THE NATIONAL
SHIPBUILDING
RESEARCH PROGRAM

EVALUATION OF
THE USABILITY AND BENEFITS OF
TWIST WIRE GMAW AND FACW NARROW
GAP WELDING

U.S. DEPARTMENT OF TRANSPORTATION MARITIME ADMINISTRATION
IN COOPERATION WITH PUGET SOUND NAVAL SHIPYARD, INGALLS
SHIPBUILDING, INC., AND NEWPORT NEWS SHIPBUILDING AND
DRYDOCK COMPANY
Evaluation of The Usability and Benefits of Twist Wire GMAW and FACW Narrow Gap Welding

Report Documentation Page

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

<table>
<thead>
<tr>
<th>1. REPORT DATE</th>
<th>2. REPORT TYPE</th>
<th>3. DATES COVERED</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAR 1988</td>
<td>N/A</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. TITLE AND SUBTITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evaluation of The Usability and Benefits of Twist Wire GMAW and FACW Narrow Gap Welding</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5a. CONTRACT NUMBER</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>5b. GRANT NUMBER</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>5c. PROGRAM ELEMENT NUMBER</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>5d. PROJECT NUMBER</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>5e. TASK NUMBER</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>5f. WORK UNIT NUMBER</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>6. AUTHOR(S)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naval Surface Warfare Center CD Code 2230 - Design Integration Tools Building 192 Room 128 9500 MacArthur Blvd Bethesda, MD 20817-5700</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. PERFORMING ORGANIZATION REPORT NUMBER</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>10. SPONSOR/MONITOR’S ACRONYM(S)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>11. SPONSOR/MONITOR’S REPORT NUMBER(S)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>12. DISTRIBUTION/AVAILABILITY STATEMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approved for public release, distribution unlimited</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13. SUPPLEMENTARY NOTES</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>14. ABSTRACT</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>15. SUBJECT TERMS</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>16. SECURITY CLASSIFICATION OF:</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. REPORT unclassified</td>
</tr>
<tr>
<td>b. ABSTRACT unclassified</td>
</tr>
<tr>
<td>c. THIS PAGE unclassified</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>17. LIMITATION OF ABSTRACT</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAR</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>18. NUMBER OF PAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>79</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>19a. NAME OF RESPONSIBLE PERSON</th>
</tr>
</thead>
</table>

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18
THE NATIONAL
SHIPBUILDING
RESEARCH PROGRAM

EVALUATION OF
THE USABILITY AND BENEFITS OF
TWIST WIRE GMAW AND FACW NARROW
GAP WELDING

U.S. DEPARTMENT OF TRANSPORTATION MARITIME ADMINISTRATION
IN COOPERATION WITH PUGET SOUND NAVAL SHIPYARD, INGALLS
SHIPBUILDING, INC., AND NEWPORT NEWS SHIPBUILDING AND
DRYDOCK COMPANY
This report was prepared as an account of government-sponsored work. Neither the United States, nor the Maritime Administration, nor any person acting on behalf of the Maritime Administration (A) makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness or usefulness of the information contained in this report/manual, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or (B) assumes any liabilities with respect to the use of or for damages resulting from the use of any information, apparatus, method, or process disclosed in the report. As used in the above, “Persons acting on behalf of the Maritime Administration” includes any employee, contractor, or subcontractor to the contractor of the Maritime Administration to the extent that such employee, contractor, or subcontractor to the contractor prepares, handles, or distributes, or provides access to any information pursuant to his employment or contract or subcontract to the contractor with the Maritime Administration. ANY POSSIBLE IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR PURPOSE ARE SPECIFICALLY DISCLAIMED.
FOREWORD

This report presents the results of a project initiated by SP-7, the Welding R&D panel of the Ship Production Committee of the Society of Naval Architects and Marine Engineers. The project was financed through a cost sharing contract between the U.S. Maritime Administration, Puget Sound Naval Shipyard, Newport News Shipbuilding and Drydock Corporation and Ingalls Shipbuilding, Incorporated. The principle objective was to evaluate the application of twisted wire Gas Metal Arc and Flux Cored arc welding of plates with Narrow Gap fit-ups to minimize welding.

The project was conducted under the SP-7 panel Chairmanship of Ben Howser of Newport News Shipbuilding and Drydock Corporation and Lee Kvidahl of Ingalls Shipbuilding, Inc. and the Program Management of Mark Tanner of NNS and O. J. Davis of Ingalls Shipbuilding, Inc.

The project was carried out by the Welding Engineering group of Puget Sound Naval Shipyard under the leadership of Douglas Coglizer, Head of the Welding Engineering Division and Frank Gatto, Head, Piping, Machinery, and Pressure Vessel Branch and member of the SP-7 Panel. The report was prepared by Derek Mortvedt of Puget Sound Naval Shipyard.
EXECUTIVE SUMMARY

Butt welding of thick plates with narrow gap fit-ups in lieu of conventional U-groove and V-bevel angles is recognized as one approach to reducing the time and cost of welding in shipbuilding. The use of multiple twisted filler wires as electrodes is found to overcome some of the problems of lack of side wall fusion and slag entrapment associated with single wire arc welding of narrow gap butt welds.

To date there are numerous articles written which show a tremendous potential cost savings of various narrow gap welding processes including twist wire welding. These articles very adequately address other important productivity factors such as a comparison of reduced joint geometry, arc time, deposition rate and mechanical properties. No attempt is made in this report to verify or duplicate these issues.

The main objectives of this project are:

a) Identify known problems which have caused other narrow gap processes to be nonproductive as well as new problems unique to the twist wire process or the shipbuilding industry.

b) Identify the welding conditions that cause these problems so that the operating range which provides defect free welds can be identified.

c) Once the operating range is known, evaluate whether this range will be adequate to provide cost effective welds in the non-optimum conditions found in the shipbuilding industry.

The problems causing narrow gap processes to fail are:

a) Solidification cracking
b) Lack of sidewall fusion
c) Lack of fusion between two weld beads
d) Undercut of the sidewall
e) Equipment problems.

The cause of these problems are the inability of narrow gap processes to operate outside a set of conditions easily maintained in lab testing but which are unrealistic for production welding:

a) Close joint fitup tolerance
b) Narrow welding parameter range
c) Precise electrode positioning
d) Easily lost shielding gas
e) Inability to repair visual defects
f) Inability to weld over stops and starts
g) Arcing the contact tip against the sidewall
h) Complicated, expensive equipment which does not hold up.

To evaluate various wire sizes a wire twister was developed to produce limited quantities for testing. This testing concluded that only specific wire sizes will reliably produce defect free welds in a production environment.
Having a wire twisting machine resulted in two major unexpected benefits. First, invaluable lessons were learned about wire quality requirements. The two major problems with wire quality are helix and wrapping. Helix in the wire well causes the wire to wander in the joint after leaving the contact tip. If one wire is intermittently wrapped around the other rather than being equally intertwined the resulting change in overall diameter hesitates or even stops in the feed coise or contact tip. The second major spin-off was the ability to develop the flux cored twist wire process which was found to be even more forgiving in a production environment than solid twist wire.

CONCLUSIONS

Welding parameters for both twisted solid wire (2mm) and twisted flux-core (3/32”) have been developed on up to 3” thick plate. Significant improvements in welding productivity have been achieved by use of the process.
TABLE OF CONTENTS

1. Introduction ... 1

2. Weld Defects and Causes ... 2
 2.1. Lack of Sidewall Fusion .. 2
 2.1.1. Bead Shape .. 3
 2.1.2. Bead Surface ... 3
 2.2. Solidification Cracking .. 4
 2.2.1. Depth-to-Width Ratio Versus Gap Width 5
 2.2.2. Depth-to-Width Ratio Versus Amperage 5
 2.3. Effects of Travel Speed .. 6
 2.3.1. Solidification Cracking Versus Travel Speed 6
 2.3.2. Lack of Fusion Versus Travel Speed 7
 2.3.3. Undercut Versus Travel Speed .. 8

3. Equipment .. 9
 3.1. Wire Twister and Wire Quality .. 9
 3.2. Welding Equipment ... 11

4. Useability .. 13
 4.1. Useability of Process ... 13
 4.1.1. Definition .. 13
 4.1.2. Evaluation Method .. 14
 4.1.3. Wire Size and Type .. 17
 4.1.3.1. Conclusions on Wire Size and Type 17
 4.1.4. Parameter Ranges ... 19
 4.1.5. Electrode Centering Tolerance .. 22
 4.1.6. Welding over Sidewall Defects .. 22
 4.1.7. Joint Design .. 23

 4.2. Useability of Welding Equipment .. 25
 4.2.1. Welding of 20 foot Plate .. 25
 4.2.2. Kobe System .. 27
 4.2.3. Vision System ... 27

5. Conclusions .. 28

6. List of References ... 30

7. Charts
 I. Usable Range of Amperage and Gap Width for 2x1/16"
 Solid Electrode ... 31
 II. Usable Range of Amperage and Gap Width for 2x2mm
 Solid Electrode ... 32
 III. Usable Range of Amperage and Gap Width for 2x1/16"
 Flux Cored Electrode .. 33
 IV. Usable Range of Amperage and Gap Width for 2x3/32"
 Flux Cored Electrode .. 34
 V. Effects of Travel Speed for 2x2mm Solid Electrode 35
TABLE OF CONTENTS (Continued)

VI. Effects of Travel Speed for 2x3/32" Flux Cored Electrode .. 36
VII. Effects of Voltage for 2x3/32" Flux Cored Electrode .. 37

List of Figures
1. Arc Deflections .. 2
2. Bead Shape .. 3
3. Bead Surface .. 4
4. Bead Width .. 4
5. Depth/Width Ratio Versus Gap Width 5
6. Depth/Width Ratio Versus Amperage 6
7. Solidification Pattern of Bead Surface Versus Travel Speed .. 7
8. Slow Travel Speed as Cause of Slag Inclusions 8
9. Methods for Measuring Degree of Wire Wrapping 11
10. Schematic of Weld Test Plate 14
11. Measurement of Electrode Offset 22
12. Joint Design .. 24

List of Tables
I. Summary of Defect Types and Causes 15
II. Comparison of Two Usable Twist Wire Electrodes ... 19
III. 2x5/64" Solid Wire Electrode, Fit-up and Welding Parameters 20
IV. 2x3/32" Flux Cored Electrode Fit-up and Welding Parameters 21

Photographs
1. First Prototype PSNS Wire Twister 38
2. Second Prototype PSNS Wire Twister 39
3. Tension Equalizer 40
4. Cross Sections of 2x1/16" Solid Electrode Welds 41
5. Cross Sections of 2x2mm Solid Electrode Welds 42
6. Cross Sections of 2x1/16" Flux Core Welds 43
7. Cross Sections of 2x3/32" Flux Core Welds 44
8. Wrapping Defects in 2x3/32" Flux Cored Electrode .. 45
9. Macros of Completed Narrow Gap Joints 46
10. Welding Over Centerline Cracks with the 2x2mm Solid Electrode 47
11. Crack-free 2x3/32" Flux Core Weld in a 20° Bevel 48
12. 2x3/32" Flux Core Weld in a 45° Bevel, 2" Plate 49
13. 2x3/32" Flux Core Weld in a 35° Bevel, 2" Plate 50
14. Contact Tip Life Versus Size of Threaded Connection .. 51
15. Thicker Torch to Accommodate Larger Contact Tip Threads 52

Appendix I. Welding Procedure Qualification/Test Data A-I
Appendix II. Flux Cored Twist Wire Weld Procedure Specification For Manganese Molybdenum Tanks and Joint Designs A-II
Appendix III. KOBE TW-1 Equipment A-III
1. **Introduction.**

Puget Sound Naval Shipyard has evaluated twist wire narrow gap welding for applications in the shipbuilding industry. This evaluation was accomplished for the Ship Production Committee Welding Panel, SP-7, of the National Shipbuilding Research Program. The work has included the evaluation of both twist solid electrode and twist flux cored electrode. At the present time there is no routine, satisfactory welding technique in use in the United States for narrow gap welding of 1" to 3" thick marine steels. As compared to what could be achieved with twist wire narrow gap welding, the conventional welding processes in use today require large amounts of flame cutting for joint preparation, longer arc times, more filler metal and result in greater weld distortion. Currently heavy fabricated metal for ship hulls, decks, inserts, foundations, etc. requires large bevel angles for equipment access and electrode manipulation to obtain high quality welds.
2. Weld Defects And Causes.

2.1. Lack Of Sidewall Fusion. To evaluate the useability of the twist wire welding process it is first important to understand the causes of weld defects which are unique to one pass per layer narrow gap welding. As expected with the narrow gap joint configuration, a major problem is lack of sidewall fusion. The twist wire process eliminates lack of fusion by using magnetic arc deflections and arc rotation to direct the arc force more toward the joint sidewalls. Figure 1 schematically shows how the arc is alternately generated from two solid wires of the conventional twist wire process and the resulting intermittent arc rotation. Arc stabilizers in flux cored twist wire allows an arc to be generated from both wires at all times resulting in continuous arc rotation and a dramatically lower weld bead depth-to-width ratio D/W.

![Diagram of arc deflections](image-url)

Figure 1. Arc deflections
2.1.1. **Bead Shape.** The weld cross sectional bead shape is a very important factor to consider in eliminating sidewall lack of fusion. Figure 2 shows how a more uniform bead shape eliminates lack of fusion. The desired bead shape of Figure 2b, as achieved by the twist wire welding process, has a deeper sidewall penetration throughout the weld cross section and a more uniform penetration depth-wise than the bead shape of Figure 2a for single wire GMAW narrow gap welding. Even if the bead shape of Figure 2a has a greater penetration in the location W, the bead shape of Figure 2b is more desirable since it eliminates lack of fusion by increasing the sidewall penetration in the critical location W.

![Figure 2. Bead shape](image)

2.1.2. **Bead Surface.** A concave bead surface is also necessary to eliminate lack of fusion at the weld joint interface of the subsequent weld layer. Once the proper cross-sectional bead shape of Figure 2b is obtained, developing the flat at bead surface of Figure 3b by increasing the gap width becomes the factor which limits how wide the gap width G can be. The flat bead surface of Figure 3b will cause lack of sidewall fusion at the bottom of the next weld bead.
2.2. Solidification Cracking. Figure 4 shows the relationship between solidification cracking and the depth-to-width ratio D/W of mild steel weld beads deposited under the high restraint conditions of narrow gap welds in thick plate.

Figure 4 shows that when D/W is greater than 0.8 there is a high chance of solidification cracking. Experience has shown that when the base material or

\[\text{ref. 2} \]
filler metal is manganese molybdenum or in general has a higher carbon equivalent than mild steel, solidification cracking may occur at a lower D/W ratio. On the other hand, when twist MIL-1005-1 electrode (Mn,Ni,Mo) is used or when a plate with less restraint is welded the D/W ratio can be higher without cracking. For the sake of analysis, 0.8 was used as the maximum acceptable D/W ratio with the understanding that this value may need to be adjusted for the specific material type and weld restraint conditions.

2.2.1. **Depth-to-Width Ratio Versus Gap Width.** The dendritic grain growth and segregation pattern versus the gap width is shown in Figure 5. Obviously, the D/W ratio becomes higher as the gap width G reaches the narrow end of the acceptable gap width range. D/W = 0.8 is therefore the criteria that is used to determine the minimum gap width that can be welded without centerline cracking.

![Figure 5. Depth/width ratio versus gap width](image)

2.2.2. **Depth-To-Width Ratio Versus Amperage.** Testing has shown that the arc rotation mechanism described in Figure 1 works best at low current density for solid wire. If the amperage is raised too high, the two wires appear to produce a single steady arc and the weld cross section begins to take the shape of conventional GMAW. Figure 6 shows the penetrating spike

Figure 6 shows the penetrating spike
that occurs when the arc becomes columnated and stiff at higher amperage. This increases the D/W ratio and thus the weld becomes more crack sensitive. The bead cross sections outlined in Figure 6 are approximately to scale and were obtained with two twisted 1/16” dia. (2x1/16”) solid electrodes and a gap width of 5/8”. Although the maximum sidewall penetration W and the downward penetration D are increased with increasing amperage, the critical penetration W1 changes very little. The D/W ratio is drastically reduced at lower amperage, reducing the chance of solidification cracking. The lower amperage limit is reached when the arc becomes unstable. An unstable arc causes spatter which collects in the shielding gas hardware and blocks shielding gas flow. Excessive spatter will also collect on the groove walls and cause an undesirable bead surface as shown in Figure 3b.

Figure 6. Depth/width ratio versus amperage

2.3. Effects of Travel Speed.

2.3.1. Solidification Cracking Versus Travel Speed. Although there is no apparent trend in D/W versus travel speed, faster travel speeds will increase the chance of solidification cracking. As shown in Charts V and VI, changes in travel speed cause very little change in the D/W ratio although the sidewall penetration (W1-G) changes dramatically. The D/W ratio changes very little because the change in sidewall penetration is compensated for by change in the depth of fill. This may not be true for a joint with a substantial bevel since an increase in fill will also increase the gap width.
The mechanism by which a fast travel speed causes solidification cracks is illustrated in Figure 7. Fast travel speed imparts a sharp chevron pattern to the weld puddle and weld ripples. The sharp chevron pattern of Figure 7b indicates the surface grains are growing inward toward each other thus increasing the chance of solidification cracking. A high D/W ratio is usually accompanied by a pattern as in Figure 7b. The D/W ratio is the dominant factor in causing solidification cracks, but with all other factors being equal the bead produced at a higher travel speed is more crack prone.

2.3.2. Lack of Fusion Versus Travel Speed. Charts V and VI show that when the gap is wide a fast travel speed will lead to lack of sidewall fusion at the bottom of the weld bead such as sketched in Figure 2a or 3b. Slow travel speeds have a dramatic advantage at wide gap widths because of the increased sidewall penetration in the critical location (W). When the gap
width is small a slow travel speed will cause lack of fusion between weld beads because:

a) The downward penetration is decreased when the arc force is cushioned by a large weld puddle.
b) The weld puddle becomes so large that the leading edge rolls ahead of the arc causing incomplete fusion or slag inclusions. An Examples of underbead slag are shown in Figure 8.

Figure 8. Slow travel speed that causes underbead slag inclusions, increased sidewall penetration, and undercut

2.3.3. Undercut Versus Travel Speed. Undercut due to slow travel speed has been observed with flux cored wires. The reason undercut occurs more readily with flux cored wires can be explained by comparing Chart V with Chart VI. The increase in sidewall penetration with slower travel speed is much more dramatic in Chart VI than the increase in Chart V. The dramatic increase of arc energy into the sidewalls goes hand in hand with undercut. The undercut and the dramatic increase in sidewall penetration with slow travel speed is shown in Figure 8.
3. **Equipment.**

3.1. **Wire Twister And Wire Quality.** A machine capable of twisting weld quality electrode is essential for evaluating the twist wire welding process. The development of a successful wire twister has allowed the twisting of various sizes and types of electrode with major gains in the area of the flux cored twist wire development, and knowledge of the potential problems with wire quality. Without proper knowledge of wire quality and adequate manufacturing steps quality welds are impossible. **Photo 1** shows the first wire twisting machine developed at Puget Sound Naval Shipyard. From this machine we learned that the twist wire must have the following properties to obtain quality welds:

- a.) 25 - 30 degree twist angle.
- b.) wires must not untwist.
- c.) wires must not be serrated or gouged.
- d.) wires must not be more than 20% wrapped.
- e.) must not have residual torque after it is spooled.
- f.) must be properly level wound.

The second prototype wire twister shown in **Photo 2** was developed with an emphasis on eliminating electrode helix. Normally, after the wire is twisted it is at residual yield point torsion. When the wire at yield point torsion is bent over the curved surfaces of the drive wheels or the wire take up spool it exceeds the yield point and is plastically deformed into a permanent helix.

The .045" diameter twist wire with helix will weave from side to side in the joint during welding causing lack of fusion when the wire wanders too far from the centerline of the joint.

The second wire twister eliminated helix by backspinning the take-up spool end of the wire so that it rotates in the grooves of the drive wheel. In this
way the torque is relieved at the same time the wire is bent over the surface of the drive wheels. When the torque is lowered below the yield point, the added bending force over the drive wheels will not result in excessive plastic flow and a helix. For backspinning to be effective, the drive wheel must be large enough to transmit torque over the curved surface and the wire must be free to turn axially.

The backspinning also eliminates the residual torque in the as-spooled wire. Residual torque in the spooled wire produces a strong tendency for the wire to spring off the spool and tangle. Too much backspinning will cause reverse helix and may cause the wire to untwist. The wire will also untwist when torque is relieved, if the material has a high elastic limit. If the wire untwists, a larger composite wire diameter is created which causes the wire to hang up in the contact tip resulting in an erratic arc or burn back.

The tension equalizer, shown in Photo 3, attached to the end of the spinning arbor is an important part of the wire twisting machine. This device equalizes the feed rate of the two wires as they are intertwined.

The tension equalizer is made up of four wheels keyed together. When one wire is pulled from the arbor, torque is transferred to the other wheels. This forces the second wire to feed at the same rate, producing equal twisting.

Without the tension equalizer, a small differential change in the tension of the wires will cause them to twist unequally around each other. This unequal twisting or wrapping, even when difficult to detect visually, will cause the electrode to hang up in the contact tip due to the increase in the combined twist wire diameter.

Photo 8 shows a sample of wire with some areas where wrapping is readily visible and other areas where wrapping is not easily visible. Since wrapping
is a major problem the method shown in Figure 9, was devised to measure the degree of wrapping.

![Diagram of wrapping measurement](image)

$$\frac{D-2d}{d} \times \frac{X}{d} = \frac{D-2d}{d} \times 100\%$$

$$\frac{D-2d}{d} \times \frac{X}{d} = \text{percentage wrapped}$$

Figure 9. Method for measuring the degree of wrapping

3.2. Welding Equipment. The gas shielding device and the welding torch must be designed specifically for narrow gap twist wire welding. The remaining equipment is similar to conventional Gas Metal Arc Welding (GMAW) or Submerged Arc Welding (SAW) equipment. Currently, the only twist wire welding equipment available on the market is the TW-1 system made by Kobe Steel, the pioneer of twist wire welding. The TW-1 system is a well designed complete equipment package that was made specifically for twist wire welding. A complete list of system components is included in Appendix 1.
Two special features of the TW-1 are a remote control adjustment for centering the electrode and an excellent shielding gas system. The centering device is a small, remote, hand-held pendant on a four-foot cable with two buttons to move the electrode left or right to center the electrode in the gap. Currently, the travel speed cannot be adjusted during welding because a small turn of the knob will set the travel speed beyond the acceptable range. It would be beneficial to have a fine travel speed adjustment knob which could be turned at least 90 degrees to vary the travel speed smoothly within an acceptable range of set travel speed limits. The TW-1 shielding system is made up of two separate, interchangeable devices for different base metal thicknesses. For joint depths 2" to 11", a shielding gas nozzle is attached to the torch so that the shielding gas ports are inside the groove. For weld passes 2" deep up to the cover pass, the shielding gas nozzle is replaced by a shielding gas box which forces and floods shielding gas into the joint from above the plate surface.
4. **Usability.**

4.1. **Usability of Process.**

4.1.1. **Definition.** One of the primary objectives of this study was to evaluate the usability of the twist wire process. Usability is defined as the ability to reliably produce high quality cost effective welds, over a wide range of gap widths and welding parameters, even when the joint contains gouges or other local defects.

Because of the configuration of narrow gap joints, repair of weld defects such as lack of fusion, undercut or porosity during welding is difficult due to the limited accessibility. Also, the repair may cause damage to the side wall of the joint which will in turn lead to more defects during subsequent welding. Because of this accessibility problem, repairs during welding may eliminate the cost advantage of this process if they happen too frequently.

The usability must also be based on the ability of the final weldment to pass nondestructive testing with a low reject rate. As with other narrow gap welding methods, the biggest hurdles are lack of sidewall fusion, reasonable production weld joint fit-up tolerances and weld parameter tolerances. Many previous narrow gap welding methods have failed to be usable because lack of sidewall fusion is obtained when:

1) tight weld joint fit-up tolerances can not be met in production,

2) the welding parameter range is too restrictive to be realistically maintained,

3) the parameters must be changed during welding to allow for fluctuations in joint fit-up and

4) seam tracking tolerance requirements are too restrictive and cannot be met.
4.1.2. Evaluation Method. To evaluate usability, test plates as shown in Figure 10 were run at different amperage voltage, travel speed, and stickout. The parameters were varied to determine allowable ranges for making sound welds (i.e., good sidewall fusion, no centerline cracking, no undercut, and very little spatter). A summary of defect types and causes is shown in Table I.

Figure 10. Schematic drawing of weld test plate
Table I. Summary of Defect Types and Causes

<table>
<thead>
<tr>
<th>Defect Type</th>
<th>Gap Width</th>
<th>Travel Speed</th>
<th>Amperage</th>
<th>Voltage</th>
<th>Stickout</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOLIDIFICATION CRACKING (Depth/width >0.80)</td>
<td>too narrow (a)</td>
<td>too fast</td>
<td>too high (e)</td>
<td>too low (j)</td>
<td></td>
</tr>
<tr>
<td>LACK OF SIDEWALL FUSION at bottom of bead</td>
<td>too wide (b)</td>
<td>too fast (c)</td>
<td>too low (g)</td>
<td>too low (k)</td>
<td></td>
</tr>
<tr>
<td>LACK OF FUSION BETWEEN TWO WELD BEADS caused by an excessively large weld puddle rolling in front of the arc</td>
<td>too narrow (d)</td>
<td>too slow (e)</td>
<td>too high (f)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UNDERCUT (causing lack of fusion on the next pass)</td>
<td>too narrow (i)</td>
<td>too slow (j)</td>
<td>too high (l)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EXCESSIVE SPATTER, unstable arc</td>
<td></td>
<td>too low (h)</td>
<td>too low (i)</td>
<td>too short (j)</td>
<td>too long (k)</td>
</tr>
</tbody>
</table>

(a) The depth-to-width ratio is labeled D/W on Charts I-VI. Freedom from solidification cracking was assured by $D/W < 0.8$. Charts I-VI show that D/W increases as the gap width G decreases, therefore $D/W = 0.8$ determines the minimum reliable gap width.

(b) The "lack of sidewall fusion at bottom of bead" factor is labeled Freedom from lack of sidewall fusion at bottom of bead was assured by $W-G > 2/64"$. Charts I-VI show that $W-G$ decreases as the gap width G increases, therefore $W-G = 2/64"$ determines the maximum reliable gap width.

(c) The upper travel speed limit is best found by measuring the critical sidewall penetration minus the gap width (W_i-G) at the maximum gap to be welded. $W_i-G = 2/64"$ is the minimum allowable value.
The lower travel speed limit is best found by observing the weld puddle and weld stops at the smallest gap to be welded. If the leading edge of the puddle builds up ahead of the arc then the travel speed is too slow.

The upper amperage limit for the solid 2x2 mm electrode is found by using the D/W = 0.8 limit of Chart II. As shown in Chart II the upper amperage limit depends on the minimum gap width and vice versa.

The upper amperage limit for the 2x3/32" flux cored electrode is reached when the increase in travel speed (required to compensate for a larger weld puddle at high amperage) causes solidification cracking by the mechanism described in figure 7.

When G > 3/4" for the 2x3/32" flux cored electrode the lower amperage limit is determined by the W1-G = 2/64" limit of Chart IV.

When G < 3/4" for the 2x3/32" flux cored electrode and in all gases for the 2x2 mm solid electrode the lower amperage limit is reached when the arc becomes unstable.

The upper voltage limit is reached when undercutting becomes deeper than 1/64" into the sidewalls.

At the smallest gap width welded, the lower voltage limit is reached when the D/W ratio becomes greater than 0.8. Low voltage dramatically reduces penetration into the sidewalls and thereby causes solidification cracking. For example, on Chart VI, 30V is too low at 700A and drives the D/W ratio above 0.8. To correct this situation the voltage should be raised to lower the D/W ratio.

At the widest gap width welded, the lower voltage limit is reached when W1-G becomes less than 2/64".

The minimum arc stickout is the stickout used when the minimum amperage is determined. For example, the 2x2 mm solid wire has a minimum stable amperage of 500A at a stickout of 1 3/8". If 500A is used with an appreciably shorter stickout the arc becomes unstable because the I²R wire preheating is lowered. Long stickouts are important in the twist wire process for three reasons: 1) The deposition rate is increased for a given amperage. Since a long stickout will tend to lower the amperage the wire speed must be increased to maintain the given amperage level, 2) a long stickout keeps the contact tip away from the weld puddle to reduce spatter buildup and overheating problems, 3) a long stickout must be used to have a spray transfer at low current density. The solid wire works best with a spray transfer at low current density (see section 2.2.2).
when the amperage is set near the minimum required for a stable arc and the stickout is increased, the amperage will drop below the level required for a stable arc. The best way to avoid this is to set the desired parameters with the desired stickout. When a low spot in the joint is welded the stickout will increase, the voltage will slightly increase, and the amperage will noticeably decrease. Thus, when the operator sees a drop in amperage on the meter, the stickout should be shortened. Similarly, when the operator sees the amperage rise, the stickout should be increased.

4.1.3. Wire Size and Type. The results of usability tests with various electrode sizes (2x0.045", 2x1/16", 2x2 mm, 2x3/32") and electrode types (solid, and flux cored) are shown in Charts I through IV. Macro-etched bead cross sections using the various electrodes and parameters in Charts I thru IV are shown in Photos 4 thru 7. D/W vs G (probability of solidification cracking versus gap width) and W1-G vs. G (sidewall penetration in the critical location versus gap width) were chosen for comparison on each Chart I-IV because these factors will indicate the fit-up tolerances. The chances of centerline cracking at narrow groove widths and probability of lack of fusion at wide groove widths define the total acceptable gap width range. For the sake of comparison a travel speed of 10 ipm was used in Charts I-IV. A travel speed of 10 ipm was within the optimum range for all electrodes tested. The voltages varied to correspond to the amperage ranges tested. The stickouts varied according to the optimum arc characteristics for each wire tested.

4.1.3.1. Conclusion on Wire Size and Type. Conclusions on acceptable wire size and amperage ranges can be made from Charts I-IV based on a plus or minus 1/8" fit-up tolerance requirement. As a practical matter, the ideal joint width range is 1/2"-3/4". Below 1/2" joint accessibility and visibility become more of a problem. Defects which occur in a groove less than 1/2" wide are more difficult to remove than defects in grooves with wider
gaps. The conclusions from Chart I-IV for the wire sizes tested are as follows:

a) 2x1/16" solid twist wire is unacceptable. The D/W ratio versus G curves of Chart I are too high and intersect the D/W = 0.8 limit at a high gap width value. The sidewall penetration in the critical location W₁-G versus gap width G curves of Chart I are low, thus intersecting the W₁-G = 1/32" limit at a low value of G. Thus, the minimum gap width is too wide, the maximum gap width is too narrow, and the gap width range is not broad enough to allow for the required fit-up tolerances necessary in the shipbuilding industry. The usable gap width range is marginally acceptable at 425A; however, the current density is too low at 425A for reliable arc stability.

b) 2x2 mm solid twist wire provides a sufficiently broad gap width range between 500A and 550A. The D/W ratio is lowest at 500A, thus the gap width can be narrower and still avoid solidification cracking. Below 500A the arc becomes unstable. Above 550A the D/W ratio is too high to reliably produce a crack-free weld pass over a sufficiently wide gap width range.

c) 2x1/16" flux cored twist wire is unacceptable. The usable gap width is broad enough at 450A, however the range falls below the 1/2" minimum gap width necessary for joint accessibility. The D/W ratio versus gap width curve is acceptable over a broad amperage range of 350A to 550A. The low D/W ratios are typical of flux cored twist wire with arc stabilizers producing continuous arc rotation.

d) 2x3/32" flux cored twist wire has an extremely wide range of usable gap widths, very high sidewall penetration curves, extremely low D/W ratio curves and a broad amperage range.
Table II below shows the values for D/W and W₁-G at 1/8" intervals within the desirable gap width range of 1/2''-3/4".

<table>
<thead>
<tr>
<th>Amperage</th>
<th>G range (min, max)</th>
<th>D/W (0.8 max)</th>
<th>W₁-G (.03" min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2x2 mm solid</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>.47, .83</td>
<td>.78, .63</td>
<td>.07, .05</td>
</tr>
<tr>
<td>550</td>
<td>.56, .83</td>
<td>.88*, .75</td>
<td>.07, .05</td>
</tr>
<tr>
<td>650</td>
<td>.68, .83</td>
<td>.97*, .85*</td>
<td>.10, .08</td>
</tr>
<tr>
<td>2x3/32" flux cored</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>550</td>
<td>.37, .86</td>
<td>.60, .48</td>
<td>.14, .07</td>
</tr>
<tr>
<td>650</td>
<td>.37, 1.0</td>
<td>.62, .56</td>
<td>.19, .15</td>
</tr>
</tbody>
</table>

* D/W is unacceptable (see footnote a of Table 1).

Table II. Comparison of Two Usable Twist Wire Electrodes

4.1.4. Parameter Ranges. Tables III and IV show the parameter ranges for various fit-up tolerances with the 2x2 mm solid and 2x3/32" flux cored electrodes. The obvious trend of Tables III and IV is that the tighter the fit-up tolerance the broader the parameter range will be.

The 2x2 mm solid electrode has a wide parameter range when the fit-up is between 5/8" and 3/4". When the gap range falls below 5/8" (1/2''-5/8'' and 1/2''-3/4'') lower amperage should be used to avoid solidification cracks; and the travel speed should be 10ipm minimum to avoid an excessively large weld puddle which rolls ahead of the arc.

With the 2x3/32" flux cored electrode a fit-up tolerance of 3/8" is possible, however, the parameter range becomes very restrictive. At 1/8" and 1/4" fit-up tolerance the parameter ranges are extremely wide.
<table>
<thead>
<tr>
<th>Fitup Within 1/8"</th>
<th>Root and Fill</th>
<th>Gap Width</th>
<th>Anperage</th>
<th>Volt</th>
<th>Travel Speed (ipm)</th>
<th>Stick out (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Root and Fill</td>
<td>5/8 "-3/4"</td>
<td>500-525</td>
<td>30-32</td>
<td>9-11</td>
<td>1 3/8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>526-550</td>
<td>30-32</td>
<td>9-11</td>
<td>1 3/8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>551-575</td>
<td>30-32</td>
<td>9.5-11.5</td>
<td>1 3/8</td>
<td></td>
</tr>
<tr>
<td>Fitup Within 1/4"</td>
<td>Root and Fill</td>
<td>1/2"-3/4"</td>
<td>500-525</td>
<td>30-32</td>
<td>10-11</td>
<td>1 3/8</td>
</tr>
</tbody>
</table>

| Cover Passes or 2 Pass per Layer | 3/4" Wide or greater | 500-525 | 30-33 | 10-14 | 1 3/8 |

Table III. 2x5/64" Solid Wire Electrode, Fit-up and Welding Parameters

20
<table>
<thead>
<tr>
<th>Fitup Within 1/8"</th>
<th>Pass</th>
<th>Gap Width</th>
<th>Amperage</th>
<th>Volt</th>
<th>Travel Speed (ipm)</th>
<th>Stick-Out (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Root 1/2"-3/4"</td>
<td></td>
<td>550-575</td>
<td>26-29</td>
<td>9-10</td>
<td>1 1/2</td>
<td></td>
</tr>
<tr>
<td>One pass per layer fill pass 5/8"-3/4"</td>
<td></td>
<td>550-575</td>
<td>26-29</td>
<td>9.5-10.5</td>
<td>1 1/2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>576-600</td>
<td>26-29</td>
<td>10-10.5</td>
<td>1 1/2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>601-625</td>
<td>26-30</td>
<td>10-11</td>
<td>1 1/2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>626-650</td>
<td>27-31</td>
<td>10-11.5</td>
<td>1 1/2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3/4"-7/8"</td>
<td>576-600</td>
<td>27-30</td>
<td>9.5-10</td>
<td>1 1/2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>601-625</td>
<td>27-31</td>
<td>10-10.5</td>
<td>1/2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>626-650</td>
<td>28-32</td>
<td>10-11</td>
<td>1 1/2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>651-675</td>
<td>29-33</td>
<td>10-11</td>
<td>1 1/2</td>
<td></td>
</tr>
<tr>
<td>Fitup Within 1/4"</td>
<td>Root 1/2"-3/4"</td>
<td>550-575</td>
<td>26-29</td>
<td>9-10</td>
<td>1 1/2</td>
<td></td>
</tr>
<tr>
<td>One pass per layer fill pass 5/8"-7/8"</td>
<td></td>
<td>550-575</td>
<td>26-29</td>
<td>10-10.5</td>
<td>1 1/2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>576-600</td>
<td>26-29</td>
<td>10-10.5</td>
<td>1 1/2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>601-625</td>
<td>27-30</td>
<td>9.5-10</td>
<td>1 1/2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>626-650</td>
<td>28-31</td>
<td>10-11.5</td>
<td>1 1/2</td>
<td></td>
</tr>
<tr>
<td>Fitup Within 3/8"</td>
<td>All 1/2"-7/8"</td>
<td>580-620</td>
<td>28-29</td>
<td>10-10.5</td>
<td>1 1/2</td>
<td></td>
</tr>
<tr>
<td>Cover Passes or 2 Pass per Layer Fill Passes 7/8" Wide or greater</td>
<td>600-625</td>
<td>28-31</td>
<td>13-20</td>
<td>1 1/2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>626-650</td>
<td>28-32</td>
<td>13-20</td>
<td>1 1/2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>651-675</td>
<td>29-33</td>
<td>14-20</td>
<td>1 1/2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>676-700</td>
<td>30-34</td>
<td>14-20</td>
<td>1 1/2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table IV. 2x3/32" Flux Cored Electroded Fit-up and Welding Parameters
4.1.5. **Electrode Centering Tolerance.** To determine the maximum distance the electrode can be offset from the groove centerline, three test plates such as in Figure 10 were welded with 1/16", 3/32" and 1/8" electrode offset using the 2x2mm electrode. Cross sections were cut at 1/8" increments in gap widths along the plate. Measurements were taken from the cross sections as shown in Figure 11.

![Figure 11. Measurements for electrode offset](image)

These tests show that the maximum allowable electrode offset is 1/16". When the offset is greater than 1/16", lack of fusion or slag inclusion may occur for gap widths of 3/4" or greater; and undercut deeper than 1/64" will be likely when $G < \frac{1}{2}"$.

4.1.6. **Welding over Sidewall Defects.** Test plates with sidewall gouges of varying depth and radius were welded to determine the maximum depth and minimum radius that can be tolerated. These tests indicate that quality welds can be obtained in joints with sidewall defects providing:

(a) The defects are faired into 1/2" minimum radius.

(b) The local gap width at the deepest point of the defect does not exceed the allowable range of Table III and Table IV.
4.1.7. **Joint Design.** Figure 12 shows the various joint designs that can be used with the twist wire process. The joints shown in Figure 12c, d and e are the most efficient with regard to joint preparation and fit-up since they only require two flame cuts and have a positive reference to fit against during assembly.

Photo 9 shows two joints of the type shown in Figure 12e. Photo 9a was welded using the 2x3/32" flux cored electrode. Photo 9b was welded using the 2x2mm electrode. Photos 10 and 11 show welds of the joint design type shown in Figure 12c. Joint design type 12c has better accessibility to reduce the chances of the torch and contact tip arcing out on the sidewall, and allows easier repair of visual defects during welding. Photo 10 shows the centerline cracking that can be expected on the first and second pass when solid 2x2mm electrode is used. The crack depths are .190” and .185” for the first and second pass respectively. The depth of penetration of the second pass into the first pass is .350”. Photo 11, 12, and 13 show the crack-free welds resulting from the low D/ M ratio of flux cored wires.
Figure 12. Joint design
4.2. Usability of Welding Equipment.

4.2.1. Welding of 20' Plate. One of the main objectives of this study was to test the durability of the twist wire welding process and equipment by using a full scale production mock-up. To accomplish this a 20' x 5' x 2 1/2" carbon steel plate was prepared and welded during a demonstration to the SP-7 panel on January 28, 1986.

The joint design was a 2 degree included angle with a 5/8" backing bar inserted into the joint. Only two problems were encountered during welding both of which were not related to the weld process: 1) the wire feed motor rolls were loose on the root pass causing 7 intervals of lack of sidewall wetting 1/4" - 5/8" long where the feed rolls slipped on the wire. 2) On the third pass the power cables caught on a fairing device (dog) stopping the weld carriage and causing gross undercut and cold lap. Since the demonstration was in progress time was not taken to remove these defects. Except for the above defects the weld had excellent visual appearance. No lack of sidewall wetting, undercut, solidification cracking or porosity was found. The slag was removed by tapping with a slag hammer once every 2" and blowing out the joint with compressed air. The joint was filled in 12 passes including the single 1 1/2" wide cover pass. The backgouge was made in 3 passes with an automatic carbon arc machine. No porosity was seen during backgouge.

The backgouge side was welded with one pass per layer up to 7/8" gap width followed by two passes per layer up to flush and then a 3 pass cover. The travel speed was increased to 16 inches per minute for the two pass per layer beads to give a smooth bead tie in.

The equipment held up extremely well during welding. The shielding gas system design eliminated porosity and problems with weld spatter buildup. The cooling system withstood the heat of cover pass welding (when the gas shielding system is closest to the weld puddle and most likely to overheat).
The first time the 20 foot plate was welded there was a problem with overheating of the contact tip. Photo 14a shows an overheated contact tip used for 2 passes in the 20 foot plate. The overheating was caused by insufficient heat transfer to the torch. Since the Kobe torch was made for a smaller wire size (2x2mm) very little wall thickness is left when the threaded end is bored out for the 2x3/32 flux cored wire. A thicker torch as shown in Photo 15 was made which could be tapped with a larger thread size (3/8”). With a larger thread the contact tip in Photo 14b did not have the problems of accelerated wear, melting, and spatter buildup.

The torch pictured in Photo 15 consists of a copper contact bar brazed between two pieces of Monel for extra stiffness, and two internal cooling loops; one on each side of the wire bore. The durability of the cooling system and the heat transfer across the threads to the contact tip was proved by the fact that the contact tip in Photo 14b was used to fill the entire 20’ plate.

The 20 foot plate was radiographically inspected and found to have 2 slag inclusions totaling 1”, 1 area of lack of fusion totalling 1 3/4” and one transverse crack 5/8” long. The crack was discovered during backgouge at the exact location where the two backing bars butt together. The crack location was marked prior to radiography. It is probable that the crack was due to hydrogen embrittlement since: a) no preheat was used, c) the crack was transverse and occurred at a pre-notched location, d) it propagated only in the high strength weld metal, and e) it was allowed 4 days to develop before backgouge.

The total length of rejectable weld in 240 inches was 3 3/8” or 1.4%
4.2.2. Kobe System The Kobe system was also demonstrated to the SP-7 panel on January 28th. A 5\x5\x2" plate was welded using a 2° level and a 5/8" backing insert. The solid 2x2mm twist wire also worked very well with no visible defects. The plate was filled in 9 passes including a single cover pass. The equipment held up well and is production ready.

The Kobe System has the advantage that the direction of welding can be reversed in the runoff tabs without stopping the machine since slag only needs to be removed every third pass. When the travel speed is reversed without stopping, the stickout is adjusted by raising the torch approximately 1/4" until the amperage meter again reads the proper value. Contact tip life was excellent and the equipment proved to be durable and production ready.

4.2.3. Vision System The Kobe fiber-optic vision system arrived on Jan. 28 so it was not used during the demonstration but was used during completion of the 20 foot plate. The system consists of a viewing lens of excellent quality with a 6' fiber-optic cable leading to a 2 1/2" diameter gun-sight type viewing screen with graduated cross-hairs. The lens can focus from 6" up to 24" from the arc so that it can be kept away from smoke and spatter. The image shows wire, arc, weld puddle and side walls as clearly as a welder could see with a hood. This vision system gives the operator freedom of movement and takes the fatigue out of the process.

Since the twist wire electrode must be centered ± 1/16" in a narrow groove it is very important to have a guidance system to avoid operator fatigue. The twenty foot test plate was welded most the way with the operator on hands and knees and using a welding hood, proving that it can be done without a vision system. However, when the Kobe fiber-optic system was used for the final passes it had instant operator approval.
5. Conclusions.

The twist wire welding process provides an excellent alternative to expensive and time consuming conventional welding processes. The twist wire welding process gives good sidewall fusion in narrow gap weld joints by the inherent weaving or rotating arc. Also, the necessary equipment for twist wire welding is not complicated.

The basic requirements that must be complied with for successful narrow gap welding include the following:

1) Quality control of wire twisting is very important. Details such as twist angle, wrapping, helix, residual torsion stress, serrations and tightness of twists must be monitored.

2) Weld joints that are too narrow will lead to solidification cracking and weld joints that are too wide will cause lack of fusion.

Both large diameter solid wire (2mm) and large diameter flux cored wire (3/32") will produce high quality welds in thick material. Other wire sizes and types failed the useability test of section 4.1.3. Both the 2x2mm solid and the 2x3/32" flux cored wires exceeded the strict useability requirements of section 4. including:

a) a wide range of welding parameters
b) a wide joint fit-up tolerance
c) a wide electrode centering tolerance
d) an acceptable contact tip life
e) ability to weld over sidewall defects
f) low reject rate
The end-of-project demonstration on January 28, 1986 proved the useability of both the KOBE TW1 system using the 2x2mm solid electrode and the 2x3/32" flux cored electrode using PSNS equipment. The reject rate using the 2x3/32" electrode was 1.4% in 240" of weld.

A tracking system is required to avoid operator fatigue when maintaining the ±1/16" electrode centering tolerance. The fiber-optic vision system used gives the operator freedom of movement and eliminates fatigue.
LIST OF REFERENCES

travel speed = 10 ipm
stickout = 7/8"
600A 32V
550A 31½V
425A 31V

* No useable range at high amperage because of a high risk of cracks or lack of fusion at any value of G.
See footnotes a&b of Table 1.

Chart I. Usable Range of Amperage and Gap Width for 2xl/16" solid Electrode
travel speed = 10 ipm
stickout = 1 3/8"
650A 32½V
500A 30V
550A 31V

D/W ratio

See footnotes a & b of Table I.

Chart II. Usable Range of Amperage and Gap Width for 2x2mm Solid Electrode
See footnotes a&b of Table 1.
* The D/W ratio is so low with flux cored wires that the D/W ratio curves only intersect the D/W = 0.8 limit at high amperage. At low amperage the lower gap width limit is set at 3/8". Below 3/8" the gap width is too narrow to accommodate the contact tip.

Chart III. Usable Range of Amperage and Gap Width for 2x1/16” Flux Cored Electrode
See footnote b of Table 1 for explanation of upper gap width limit.

* The D/W ratio is so low with flux cored wires that the D/W ratio curves do not intersect the D/W = .8 limit. The lower gap width limit is set at 3/8". Below 3/8" the gap width is too narrow to accommodate the contact tip.

Chart IV. Usable Range of Amperage and Gap Width for 2x3/32" Flux Cord Electrode
Chart V. Effects of Travel Speed for 2x2 mm Solid Electrode

Amperage = 550
Voltage = 31
stickout = 1 3/8"

••• D/W ratio
××× W₁-G

Gap Width (G): 3/8" 1/2" 5/8" 3/4" 7/8" 1"

W₁-G = 2/64"

lack of fusion

D/W = .8

10 ipm
12 ipm
10 ipm
12 ipm
9 ipm

cracks
Chart VI. Effects of Travel Speed for 2x3/32" Flux Cored Electrode
Chart VII. Effects of Voltage for 2x3/32" Flux Cored Electrode
Photograph 1. First Prototype PSNS Wire Twister
Photograph 2. Second Prototype PSNS Wire Twister
Photograph 3. Tension Equalizer
Twisted 1/16" Diameter Solid Wire Electrode

<table>
<thead>
<tr>
<th></th>
<th>425A</th>
<th>550A</th>
<th>600A</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>.40"</td>
<td>.37"</td>
<td>.40"</td>
</tr>
<tr>
<td>D/W</td>
<td>.94</td>
<td>1.21</td>
<td>1.39</td>
</tr>
<tr>
<td>W1-G</td>
<td>.09"</td>
<td>.09"</td>
<td>.09"</td>
</tr>
<tr>
<td>G</td>
<td>.51"</td>
<td>.50"</td>
<td>.50"</td>
</tr>
<tr>
<td>D/W</td>
<td>.75</td>
<td>1.10</td>
<td>1.22</td>
</tr>
<tr>
<td>W1-G</td>
<td>.05"</td>
<td>.04"</td>
<td>.05"</td>
</tr>
<tr>
<td>G</td>
<td>.63"</td>
<td>.64"</td>
<td>.66"</td>
</tr>
<tr>
<td>D/W</td>
<td>.59</td>
<td>.89</td>
<td>.96</td>
</tr>
<tr>
<td>W1-G</td>
<td>.03"</td>
<td>.01"</td>
<td>.01"</td>
</tr>
<tr>
<td>G</td>
<td>.76"</td>
<td>.76"</td>
<td>.75"</td>
</tr>
<tr>
<td>D/W</td>
<td>.44</td>
<td>.76</td>
<td>.83</td>
</tr>
<tr>
<td>W1-G</td>
<td>.03"</td>
<td>.01"</td>
<td>.01"</td>
</tr>
<tr>
<td>G</td>
<td>.88"</td>
<td>.88"</td>
<td>.88"</td>
</tr>
<tr>
<td>D/W</td>
<td>.40</td>
<td>.96</td>
<td>.74</td>
</tr>
<tr>
<td>W1-G</td>
<td>.02"</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Photograph 4. Cross Sections of 2x1/16" Solid Electrode Welds
Twisted 2mm Diameter Solid Electrode

Photograph 5. Cross Sections of 2x2 mm Solid Electrode Welds
Twisted 1/16" Diameter Flux Cored Wire Electrode

Photograph 6. Cross Sections of 2x1/16" Flux Core Welds
Twisted 3/32" Diameter Flux Cored Electrode

650A 34V

- G = .41"
- D/W = .67
- W1-G = .18"

- G = .48"
- D/W = .62
- W1-G = .16"

- G = .61"
- D/W = .50
- W1-G = .07"

- G = .75"
- D/W = .38
- W1-G = .03"

- G = .86"
- D/W = .34
- W1-G = .03"

550A 32V

- G = .44"
- D/W = .70

- G = .52"
- D/W = .59
- W1-G = .19"

- G = .62"
- D/W = .57
- W1-G = .16"

- G = .77"
- D/W = .49
- W1-G = .12"

- G = .92"
- D/W = .31
- W1-G = .05"

Photograph 7. Cross Sections of 2x3/32" Flux Core Welds
Photograph 8. Wrapping Defects in 2x3/32" Flux Cored Electrode
Photograph 9. Macros of Completed Narrow Gap Joints
Photograph 10. Welding Over Centerline Cracks with the 2x2mm Solid Electrode
Photograph 11. Crack-free 2x3/32" Flux Core Weld in a 20° Bevel
Photograph 12. 2x3/32" Flux Core Weld in a 45° Bevel, 2" Plate
Photograph 13. 2x3/32" Flux Core Weld in a 35° Bevel, 2" Plate
Photograph 14. Contact Tip Life Versus Size of Threaded Conne
Photograph 15. Thicker Torch to Accommodate Larger Contact Tip Threads
APPENDIX I

WELDING PROCEDURE QUALIFICATION/TEST DATA
WELDING PROCEDURE QUALIFICATION/REQUALIFICATION/TEST DATA

1. BASE MATERIAL:
- **GROUP:** 53a to 53a
- **PLATE**
- **PIPE**
- **OTHER**

SPECIFICATION:
- ASTM A302B0
- ASTM A302B

GRADE OR CLASS:
- B

ALTERNATE:
- NA

LENGTH:
- 42" to 42"

WIDTH:
- 12" to 12"

THICKNESS:
- 3" to 3"

QUENCHED & TEMPERED OR ANNEALED:
- normalized

HEAT NO.:
- NA

2. FILLER METAL:
- Alloy Rods, Dual Shield-II

SPECIFICATION:
- AWS A5.59, TYPE E917T-6

SIZE:
- 3/32" (two interlaced 3/32" dia.
- 66-No. wires, 30° twist, angle)

QC NO.:
- NA

GROUP NO.:
- NA

CONSUMABLE INSERT SPEC.:
- NA

TYPE:
- NA

QC NO.:
- NA

3. FLUX:
- NA

TYPE:
- NA

GRADE:
- NA

PARTICLE SIZE:
- NA

OTHER:
- NA

4. CURRENT:
- AC
- DCRP
- DCSP

5. INERT GAS:
- 85% Ar, 15% CO₂

SHIELD FLOW:
- 165 CFH

PURGE FLOW:
- NA CFH

SPECIFICATION:
- NA

6. BASE METAL CLEANING METHOD:
- grind to bright metal

DATE:
- 7/85

TEST NO.:
- FCTW

PROCEDURE NO.:
- 4215

7. WELDING PROCESS:
- SINGLE PROCESS
- MULTIPLE PROCESS
- SAW
- GTAW
- SAW
- FCAW
- OTHER (SPECIFY) Flux Core Arc Welding Wire
- MANUAL
- SEMI-AUTO.
- AUTO. Narrow Gap

8. POWER SOURCE:
- Miller Delta-Well 650

9. JOINT DESIGN:
- WELD ONE SIDE ONLY
- FILLET
- BUTT
- INSERT
- BACKING RING
- REMOVABLE BACKING
- DOUBLE WELDED JOINT
- CLADDING: THICKNESS REQUIRED
- OTHER (SPECIFY) Narrow Gap
- EDGE PREP. METHOD: Flame Cut

10. WELDING POSITION:
- FLAT
- ROLLED
- HORIZONTAL
- FIXED
- VERTICAL
- PROGRESSION
- OVERHEAD
- RESTRICTION

NO. OF TEST ASSEMBLIES EACH POSITION:
- one

11. TORCH:
- MODEL & TYPE: Kobe TW-1
- SINGLE, TANDEM ARC: Single
- OSCILLATION RATE: NA CPM, Dwell NA SEC
- AMPLITUDE: NA TORCH ANGLE: NA
- TORCH OFFSET: NA
- TUNGSTEN SIZE: NA TYPE: NA
- TUNGSTEN EXTENSION: NA
- CUP SIZE: Kobe TW-1
12. HEAT TREATMENT

PREHEAT TEMP. 300°F INTERPASS TEMP. 500°F
MAXIMUM RATE OF HEATING OR COOLING NA

PREHEAT DROPPED AFTER WELDING NA
ANNEAL STRESS RELIEVE TEMP. 1150°F
COOLING FURNACE AIR OIL WATER

IMPACTS CHARPY V NOTCH
WELD METAL (LOCATION) Top 43.42 ft-lbs
Middle 31.49. 30.37.36 Bottom 39.39.39.74
HEAT AFFECTED ZONE (LOCATION) NA 9T 20°F

TEMPER NA of NA
HOLD TIME 3 hrs
COOLING MEDIUM FURNACE COOLED ABOVE 600°F
BASE MATERIAL (LOCATION) NA

RATE OF HEATING ABOVE 600 °F/H 136 °F
BASE MATERIAL PRIOR TO WELDING NA

RATE OF COOLING ABOVE 600 °F/H 200 °F

13. NONDESTRUCTIVE TESTING

<table>
<thead>
<tr>
<th>METHOD</th>
<th>STANDARD</th>
<th>CLASS</th>
</tr>
</thead>
<tbody>
<tr>
<td>PT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RT</td>
<td>N8 0900-003-9100</td>
<td>1</td>
</tr>
<tr>
<td>MT</td>
<td>N8 0900-003-9100</td>
<td>1</td>
</tr>
<tr>
<td>UT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VISUAL</td>
<td>N8 0900-003-9100</td>
<td>4</td>
</tr>
<tr>
<td>WELD PREP</td>
<td>VISUAL</td>
<td>SAT</td>
</tr>
<tr>
<td>ROOT</td>
<td>VISUAL, MT</td>
<td>SAT</td>
</tr>
<tr>
<td>EACH LAYER</td>
<td>VISUAL</td>
<td>SAT</td>
</tr>
<tr>
<td>1/4 THICKNESS</td>
<td>VISUAL, MT</td>
<td>SAT</td>
</tr>
<tr>
<td>BACKGUAGE</td>
<td>VISUAL, MT</td>
<td>SAT</td>
</tr>
<tr>
<td>FINAL</td>
<td>VISUAL, MT, RT</td>
<td>SAT</td>
</tr>
</tbody>
</table>

14. DESTRUCTIVE TESTING

<table>
<thead>
<tr>
<th>TYPE</th>
<th>NUMBER</th>
<th>RESULTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>FACE, TRANSVERSE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FACE, LONGITUDINAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROOT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SIDE, TRANSVERSE</td>
<td>3</td>
<td>SAT (OR FISSURES OR OPEN DEFECTS)</td>
</tr>
<tr>
<td>SIDE, LONGITUDINAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TENSILE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>REDUCED SECTION (TRANSVERSE)</td>
<td>Two Sat.</td>
<td></td>
</tr>
</tbody>
</table>

Tensile, psi 100,000; 94200 fractured in base metal

15. WELDER/WELDING OPERATOR:

Van Ginke/157863 McElwee 156677

REMARKS
Sketch of Joint

- **Narrow Gap Joint Design**: 7/8" to 3/8" square butt, 0° included angle

Parameters

<table>
<thead>
<tr>
<th>Pass No.</th>
<th>Electrode Size</th>
<th>Filler Size</th>
<th>Amps</th>
<th>Volts</th>
<th>Wire Feed</th>
<th>Travel Speed</th>
<th>Shielding Gas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2 x 3/32"</td>
<td>MA</td>
<td>600</td>
<td>28</td>
<td>1.25</td>
<td>9 IPM</td>
<td>65 V</td>
</tr>
<tr>
<td>2</td>
<td>2 x 3/32"</td>
<td>MA</td>
<td>625</td>
<td>24</td>
<td>1.25</td>
<td>9 IPM</td>
<td>65 V</td>
</tr>
<tr>
<td>3</td>
<td>2 x 3/32"</td>
<td>MA</td>
<td>600-625</td>
<td>28.75</td>
<td>1.25</td>
<td>9 IPM</td>
<td>65 V</td>
</tr>
<tr>
<td>4</td>
<td>2 x 3/32"</td>
<td>MA</td>
<td>600-625</td>
<td>28.75</td>
<td>1.25</td>
<td>9 IPM</td>
<td>65 V</td>
</tr>
<tr>
<td>5</td>
<td>2 x 3/32"</td>
<td>MA</td>
<td>600-625</td>
<td>28.75</td>
<td>1.25</td>
<td>9 IPM</td>
<td>65 V</td>
</tr>
<tr>
<td>6</td>
<td>2 x 3/32"</td>
<td>MA</td>
<td>600-625</td>
<td>28.75</td>
<td>1.25</td>
<td>9 IPM</td>
<td>55 V</td>
</tr>
<tr>
<td>7</td>
<td>2 x 3/32"</td>
<td>MA</td>
<td>600-625</td>
<td>28.75</td>
<td>1.25</td>
<td>9 IPM</td>
<td>55 V</td>
</tr>
<tr>
<td>8</td>
<td>2 x 3/32"</td>
<td>MA</td>
<td>600-625</td>
<td>28.75</td>
<td>1.25</td>
<td>9 IPM</td>
<td>55 V</td>
</tr>
<tr>
<td>9</td>
<td>2 x 3/32"</td>
<td>MA</td>
<td>600-625</td>
<td>28.75</td>
<td>1.25</td>
<td>9 IPM</td>
<td>55 V</td>
</tr>
<tr>
<td>10</td>
<td>2 x 3/32"</td>
<td>MA</td>
<td>600-625</td>
<td>28.75</td>
<td>1.25</td>
<td>9 IPM</td>
<td>55 V</td>
</tr>
<tr>
<td>11</td>
<td>2 x 3/32"</td>
<td>MA</td>
<td>600-625</td>
<td>28.75</td>
<td>1.25</td>
<td>9 IPM</td>
<td>55 V</td>
</tr>
<tr>
<td>12</td>
<td>2 x 3/32"</td>
<td>MA</td>
<td>600-625</td>
<td>28.75</td>
<td>1.25</td>
<td>9 IPM</td>
<td>55 V</td>
</tr>
<tr>
<td>13</td>
<td>2 x 3/32"</td>
<td>MA</td>
<td>600-625</td>
<td>28.75</td>
<td>1.25</td>
<td>9 IPM</td>
<td>55 V</td>
</tr>
<tr>
<td>14</td>
<td>2 x 3/32"</td>
<td>MA</td>
<td>600-625</td>
<td>28.75</td>
<td>1.25</td>
<td>9 IPM</td>
<td>55 V</td>
</tr>
<tr>
<td>15</td>
<td>2 x 3/32"</td>
<td>MA</td>
<td>600-625</td>
<td>28.75</td>
<td>1.25</td>
<td>9 IPM</td>
<td>55 V</td>
</tr>
<tr>
<td>16</td>
<td>2 x 3/32"</td>
<td>MA</td>
<td>600-625</td>
<td>28.75</td>
<td>1.25</td>
<td>9 IPM</td>
<td>55 V</td>
</tr>
<tr>
<td>17</td>
<td>Back gauge</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>55 V</td>
</tr>
<tr>
<td>18</td>
<td>2 x 3/32"</td>
<td>MA</td>
<td>575-675</td>
<td>28</td>
<td>1.25</td>
<td>12 IPM</td>
<td>50 V</td>
</tr>
<tr>
<td>19</td>
<td>2 x 3/32"</td>
<td>MA</td>
<td>575-675</td>
<td>28</td>
<td>1.25</td>
<td>12 IPM</td>
<td>50 V</td>
</tr>
</tbody>
</table>

Notes/Remarks

- THE ACTION TO BE VERIFIED IS THAT THE REQUIRED OPERATIONS HAVE BEEN COMPLETED WITH SATISFACTORY RESULTS. IT IS NOT INTENDED THAT THE DESIGNATED PERSON NECESSARILY OBSERVE ALL THE WORK, BUT HE SHOULD HAVE OBJECTIVE EVIDENCE, SUCH AS DATA SHEETS, INSPECTION REPORTS, CERTIFICATION STICKERS OR TAGS, WELD RECORDS, ETC. THAT WORK WAS DONE PROPERLY.

- TEST DATA VERIFIED BY
 - Joe H. Marshall 11/35
 - Approved Head Meeting Eng. Div.
 - Page 3 of 3
I transverse tensile specimens and 3 transverse side bend specimens were tested as requested by Code 138.2. Results are listed below.

<table>
<thead>
<tr>
<th>Tensile Test</th>
<th>Tensile Test</th>
<th>Breaking Load</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.320 sq.in</td>
<td>100,000 psi</td>
<td>132,125 lbf</td>
</tr>
<tr>
<td>1.315 sq.in</td>
<td>94,200 psi</td>
<td>123,875 lbf</td>
</tr>
</tbody>
</table>

Bend Test

Specimen Thickness 3/8"
Mandrel Radius 7/8"

All bend specimens are satisfactory. None contained fissures or open defects.
Charpy Impact Test

Flex Cored Twisted Wire

Tests were conducted at -20°F.

<table>
<thead>
<tr>
<th>M</th>
<th>B</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>39</td>
<td>43</td>
</tr>
<tr>
<td>49</td>
<td>39</td>
<td>42</td>
</tr>
<tr>
<td>30</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Values recorded are stated in ft. lbs.
From: Commander, Naval Sea Systems Command
To: Puget Sound Naval Shipyard (Code 138)

Subj: QUALIFICATION DATA FOR TWISTED WIRE WELDING PROCEDURE

Ref: (a) Puget Sound ltr, 9074, Ser 138/201-85

1. The qualification data for the subject procedure submitted in reference (a) is considered acceptable using the procedure specifically developed for this process.

2. The narrow gap twisted wire procedure is considered acceptable for weld, subject to 100 percent radiographic inspection. Use on other welds would be subject to separate approval by the Naval Sea Systems Command.

CHARLES L. NULL
By direction
APPENDIX II

FLUX CORED TWIST WIRE WELD PROCEDURE SPECIFICATION FOR
MANGANESE MOLYBDENUM TANKS AND JOINT DESIGNS
1. THIS SPECIFICATION CANCELS AND SUPERSEDES WELDING PROCEDURE

SPECIFICATIONS NO. 4215 REV. orig.

WELDING PROCEDURE SPECIFICATION

2. DATE 9/22/86 3. NO. 4215 rev. 1

4. SUBJECT

MANGANESE MOLYBDENUM STEAM ACCUMULATOR TANKS (FLUX CORED TWIST WIRE)

5. WELD PROCESS

FCTW D.C. Rectifier or equiv.

6. POWER SOURCE

Flat

7. WELD POSITION & PROGRESSION

8. BASE METAL (SPECIFICATION & THICKNESS)

ASTM-A-302 gr. B or -500 cl.2 or equiv. 3/16" to 4"

9. SHIELDING GAS/FLOW RATE RANGE

50 cft/h minimum

10. FILLER METAL (SPECIFICATION & DIAMETER)

2x1/16" and

11. PURGING GAS/FLOW RATE RANGE

Alloy Rods Dual Shield II 100D-1 2x3/32" Twisted

N/A

12. ELECTRICAL CHARACTERISTICS

PASS NO. ELEC. SIZE AMPERAGE DCRP POLARITY VOLTAGE

13. TUNGSTEN (TYPE & SIZE)

N/A

ST-12 or equivalent

14. TORCH

3/4" minimum

15. CUP SIZE

TRAVEL SPEED

16. see page 3

see page 3

17. PREHEAT & INTERPASS TEMPERATURE

N/A

300 °F MIN. 500 °F MAX.

18. WIRE FEED RANGE

Wet Accumulator Fabrication and Heat Treat Procedure

19. POST WELD HEAT TREATMENT

Per Procedure 4155

20. WELDER QUALIFICATION

21. CLEANLINESS.

The weld joint area, plus 1/2" of surrounding base metal shall be free of any foreign material such as oil, grease, moisture, paint, lay-out dye, etc. Approved cleaners such as alcohol, Fredon 13 or 11 may be used to remove grease and oil. Mechanical cleaning may also be used.

22. JOINT DESIGN, FIT-UP AND PREPARATION

see page 2

23. TYPICAL BEAD SEQUENCE

see page 2

24. INSPECTION:

A. PRIOR TO WELDING: VISUALLY INSPECT FIT-UP JOINT FOR CLEANLINESS AND JOINT DESIGN COMPLIANCE.

B. DURING WELDING: VISUALLY INSPECT EACH PASS. TEMPERATURE INDICATING CRAYONS SHALL NOT BE USED ON WELD OR BASE MATERIAL WHICH WILL BE WELDED OVER. ALL WELD DEFECTS SHALL BE REMOVED.

C. AFTER WELDING: VISUALLY INSPECT THE FINISHED WELD.

D. VISUAL INSPECTION: ALL VISUAL INSPECTIONS SHALL BE IN ACCORDANCE WITH NAVSHIPS 0900-009-8000 CLASS

E. ADDITIONAL INSPECTIONS SHALL BE AS REQUIRED BY POM, NPEI, OR OTHER AUTHORIZED INSTRUCTIONS.

25. REMARKS AND/OR NOTES:

All requirements not covered by this procedure shall be as specified in Weld Procedure 4155.

PREPARED BY (SIGNATURE)

BRANCH HEAD REVIEW (SIGNATURE)

DISTRIBUTION C/138, C/280.3, S/26

APPROVED BY WELDING ENGINEERING DIVISION HEAD (SIGNATURE)

WELDING PROCEDURE SPECIFICATION 19ND PSNS 10310/3 (REV. 14-75)

WELDING PROCEDURE SPECIFICATION 4215 rev.1

Page 1 of 3
Parameter Ranges for 2x1/16" Twist Wire

<table>
<thead>
<tr>
<th>Gap Width (G)</th>
<th>Amperage</th>
<th>Voltage</th>
<th>Travel Speed (ipm)</th>
<th>Stickout</th>
</tr>
</thead>
<tbody>
<tr>
<td>root pass</td>
<td>425 max</td>
<td>25 min</td>
<td>8-11</td>
<td></td>
</tr>
<tr>
<td>1/4"-1/2"</td>
<td>350-375</td>
<td>25-27</td>
<td>10-12</td>
<td></td>
</tr>
<tr>
<td>1/4"-1/2"</td>
<td>376-400</td>
<td>25-28</td>
<td>10-12</td>
<td></td>
</tr>
<tr>
<td>3/8"-5/8"</td>
<td>401-425</td>
<td>26-29</td>
<td>10-12</td>
<td>11-13/8"</td>
</tr>
<tr>
<td>3/8"-5/8"</td>
<td>426-450</td>
<td>26-29</td>
<td>10-12</td>
<td></td>
</tr>
<tr>
<td>1/2"-11/16"</td>
<td>451-475</td>
<td>26-30</td>
<td>10-11</td>
<td></td>
</tr>
<tr>
<td>1/2"-11/16"</td>
<td>476-500</td>
<td>27-30</td>
<td>10-11</td>
<td></td>
</tr>
<tr>
<td>1/2"-11/16"</td>
<td>501-525</td>
<td>27-31</td>
<td>10-11</td>
<td></td>
</tr>
<tr>
<td>9/16"-11/16"</td>
<td>526-550</td>
<td>28-32</td>
<td>10-11</td>
<td></td>
</tr>
</tbody>
</table>

Parameter Ranges for 2x3/32" Twisted Wire

<table>
<thead>
<tr>
<th>Gap Width (G)</th>
<th>Amperage</th>
<th>Voltage</th>
<th>Travel Speed (ipm)</th>
<th>Stickout</th>
</tr>
</thead>
<tbody>
<tr>
<td>root pass</td>
<td>575 max</td>
<td>26 min</td>
<td>10-11</td>
<td></td>
</tr>
<tr>
<td>3/8"-3/4"</td>
<td>550-575</td>
<td>26-29</td>
<td>10-12</td>
<td></td>
</tr>
<tr>
<td>1/2"-3/4"</td>
<td>576-600</td>
<td>27-30</td>
<td>10-12</td>
<td></td>
</tr>
<tr>
<td>1/2"-7/8"</td>
<td>601-625</td>
<td>28-31</td>
<td>10-11</td>
<td></td>
</tr>
<tr>
<td>5/8"-7/8"</td>
<td>626-650</td>
<td>28-32</td>
<td>10-11</td>
<td></td>
</tr>
<tr>
<td>5/8"-7/8"</td>
<td>651-675</td>
<td>29-33</td>
<td>10-11</td>
<td></td>
</tr>
<tr>
<td>3/4"-7/8"</td>
<td>676-700</td>
<td>30-34</td>
<td>10-11</td>
<td></td>
</tr>
<tr>
<td>Cover Passes</td>
<td>600-625</td>
<td>28-31</td>
<td>13-20</td>
<td></td>
</tr>
<tr>
<td>or 2 Pass per</td>
<td>626-650</td>
<td>28-31</td>
<td>13-20</td>
<td></td>
</tr>
<tr>
<td>Layer Fill</td>
<td>651-675</td>
<td>29-33</td>
<td>14-20</td>
<td></td>
</tr>
<tr>
<td>Passes</td>
<td>675-700</td>
<td>30-34</td>
<td>14-20</td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX III

KOBE TW - 1 EQUIPMENT
TWIST ARC Welding Equipment “TW - 1” demonstrates the best reliability and economy in the TWIST ARC welding process.

Features

Easy operating welding equipment because of its simples structure.

For conventional narrow gap welding equipment it is necessary to bend the wire and to have oscillation in order to penetrate a narrow gap wall. But, with this equipment using a special wire of two threaded wires, such a function is not required and by simply feeding the wire into the center of the narrow gap, narrow gap welding can be performed at a high reliability.

 cioè

Up to 300mm thick welding is available because the location of the long stroke torch can be adjusted up and down.

○ Torch location can easily be adjusted in the narrow gap with just observing the arc by a remote pendant box which can be held in one hand.

○ Being removable from the travel carriage, the welding head of TW-1 can be easily mounted on the manipulator.

TWIST ARC Welding Method means

This is a method which naturally causes swing and rotation movement of the welding arc generated from the ends of two intertwined wires, thus assuring sufficient penetration into the narrow gap wall, assuring attainment of concaved bead surface shape and preventing blow holes inherently occurring in MIG welding, because of the effects of active convection and mixture of molten metal characteristic of the above-mentioned movement.
Features of the TWIST ARC Welding Method

0 Highly Efficient and Economical

Because the cross-section of a gap welded by the TWIST ARC is smaller than that welded by Submerged Arc, this method is economical as well as highly efficient.

0 High Reliability with a Simple Operation

Because of the above mentioned features of TWIST wire, sufficient penetration into the narrow gap wall easily be obtained, and by roughly adjusting the wire feeded point to the center of the narrow gap, highly reliable welding can be performed.

![Generating status of welding arc (as shown by high-speed film)](image)

![A comparison of welding arc time](image)

![An example of narrow gap shape](image)
Application

Applicable position

- Flat position

Applicable plate thickness

- Max. 300 mm

Applicable material

- Mild steel ~ 80 kg/mm² class high tensile steel, low-alloy steel for boiler and pressure vessel application

Groove width

- 14 ± 4 mm (I, J and U form)

Applicable joints

- Circumferential and longitudinal butt joints for boiler and pressure vessel.
 - Butt joints of thick plate for hydraulic power generator, heavy machinery, etc.

Typical Welding Conditions

- Welding current: 500~550 A
- Welding voltage: 29~32 V
- Welding speed: 20~40 cm/min.
- Shield gas: 80% Ar + 20% CO₂
 - For shield gas nozzle
 - Primary gas: 5~10 l/min.
 - Secondary gas: 50 l/min.
 - For shield gas box
 - Primary gas: 50~60 l/min.
 - Secondary gas: 50~60 l/min.
Components and Specifications

<table>
<thead>
<tr>
<th>Components</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Travel Carriage</td>
<td></td>
</tr>
<tr>
<td>Travelling method</td>
<td>Rail guide friction method</td>
</tr>
<tr>
<td>Travel speed</td>
<td>1.5 to 85 cm/min. (5.9 to 33.5 inch/min.)</td>
</tr>
<tr>
<td>Clutch</td>
<td>A manual clutch</td>
</tr>
<tr>
<td>Dimensions and weight</td>
<td>330W × 760D × 175H mm, 39Kgf</td>
</tr>
<tr>
<td></td>
<td>(13.0W × 29.9D × 6.9H inch, 86 lbs)</td>
</tr>
<tr>
<td>Mounting Assembly</td>
<td></td>
</tr>
<tr>
<td>Cross-stream adjustment</td>
<td>Stroke: 80mm (3.2 inch) electric inching method</td>
</tr>
<tr>
<td></td>
<td>Slide speed: 12/14 cm/min. (4.7/5.5 inch/min.) (50/60 Hz)</td>
</tr>
<tr>
<td>Vertical Head adjustment</td>
<td>Stroke: 350mm (13.8 inch) electric inching method</td>
</tr>
<tr>
<td></td>
<td>Slide speed: 24/28 cm/min. (9.4/11 inch/min.) (50/60 Hz)</td>
</tr>
<tr>
<td>Torch angle adjustment</td>
<td>±10° (to the level) by manual hand knob</td>
</tr>
<tr>
<td>Dimensions and weight</td>
<td>570W × 300D × 700H mm, 75Kgf</td>
</tr>
<tr>
<td></td>
<td>(22.4W × 11.8D × 27.6H inch, 165 lbs)</td>
</tr>
<tr>
<td>Wire Feed Unit</td>
<td></td>
</tr>
<tr>
<td>Wire feed speed</td>
<td>Max. 6 m/min. (19.7 ft/min.)</td>
</tr>
<tr>
<td>Applicable wire size</td>
<td>2.0 × 0.64 mm (0.079 × 0.079 inch)</td>
</tr>
<tr>
<td>Dimensions and weight</td>
<td>260W × 280D × 500H mm, 10Kgf</td>
</tr>
<tr>
<td></td>
<td>(10.2W × 11.0D × 19.7H inch, 22 lbs)</td>
</tr>
<tr>
<td>Shield Gas Box and Vertical slide</td>
<td></td>
</tr>
<tr>
<td>Shield gas box</td>
<td>Dual shielding, water cooled type</td>
</tr>
<tr>
<td>Vertical slide</td>
<td>by manual hand knob</td>
</tr>
<tr>
<td>Weight</td>
<td>6 Kgf (13.2 lbs)</td>
</tr>
<tr>
<td>Shield Gas Nozzle</td>
<td></td>
</tr>
<tr>
<td>Shield gas nozzle</td>
<td>Dual Shielding, water cooled type</td>
</tr>
<tr>
<td>Weight</td>
<td>4 Kgf (8.8 lbs)</td>
</tr>
<tr>
<td>Torch</td>
<td></td>
</tr>
<tr>
<td>Applicable wire size</td>
<td>2.0 × 0.64 mm (0.079 × 0.079 inch)</td>
</tr>
<tr>
<td>Weight</td>
<td>2 Kgf (4.4 lbs)</td>
</tr>
<tr>
<td>Tip</td>
<td></td>
</tr>
<tr>
<td>Applicable wire size</td>
<td>2.0 × 0.64 mm (0.079 × 0.079 inch)</td>
</tr>
<tr>
<td>Wire Reel</td>
<td></td>
</tr>
<tr>
<td>Applicable wire weight</td>
<td>20 Kgf (44 lbs)</td>
</tr>
<tr>
<td>Dimensions and weight</td>
<td>500W × 240D mm 9 Kgf</td>
</tr>
<tr>
<td></td>
<td>(19.7W × 9.4D inch, 19.8 lbs)</td>
</tr>
<tr>
<td>Control Box</td>
<td></td>
</tr>
<tr>
<td>Controlling items</td>
<td>* Weld start</td>
</tr>
<tr>
<td></td>
<td>* Weld stop</td>
</tr>
<tr>
<td></td>
<td>* Welding current rheostat (with meter)</td>
</tr>
<tr>
<td></td>
<td>* Welding voltage rheostat (with meter)</td>
</tr>
<tr>
<td></td>
<td>* Travel speed rheostat (with meter)</td>
</tr>
<tr>
<td></td>
<td>* Gas test</td>
</tr>
<tr>
<td></td>
<td>* Wire inching (up/down)</td>
</tr>
<tr>
<td></td>
<td>* Cross-stream adjustment inching</td>
</tr>
<tr>
<td></td>
<td>* Vertical head adjustment inching</td>
</tr>
<tr>
<td></td>
<td>* Travel (forward/backward)</td>
</tr>
<tr>
<td></td>
<td>* Travel (automatic/manual)</td>
</tr>
<tr>
<td></td>
<td>* Crater current rheostat</td>
</tr>
<tr>
<td></td>
<td>* Crater Voltage rheostat</td>
</tr>
<tr>
<td>Dimensions and weight</td>
<td>310W × 220D × 520H mm, 38 Kgf</td>
</tr>
<tr>
<td></td>
<td>(12.2W × 8.7D × 20.5H inch, 61.7 lbs)</td>
</tr>
<tr>
<td>Remote Pendant Box</td>
<td></td>
</tr>
<tr>
<td>Controlling item</td>
<td>Cross-stream adjustment inching</td>
</tr>
<tr>
<td>Cables</td>
<td></td>
</tr>
<tr>
<td>Control cable</td>
<td>Welding power supply-Control box 20 m (65.6 ft)</td>
</tr>
<tr>
<td>Electrode cables</td>
<td>80 mm^2 × 1 m × 2 pcs. (with cable connectors) 0.12 inch^2 × 4.3 ft</td>
</tr>
<tr>
<td>Arc voltage detection cable</td>
<td>10 m (with a permanent magnet) (32.8 ft)</td>
</tr>
<tr>
<td>Sub-control Box</td>
<td></td>
</tr>
<tr>
<td>Controlling items</td>
<td>Control power source ON/OFF</td>
</tr>
<tr>
<td></td>
<td>Control power source indication lamp</td>
</tr>
<tr>
<td>Dimensions and weight</td>
<td>300W × 400D × 210H mm, 20Kgf</td>
</tr>
<tr>
<td></td>
<td>(11.8W × 15.7D × 8.3H inch, 44 lbs)</td>
</tr>
<tr>
<td>Note: Characteristic of D.C. welding power supply and specification of output control rheostat should be noticed in advance.</td>
<td></td>
</tr>
<tr>
<td>Rail</td>
<td></td>
</tr>
<tr>
<td>Dimensions and weight</td>
<td>250W × 1,800L × 60H mm, 30 Kgf</td>
</tr>
<tr>
<td></td>
<td>(9.8W × 70.9L × 2.4H inch, 66 lbs)</td>
</tr>
</tbody>
</table>
Connection Diagram

Hose

Electrode Cable

Water return
Water supply

Welding Power Supply

Regulator flowmeter
Ar
CO₂

Hose

Control box

Wire reel

Mounting assembly

Sub-Control Box

Dropping/constant voltage

Characteristics

Above 550 Amperes

Capability

34 volts

100% duty cycle

General Drawing

Control box

Wire reel

Vertical head adjustment

Torch angle adjustment handle

Cross seam adjustment motor

Travel carriage

Rail

Wire feed unit

Shield gas box

Unit: mm (inch)

429 ± 40 (16.9 ± 1.6)

1150 (45.3)

385 (15.2)

760 (29.9)

AIII-7
WELDING DIVISION

Tokyo Office: Ishizuka-Yaesu Bldg., No. 5-20, Yaesu 1-chome, Chuo-ku, Tokyo, Japan
TEL. (03) 218-7111 TELEX 222-3601 KOBSTL
Cable Address: “KOBESTEEL TOKYO”

New York Office: 529, Fifth Avenue, New York, N. Y., 10017, U.S.A.
TEL. 212-751-9400
TELEX 222341,420781

Diisseldorf Office: 10, Immermann Str. Dusseldorf, West Germany
TEL. 353891 TELEX 858-7514

Los Angeles Office: 707 Wilshire Blvd., Suite 4300,
Los Angeles, California 90017, U.S.A.
TEL. (213) 628-8480,8481 TELEX 0677392

Singapore Office: Tower 2102,21 Floor, DBS Bldg.,
6, Shenton Way, Singapore-1.
TEL. 221-6177,6178 TELEX 23338