quantitative
evaluation metrics for this and other HLT areas. Importantly, the
availability of quantitative scoring metrics accelerates the research
process and makes it possible to automatically optimize meth-
ods for combining knowledge sources. The idea of automatically
learning strategies for knowledge combination has long used in
speech recognition, but is now being applied in other HLT tasks,
e.g., parsing [38, 15] and machine translation [39].

There are many other important areas where parallels exist,
including dimensionality reduction techniques and fast search al-
gorithms. In addition, there are text processing technologies that
could potentially benefit speech recognition, such as transliteration
for text normalization in language model training and morpholog-
ical analysis for language model decomposition. Space limits pre-
vent an extensive survey, and such a survey would be quickly out-
dated. Instead, we provide these examples to motivate the need for
more extensive cross-fertilization between disciplines.

6. SESSION OVERVIEW

The papers in this double session address core technology in both
speech and language processing, as well as applications and im-
pact on human users. The first two papers address the problem of
richer annotation of the word stream in speech processing, includ-
ing both audio diarization [12] and detection of structural metadata
[14]. The third paper [15] provides a bridge between speech and
language technologies, reviewing statistical parsing and discussing
its role in both speech recognition and in detection of disfluencies.
The next three papers review language processing technology in
three key areas: translation [39], information extraction [40], and
summarization [41]. These technologies are important for infor-
mation management and have a long history of text-based process-
ing. The papers present a review of the basic technology, as well
as raise issues in moving to spoken documents.

Next are two contributions that look more directly at integrat-
ing speech and language in indexing and retrieval of audio [10]
and video [34] signals. These papers present an overview of cur-
rent technology and describe both challenges and opportunities as-
sociated with dealing with large archives of audio and video doc-
uments. Following are two papers that put humans (the ultimate
consumer of most language technology) in the loop. One [42] in-
vestigates the impact of recognition errors and metadata detection
on human readability and comprehension, using both speech tran-
scripts and machine translation output. The other [43] puts for-



ward a new evaluation paradigm for machine translation that in-
corporates human users in a realistic document retrieval task. The
final paper of the session [44] deals with human-computer dialog
systems, but focuses on the goal of portability to new tasks and
domains. Many of the issues raised are universal to a broad range
of HLT applications in both speech and language processing.
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