Award Number: DAMD17-03-1-0598

TITLE: Genomic Study of Breast Cancer Genes

PRINCIPAL INVESTIGATOR: Garth I. Patterson, Ph.D.

CONTRACTING ORGANIZATION: Rutgers, The State University of New Jersey
New Brunswick, NJ 08901-8559

REPORT DATE: August 2004

TYPE OF REPORT: Final

PREPARED FOR: U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release; Distribution Unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
1. AGENCY USE ONLY (Leave blank)
2. REPORT DATE
August 2004
3. REPORT TYPE AND DATES COVERED
Final (1 Aug 03-31 Jul 04)
4. TITLE AND SUBTITLE
Genomic Study of Breast Cancer Genes
5. FUNDING NUMBERS
DAMD17-03-1-0598
6. AUTHOR(S)
Garth I. Patterson, Ph.D.
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Rutgers, The State University of New Jersey
New Brunswick, NJ 08901-8559
E-Mail: patterson@biology.rutgers.edu
8. PERFORMING ORGANIZATION REPORT NUMBER
9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012
10. SPONSORING / MONITORING AGENCY REPORT NUMBER
11. SUPPLEMENTARY NOTES
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for Public Release; Distribution Unlimited
12b. DISTRIBUTION CODE
13. ABSTRACT (Maximum 200 Words)
Numerous microarray experiments have identified many genes that have altered expression during the progression of breast cancer. Dauer development in *C. elegans* is controlled primarily by a TGFbeta-related pathway, so this system is ideal for studying this signaling pathway. Our hypothesis is that genes that are identified by genetics as important regulators of dauer development will be important regulators of breast cancer progression. We identified genes that are implicated in TGFbeta signaling in *C. elegans* and genes that are implicated in breast cancer progression using microarray data. We tested the function of these genes in TGFbeta signaling in *C. elegans* by RNAi gene knockout. We hoped that the use of a relatively simple system to rapidly learn more about the function of a tumorigenic pathway in breast cancer, will provide a basic foundation for understanding how this pathway acts in the more complex context of breast cancer. We found that the assay for determining whether a particular gene affected dauer formation in *C. elegans* had unexpected problems, and we spent most of our effort solving these problems, and testing a small set of genes for roles in *C. elegans* TGFbeta signaling.

14. SUBJECT TERMS
TGFbeta, insulin, *C. elegans*, dauer

15. NUMBER OF PAGES
14

16. PRICE CODE

17. SECURITY CLASSIFICATION OF REPORT
Unclassified

18. SECURITY CLASSIFICATION OF THIS PAGE
Unclassified

19. SECURITY CLASSIFICATION OF ABSTRACT
Unclassified

20. LIMITATION OF ABSTRACT
Unlimited
Table of Contents

Cover...1
SF 298...2
Table of Contents..3
Introduction..4
Body..6
Key Research Accomplishments......................7
Reportable Outcomes.......................................8
Conclusions...8
References...8
Appendix..12
INTRODUCTION:

Transforming Growth Factorβ (TGFβ) signaling plays an important role in establishment and maintenance of breast cancer, but the pathway both promotes and inhibits tumor growth, depending on the cell's interaction with other cells and signaling pathways. TGFβ is usually considered to be a growth inhibitor in early stages of breast cancer. For example, human primary breast cancer tumors and cell lines often show decreases in TGFβ receptor expression and/or responsiveness to the growth inhibitory effects of TGFβ (Wakefield et al, 2001). TGFβ signaling plays a causative role in mammary tumor suppression in a mouse model (Bottinger et al, 1997, Pierce et al 1995). But the effects of TGFβ are more complex and depend substantially on the environment and internal state of a cell. TGFβ also stimulated the growth of the breast cancer line MCF in defined medium, yet inhibited in serum containing medium (Croxtall et al, 1992). TGFβ signaling is often constitutively activated in metastases, suggesting that TGFβ promotes metastasis, perhaps via its ability to remodel the extracellular matrix (Derynck et al, 2001). TGFβ receptor activation causes metastasis in a mouse model; blockage of TGFβ receptor signaling in the breast cancer cell line 4T1 decreased its ability to metastasize by 10-fold (McEarchern et al 2001).

Insulin-like growth factor (IGF) signaling also plays a critical role in breast cancer growth, but little is known about how TGFβ and IGF signaling interact in breast cancer. Mice overexpressing IGF-I or IGF-II in the mammary gland developed mammary adenocarcinoma at very high rates (Bates, et al 1995; Hadsell et al. 2000). Some interaction between IGF and TGFβ signaling has been seen. For example, IGF-I and TGFβ synergistically regulate the activity of estrogen synthetic enzymes in breast cancer cell lines (Wong et al 2001). Yoneda et al. (2001) isolated bone seeking and brain seeking clones from the breast cancer cell line MDA-231. The parental cells and brain seeking cells showed TGFβ inhibition of anchorage-independent growth in soft agar, but no effect of IGF-I. The bone seeking cells had simultaneous changes in response to both growth factors: IGF-I stimulated anchorage independent growth, but TGFβ no longer had an effect. While these examples suggest a connection between IGF and TGFβ, the mechanistic nature of the connection remains obscure.

Microarray analysis of TGFβ and IGF target genes and genes with altered expression in breast cancer cells is identifying many genes with potentially important roles in breast cancer. Large sets of genes have been identified, which have expression changes correlated with cancer type, stage, clinical prognosis, IGF or TGFβ pathway activation, or mutations in tumor

-4-
suppressors or oncogenes (Clement et al., 2000; Hedenfalk, et al 2001; Martin et al, 2000; Nacht et al, 1999; Oh, et al 2002; Porter et al., 2001; Sorlie et al, 2001; Su et al. 2001; van't Veer et al, 2002; West et al., 2001; Zajchowski et al., 2001). The number of genes with changes in expression correlated with breast cancer progression is over 5000. Because TGFβ and IGF play an important role in breast cancer, many of these changes in expression are probably caused by perturbation of these two signaling pathways. However, we do not know which genes are regulated by which pathways, nor do we know which genes are the most important causes of cancer progression. Some of these genes have a known role in breast cancer. Others have a plausible connection, such as ABCC11, which is an ABC transporter that may be involved in drug resistance. Most interesting are the "new" genes--those that do not have a known role in breast cancer. Some of these genes, such as CALML3 (calmodulin-like 3) and WNT4 have known biochemical or biological functions, but the relationship of these functions to breast cancer is unknown. Other genes are orphans, for which a function has not yet been identified. Any of these "new" genes might have an important role in TGFβ or IGF signaling, and in breast cancer; however, some of the genes are probably upregulated as a consequence of other changes, but are not participating in breast cancer progression. And in most cases, we do not know which genes are responding to perturbations of TGFβ and IGF, and which are responding to other oncogenes or tumor suppressors.

Dauer formation is a developmental event in C. elegans (Riddle 1997). This process is controlled in a fundamental way by TGFβ and IGF-I signaling; the identification of these two pathways in unbiased genetic screens for dauer formation mutants suggests that these pathways are the major means by which the dauer decision is regulated (Patterson et al., 1997, Paradis et al, 1999, Paradis and Ruvkun, 1998, Ogg et al., 1997, Kimura et al., Inoue and Thomas, 2000, Georgi et al., 1990). Both pathways control a common endpoint, dauer formation, and the effect of the genes on the endpoint is synergistic, so integration of signals from the two pathways is an important feature of dauer regulation.

Our proposal was based on this unparalleled opportunity to study TGFβ and IGF-I signaling. The process is simple (relative to breast cancer progression), which simplifies the experiments and their interpretation, which in turn, promotes rapid progress in understanding the problem. The process is controlled in a fundamental way by TGFβ and IGF-I signaling. The existence of null mutants in most of the genes allows the pathways to be manipulated in a clean way—we can work with animals that are completely lacking individual components of one or both pathways. Both pathways control a common endpoint, dauer formation, and the effect of the genes on the endpoint is synergistic, so integration of signals from the two pathways is an important feature of dauer regulation. This fact means that we can learn
much about the mechanism by which these two types of signaling pathways are integrated.

BODY:

Our approved statement of work for this grant included three major tasks:

Task 1. Identify targets for functional tests.
a. The most relevant breast cancer microarray experiments will be identified, data downloaded and genes matched to C. elegans homologs
b. Targets will be selected on the basis of strong regulation of expression, high similarity between human and C. elegans, and putative likelihood of regulatory role in breast cancer.

We identified breast cancer microarray experiments for which we expected to find the most interesting targets, based on our evaluation of the clinical significance of the results (Martin et al, 2000; Oh, et al 2002; Sorlie et al, 2001; van't Veer et al, 2002; West et al., 2001; Zajchowski et al., 2001).

From these, we extracted a small number of targets for initial assays of dauer formation; these targets are shown in Table 1 of the appendix. We intended to use these targets to test and optimize the assay, with the further intention of extracting more targets as needed.

Task 2. Initial test of targets, months 2-7.
a. Three to five hundred of the most promising targets will be assayed for effects on dauer formation.
b. Targets with promising results in initial screen will be retested to verify effects

In attempting to perform this task, we had technical difficulties. Our assay required that we use RNAi to test the function of genes in dauer formation, and we chose the feeding assay (Kamath et al. 2000) Our protocol is to allow adults to lay 100-200 eggs on a plate with the appropriate RNAi bacteria. We used a daf-4 (type II receptor) partial loss of function mutant to provide maximum sensitivity. For positive controls, we used RNAi with daf-3 (suppresses the daf-4 partial loss of function) and daf-4 (enhances the daf-4 partial loss of function). Initially, we used empty vector as a negative control, but as described below, this was problematic. After three days at the appropriate temperature, we counted dauers and non-dauers. For each experiment shown in Table 2, we did three plates in triplicate of each genotype. In attempting to use this assay, we had two major technical problems.
The first technical problem was that our negative control did not work. The standard negative control is to compare animals in which RNAi of the gene of interest is induced to identically handled samples in which an empty vector is used in place of the clone of the gene of interest. We found that this negative control gave consistently low rates of dauer formation. After some effort to solve this problem, we settled on using a set of C. elegans genes with no detectable effect on dauer formation as a negative control.

The second, and much more troublesome, technical difficulty was that the assays were highly variable. We used known TGFβ pathway genes as positive controls: one gene \((daf-4)\) that would be expected to increase dauer formation, and another \((daf-3)\) that would be expected to decrease dauer formation. Initially, these controls did not work reliably, but we optimized the protocol and got these controls working reasonably well. Once we had the positive controls working well, we still saw large differences in results from experiment to experiment with the experimental genes. We devoted most of our time to further optimizing the protocol to get results that we believed were satisfactory.

In the process of optimizing our protocol, we chose to use the genes shown in Table 2 of the appendix, rather than the genes identified in task 1, because these RNAi clones had been shown to function in other assays. We felt that having clones of known quality was important given the difficulty with the assay.

In the end, we found that the variation in the assay was such that significant results were seen only after 10 or more experiments. This number of experiments is prohibitively difficult. The design of our proposal depended on having a quick and straightforward assay, a goal that we were unable to achieve.

As a consequence of these technical difficulties, we were not able to test as many genes as we proposed for task 2, and we were unable to proceed to task 3. Because we tested only a few genes, and these genes were not the genes identified in task 1, we are unable to comment on our original hypothesis that genes identified as important in dauer formation are important in cancer progression.

KEY RESEARCH ACCOMPLISHMENTS:

Developed assay for testing the effect of RNAi on dauer formation

Tested a small number of genes for effects on dauer formation
REPORTABLE OUTCOMES:

Abstracts

Control of aging and developmental arrest by TGFβ and insulin pathways during C. elegans diapause
Tao Liu, Manjing Pan, Garth Patterson
2004 East Coast C. elegans Meeting abstract

CONCLUSIONS:

We attempted to develop an assay for the study of breast cancer related genes in C. elegans. For technical reasons, our assay was inadequate to achieve our goal.

References

Hedenfald I, Duggan D, Chen Y, Radmacher M, Bittner M, Simon R,

Appendix

Table 1. Genes regulated in C. elegans TGFβ mutants and in breast cancer.

<table>
<thead>
<tr>
<th>Human Gene</th>
<th>How implicated in breast cancer</th>
<th>Biochemical or Biological Role</th>
<th>C. elegans homolog</th>
<th>Expression in C. elegans TGFβ mutants</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGR2-- Anterior gradient 2 (Xenopus) homolog</td>
<td>coexpressed w/estrogen re-ceptor in breast cancer cells</td>
<td>unknown</td>
<td>F49H12. E</td>
<td>2.5 fold up</td>
</tr>
<tr>
<td>RCN1; RCN Reticulocalbin 1</td>
<td>expression correlated with invasive potential</td>
<td>unknown, resides in endoplasmic reticulum, binds calcium</td>
<td>M03F4.7</td>
<td>2 fold up</td>
</tr>
<tr>
<td>ANP32D-member of the pp32 protein family</td>
<td>some pp32s are oncogenes, others tumor suppressors</td>
<td>histone acetylase inhibition</td>
<td>T19H12. 2</td>
<td>2.5 fold down</td>
</tr>
<tr>
<td>NDRG1-N-myc down-stream regulated gene 1</td>
<td>downregulated in breast cancer</td>
<td>regulates proliferation and differentiation by unknown mechanism</td>
<td>ZK1073. 1</td>
<td>2 fold down</td>
</tr>
<tr>
<td>DRIM—Down regulated in metastasis</td>
<td>downregulated in metastatic breast cancers</td>
<td>unknown</td>
<td>F18C5.3</td>
<td>2.5 fold down</td>
</tr>
<tr>
<td>EIF3S3, Eukaryotic translation initiation</td>
<td>Amplified and overexpressed in BC</td>
<td>regulation of protein synthesis</td>
<td>C41D11. 2</td>
<td>2 fold down</td>
</tr>
<tr>
<td>aa487428</td>
<td>Expression correlated with breast cancer type</td>
<td>unknown</td>
<td>M02B7.2</td>
<td>2 fold down</td>
</tr>
<tr>
<td>flj10948</td>
<td>Expression correlated with breast cancer type</td>
<td>Similar to AUH, which binds to the 3' untranslated region of oncogene mRNAs</td>
<td>F11A3.1,</td>
<td>3 fold down</td>
</tr>
<tr>
<td>flj13758</td>
<td>Expression correlated with breast cancer type</td>
<td>unknown</td>
<td>F49e12.1 0</td>
<td>2 fold down</td>
</tr>
<tr>
<td>crabp1-cellular retinoic acid binding protein 1</td>
<td>Expression correlated with breast cancer type</td>
<td>may influence the intracellular level of free retinoic acid</td>
<td>T22G5.2, T22G5.6</td>
<td>4 fold down 2 fold up</td>
</tr>
</tbody>
</table>
Table 2. RNAi knockdown assays.

<table>
<thead>
<tr>
<th>Gene name</th>
<th>function</th>
<th>Dauer expr<sup>1</sup></th>
<th>Log odds ratio<sup>2</sup></th>
<th>T test p value<sup>3</sup></th>
<th>Binomial p value<sup>4</sup></th>
<th>Log odds ratio of individual experiments<sup>5</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>DAF-3</td>
<td>control</td>
<td>-4.53</td>
<td>7E-06</td>
<td>8E-06</td>
<td>0</td>
<td>0 to 0.8</td>
</tr>
<tr>
<td>F33D11.1</td>
<td>LIM domain</td>
<td>-1.12</td>
<td>0.07</td>
<td>0.05</td>
<td>1</td>
<td>1 to 6</td>
</tr>
<tr>
<td>T07D10.4</td>
<td>C type lectin</td>
<td>-1.02</td>
<td>0.01</td>
<td>0.03</td>
<td>1</td>
<td>2 to 9</td>
</tr>
<tr>
<td>L4440</td>
<td>control</td>
<td>-0.95</td>
<td>0.01</td>
<td>0.07</td>
<td>1</td>
<td>4 to 7</td>
</tr>
<tr>
<td>C17H1.2</td>
<td>novel</td>
<td>3.5</td>
<td>-0.82</td>
<td>0.01</td>
<td>0</td>
<td>1 to 5</td>
</tr>
<tr>
<td>K07A1.7</td>
<td>novel</td>
<td>3.4</td>
<td>-0.66</td>
<td>0.07</td>
<td>0</td>
<td>2 to 5</td>
</tr>
<tr>
<td>T03F1.6</td>
<td>novel</td>
<td>2.4</td>
<td>-0.65</td>
<td>0.24</td>
<td>1</td>
<td>2 to 3</td>
</tr>
<tr>
<td>C35A5.8</td>
<td>novel</td>
<td>1.0</td>
<td>-0.58</td>
<td>0.33</td>
<td>1</td>
<td>2 to 2</td>
</tr>
<tr>
<td>B0414.3</td>
<td>histone H1 and H5</td>
<td>-2.6</td>
<td>-0.56</td>
<td>0.31</td>
<td>0</td>
<td>3 to 3</td>
</tr>
<tr>
<td>F09C3.1</td>
<td>ras GAP</td>
<td>-2.7</td>
<td>-0.43</td>
<td>0.25</td>
<td>4</td>
<td>1 to 5</td>
</tr>
<tr>
<td>K03B8.7</td>
<td>novel</td>
<td>18.9</td>
<td>-0.42</td>
<td>0.61</td>
<td>1</td>
<td>6 to 1</td>
</tr>
<tr>
<td>R09B3.2</td>
<td>RNA recognition</td>
<td>-3.5</td>
<td>-0.41</td>
<td>0.4</td>
<td>0</td>
<td>2 to 2</td>
</tr>
<tr>
<td>R11A5.6</td>
<td>novel</td>
<td>-2.3</td>
<td>-0.33</td>
<td>0.25</td>
<td>0</td>
<td>1 to 1</td>
</tr>
<tr>
<td>T27F6.2</td>
<td>C-type lectin</td>
<td>6.1</td>
<td>-0.17</td>
<td>0.61</td>
<td>1</td>
<td>6 to 1</td>
</tr>
<tr>
<td>M01E11.5</td>
<td>Cold shock DNA binding</td>
<td>-2.3</td>
<td>-0.15</td>
<td>0.77</td>
<td>0.15</td>
<td>6 to 3</td>
</tr>
<tr>
<td>T23B3.2</td>
<td>UPF0057</td>
<td>2.1</td>
<td>-0.13</td>
<td>0.37</td>
<td>0.31</td>
<td>0 to 2</td>
</tr>
<tr>
<td>C17H1.7</td>
<td>novel</td>
<td>9.5</td>
<td>0.03</td>
<td>0.93</td>
<td>0.17</td>
<td>3 to 6</td>
</tr>
<tr>
<td>C33H5.4</td>
<td>kinesin-like</td>
<td>-1.5</td>
<td>0.33</td>
<td>0.23</td>
<td>0.09</td>
<td>4 to 3</td>
</tr>
<tr>
<td>C33H5.5</td>
<td>novel</td>
<td>0.45</td>
<td>0.11</td>
<td>0.13</td>
<td>0.45</td>
<td>4 to 5</td>
</tr>
<tr>
<td>H16D19.2</td>
<td>Lectin C-type</td>
<td>4.3</td>
<td>0.45</td>
<td>0.41</td>
<td>0.21</td>
<td>4 to 3</td>
</tr>
<tr>
<td>K09A11.4</td>
<td>p450</td>
<td>2.1</td>
<td>0.49</td>
<td>0.81</td>
<td>0.38</td>
<td>1 to 1</td>
</tr>
<tr>
<td>C34B2.4</td>
<td>LIM domain</td>
<td>6.1</td>
<td>0.54</td>
<td>0.29</td>
<td>0.21</td>
<td>5 to 1</td>
</tr>
<tr>
<td>C26C6.4</td>
<td>DUF271</td>
<td>4.3</td>
<td>0.87</td>
<td>0.02</td>
<td>0.03</td>
<td>4 to 5</td>
</tr>
<tr>
<td>C35E7.9</td>
<td>major sperm protein</td>
<td>3.8</td>
<td>0.97</td>
<td>0.01</td>
<td>0.01</td>
<td>7 to 5</td>
</tr>
<tr>
<td>F46F11.2</td>
<td>Cold shock DNA binding</td>
<td>-3.5</td>
<td>1.17</td>
<td>0.05</td>
<td>0.05</td>
<td>8 to 2</td>
</tr>
<tr>
<td>DAF-4</td>
<td>control</td>
<td>1.69</td>
<td>9E-04</td>
<td>1E-04</td>
<td>12</td>
<td>4 to 1</td>
</tr>
</tbody>
</table>

¹ This is the fold change in expression comparing dauer animals to non-dauer animals.

² The logs odd ratio is defined as:

\[
\frac{\text{number of dauer animals in experimental}}{\text{number of non-dauers in experimental}} \times \frac{\text{number of dauers in negative control}}{\text{number of non-dauers in negative control}}
\]

A positive log odds ratio indicates that the experimental RNAi favored dauer formation (interfered with TGFbeta signaling), and a negative value the converse.

³ This p value uses the log odds ratio in a t test against the null hypothesis of no effect, i.e. log odds ratio of zero.
This p value is non-parametric and compares the number of experiments with positive and negative log odds ratios with the null hypothesis of no effect (equal numbers of experiments with positive and negative values.

These four columns show the numbers of independent experiments performed for each gene. Ranges of log odds ratios, and the number of experiment in each range, are shown.