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Abstract:  In harsh or dangerous environments, robots can lose 
function in multiple sensors and effectors over the mission, thus 
reducing their overall capability.  If the capabilities provided by 
these sensors/effectors are necessary for mission completion, having 
an adaptive system that can overcome these losses is critical to 
mission accomplishment.  In this paper, we propose a solution using 
multiple agents, organized as a team, to give robots the ability to 
adapt and overcome sensor/effector loss.   When a sensor/effector is 
lost, the team can reorganize to provide the robot highest operational 
utility, given its current capabilities.  The robot can adapt to such 
losses by substituting other sets of sensors/effectors to provide the 
best overall capability.  While the robot may operate at a lower level 
of effectiveness, it will be able continue its mission, if possible. 

Keywords:  Organization, Capability, Multiagent Systems 

I. INTRODUCTION 
Humans possess five senses in which to interpret, 
communicate with and reason about their physical 
environment.  If a human loses sensor function, such as the 
loss of sight, the other sensors in their body adapt by 
becoming more attuned to other environmental stimuli, 
allowing that person to, at least partially, compensate for the 
loss of function.  This sensory adaptation is found not only in 
humans but also with other animal species.  Other species also 
have the ability to compensate for lost capability, through 
tradeoff to other sensory types or by capability adaptation.  In 
this paper, we introduce an organization-based multiagent 
system model to capture the adaptive abilities found in animal 
species and extend it to robots. 

A common use for robots is conducting work in 
environments deemed too dangerous for humans.  Examples 
include military operations such as reconnaissance over enemy 
held territory, clearance of land mines, and space 
travel/exploration [1].  In such a dangerous environment, it is 
probable that physical robotic capabilities, such as sensors, 
will suffer damage, either limiting their functionality or 
making them completely inoperable.  Using the model of 
human and animal self-organization [2], we examine sensor 
capability tradeoff and sensor compensation using 
organization-based algorithms integrated into a multiagent 
system (MAS) architecture. 

In our research, we have developed an organization-based 
MAS (OMAS) model that can be applied to the problem of 
sensor capability loss in robots [11].  As one sensor becomes 
unusable or loses function, another sensor is allocated to the 
organization and the entire set of sensor agents potentially 

reassigned to new tasks for to insure a fault tolerant system 
capable of continuing to accomplish its goals. 

The goal of this research is to show the viability of 
applying organizational models and MAS for use in robotics.  
Specifically, we want to show that the resulting Organization-
based multiagent systems are a highly useful and functional 
alternative to traditional teamwork schemes and formalisms 
[3, 4].  Complimentary work in this area has proposed the use 
of networked robotics without a self-reorganizing multiagent 
concept [5].  Our research takes into consideration fault 
tolerant systems and architectures that deal with detecting and 
handling sensor failure and faults [6], and calibration of 
sensors to adapt to unknown environmental conditions [7].  
Our model tolerates faults by managing the available hardware 
sensors as a group, focusing on managing their entire set of 
capabilities instead of simple "brute force" approach to sensor 
switching in cases of failure. 

This paper defines our organization model in Section II.  In 
Section III, a simple multiagent approach is defined and then 
extended by integrating our organization model.  Section IV 
describes the application of the OMAS model to a single robot 
to implement capability adaptation.  Section V describes the 
results from our implementation evaluation while Section VI 
concludes by describing further OMAS research. 

II. ORGANIZATION MODEL  
To implement teams of autonomous, heterogeneous agents, 

we created an organizational model, which defines and 
constrains the required elements of a stable, adaptable and 
versatile team. While most people have an intuitive idea of 
what an organization is, there are no standard definitions. 
However, in most organizational research, organizations have 
typically been understood as including agents playing roles 
within a structure in order to satisfy a given set of goals. Our 
proposed organizational model (O) is contains a structural 
model, a state model and a transition function. 

O = <Ostructure, Ostate, Otrans> 

Fig. 1 shows the combined structural and state models using 
standard UML notation.  The structural model includes a set 
of goals (G) that the team is attempting to achieve, a set of 
roles (R) that must be played to attain those goals, a set of 
capabilities (C) required to play those roles, and a set of rules 
or laws (L) that constrain the organization.  The model also 
contains static relations between roles and goals (achieves), 
roles and capabilities (requires), and individual roles (related). 
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Fig. 1.Organizational Model 

Formally, we model the organization structure as a tuple. 
Ostructure = <G, R, L, C, achieves, related, requires> 

where 

achieves: R, G → [0 .. 1] 
related: R, R→ Boolean 
requires: R, C → Boolean 

The team goals include the goal definitions, goal-subgoal 
decomposition, and the relationship between the goals and 
their subgoals, which are either conjunctive or disjunctive. 
Roles define parts or positions that an agent may play in the 
team organization. In general, roles may be played by zero, 
one, or many agents simultaneously while agents may also 
play many roles at the same time. Each role requires a set of 
capabilities, which are inherent to particular agents and may 
include sensor capabilities (sonar, laser, or video, etc.), 
actuator capabilities (movement type, grippers, etc.), or 
computational capabilities (processing power, algorithms, 
communications, etc.).  Robots are unique in the area of 
capabilities versus software agents; robot’s physical 
capabilities may improve or degrade over time, which can 
often cause the team to reorganize.  Organizational rules are 
used to constrain the assignment of agents to roles and goals 
within the organization. Generic rules such as “a agent may 
only play one role at a time” or “agents may only work on a 
single goal at a time” are common. However, rules are often 
application specific, such as requiring particular agents to play 
specific roles.  The structural model relations define mappings 
between the structural model components described above. A 
role that can be used to satisfy a particular goal is said to 
achieve that goal, while a role requires specific capabilities 
and may work directly with other roles, thus being related to 
those roles.  Achieves is modeled as a function to capture the 
relative ability of a particular role to satisfy a given goal. 

The organizational state model defines an instance of a 
team’s organization and includes a set of agents (A) and the 
actual relationships between the agents and the various 
structural model components.  

Ostate= <A, possesses, capable, assigned, coord> 

where 

possesses: A, C → [0 .. 1] 
capable: A, R → [0 .. 1] 

assigned: A, R, G → [0 .. 1] 
coord: A, A → Boolean 

An agent that possesses the required capabilities for a 
particular role is said to be capable of playing that role. Since 
not all agents are created equally, possesses is modeled as a 
real valued function, where 0 would represent absolutely no 
capability to play a role while a 1 indicates an excellent 
capability.  In addition, since agent capabilities may degrade 
over time, this value may actually change during team 
operation.  The capable function defines the ability of an agent 
to play a particular role and is computed based on the 
capabilities required to play that role (see Section III).  During 
the organization process, a specific agent is selected to play a 
particular role in order to satisfy a specific goal.  This 
relationship is captured by the assigned function, which 
includes a real valued score that captures how well an agent, 
playing a specific role, can satisfy a given goal.  When an 
agent is actually working directly with another agent, it is 
coordinating (coord) with that agent. Thus, the state model 
defines the current state of the team organization within the 
structure provided by the structural model.  

The organization transition function defines how the 
organization may transition from one organizational state to 
another over the lifetime of the organization, Ostate(n) → 
Ostate(n+1). Since the team members (agents) as well as their 
individual capabilities may change over time, this function 
cannot be predefined, but must be computed based on the 
current state, the goals that are still being pursued, and the 
organizational rules. In our present research with purely 
autonomous teams, we have only considered reorganization 
that involves the state of the organization.  However, we have 
defined two distinct types or reorganization: state 
reorganization, which only allows the modification of the 
organization state, and structure reorganization, which allows 
modification of the organization structure (and may require 
state reorganization to keep the organization consistent).  To 
define state reorganization, we simply need to impose the 
restriction that 

 Otrans(O).Ostructure = O.Ostructure (1) 

Technically, this restriction only allows changes to the set of 
agents, A, the coord relation, and the possesses, capable, and 
assigned functions.  However, not all these components are 
actually under the control of the organization.  For our 
purposes, we assume that agents may enter or leave 
organizations or relationships, but that these actions are 
triggers that cause reorganizations and are not the result of 
reorganizations.  Likewise, possesses (and thus capable as 
well) is an automatic calculation on the part of an agent that 
determines the roles that it can play in the organization.  This 
calculation is totally under control of the agent (i.e. the agent 
may lie) and the organization can only use this information in 
deciding its organizational structure.  Changes in an agent’s 
capabilities may also trigger reorganization.  That leaves the 
two elements that can be modified via state reorganization: 
assigned and coord.  Thus, we define state reorganization as: 

Otrans(state) : O →  O (2) 

where 



Otrans(state)(O). Ostruct = O.Ostruct 
    ∧ Otrans(state)(O). Ostate.A = Ostate.A 
    ∧ Otrans(state)(O).Ostate.possesses = Ostate.possesses (3) 
    ∧ Otrans(state)(O).Ostate.capable = Ostate.capable 

III. ORGANIZATION BASED SENSOR CONTROLLER MAS  
Our proposed solution is based on the concept of a 

cooperative multiagent system, or a multiagent team.  
Generically, the team consists of Sensor Agents, Effector 
Agents and Fusion Agents.  Sensor Agents physically monitor 
and communicate with the hardware sensors and serve as the 
sensor’s software interface.  Fusion Agents understand how to 
fuse data captured by the Sensor Agents into information 
streams.  Effector Agents use the fused information to act upon 
the environment.  The combination of the Fusion, Effector and 
Sensor Agents comprises the set of all agents required to 
monitor, interpret and react to the environment.  The simple 
sensor controller MAS shown in Fig. 2 is static and therefore 
lacks the ability to adapt to sensor loss or attrition of Sensor, 
Effector or Fusion Agents.  If a sensor fails, the team cannot 
fully accomplish its mission. 

The organization-based version of the system integrates 
our organizational model.  The result is a system with the 
ability to alter its organization in the case of a team member 
loss or sub-optimal performance.  An example structure of an 
OMAS is shown in Fig. 3 where the OMAS contains Agent0 
thru Agentn connected to Sensor Agent A0 through Sensor 
Agent An.  The Sensor B agents are not part of the OMAS in 
this description as there is no sensor failure.  To fully 
understand OMAS, we define the foundational principles of 
capability adaptation and capability maximization through the 
formalization of basic capability concepts. 

A. Capability Formalization 
So far, we have used the term capability generically.  

However, we must define it more precisely before moving on.  
A capability’s existence is based on the collective sense in 
which it is viewed.  To specify this we further define 
capabilities in relation to agent and roles that exist within a 
self-reorganizing multiagent team.  As described above, an 
agent possesses specific capabilities while roles require 
particular capabilities, each with specific scores. 
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Fig. 2.Multiagent System (MAS) 
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Fig. 3. Organization-based MAS 

The capability set of an agent, Ca, varies from the empty 
set, if the agent possesses no capability, to a complete set of 
the capabilities that the agent intrinsically possesses.  
Normally even a simple agent has multiple capabilities.   

 }0),(|{)( >= capossessescaCa
 (4) 

Likewise, the capability set of a role, Cr, is the set of 
capabilities required to play that specific role.  All non-trivial 
roles must have at least one capability in order to accomplish 
some task or goal.   

 )},(|{)( crrequirescrCr =  (5) 

The capability of an agent, a, to play a specific role, r, is 
computed by the role capability function rcf, which is part of 
the role definition.  If an agent does not possess a required 
capability, then the agent has no capacity to play that role 
(r.rcf(a) =0).  Thus, the capability score of an agent playing a 
particular role is defined as 

 )(.),( arcfrracapable =  (6) 

The agents that form a team have a collective capability.  
Similarly, the set of roles required to achieve the overall 
organizational goal also have a set of required capabilities.  
We define these as team capabilities, CA, and required 
capabilities, CR.   

 )}(:|{)( aCacAacOCA ∈•∃=  (7) 

 )}(:|{)( rCrcRrcOCR ∈•∃=  (8) 

To form a viable organization, these sets must be 
minimally overlapping such that the capabilities required are 
contained in the capabilities available from the agents such 
that CR(O) ⊆ CA(O). 

A. Capability Adaptation 
Capability adaptation occurs when one or more sensors 

are substituted for another sensor during reorganization.  
Adaptation is the transition the organization must realize to 
include the new sensors and use them to carry out the 
organization’s mission.  The organization allows an adaptation 
to a new sensor (or sensors) that can substitute at least some 
percentage of its predecessor’s capability.  The possesses 
value for each sensor is context dependent.  For example, 
consider three types of sensors:  sonar, tactile bump and 



infrared.  At an abstract level, each sensor type can sense 
objects in the robot’s task environment, but at differing levels 
of capability.  In one situation, the bump sensor may provide 
higher capability, whereas in another situation the sonar or 
infrared sensor may provide a higher capability.   

B. Capability Maximization 
Our research assumes the organization strives to operate at 

all times using the optimal configuration.  To achieve the 
optimal organization, the assignment of agents to roles and 
goals, must be maximized.  If the organization has a choice in 
which agents play which roles, it should generally choose the 
more capable.  In terms of robots, the organization will opt to 
employ the most capable sensors given the current situation. 
Ideally, an organization will select the best set of assignments 
to maximize its ability to achieve its goals, which requires 
maximizing its organizational capability score, Os, given by 

 ∑
∀

=
gra

graassignedOs
,,

),,(  (9) 

where assigned(a,r,g) = 0 if that agent is not assigned to play 
a specific role to satisfy a goal.   

C. Example Scenario 
To demonstrate capability adaptation we present a simple 

multiagent team scenario. The team organization has one 
overall goal, sense0-270, which is decomposed into three 
subgoals – sense0-90, sense90-180, and sense180-270.  There are four 
agents (sonar1, sonar2, sonar3, bump1), three roles (sensorA, 
sensorB, sensorC), and four capabilities (detect0-90, detect90-180, 
detect180-270, detect270 - 360).  Thus, the organization is defined 
using the following sets. 
 },,{ 27018018090900 ooo −−−= sensesensesenseG  
 }1,3,2,1{ bumpsonarsonarsonarA =  
 ),,{ sensorCsensorBsensorAR =
 },,,{ 36027027018018090900 oooo −−−−= detectdetectdetectdetectC  

The capabilities required for each role are as follows. 
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Initially, the capabilities of the four agents are: 
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In this case, more than one possible organization state 
satisfies the overall system goals.  Assuming sonars have a 
higher capability score than bump sensors for obstacle 
detection, the organization chooses sonars over bump sensors 
and the initial assignment set is as follows. 
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Fig. 4. Nomad Scout Robot 

In this case, sonar1 is assigned to play the role of sensorA, 
sonar2 is assigned the role of sensorB, and sonar3 is assigned 
the role of sensorC.  If either sonar2 or sonar3 fail, the team 
could reorganize and replace either with bump1.  If sonar3 
failed, the new organization assignments would be as follows. 
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IV. OMAS IMPLEMENTATION 
To evaluate the OMAS, we simulated specific scenarios 

using a robot based on the Nomad Scout robot, as shown in 
Fig. 4.  The Scout is a simple robot, but it is sufficient for this 
research.   

An important measure of a robot is its physical abilities, 
each with a specific set of capabilities to play a role within an 
organization.   Whereas a robot is defined by its computational 
and physical characteristics and capabilities, we used the 
common sonar and bump sensors to evaluate adaptation and 
capability tradeoff.  

The Nomad Scout robot has sonar and tactile bump 
sensors.  The sonar ring is a Sensus 200 consisting of 16 
Polaroid 6500 sonar ranging modules fixed in 22.5º 
increments in a full 360º configuration.  The Polaroid 6500 
module can accurately measure distances from 6 inches to 35 
feet, ± 1%.  There are six bump sensors configured on the 
front and rear arcs of the robot.  The bump sensors are tactile, 
so to physical contact must be made with a physical object to 
trigger a response.  The bump sensors, unlike the sonar, do not 
provide a 360º range of detection [12].  A graphical 
comparison of the sonar and bump sensor configurations is 
shown in Fig. 5, which shows that sonar 3-5 and 11-13 cannot 
adapt to bump sensors because there is a “dead area” with the 
bump sensor configuration.  This indicates that if any sonar, in 
this range go out, there cannot be an adaptation, which negates 
the possibility of successful reorganization.   
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Fig. 5. Comparison of Sensor Coverage 



Table 1. Capability Scores 
Agents\Roles A B C D E F G H I J K M N O P Q

Sonar 0 1.0
Sonar 1 1.0
Sonar 2 1.0
Sonar 3 1.0
Sonar 4 1.0
Sonar 5 1.0
Sonar 6 1.0
Sonar 7 1.0
Sonar 8 1.0
Sonar 9 1.0

Sonar 10 1.0
Sonar 11 1.0
Sonar 12 1.0
Sonar 13 1.0
Sonar 14 1.0
Sonar 15 1.0
Bump 0 0.2
Bump 1 0.2 0.2
Bump 2 0.2 0.2
Bump 3 0.2
Bump 4 0.2 0.2
Bump 5 0.2 0.2  

To enable reorganization, we defined the initial capability 
scores (capable) for each agent in the system (each one 
corresponding to a specific sensor) on the Nomad.  The initial 
capability scores for each agent and each role (A-Q) are shown 
in Table 1.  Empty table entries correspond to a 0 score. 

In designing a simulation to test the reorganization of the 
robot’s sensor capabilities, several cases were considered.  The 
first case is for the robot to find impediments in a room.  The 
second case is obstacle avoidance.  Case 3 is avoiding 
obstacles where there are other robots in the room using the 
same sonar module.  We used the first case to consider 
organizational adaptation of sonar to bump sensors.  As 
previously stated, the adaptation of these two sensor types is 
situation dependent.  This case involves the robot searching a 
large area for impediments.  Because of the size of the area, 
the sonar agents have a higher rcf score (1.0) due to their 
ability to sense up to 35’ in all directions; bump sensors must 
come into direct contact thus lowering their rcf score (0.2).  
Because the sonar had a higher rcf score and could play all 16 
roles, the initial assignment of roles to agents consisted solely 
of sonar agents as shown in Fig. 6.  To limit the number of 
active agents, the organization allows only one agent at a time 
to play each of the 16 roles.   

When a sonar sensor fails, its agent can no longer play its 
assigned role and the MAS must reorganize.  If another 
(bump) agent has the required capability, it will be selected to 
play the appropriate role.  Even if successful, the 
reorganization will reduce the team’s overall capability score, 
as defined in Equation 9, due to the lower capability scores of 
the replacement bump sensor agents.  Another constraint, 
shown in Fig. 5, are the dead areas of the bump sensor 
configuration, which indicates the robot has blind spots on 
each side due to the lack of bump sensors.  If any of the sonars 
3 - 5 or 11 - 13 fail, a new organization cannot be found and 
reorganization fails.  An example of a valid reorganization is 
shown in Fig. 6 and Fig. 7, where sonar 15 fails, thus causing 
the Sonar15 agent playing role Q to fail.  In this case, the 
MAS will reorganize and select sensor Bump1 to play role Q 
as shown in Fig. 7. 
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Fig. 6. Initial MAS Organization 
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Fig. 7. Re-organized MAS 

To evaluate the OMAS, we developed a Java simulator to 
provide large sample statistics and results over thousands of 
executions.  We measure the effects of the executions with 
differing predicted sensor failure rates also taking into 
consideration that some sonar failures do not allow for 
successful reorganization.  The success of the experiments is 
measured by whether the OMAS successfully reorganizes 
when failures occur.  The baseline scenario was used to show 
that the OMAS could initially organize without issue with 0% 
sonar failure rate.   Then, the failure rates where then 
increased in 1% and 5% increments, which were then 
compared to evaluate the validity of the OMAS organization.  
In each percentage increment, 1000 to 10,000 executions were 
run, incrementing by 1000, to create a large sample size and 
therefore add validity to the results. 

V. RESULTS 
In this section, we show how an organization-based MAS 

is capable of overcoming sensor incapacitation or loss within a 
dangerous or hazardous environment.   In the base case, a 0% 
failure rate, the success of initial organization was equal to the 
number of executions.  Simply stated, the OMAS correctly 
organized under conditions where no sonar failed.    

Our initial expectation was that the results would linearly 
approximate the number of available sensor adaptation 
possibilities.  Because 6 of the 16 sonars cannot adapt, 
intuition indicates that model can successfully reorganize 
62.5% of the time and fail 37.5%.  Fig. 8 illustrates the 



successes to executions ration where the sonar failure rate is 
stratified by 1% increments.  It shows a nearly linear 
relationship.  Fig. 9 illustrates the successes to executions 
ration with a 5% failure increment and still maintains a nearly 
linear trend. 

Our research results match our expectation that the OMAS 
would successfully reorganize when a valid adaptation was 
possible.  Thus, use of our organization model produced an 
adaptive system in which sensor adaptation was used to 
overcome loss of capability. 

The single robot used in this paper is a simplified 
application of our organization-based model and does not 
demonstrate the full power of the model.  Examples of more 
complex implementations will include cascaded capability 
adaptations where several types of adaptations may exist. For 
instance, a sonar failure could be replaced by a laser, a tactile 
sensor, or a combination of both.  The capability-based nature 
of the model allows the automatic computation of many 
adaptations beyond simple replacements.  In addition, 
different roles designed to satisfy the same goal may be used 
to compensate for sensor/effector failures by using existing 
capabilities in new ways, e.g., rotating the robot to cover areas 
usually covered by non-working sonar. 

Although this paper deals with intra-robotic capability, our 
organization model can also be applied to multiple robots 
working as a team where the sensor/effector capabilities of 
one robot can fail over to another robot in a complete or partial 
manner.  For example, a robot responsible for lifting and 
carrying objects can compensate for another robot. 
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Fig. 8. 1% Increment Failure Rates 
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Fig. 9. 5% Increment Failure Rates 

VI. FUTURE WORK 
This work is part of a larger effort to more fully define the 

usefulness of an organizational approach to constructing 
multiagent and cooperative robotic systems.  In the near 
future, we plan to develop systems where capabilities can be 
shared across cooperative robots working as part of a team.  
The expansion of the research to cooperative robotic teams 
will allow capability failures in one robot to be compensated 
for by another robot within the same organization. A 
secondary area of interest is adding additional sensor instances 
to incrementally increase the complexity of the agent teams 
and to challenge the ability of the OMAS model.  The addition 
of new sensor types and thus more, different types of agent 
capabilities will allow us to more fully evaluate the scalability 
of the organizational model and the effectiveness of our 
organizational reasoning techniques.  
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