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Abstract

We consider a time-dependent problem of scattering by an obstacle involving the solution

of the two dimensional Maxwell’s equations in the exterior of a domain with a perfectly

conducting condition on the boundary of this domain. We propose a novel fictitious domain

method based on a distributed Lagrange multiplier technique for the solution of this problem.

Perfectly matched layers are constructed to model the unbounded problem. Comparisons

are performed with the finite difference scheme, that demonstrate the advantages of our

fictitious domain method over the staircase approximation of the finite difference method.

We conclude that our distributed multiplier approach is a simple, effective and far more

accurate alternative to the popular FDTD method for solving Maxwell’s equations.
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1 Introduction

Electromagnetic phenomena play an important role in modern technology in different areas

such as advanced mobile information systems, the design, development, integration, and

testing of antennas, communication signal processing and many more. Applications involve

the propagation and scattering of transient electromagnetic signals such as in aircraft radar

signature analysis or the nondestructive testing of concrete structures. The study of such

applications requires the ability to predict different kinds of electromagnetic effects. Some of

the important effects include the radar scattering attributes i.e., radar cross section (RCS)

of different complex objects such as airplanes and missiles, the propagation of pulses through

dispersive media such as soil or concrete to detect pollutants or hidden targets, interaction

of electromagnetic waves with biological media, the interaction of antenna elements with

aircrafts and ships, and many more [23].

The complete set of laws for time-varying electromagnetic phenomena can be derived

from physical concepts such as electric charges and current density, some universal laws,

such as the conservation of electric charge, Faraday’s and Ampere’s laws, and constituent

laws which are characteristic for a given medium [11]. These laws of electromagnetism are

represented by Maxwell’s equations and are central to predictions such as those described

in the paragraph above. There are many different techniques available for solving the time-

dependent problem of scattering by an obstacle, including finite difference and finite element

methods. In [5] we introduced a fictitious domain method, based on a distributed Lagrange

multiplier, for the solution of the two-dimensional scalar wave equation with a Dirichlet

condition on the boundary of an obstacle. In this paper we will discuss how the distributed

Lagrange multiplier fictitious domain formulation employed in [5] can be applied to the case

of the two-dimensional TM mode of Maxwell’s equations.

A fictitious domain method is a technique in which the solution to a given problem is

obtained by extending the given data to a larger but simpler shaped domain, containing the

original domain, and solving corresponding equations in this larger fictitious domain. Let

Ω ⊂ R
d (d = 1, 2, 3) be a domain which contains an inclusion ω as shown in Figure 1. We

consider solving for Φ in a boundary value problem of the type

A(Φ) = f, in Ω \ ω̄,
BΓ(Φ) = g0, on Γ = ∂Ω,

B∂ω(Φ) = g1, on ∂ω,

(1.1)

where the functions f, g0, g1 and the operators A,BΓ, B∂ω, are known. In a fictitious domain

approach we replace (1.1) by another problem of the type
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Figure 1: The obstacle ω embedded inside the larger domain Ω.

Find φ defined over Ω and Mγ a measure supported by ∂ω, so that

(i) Ã(φ) = f̃ +Mγ , in Ω,

(ii) B̃Γ(φ) = g0, on Γ = ∂Ω,

(iii) B̃∂ω(φ|Ω\ω̄) = g1, on ∂ω,

(1.2)

where the operator Ã is of the same type as A and coincides (in some sense) with A on Ω\ ω̄,

f̃ is some extension of f over Ω and B̃Γ, and B̃∂ω are extensions of BΓ, and B∂ω, respectively.

If we choose the measure Mγ so that the solution of (1.2,i,ii) satisfies relation (1.2,iii) then

we can expect to have φ|Ω\ω̄ = Φ. If Ω has a simple shape such as a rectangle or a circle,

for example, as shown in Figure 1, then we can take advantage of this by allowing the use

of uniform finite difference grids or finite element meshes and hence of fast solvers for the

numerical solution of the finite dimensional systems approximating (1.1) on such grids.

Fictitious domain methods can be traced back to the 1960’s to Saulév [26]. The fictitious

domain method, which was developed to handle problems with complex geometries in the

stationary case [2, 16], has been recently applied to the case of the time dependent Maxwell’s

equations [7, 8, 9, 12]. In all these cases, a boundary Lagrange multiplier has been used

to enforce the Dirichlet condition on the boundary of the obstacle. In [5] we compared our

distributed multiplier approach to the boundary multiplier approach for the one-dimensional

scalar wave equation and observed some advantages of our distributed multiplier formulation.

We refer the reader to [5] for more details.

The advantage of our distributed multiplier method is that the problem in the fictitious

domain can be discretized on a uniform mesh, independent of the boundary of the original

domain, thus avoiding the time consuming construction of a boundary fitted mesh as in the

finite element method. (However, there are some classes of fictitious domain methods that

use boundary fitted meshes to improve accuracy [19].) At the same time, such an approach
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is more accurate than the staircase approximation of the finite difference method. Thus, the

distributed multiplier approach to Maxwell’s equations presented in this paper provides a

simple and much more accurate alternative to the popular FDTD method for the solution of

Maxwell’s equations. As will be shown here the approximation of the distributed multiplier

approach is far superior to the staircase approximation of the FDTD method. In addition we

also demonstrate the ease of implementing our fictitious domain method and provide details

of the overhead costs which are minimal.

We consider a time-dependent problem of scattering by the obstacle ω. We are interested

in calculating the field in the exterior of ω ⊂ R
d with d = 2 or d = 3. We do so by considering

Maxwell’s equations in free space with a Dirichlet boundary condition on ∂ω, also known

as a perfectly conducting condition (PEC). The evolution problem is to find E and H such

that










































(i) µ0
∂H

∂t
+ ∇×E = 0, in R

d \ ω̄ × (0, T ),

(ii) ε0
∂E

∂t
−∇×H = 0, in R

d \ ω̄ × (0, T ),

(iii) E × n = 0, on ∂ω × (0, T ),

(iv) E(x, t = 0) = E0(x), and H(x, t = 0) = H0(x), in R
d \ ω̄.

(1.3)

In (1.3), E, and H denote the electric and magnetic fields, respectively. The constants ε0, and

µ0 denote the permittivity and permeability of free space, respectively. The speed of light c

is given to be c = 1/
√
ε0µ0. Also, n is the unit outward normal vector to the boundary. The

initial conditions E0 and H0 are known and assumed to be sufficiently smooth. This is an

unbounded problem. One of the ways of simulating the scattering problem in an unbounded

domain is to impose an absorbing boundary condition on the boundary of the truncated

domain Ω enclosing the obstacle ω. Hence, we consider a finite domain Ω, and we impose a

first order (Silver-Müller) absorbing boundary condition on the (artificial) boundary Γ = ∂Ω.

Thus, our time dependent problem is now stated as an evolution problem to find E and H

such that


























































(i) µ0
∂H

∂t
+ ∇×E = 0, in Ω \ ω̄ × (0, T ),

(ii) ε0
∂E

∂t
−∇×H = 0, in Ω \ ω̄ × (0, T ),

(iii) E × n = 0, on ∂ω × (0, T ),

(iv) H × n =

√

ε0
µ0

n × (E × n), on Γ × (0, T ),

(v) E(x, t = 0) = E0(x), and H(x, t = 0) = H0(x), in Ω \ ω̄.

(1.4)

We will also consider a more accurate technique called a perfectly matched layer method to

simulate such unbounded wave propagation problems in Section 7. The first order Silver-
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Müller boundary conditions on Γ model the electromagnetic interactions between the domain

Ω and the exterior. They approximate the boundary Γ by its tangent plane. The outgoing

electromagnetic plane waves which propagate normally to the boundary Γ of the domain Ω

can leave freely without being reflected at the boundary and are absorbed at the boundary.

The Silver-Müller condition on Γ × (0, T ) is equivalent to the Sommerfeld radiation field

condition for the Cartesian field components. Applying the Silver-Müller conditions at a

finite distance from a spherical scatterer results in an approximate absorbing boundary

condition which is exact for outgoing spherical waves [22].

An outline of the paper is as follows. In Section 2 we present a distributed Lagrange

multiplier formulation for the problem (1.4). In Section 3 we present wellposedness results

for our fictitious domain formulation using energy methods. In Section 4 we present a mixed

finite element formulation for the (spatial) discretization of the fictitious domain problem

and we present an iterative method for its solution in Section 5. Decay of discrete energies

to obtain stability results are proved in Section 6. In Section 7 we replace the first order

absorbing boundary condition by perfectly matched layers surrounding the computational

domain. Numerical experiments are presented to validate our methods in Section 8 and we

conclude with an outline of future work in Section 9.

2 A Fictitious Domain Method for Maxwell’s Equa-

tions

In R
3, let x = (x, y, z). We assume that neither the electromagnetic field excitation nor

the modeled geometry has any variation in the z-direction. That is, we assume that all

partial derivatives of the fields with respect to z equal zero, and the structure being modeled

extends to infinity in the z direction with no change in the shape or position of its transverse

cross section. In this case the six curl equations (1.4,i, ii) can be decoupled into two sets of

equations each involving three electromagnetic field vectors. Let E = (Ex, Ey, Ez)
T , and H =

(Hx, Hy, Hz)
T be the components of the electric and magnetic field vectors, respectively, in a

Cartesian coordinate system. In the TE mode the electromagnetic field has three components

Hz, Ex and Ey. In the TM mode the electromagnetic field has the three components Ez,

Hx and Hy. The TE and TM modes are decoupled since they do not contain any common

field vector components. These two modes are completely independent for structures that are

composed of isotropic materials or anisotropic materials in which the off diagonal components

in the constitutive tensors are absent [27].

We will consider the two-dimensional TM mode of Maxwell’s equations. Let Ω now be

a bounded domain of R
2, with x = (x, y)T . Let H = (Hx, Hy)

T and let E = Ez. Let
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n = (nx, ny)
T be the unit normal vector, and let us define the unit vector t = (ny,−nx)

T

pointing in the tangential direction. Then system (1.4) becomes



























































(i) µ0
∂H

∂t
+
−−→
curlE = 0, in Ω \ ω̄ × (0, T ),

(ii) ε0
∂E

∂t
− curlH = 0, in Ω \ ω̄ × (0, T ),

(iii) E = 0, on ∂ω × (0, T ),

(iv) H · t =

√

ε0
µ0

E, on Γ × (0, T ),

(v) E(x, t = 0) = E0(x), and H(x, t = 0) = H0(x), in Ω \ ω̄.

(2.1)

In the above, the operator denoted by
−−→
curl, is a linear differential operator, which is defined

as
−−→
curl v = (

∂v

∂y
,−∂v

∂x
) ∀ v ∈ D′(Ω), (2.2)

where, D′(Ω) is the space of distributions on Ω. Similarly, the linear differential operator

denoted by curl is defined as

curlv =
∂vy

∂x
− ∂vx

∂y
∀ v = (vx, vy) ∈ D′(Ω)2. (2.3)

The operator curl appears as the (formal) transpose of the operator
−−→
curl [10], i.e.,

〈curlv, φ〉 = 〈v,−−→curlφ〉,∀v ∈ D′(Ω)2, φ ∈ D′(Ω). (2.4)

In the case of the two dimensional TM mode, the PEC condition E× n = 0, on ∂ω × (0, T )

translates to

E = Ez = 0, on ∂ω × (0, T ). (2.5)

We assume that the fields (E,H) are sufficiently differentiable in time. We note that (2.1,iv)

is the Silver-Müller condition (1.4,iv) for the TM mode. The cross product H × n can be

written as H · tẑ, where ẑ is a unit vector in the z direction.

We employ the fictitious domain method introduced in [5] to enforce the Dirichlet bound-

ary condition (2.1,iii) on the boundary ∂ω of the obstacle ω. The Silver-Müller boundary

condition is naturally incorporated into the weak formulation that we construct by integrat-

ing (by parts) the equations (2.1,i, ii) over the domain Ω, in (2.1,ii). Thus, the Silver-Müller

boundary condition does not have to be enforced in the functional spaces. Using a dis-

tributed Lagrange multiplier approach problem (2.1) is equivalent, at least formally, to the

variational problem
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Find {Ẽ(·, t), H̃(·, t), λ(·, t)} ∈ H1(Ω) × [L2(Ω)]2 × L2(ω) such that































































(i) µ0
d

dt

∫

Ω

H̃ · Ψ dx +

∫

Ω

−−→
curl Ẽ · Ψ dx = 0, ∀ Ψ ∈ [L2(Ω)]2,

(ii) ε0
d

dt

∫

Ω

Ẽφ dx −
∫

Ω

H̃ · −−→curlφ dx +

√

ε0
µ0

∫

Γ

Ẽφ dΓ,

+

∫

ω

λφ dω = 0, ∀ φ ∈ H1(Ω),

(iii)

∫

ω

Ẽτ dω = 0, ∀ τ ∈ L2(ω),

(iv) Ẽ(x, t = 0) = Ẽ0(x), and H̃(x, t = 0) = H̃0(x), in Ω,

(2.6)

in the sense that

Ẽ =

{

E on Ω \ ω̄,
0 on ∂ω.

; H̃ =

{

H on Ω \ ω̄,
0 on ∂ω.

(2.7)

The function Ẽ0 is chosen to be anH1 - extension of E0, and H̃0 to be at least an L2-extension

of H0. Thus, we have

Ẽ(x, t = 0) =

{

E0(x) on Ω \ ω̄,
0 on ω.

, H̃(x, t = 0) =

{

H0(x) on Ω \ ω̄,
0 on ω.

(2.8)

We note that, for E ∈ L2(Ω),
−−→
curlE = (

∂E

∂y
,−∂E

∂x
) ∈ [L2(Ω)]2, implies that both the partial

derivatives of E must be in L2(Ω). Hence we must have E ∈ H1(Ω). In succeeding sections

we will, however, drop the ˜ symbol on the fields E and H. Thus, the system (2.6) will read:

Find {E(·, t),H(·, t), λ(·, t)} ∈ H1(Ω) × [L2(Ω)]2 × L2(ω) such that































































(i) µ0
d

dt

∫

Ω

H · Ψ dx +

∫

Ω

−−→
curlE · Ψ dx = 0, ∀ Ψ ∈ [L2(Ω)]2,

(ii) ε0
d

dt

∫

Ω

Eφ dx −
∫

Ω

H · −−→curlφ dx +

√

ε0
µ0

∫

Γ

Eφ dΓ,

+

∫

ω

λφ dω = 0, ∀ φ ∈ H1(Ω),

(iii)

∫

ω

Eτ dω = 0, ∀ τ ∈ L2(ω),

(iv) E(x, t = 0) = E0(x), and H(x, t = 0) = H0(x) in Ω.

(2.9)

The idea behind the distributed fictitious domain method is to extend the electromagnetic

solution inside the obstacle ω, and solve Maxwell’s equations in the entire domain Ω. The

Dirichlet condition on ∂ω is enforced via the introduction of a Lagrange multiplier on the

entire domain ω. In [6, 12] a boundary multiplier fictitious domain method is introduced for

the wave equation, and for Maxwell’s equations.
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3 Conservation of Energy

In this section we derive an energy identity from the variational formulation (2.9). The energy

identity presented below guarantees the wellposedness of the problem, and the stability of

the solution. Let (·, ·) denote the L2 inner product in Ω, (·, ·)ω the L2 inner product in ω,

and (·, ·)Γ the L2 inner product on Γ. Also, let || · ||, || · ||ω, || · ||Γ denote the corresponding

norms.

Theorem 1 The system (2.9) verifies the energy identity

d

dt
E = −

√

ε0
µ0

‖E‖2
Γ , (3.1)

where the energy E is defined as

E =
1

2

{

ε0 ‖E‖2 + µ0 ‖H‖2} , (3.2)

with

‖µ‖Γ =

(
∫

Γ

|µ|2 dΓ

)1/2

. (3.3)

Thus, (3.1) implies that the energy does not grow over time, i.e.,

E(t) ≤ E(0), ∀t > 0. (3.4)

Proof. Let us take φ = E in (2.9,ii). We obtain

ε0
d

dt

∫

Ω

|E|2 dx −
∫

Ω

H · −−→curlE dx +

√

ε0
µ0

∫

Γ

|E|2 dΓ +

∫

ω

λE dω = 0. (3.5)

Next, we take Ψ = H in (2.9,i). With this choice we get

µ0
d

dt

∫

Ω

|H|2 dx +

∫

Ω

−−→
curlE · H dx = 0. (3.6)

Adding equations (3.5) and (3.6) we have

ε0
d

dt

∫

Ω

|E|2 + µ0
d

dt

∫

Ω

|H|2 dx +

√

ε0
µ0

∫

Γ

|E|2 dΓ +

∫

ω

λE dω = 0, (3.7)

which can be rewritten as

1

2

d

dt

(

ε0 ‖E‖2 + µ0 ‖H‖2)+

√

ε0
µ0

∫

Γ

|E|2 dΓ +

∫

ω

λE dω = 0. (3.8)

Taking τ = λ in (2.9,iii) we obtain
∫

ω

Eλ dω = 0. (3.9)

Substituting (3.9) in (3.8), and using the definition of the energy (3.2) we obtain (3.1).

Equation (3.1) implies that there is no dissipation of the waves in the domain Ω. This

is the principle of conservation of energy for the variational formulation (2.9) for Maxwell’s

equation.
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Figure 2: (left) A staircase approximation to a scattering disk. The disk
is approximated by the highlighted nodal points. (right) The degrees
of freedom, Σω̄

h , for the Lagrange multiplier λ in the fictitious domain
method, in the case of a scattering disk. The mesh ratio, i.e., the ratio of
the step size chosen on the obstacle to the mesh step size, is about 1.3.

4 Numerical Discretization: A Mixed Finite Element

Method

A very popular technique used to solve Maxwell’s equations is the finite difference time

domain method (FDTD) which uses a rectangular grid and an explicit scheme in time. The

degrees of freedom of the electric and magnetic field are staggered in space and time. This

method is computationally very efficient, however the staircase approximation to the obstacle

is inaccurate, and it leads to excessive numerical diffraction when the obstacle boundary does

not fit the mesh, as seen in Figure 2 (left). In this figure the scattering obstacle is a disk,

and is approximated by the darkened nodal points. We now present details of the numerical

approximation of problem (2.9)

4.1 Space Discretization

Let Ω now be a union of rectangles such that we can consider a regular mesh (Th) with

square elements (K) of edge length h > 0 as in Figure 3. The approximation space for the

electric field E is chosen to be

Uh = {φh ∈ H1(Ω)| ∀K ∈ Th, φh|K ∈ Q1}, (4.1)

where, the space Q1 = P11. The basis functions for E have unity value at one node and are

zero at all other nodes. Figure 3 shows the locations for the degrees of freedom for both

approximation spaces.
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Edge 2

E
d
g
e

3
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d
g
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ey

?

6

6

6

- -

u u

u u

Figure 3: A sample domain element K. The degrees of freedom for the
electric and magnetic field are staggered in space. The degrees of freedom
for the electric field E are at the nodes of the square. The degrees of
freedom for Hx and Hy are the midpoints of edges parallel to the x-axis
and y-axis, respectively.

For the approximation of the magnetic field H we need to consider a space Vh that

satisfies the property

∇× Uh ⊂ Vh (4.2)

in order to ensure a well posed formulation, see [20, 21, 17] for sufficient conditions for

convergence of mixed methods. To this end we choose

Vh = {Ψh ∈ [L2Ω)]2| ∀K ∈ Th,Ψh|K ∈ RT[0]}, (4.3)

where, RT[0] = P10 × P01, is the lowest order Raviart Thomas space [24] and for k1, k2 ∈
N ∪ {0},

Pk1k2
= {p(x1, x2)|p(x1, x2) =

∑

0≤i≤k1

∑

0≤j≤k2

aijx
i
1x

j
2}.

The basis functions for Hx and Hy have unity value along one ey or ex edge, respectively,

and zero over all other edges (see Figure 3).

Let the set of mesh points on Ω̄ be defined as

Σh = {P | P ∈ Ω̄, P is a vertex of Th}. (4.4)

Next, we define the set

Σω̄
h = {P |P ∈ ω̄, d(P, ∂ω) ≥ h} ∪ Discrete set of points belonging to ∂ω. (4.5)

10



The points on ∂ω are typically chosen so that their distance is of the order of h. Using the

sets defined above, we now define the set Λh of the Lagrange multipliers by

Λh = {µh | µh =
∑

P∈Σω̄

h

µPχP , µP ∈ R}, (4.6)

with χP the characteristic function of the elementary square of center P and edge length

h; we clearly have µh(P ) = µP . We approximate the integrals involving the distributed

multiplier by
∫

ω

µh vh dx ≈ h2
∑

P∈Σω̄

h

µh(P ) vh(P ), ∀vh ∈ Vh, ∀µh ∈ Λh. (4.7)

Figure 2 illustrates a choice for the set Σω̄
h in the case of a scattering disk. The ratio of the

distance between points on the circle, denoted by h∂ω, to the mesh step size, h, is about 1.3.

We will call this ratio as the mesh ratio. In numerical experiments, good results are observed

when the mesh ratio is approximately 1.5 or greater [14]. Based on these approximation

spaces, the space discrete scheme is defined as:

Find {Eh(·, t),Hh(·, t), λh(·, t)} ∈ Uh × Vh × Λh such that































































(i) µ0
d

dt

∫

Ω

Hh · Ψh dx +

∫

Ω

−−→
curlEh · Ψh dx = 0, ∀ Ψh ∈ Vh,

(ii) ε0
d

dt

∫

Ω

Ehφh dx −
∫

Ω

Hh ·
−−→
curlφh dx +

√

ε0
µ0

∫

Γ

Ehφh dΓ,

+

∫

ω

λhφh dω = 0, ∀ φh ∈ Uh,

(iii)

∫

ω

Ehτh dω = 0, ∀ τh ∈ Λh,

(iv) Eh(x, t = 0) = E0,h(x), and Hh(x, t = 0) = H0,h(x) in Ω.

(4.8)

4.2 Time Discretization

For the time discretization we use a centered second order accurate finite difference scheme

in which the electric and magnetic field components are staggered in time, 1/2 units apart.

For example, we compute the magnetic field at the time step n + 1/2 and the electric field

at the time step n+ 1. On the interval [0, T ], let ∆t = T/N be the time step, where N ∈ N.

We define V k
h = Vh(t = k∆t) and denote tk = k∆t, for k ∈ Z. Following the notation in [3]

we define for k ∈ Z

D∆tV
k =

V k+1/2 − V k−1/2

∆t
, (4.9)

and

V
k

=
V k+1/2 + V k−1/2

2
. (4.10)
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Using the notations and definitions developed above, the fully discrete scheme is given as

For n = 0, 1, . . . , N − 1, on the interval (tn, tn+1), given En
h ,H

n−1/2
h

Find {En+1
h ,H

n+1/2
h , λn+1

h } ∈ Uh × Vh × Λh such that





























































(i) µ0(D∆tH
n
h,Ψh) + (

−−→
curlEn

h ,Ψh) = 0, ∀ Ψh ∈ Vh,

(ii) ε0(D∆tE
n+1/2
h , φh) − (H

n+1/2
h ,

−−→
curlφh) +

√

ε0
µ0

(Eh
n+1/2

, φh)Γ,

+(λn+1
h , φh)ω = 0, ∀ φh ∈ Uh,

(iii) (En+1
h , τh)ω = 0, ∀ τh ∈ Λh,

(iv) E0
h(x) = E0,h(x), and H

−1/2
h (x) = H0,h(x) − ∆t

2µ0

−−→
curlE0,h(x) in Ω.

(4.11)

We will use quadrature rules for the calculation of all integrals involved in (4.8) due to which

we obtain diagonal mass matrices and an explicit scheme in time. The use of quadrature

formulas to obtain diagonal mass matrices is referred to as mass-lumping. Similarly, we use

quadrature rules to calculate the boundary integrals as well. In this case system (4.11) in the

absence of the distributed Lagrange multiplier, reduces to the FDTD scheme on a regular

mesh.

5 Iterative Solution of the Discrete Problem

Let Eyee
h |n+1 be the electric field solution to (4.11) in the absence of the distributed multiplier

(i.e., solution to the FDTD scheme). Then the update equations for the scheme (4.11) can

be presented as follows. For an interior node (l,m) we have





















































(i) Hx|n+1/2
l,m+1/2 = Hx|n−1/2

l,m+1/2 −
∆t

µoh
(E|nl,m+1 − E|nl,m),

(ii) Hy|n+1/2
l+1/2,m = Hy|n−1/2

l+1/2,m +
∆t

µoh
(En|l+1,m − En|l,m),

(iii) Eyee
h |n+1

l,m = E|nl,m +
∆t

ε0h
(Hy|n+1/2

l+1/2,m −Hy|n+1/2
l−1/2,m)

−∆t

ε0h
(Hx|n+1/2

l,m+1/2 −Hx|n+1/2
l,m−1/2),

(5.1)

where for a solution component V k
h , V |kl,m = V k

h (x = lh, y = mh), with k, l,m ∈ Z. For a

node on the boundary Γ, the boundary integral
∫

Γ

Eh
n+1/2

φhdΓ, (5.2)

will contribute terms to both the right hand side and the left hand side of equation (5.1,iii),

as this term involves En+1
h , which is unknown, as well as En

h , which is known. In this case
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(5.1,iii) has to be modified as

(iii) Eyee
h |n+1

l,m =
γ−

γ+
E|nl,m +

∆t

ε0hγ+
SH|n+1/2

l,m . (5.3)

In the above

γ− =

(

1

β
− κc∆t

αh

)

; γ− =

(

1

β
+
κc∆t

αh

)

, (5.4)

where, for an interior node β = 1, α = 1, κ = 0, for a boundary node but not a corner node

β = 2, α = 2, κ = 1, and for a boundary corner node β = 4, α = 4, κ = 1. Also, S is the

stiffness matrix associated with the integral

∫

Ω

H
n+1/2
h

−−→
curlφh dx, ∀φh ∈ Uh. (5.5)

The solution En+1
h to the scheme (4.11) is obtained from the solution Eyee

h |n+1, to the FDTD

scheme (including absorbing boundary terms), by adjusting for the Dirichlet condition on

the obstacle ω via the Lagrange multiplier λn+1
h . Thus, we will solve a system of the form

Find (En+1
h , λn+1

h ) ∈ Uh × Λh such that:













DhE
n+1
h +BT

h λ
n+1
h = Eyee

h |n+1,

BhE
n+1
h = 0,

(5.6)

where Dh is the lumped mass matrix associated to the integral

∫

Ω

Ehφh dx, ∀φh ∈ Uh,

and the matrix Bh is associated with with the integral (4.7). We note that Dh ∈ R
N×N is

symmetric positive definite, and Bh ∈ R
M×N (M << N). We use the Schur Complement of

the system (5.6)

(BhD
−1
h BT

h )λn+1
h = BhD

−1
h Eyee

h |n+1, (5.7)

to solve for λn+1
h . We do this by using an Uzawa-Type conjugate gradient algorithm in the

form given in [15]. As remarked in [5], the matrix BhD
−1
h BT

h is symmetric and positive

definite, a property that is related to a uniform discrete inf-sup condition associated with

the integral (4.7). We refer the reader to [5, 14] for further details on inf-sup conditions for

mixed problems.

6 Decay of Discrete Energies

In this section we prove a discrete energy identity based on the discretized fictitious domain

formulation (4.11). This identity indicates the stability of the distributed multiplier formu-

lation. An interesting fact to note is that the stability condition (CFL) is the same as in the

13



case of the problem without an obstacle. We define the bilinear form

a(φh, ψh) =

∫

Ω

−−→
curlφh ·

−−→
curlψh dx ,∀ (φh, ψh) ∈ Uh × Uh, (6.1)

and the operator Kh : Uh → U ′
h by

(Khφh, ψh)Ω = a(φh, ψh). (6.2)

Let I be the identity operator on Uh.

Theorem 2 If the CFL condition c∆t ≤ h/
√

2 is satisfied, then the operator

Sh = I − c2∆t2

4
Kh, (6.3)

defines a positive quadratic form, the expression

En+1
h =

1

2

{

µ0||H
n+1

h ||2 + ε0(E
n+1
h ,ShE

n+1
h )

}

, (6.4)

defines a discrete energy, and system (4.11) verifies the energy identity

En+1
h = En

h − ∆t

√

ε0
µ0

||En+1/2

h ||2Γ, ∀n ∈ N, n ≥ 0. (6.5)

Thus, (6.5) implies that the discrete energy does not grow over time, i.e.,

En+1
h ≤ En

h , ∀n ≥ 0. (6.6)

Proof. We consider the mean value of (4.11,i) at n and n+ 1, with Ψh = H
n+1/2
h to get

µ0(D∆tHh
n+1/2

,H
n+1/2
h ) + (

−−→
curlEh

n+1/2

,H
n+1/2
h ) = 0. (6.7)

Using φh = E
n+1/2

h in (4.11,ii) we get

ε0(D∆tE
n+1/2
h , E

n+1/2

h )−(H
n+1/2
h ,

−−→
curlE

n+1/2

h )+

√

ε0
µ0

||En+1/2

h ||2Γ+(λn+1
h , E

n+1/2

h )ω = 0. (6.8)

Taking the mean value of (4.11,iii) at n and n+ 1 and by taking µh = λn+1
h , we have

(E
n+1/2

h λn+1
h )ω = 0. (6.9)

Adding (6.7), (6.8), and (6.9) we get

µ0(D∆tHh
n+1/2

,H
n+1/2
h ) + ε0(D∆tE

n+1/2
h , Eh

n+1/2
) = −

√

ε0
µ0

||Eh
n+1/2||2Γ. (6.10)
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This implies

1

2∆t

{

µ0(H
n+3/2
h ,H

n+1/2
h ) + ε0||En+1

h ||2
}

=
1

2∆t

{

µ0(H
n+1/2
h ,H

n−1/2
h ) + ε0||En

h ||2
}

−
√

ε0
µ0

||Eh
n+1/2||2Γ.

(6.11)

Using the parallelogram law we can write

(

H
n+3/2
h ,H

n+1/2
h

)

=
1

4
‖Hn+3/2

h + H
n+1/2
h ‖2 − 1

4
‖Hn+3/2

h − H
n+1/2
h ‖2

= ‖Hh
n+1‖2 − ∆t2

4
‖D∆tH

n+1
h ‖2.

(6.12)

Similarly,

(

H
n+1/2
h ,H

n−1/2
h

)

=
1

4
‖Hn+1/2

h + H
n−1/2
h ‖2 − 1

4
‖Hn+1/2

h − H
n−1/2
h ‖2

= ‖Hh
n‖2 − ∆t2

4
‖D∆tH

n
h‖2.

(6.13)

From (6.12) and (4.11,i) we have

1

2

{

µ0(H
n+3/2
h ,H

n+1/2
h ) + ε0||En+1

h ||2
}

=
1

2

{

µ0||Hh
n+1||2 − ∆t2

4µ0

|| −−→curlEn+1
h ||2 + ε0||En+1

h ||2
}

=
1

2

{

µ0||Hh
n+1||2 + ε0(E

n+1
h ,ShE

n+1
h )

}

= En+1
h .

(6.14)

Similarly we can show that

1

2

{

µ0(H
n+1/2
h ,H

n−1/2
h ) + ε0||En

h ||2
}

= En
h . (6.15)

Substituting (6.14) and (6.15) in (6.11) we obtain the energy identity (6.5) In two dimensions

we have,

supφh∈Uh

h2(Khφh, φh)L2(Ω)

4(φh, φh)L2(Ω)

< 2, (6.16)

which along with the CFL condition implies that

(φh,Shφh)L2(Ω) = (φh, (I −
c2∆t2

4
Kh)φh)L2(Ω) > 0, ∀φh ∈ Uh \ {0}. (6.17)

Equation (6.17) implies that the operator Sh is positive definite. Thus, the CFL condition

assures the stability of the scheme (4.11).
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7 Construction of Perfectly Matched Layers

We use a perfectly matched layer model that is derived in [4]. The construction of this

model follows the derivation of Sacks et al. in [25]. We outline the salient features of this

construction below. We begin with a form of Maxwell’s equations suitable for general media

which permit both electric and magnetic currents but do not contain unbalanced electric

charges, given as










































∂B

∂t
= −∇×E − JM ; (Faraday’s Law)

∂D

∂t
= ∇×H − JE ; (Ampere’s Law)

∇ · B = 0 ; (Gauss’s Law for the magnetic field)

∇ · D = 0 ; (Gauss’s Law for the electric field)

(7.1)

Constitutive relations which relate the electric and magnetic fluxes (D,B) and the electric

and magnetic currents (JE,JM) to the electric and magnetic fields (E,H) are added to these

equations to make the system fully determined and to describe the response of a material

to the electromagnetic fields. In empty space, these constitutive relations are D = ε0E, and

B = µ0H, and JE = JM = 0, where ε0 and µ0 are the permittivity and the permeability of

free space. In general, there are different possible forms for these constitutive relationships.

In a frequency domain formulation of Maxwell’s equations, these can be converted to linear

relationships between the dependent and independent quantities with frequency dependent

coefficient parameters.

We will derive a PML model in the frequency domain and then obtain a PML model in

the time domain by taking the inverse Fourier transforms of the frequency domain equations.

To this end, we consider the time-harmonic form of Maxwell’s equations (7.1) given by






































iωB̂ = −∇×Ê − ĴM ,

iωD̂ = ∇×Ĥ − ĴE,

∇ · B̂ = 0,

∇ · D̂ = 0,

(7.2)

where for every field vector V, V̂ denotes its Fourier transform, and we have the constitutive

laws






































B̂ = [µ]Ĥ,

D̂ = [ε]Ê,

ĴM = [σM ]Ĥ,

ĴE = [σE]Ê.

(7.3)
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Here, the square brackets indicate a tensor quantity. Note that when the density of electric

and magnetic charge carriers in the medium is uniform throughout space, then ∇ · ĴE = 0

and ∇ · ĴM = 0. We define the new tensors




















[µ̄] = [µ] +
[σM ]

iω
,

[ε̄] = [ε] +
[σE]

iω
.

(7.4)

Using the definitions (7.4) we define two new constitutive laws that are equivalent to (7.3),

given by












B̂new = [µ̄]Ĥ,

D̂new = [ε̄]Ê.
(7.5)

Using (7.5) in (7.2), Maxwell’s equations, in time-harmonic form, become






































iωB̂new = −∇×Ê,

iωD̂new = ∇×Ĥ,

∇ · B̂new = 0,

∇ · D̂new = 0.

(7.6)

To apply the perfectly matched layer to electromagnetic computations, we surround the

computational domain with layers of finite depth in which the outgoing waves are trapped

and attenuated. These layers are backed with a conventional boundary condition, such

as a perfect electric conductor (PEC). This truncation of the layer will lead to reflections

generated at the PEC surface, which can propagate back through the layer to re-enter the

computational region. In this case, the reflection coefficient R, is a function of the angle of

incidence θ, the depth of the PML δ, as well as the specific form of the tensors [ε̄] and [µ̄].

As shown in [25], the constitutive laws for the PML region are

[ε̄] = ε0[S], (7.7)

[µ̄] = µ0[S], (7.8)

and the correct form of the tensor [S] which appears in the constitutive laws is the product

[S] = [S]x[S]y[S]z, (7.9)

in which component [S]α in the product in (7.9) is responsible for attenuation in the α

direction, for α = x, y, z. All three of the component tensors in (7.9) are diagonal and have

the forms

[S]x =





s−1
x 0 0
0 sx 0
0 0 sx



 ; [S]y =





sy 0 0
0 s−1

y 0
0 0 sy



 ; [S]z =





sz 0 0
0 sz 0
0 0 s−1

z



 . (7.10)
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The constitutive laws for the perfectly matched layer are now given to be

















B̂new = µ0[S]Ĥ,

D̂new = ε0[S]Ê.
(7.11)

The parameters sx, sy, and sz in the PML layers are chosen in order for the attenuation of

waves in the PML to be sufficient so that the waves striking the PEC surface are negligible

in magnitude. Perfectly matched layers are then placed near each edge (face in 3D) of the

computational domain where a non-reflecting condition is desired. This leads to overlapping

PML regions in the corners of the domain. When designing PML’s for implementation, it

is important to choose the parameters sα so that the resulting frequency domain equations

can be easily converted back into the time domain. The simplest of these which we employ

here [13] is

sα = 1 +
σα

iωε0
, where σα ≥ 0 α = x, y, z. (7.12)

Gedney [13] suggests a conductivity profile

σα(α) =
σmax|α− α0|m

δm
; α = x, y, z. (7.13)

where δ is the depth of the layer, α = α0 is the interface between the PML and the com-

putational domain, and m is the order of the polynomial variation. Gedney remarks that

values of m between 3 and 4 are believed to be optimal. For the conductivity profile (7.13),

the PML parameters can be determined for given values of m, δ, and the desired reflection

coefficient at normal incidence R0, as

σmax ≈ (m+ 1) ln(1/R0)

2ηδ
, (7.14)

η being the characteristic wave impedance of the PML. Empirical testing suggests that, for

a broad range of problems, an optimal value of σmax is given by

σopt ≈
m+ 1

150π∆α
√
εr
, (7.15)

where ∆α is the space increment in the α direction and εr is the relative permittivity of the

material being modeled. In the case of free space εr = 1.

From the time-harmonic Maxwell’s curl equations in the PML (7.6) and (7.11), Ampere’s

and Faraday’s laws can be written in the most general form as













iωµ0[S]Ĥ = −∇×Ê ; (Faraday’s Law)

iωε0[S]Ê = ∇×Ĥ ; (Ampere’s Law)
(7.16)
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In the presence of the diagonal tensor [S], a plane wave is purely transmitted into the PML.

To obtain the two dimensional model of the PML, we assume no variation in the z

direction (i.e.,
∂

∂z
= 0). In the two dimensional TM mode the electromagnetic field has

three components, Ez, Hx, and Hy. In this case, we have σz = 0 and sz = 1 in the PML and

the time-harmonic Maxwell’s equations (7.16), in the PML medium can be written in scalar

form as:










































iωµ0
sy

sx

Ĥx = −∂Êz

∂y
,

iωµ0
sx

sy

Ĥy = −∂Êz

∂x
,

iωε0sxsyÊz =
∂Ĥy

∂x
− ∂Ĥx

∂y

(7.17)

To avoid a computationally intensive implementation, we do not insert the expressions

for sx, sy and sz, obtained via (7.12), into (7.16), and transform to the time domain. Instead,

we define suitable constitutive relationships that facilitate the decoupling of the frequency

dependent terms [27]. To this end, we introduce the fields



























B̂x = µ0s
−1
x Ĥx,

B̂y = µ0s
−1
y Ĥy,

D̂z = µ0syÊz.

(7.18)

Substituting the definitions (7.18) in (7.17), using the defining relations for sx and sy from

(7.12), and then transforming into the time domain by using the inverse Fourier transform,

yields an equivalent system of time-domain differential equations, which is the two dimen-

sional TM mode of the PML given as





















































∂B

∂t
= − 1

ε0
Σ2B − −−→

curlE,

∂H

∂t
=

1

µ0

∂B

∂t
+

1

ε0µ0

Σ1B,

∂D

∂t
= − 1

ε0
σxD + curlH,

∂E

∂t
= − 1

ε0
σyE +

1

ε0

∂D

∂t
,

(7.19)

with H = (Hx, Hy)
T , B = (Bx, By)

T , E = Ez and D = Dz. Also,

Σ1 =

(

σx 0
0 σy

)

; Σ2 =

(

σy 0
0 σx

)

. (7.20)

Thus, the PML model consists in solving system (7.19) for the six variables, Bx, By, Hx,

Hy, Dz, Ez.
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In order to use the PML model, instead of the first order Silver-Müller boundary condi-

tion, we replace the discrete model (5.1)-(5.3) by the PML model and then account for the

Dirichlet condition on the boundary of the obstacle using (5.6). The distributed multiplier

formulation with perfectly matched layers is then given to be

Find (Eyee
h |n+1, Dn+1

h ,H
n+ 1

2

h ,B
n+ 1

2

h ) ∈ Uh ×Uh ×Vh ×Vh such that for all Ψh ∈ Vh, for all

φh ∈ Uh,

























































(i) (D∆tB
n
h,Ψh) = − 1

ε0
(Σ2B

n
h,Ψh) − (

−−→
curlEn

h , Ψh),

(ii) (D∆tH
n
h,Ψh) =

1

µ0

(D∆tB
n
h,Ψh) +

1

ε0µ0

(Σ1B
n
h,Ψh),

(iii) (D∆tD
n+ 1

2

h , φh) = − 1

ε0
(σxDh

n+ 1

2 , φh) + (
−−→
curlφh,H

n+ 1

2

h ),

(iv) (D∆tE
yee
h |n+ 1

2 , φh) = − 1

ε0
(σyE

yee
h |n+ 1

2 , φh) +
1

ε0
(D∆tD

n+ 1

2

h , φh).

(7.21)

In the above

D∆tE
yee
h |n+1/2 =

Eyee
h |n+1 − En

h

∆t
, (7.22)

and

Eyee
h |n+1/2 =

Eyee
h |n+1 + En

h

2
. (7.23)

Once we obtain the solution to the system (7.21), the solution to the scattering problem is

obtained by solving system (5.6).

8 Numerical Examples: Scattering by a Disk

We consider the scattering of the harmonic planar waves e−i(ρt−k·x) by a perfectly reflecting

disk whose radius is 0.25 m. The disc is located at the center of the domain [0, 3.5]× [0, 3.5].

The frequency, f , is 0.6 GHz, and the wavelength, L, is 0.5 m. The angular frequency is

ρ = 2πf . The wave illuminates ω from the left and propagates horizontally. The distance

from the disk to the absorbing boundary is 3 wavelengths. We have used a rectangular mesh

consisting of 113 × 113 nodes, with the mesh step size h = 0.5/16 m. The time step is

∆t = 2π/(25ρ). Thus, the Courant number is (c∆t)/h = 0.64. We have also considered

mesh refinements in order to estimate the accuracy of our solution.

In Figure 4 we plot the number of degrees of freedom (DOF) of the Lagrange multiplier

on the boundary of the disk, ∂ω, as a function of the mesh ratio, h∂ω/h, for different dis-

cretizations, where h∂ω is defined as the step size on the boundary of the disk. As can be seen

from Figure 4, for fine meshes, as opposed to coarse meshes, bigger changes in the DOF on

the boundary of the disk result from a small change in the mesh ratio. The Uzawa algorithm
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Figure 4: The number of degrees of freedom (DOF) of the Lagrange
multiplier on the boundary of the disk versus the mesh ratio h∂ω/h.

converges in a finite number of iterations for values of h∂ω/h between 1.5 and 3. However,

for certain values between 1.5 and 1.8 the behavior of the Uzawa algorithm is unstable with

respect to number of iterations. Thus we consider values for h∂ω/h between 1.8 and 3.

For this test problem the exact solution is known when Γ is located at infinity. In Figures

5, 6 and 7, we plot the error (point-wise difference) between each computed solution and the

exact solution for discretizations with 16, 32 and 64 nodes per wavelength, respectively. It is

clearly observed that, as the mesh is refined, the error in the fictitious domain method with

the Silver-Müller condition is dominated by reflections from the artificial boundary. In the

case of the PML model the error in the discretization of the Lagrange multiplier dominates

the total error.

Next, we define the relative error (RE) between the exact solution and a computed

solution as

RE =
‖Eexact − EC‖L2(Ω)

‖Eexact‖L2(Ω)

, (8.1)

where Eexact stands for the exact solution, and EC denotes a computed solution. In Figure

8 we plot the relative error for the fictitious domain method with a PML of thickness L/4,

against the mesh ratio h∂ω/h, for different discretizations. From Figure 8 (left) we can see

that the relative error can vary by a factor of 2 for different values of the mesh ratio. In

this figure we also plot (right) ratios of relative errors between successive mesh refinements

obtained from Figure 8 (left). The solid line represents the ratio of the relative error for a

discretization with 16 nodes per wavelength, and the relative error of a discretization with
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Figure 5: Plot of the error between the exact solution and the fictitious
domain method for a discretization with 16 nodes per wavelength: (left)
with the Silver-Müller boundary condition; (right) with a 4 cell PML.

Figure 6: Plot of the error between the exact solution and the fictitious
domain method for a discretization with 32 nodes per wavelength: (left)
with the Silver-Müller boundary condition; (right) with a 4 cell PML.
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Figure 7: Plot of the error between the exact solution and the fictitious
domain method for a discretization with 64 nodes per wavelength: (left)
with the Silver-Müller boundary condition; (right) with a 4 cell PML.

32 nodes per wavelength. Similarly, the dashed line denotes the ratio of relative errors for

discretizations with 32 and 64 nodes per wavelength. Again, we observe that the ratios can

vary by almost a factor of 3.

In Figures 9 we plot the maximum and the minimum iteration counts, respectively, that

are required for the convergence of the Uzawa algorithm, as a function of the mesh ratio.

These results are for the fictitious domain method with a PML of thickness L/4. The number

of iterations for the three discretizations is seen to be bounded by 20.

In Table 1 we present relative errors and maximum and minimum iteration counts for

the fictitious domain method with PML’s of thickness, L/4, L/2 and L. The relative error

in all three cases is almost the same. Thus, we do not obtain any benefit by increasing the

thickness of the PML as the dominating error is due to the discretization of the Lagrange

multiplier. This can also be observed in the Figures 5, 6, and 7. A quarter wavelength thick

PML is sufficient to obtain significant improvements over the first order boundary condition.

In Table 2 we present relative errors and maximum and minimum iteration counts for

the fictitious domain method with the Silver-Müller boundary condition. As observed in

Figures 5, 6, and 7, reflections from the artificial boundary dominate the error. Thus, we do

not expect to see much improvement in the error as the mesh is refined. As seen in Table 1,

the relative error for a discretization with 64 nodes per wavelength is 4 times smaller than

the error for the same discretization with the Silver-Müller boundary condition.
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Figure 8: (left) Plot of the relative error versus the mesh ratio h∂ω/h for
three different discretizations. (right) Plot of ratios of successive relative
errors versus the mesh ratio h∂ω/h.
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Figure 9: The maximum (left) and minimum (right) number of iterations
required for the Uzawa algorithm versus the mesh ratio h∂ω/h for three
different discretizations.
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PML h ∆t RE Max Iter Min Iter
L/4 L/16 L/(25c) 5.867e-2 14 12

L/32 L/(50c) 2.389e-2 13 12
L/64 L/(100c) 9.830e-3 13 12

L/2 L/16 L/(25c) 5.815e-2 14 12
L/32 L/(50c) 2.389e-2 13 12
L/64 L/(100c) 9.830e-3 13 12

L L/16 L/(25c) 5.815e-2 14 12
L/32 L/(50c) 2.389e-2 13 12
L/64 L/(100c) 9.829e-3 13 12

Table 1: Table of relative errors of the fictitious domain solutions, for
PML’s of varying thickness, computed with respect to the exact solution.

SM
h ∆t

RE Max Iter Min Iter
L/16 L/(25c) 7.026e-2 14 12
L/32 L/(50c) 4.519e-2 13 12
L/64 L/(100c) 3.854e-2 13 12

Table 2: Table of relative errors of the fictitious domain
solution, with the Silver-Müller (SM) boundary condition,
computed with respect to the exact solution for different
discretizations.

Finally, in Table 3, we present relative errors and maximum and minimum iteration

counts for the fictitious domain method with a PML of thickness L/4, for different values

of the mesh ratio h∂ω/h, and for different discretizations. For a given discretization, the

relative errors are comparable for different values of the mesh ratio. We observe that the

ratios between successive relative errors, for a fixed value of the mesh ratio, is approximately

2. Thus, the spatial accuracy of the fictitious domain method, based on these results, seems

to be about first order.
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PML (L/4)
h ∆t h∂ω/h RE Max Iter Min Iter
L/16 L/(25c) 2.0 5.867e-2 14 12

2.4 7.577e-2 3 3
2.7 5.412e-2 5 5

L/32 L/(50c) 2.0 2.389e-2 13 12
2.4 2.312e-2 14 13
2.7 1.691e-2 14 13

L/64 L/(100c) 2.0 9.830e-3 13 12
2.4 9.355e-3 15 13
2.7 6.641e-3 14 12

L/128 L/(200c) 2.0 6.972e-3 16 15
2.4 4.957e-3 16 14
2.7 4.679e-3 13 11

Table 3: Table of relative errors of the fictitious domain solutions for a
PML of thickness L/4, computed with respect to the exact solution, for
different values of the mesh ratio h∂ω/h and different discretizations.

In Table 4 we compare the fictitious domain approach to a staircase approach using the

finite difference time domain method. As can be seen from the table, the fictitious domain

method provides a significant improvement over the staircase approximation. This is also

evident from Figures 10 and 11, which compare the errors for both methods for 16 and 64

nodes per wavelength.

N L/h Staircase Fictitious Domain
1132 16 1.959e-1 5.867e-2
2252 32 9.997e-2 2.389e-2
4492 64 4.871e-2 9.830e-3
8972 128 2.619e-2 6.972e-3

Table 4: Table of relative errors for the fictitious domain solution
for a PML of thickness L/4, and relative errors for a staircase
approximation for different nodes per wavelength.

So far we have presented results in which the frequency f , and hence the wavelength L,

in the domain was fixed. As the frequency is increased, i.e., the wavelength is decreased,

the effects of dispersion start to degrade the solution. The error in the solution is no longer

dominated by the error in the discretization of the Lagrange multiplier. The error at higher

frequencies is dominated by large phase errors, which accumulate over time and can sig-

nificantly affect the solution. To study the errors that arise at high frequencies, we have
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calculated the relative errors in the case when f = 1.2, 2.4 and 4.8 GHz. The relative error is

a combination of the error in the amplitude of the solution as well as the error in the phase.

To see the dominance of the phase error, we also calculate a relative amplitude error and a

phase error for each frequency. In these calculations the size of the domain is fixed. We use

a fixed step size h = 0.5/128, which uses 128 nodes per wavelength at the lowest frequency

of 0.6 GHz, on the square domain [0, 3.5] × [0, 3.5]. Thus, we have 897 × 897 nodes with

N = 897. The time step is chosen so that the stability condition as before is η = 0.64. The

results are all computed after 1400 iterations. All results are computed using a 4 cell PML

and the fictitious domain method. We do not observe any significant reduction in the errors

by increasing the thickness of the PML layer.

In Figure 12 we plot a top view of the solutions with f = 0.6 GHz (top) and f = 1.2

GHz (bottom). In Figure 13 we plot a top view of the solutions with f = 2.4 GHz (top) and

f = 4.8 GHz (bottom). The computed solutions qualitatively compare well with the exact

solution.

Let Rexact and Iexact denote the real and imaginary parts of the exact solution. Similarly,

let RC and IC denote the real and imaginary parts of our computed solution. We define the

phase error (PE) as

PE(x) = tan−1

(

Iexact(x)

Rexact(x)

)

− tan−1

(

IC(x)

RC(x)

)

. (8.2)

We also calculate the phase error in degrees per node as

Phase error =
360

2πN

(

N2

∑

k=1

|PE(xk)|2
)1/2

degrees/node, (8.3)

where xk is a node of the finite element triangulation Th. The amplitude error (AE) is defined

as

AE(x) =
√

(Iexact(x))2 + (Rexact(x))2 −
√

(IC(x))2 + (RC(x))2. (8.4)

Next, we calculate a relative amplitude error (RAE) for each frequency which will be the

ratio of the L2 norm of the amplitude error to the L2 norm of the amplitude of the exact

solution in the computational domain. In Figure 14 we plot linear gray scale images of the

phase error (top) and the amplitude error (bottom) over the square domain. In this figure

we can see that the phase error is the smallest along the grid diagonals and it is the largest

along the axis of the mesh.

In Table 5 we present the (total) relative errors for the real and imaginary parts of the

solution. As expected the relative errors increase as the frequency is increased. We also

compare the relative amplitude error RAE which is calculated using the amplitude error AE
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Figure 10: (left) Plot of the error between the exact solution and the
fictitious domain method with a 4 cell PML. (right) Plot of the error
between the exact solution and a staircase approximation. In both cases
we use a discretization with 16 nodes per wavelength.

Figure 11: (left) Plot of the error between the exact solution and the
fictitious domain method with a 4 cell PML. (right) Plot of the error
between the exact solution and a staircase approximation. In both cases
we use a discretization with 64 nodes per wavelength.
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Figure 12: A top view of the computed solution (real part) for a harmonic
planar wave with frequency f = 0.6 GHz and L = 0.5m (left), and for
a harmonic planar wave with frequency f = 1.2 GHz and L = 0.25m
(right).

defined in (8.4). Finnally we compare the phase error in degrees per node, defined in (8.3),

for each case. We observe that the relative amplitude error is significantly better than the

total relative errors. As can be seen from the table the phase error increases significantly at

higher frequencies. For f = 0.6 GHz, the phase error is 0.37 degrees per node. This error

increases to 15.69 degrees per node when f = 4.8 GHz.

f (GHz) L (m) L/h RE (Real) RE (Imag) RAE Phase
0.6 0.5 128 6.97e-3 7.77e-3 3.31e-3 0.37
1.2 0.25 64 1.57e-2 1.52e-2 5.72e-3 0.73
2.4 0.125 32 4.97e-2 4.72e-2 1.11e-2 2.29
4.8 0.0625 16 2.89e-1 2.93e-1 2.57e-2 15.69

Table 5: Table of errors for the fictitious domain solution for a PML of
thickness L/4, at different frequencies. The relative error for the real and
imaginary parts of the solution is given. RAE is a relative amplitude error
and the phase error in degrees per node in each case is provided.
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Figure 13: A top view of the computed solution (real part) for a harmonic
planar wave with frequency f = 2.4 GHz and L = 0.125m (left), and for
a harmonic planar wave with frequency f = 4.8 GHz and L = 0.0625m
(right).

Figure 14: A linear gray scale image of the phase error in radians (left)
and the amplitude error (right) over the square domain [0, 3.5]× [0, 3.5].
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9 Conclusions and Future Work

In this paper we a have applied a distributed Lagrange multiplier based fictitious domain

method to the solution of the two dimensional Maxwell’s equations in the exterior of a

domain ω with a perfectly conducting condition on the boundary of ω. Such a method was

applied to the solution of the two dimensional wave equation in [5]. Thus, in this paper we

have extended the application of the distributed multiplier to electromagnetic waves. The

idea behind the fictitious domain method is to extend the electromagnetic solution inside the

obstacle and enforce the perfectly conducting condition on the boundary of the obstacle via

the introduction of a distributed Lagrange multiplier. This distributed multiplier is defined

on the boundary of the obstacle as well as in the interior of the obstacle.

After presenting our fictitious domain formulation, we have derived energy identities to

demonstrate the wellposedness and stability requirements of the method. An interesting fact

is that the stability condition is the same as in the case of the problem without an obstacle.

We have presented numerical computations which show that our fictitious domain method

is more accurate than the finite difference approach. Even though the method remains first

order accurate with respect to the mesh step size, the error is much better as compared to

the staircase approximation of a the corresponding finite difference scheme. Thus, this paper

provides a simple and much more accurate alternative to the popular FDTD method.

We have focused our study on the two dimensional TM mode of Maxwell’s equations. In

the future we will extend this approach to the TE mode in two dimensions as well as to the

full three dimensional Maxwell’s equations.
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