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Abstract 

This report describes the model problem created to support the continued enhancement and 
development of the prediction-enabled component technology (PECT) reasoning frameworks 
for an industrial trial in the domain of industrial robotics. The model problem described in 
this report is an abstract representation of the parallel tasking and component configuration 
typically seen in a successful industrial robotics controller. Although motivated by the 
domain of industrial robotics, the model problem is applicable to other domains typified by 
embedded control systems consisting of both periodic and stochastic behavior and using 
fixed-priority scheduling with real-time performance characteristics. 
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1 Introduction 

The Predictable Assembly from Certifiable Components (PACC) Initiative at the Carnegie 
Mellon Software Engineering Institute (SEI) investigates the technology and methods for 
reliably predicting the runtime behavior of assemblies of components from their certifiable 
properties.1 The approach to achieving assemblies that are predictable by construction is 
based on the development of prediction-enabled component technologies (PECTs) [Wallnau 
03]. 

A PECT comprises a construction framework and one or more reasoning frameworks. The 
construction framework is associated with a specific component technology that provides the 
essential means to construct any one assembly. A reasoning framework is based on a theory 
and used to analyze the behavior of an assembly with respect to specific runtime properties 
(for example, latency, safety, or liveness). 

Two previous applications of the PECT approach have been documented [Hissam 01, Hissam 
02]. The first was a proof of concept for the PECT approach using a component technology 
developed initially to support the U.S. Environmental Protection Agency’s (EPA’s) 
Department of Water Quality. The second was an industrial trial in substation automation 
systems (within the domain of power generation and transmission) conducted in partnership 
with the ABB Corporate Research Center (ABB/CRC). 

In both prior applications, the reasoning frameworks constructed to achieve predictable 
assembly were illustrated using the development of a model problem.  

1.1 About This Report 
This paper describes the model problem created to support the continued enhancement and 
development of the PECT reasoning frameworks for a third industrial trial. That trial is in the 
domain of industrial robotics and is being conducted in partnership with the ABB/CRC; ABB 
Automation Technology Products, Robotics;2 and the Department of Computer Science and 
Engineering, Mälardalen University. 

                                                 
  Carnegie Mellon is registered in the U.S. Patent and Trademark Office by Carnegie Mellon 

University.  
1  For more information on the PACC Initiative, go to http://www.sei.cmu.edu/pacc/pacc_init.html. 
2  For more information on ABB robotics, go to http://www.abb.com/robotics. 
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The model problem described in this report is an abstract representation of the parallel 
tasking and component configuration typically seen in ABB’s S4 generation robotics 
controller. 

1.2 What Is a Model Problem? 
Essentially, a model problem is a reduction of a design issue to its simplest form from which 
one or more model solutions can be investigated. A model solution is a demonstration of a 
design, implementation, or example that addresses the issue posed by the model problem (see 
Figure 1). The model problem approach is an adaptation of model problems discussed by 
Wallnau, Hissam, and Seacord [Wallnau 01]. 

Design issue or question

Model problem

A concise statement of a 
design issue (see Section 2.3)

A minimal system model that exposes the 
design issue (see Section 2.1 and Figure 2)

A scenario description that relates the system
to the design issue (see Section 2.2)

Model solution

Extended system models that 
describe solutions to the issue

Prototypical or analytical 
demonstrations

(Not discussed 
in this report)

Design issue or question

Model problem

A concise statement of a 
design issue (see Section 2.3)

A minimal system model that exposes the 
design issue (see Section 2.1 and Figure 2)

A scenario description that relates the system
to the design issue (see Section 2.2)

Model solution

Extended system models that 
describe solutions to the issue

Prototypical or analytical 
demonstrations

Model solution

Extended system models that 
describe solutions to the issue

Prototypical or analytical 
demonstrations

(Not discussed 
in this report)

 

Figure 1: High-Level Structure of a Model Problem 

In this report, we set up the model problem and describe the design issues, the minimal 
system model, and the states of the model problem significant to the design issues. Any 
specific model solutions to address those issues are the focus of future work and beyond the 
scope of this report.  

1.3 About the Open Robotics Controller (ORC) 
ABB Robotics is contemplating its future robotics platform, currently dubbed the Open 
Robotics Controller (ORC). A critical design feature of this new platform is the ability to 
customize the controller with user-added extensions. These extensions, made by ABB or 
other companies, are augmentations to the core controller platform. Although such capability 
enables ABB to give continued strategic business value to its customers, such extensions to 
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the platform could introduce technical problems in controlling or predicting the impact any 
one extension (once incorporated) may have on the robotics platform. 

The ORC’s design is understandably focused on two quality attributes: performance and 
safety. It is not difficult to foresee the potential poor performance or instability introduced 
through a user-added extension. By analogy, common off-the-shelf operating systems (OSs) 
permit third-party device drivers that, when flawed, cause unexpected or unwanted behavior 
potentially impacting quality attributes of the system as a whole. ABB Robotics wants to be 
able to permit the incorporation of third-party extensions to the ORC and predict the impact 
the extensions will have on the core controller platform’s quality attributes. 

The performance aspects of the ORC motivate this model problem. ABB wants to predict the 
invasiveness one or more extensions will have on the core controller platform a priori. In this 
way, ABB will be able to do two things: (1) know what the new performance characteristics 
of the ORC will be once one or more extensions are incorporated and (2) determine whether 
those characteristics still fall within the required performance envelope. Ultimately, such a 
capability will enable the creation of component specifications that vendors can adhere to, 
thereby ensuring that extensions will work in context without breaking the core controller 
platform. 
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2 Model Problem for the ORC 

The ORC can be thought of as a number of parallel, intercommunicating threads of execution 
within the core controller platform. That platform typically consists of a single Intel Celeron 
processor running VxWorks and is referred to as the main computer. The main computer 
communicates with one or more computers called axis computers. 

M

Feedback 
to Ai

C

Axis Computers
A1 B1

Main Computer

A2

VL X

A3 B3

B2

Legend

thread / task

communication

M

Feedback 
to Ai

CC

Axis Computers
A1A1 B1B1

Main Computer

A2

VL X

A3 B3

B2

Legend

thread / task

communication
 

Figure 2: Tasks on the Main Computer 

The model problem focuses on the interaction between tasks in the main computer. That 
computer is responsible for running programs (written in the high-level Rapid robot 
programming language) that generate work orders.3 Those orders are decomposed into 
subwork orders that ultimately result in communicating microcoordinates to an axis computer 
that contains the device drivers responsible for the actual movement of the robotic arm (or 
arms). 

                                                 
3  A Rapid program consists of one or more commands to a robot (much like setting a goal, such as 

“move here at this speed”) that are broken down into one or more subwork orders (for instance, 
steps to achieving that goal). 
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The threads that execute on the main computer are a mix of periodic4 and aperiodic5 tasks, 
performing a mix of synchronous and asynchronous interthread communication. Much of the 
asynchronous type of communication germane to this report is conducted through first in, 
first out (FIFO) queues. Extensions, at this time, are envisioned to be separate threads of 
control. For the purpose of this model problem, only a subset of threads housed on the main 
computer are deemed critical. Those threads of control are shown in Figure 2 and described 
in the remainder of this section. 

2.1 Main Computer Task Descriptions 
There are six main tasks: Ai, Bi, C, X, M, and VL, each described below. 

Ai tasks. Three Ai tasks—where i stands for 1, 2, or 3—carry out planning activities: 
primarily, they receive work orders and create plans. Each plan produced by Task Ai results in 
a sequence of subwork orders that are asynchronously passed to Task Bi. Typically, the queue 
size for subwork orders is set to 30 in the core controller platform. When Task Ai produces 
subwork orders and attempts to place one into a full queue, Task Ai becomes blocked until 
Task Bi removes an item from that queue, thereby making room for the new subwork order. 
This system behavior is considered normal. 

The axis computer sends feedback to Task Ai indirectly—that is, it delivers feedback first 
synchronously to Task C (described below) in the main computer, and then Task C 
“publishes” it to those tasks subscribed to that feedback (Task Ai being one of them). Because 
this feedback informs the planning process; planning can’t be done entirely in advance.  

The arrival rates of work orders to Task Ai vary ranging from 10 Hz (i.e., one every 100 ms) 
to 15 Hz6 (i.e., one every 66.7 ms). For this model problem, we assume that the arrivals are 
describable via Exponential(75) (i.e., exponential random distribution with a mean of 75 ms).  

The execution time of Task Ai—the time needed to decompose a work order into a sequence 
of subwork orders—is also highly variable. For this model problem, we assume that Task Ai’s 
execution times are describable using Exponential(9). 

Currently, Tasks A1 - A3 execute at a relatively low priority because they have a relatively 
long execution time (in the aggregate). That is, although the execution time to decompose 
one work order is fairly short [describable using Exponential(9)], given the relatively high 
interarrival interval of the work orders to Tasks A1, - A3, a sudden large number of work 

                                                 
4  A periodic task is one that implements the response to a periodic event (one of a sequence of events 

having constant interarrival intervals) and thus becomes ready to execute at fixed intervals [Klein 
93]. 

5  An aperiodic task is one that implements the response to an aperiodic event (one of a sequence of 
events not having constant interarrival intervals). 

6  This is the maximum frequency; in practice, the frequency is less.  
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orders could cause those tasks to monopolize the central processing unit (CPU), if the tasks 
are given a high priority. 

The only timing requirement for the Ai tasks is to ensure that the queue between Task Ai and 
its respective Task Bi does not become empty during the processing of a work order (see 
Section 2.2). 

Bi tasks. The Bi tasks—where i stands for 1, 2, or 3—also participate in planning. A queue 
between Task Ai and Task Bi contains the subwork orders placed in that queue by Task Ai. 
The Bi tasks have an execution time of between 1 and 2 ms and execute periodically with a 
period of 24 ms. Once, each 24 ms period, Task Bi will remove one subwork order from this 
queue, generate six individual microcoordinates, and place them in Task C’s queue. Task Bi’s 
execution time includes the time it takes to transform a subwork order to six 
microcoordinates and place them in Task C’s queue. 

The Bi tasks execute at a much higher priority than the Ai tasks do. The Bi tasks must 
complete their work before the end of their period.  

Task C. The single Task C executes with a period of 4 ms. Task C receives microcoordinates 
(i.e., robot movement command) from one or more Bi tasks and sends them regularly to the 
various axis computers controlling the various robot arms—in this case, to three different 
axis computers controlling three different robot arms. (Each Task Ai - Bi pair is associated 
with its own robot arm.) Task C will read only one microcoordinate from the queue during its 
4 ms period. The execution time of Task C is 0.5 to 1 ms, and its priority is very high. The 
task’s deadline is the end of its period.  

The queue between Task Bi and Task C must never become empty while the robot is turned 
on. If it does, the robot’s controller will consider it to be an unsafe condition and abnormally 
halt the robot. 

Task X. Task X represents high-priority OS functions that occur rarely and execute for a 
short amount of time. 

M tasks. The M tasks are medium-priority tasks that represent the third-party controller 
extensions. M tasks are important because, on one hand, they have timing requirements of 
their own that must be satisfied; on the other hand, they can delay the execution of Task Ai 
and therefore interfere with that task’s ability to keep at least one work order in the queue. 
For this model problem, two types of M tasks are considered: one with stochastic 
characteristics and one with deterministic characteristics. The characteristics of two M tasks 
are listed in Table 2 below. We assume that the deterministic M task (M1) has a deadline at 
the end of its period, while the stochastic M task (M2) has a soft deadline. 
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Task VL. Task VL represents miscellaneous work that is carried out at the lowest priority in 
the system. We assume that this work arrives periodically with a period of 5 seconds and 
executes for 250 ms (at a utilization of .02). 

2.2 Significant States for the Model Problem 
Although the ORC has a significant number of states in which it operates, representing all of 
them is not necessary for the model problem. Instead, two operating states need to be 
considered: in motion or not in motion. Further, the only transition is one that takes the model 
problem from its initial not in motion state to an in motion state.7  

That transition is triggered after Task Ai has received the first work order and successfully 
placed the subwork orders in the queue between Task Ai and Task Bi. Tasks Ai, Bi, and C have 
different behaviors when the model problem is in a not in motion state versus an in motion 
state. Those behaviors are characterized in Table 1.8 

TASK BEHAVIOR WHILE NOT IN MOTION  BEHAVIOR WHILE IN MOTION 

Ai Waiting for the first work order9 Consuming work orders and producing 
subwork orders 

Bi Only producing “stand still” 
microcoordinates 

Consuming subwork orders and producing 
“movement” microcoordinates 

C Consuming microcoordinates Consuming microcoordinates 

Table 1: Behavior of Tasks Ai, Bi, and C in Different States 

Once in motion, we assume (for the purpose of analysis) a steady state condition never to 
return to a not in motion state. 

2.3 Design Issues 
Given the system context, there are two distinct design issues of interest:  

1. the addition of platform extensions to the core controller platform 

2. the potential for FIFO queue underflow conditions 

With respect to the first issue, one of the main problems facing the ORC is how to predict the 
consequences of extensions. Extensions are intended to be augmentations to the core 
controller platform and are created by ABB or third-party “extension” developers (such as 

                                                 
7  Returning to a not in motion state was deemed unnecessary because the design issues concerned 

behavior in the steady state (i.e., in motion). 
8  n.b.: Because the M1, M2, X, and VL tasks behave in the same manner for the model problem 

regardless of the state, they are not included. 
9  Task Ai is considered not in motion until the first work order is received—at which point it is in 

motion. The remaining tasks aren’t considered in motion until after the initial subwork orders are 
produced and queued. 
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end users). For those reasons, it is critical to know what timing consequences can be 
introduced into the core controller platform as a result of “plugging in” an extension. A goal 
for this model problem, then, is to identify one or more model solutions that permit the 
specification of performance parameters for extensions so those extensions will not cause 
performance problems. In particular, extensions are envisioned for M tasks. 

The second issue concerns the probability of a queue underflow exception, mainly between 
Ai and Bi tasks. Since Ai tasks run at a priority relatively lower than Mi tasks, the introduction 
of one or more extensions could conceivably starve Task Ai enough that it doesn’t receive 
enough execution time to sufficiently feed the queue before Task Bi—thus resulting in an 
underflow exception. In practice, prior to the concept of introducing platform extensions to 
the controller, this particular queue has been known to empty in very rare situations. 
Therefore, an additional goal for the model problem is to identify one or more model 
solutions that would significantly decrease or absolutely eliminate the possibility of an 
underflow exception occurring for this queue. 

2.4 Simplifications to the Model Problem 
Based on an understanding of the execution behavior and context of the ORC, we made a few 
simplifications (of the abstractions presented in the prior section). 

First, Task VL was deemed uninteresting because it operates at a priority below Task Ai and, 
therefore, cannot impact Task Ai or any other task in the system. If the starvation of Task VL 
becomes a design issue later, the task could be reintroduced into the model problem. 

Although in the actual core controller platform, the Ai tasks cannot process all the work 
orders without considering feedback from the axis computer, the feedback was removed as an 
explicit interaction from the model problem. However, the time to process the feedback was 
factored into the execution time for the Ai tasks. 

Lastly, to keep the model problem as simple as possible, we decided to only allow one Ai/Bi 
task pair (i.e., i=1). Therefore, the model problem will assume that the ORC being modeled 
has only one robotic arm.  

However, design issues might be identified later that will dictate the reintroduction of the 
components we chose to remove. 

2.5 Summary Task Performance Specifications 
Table 2 summarizes the types of tasks in the model problem and their relevant performance 
characteristics. 
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Periodic tasks are characterized as having constant arrivals. Aperiodic tasks have random 
arrivals following an exponential distribution. Traffic intensity (ρ) is the quotient of expected 
execution time (E[S]) over the expected interarrival interval (E[T]). 

TASK PRIORITY ARRIVALS EXECUTION 
TIME 

ρ =  
E[S]/E[T] 

COMMENTS 

A1 Low Exponential 
75 ms 

Exponential 
9 ms 

 .12 Planner: takes work orders 
and produces subwork orders; 
could result from a joystick or 
a Rapid program. Must feed 
queue so that it never under 
runs 

B1 High Constant 
24 ms 

Uniform 
1-2 ms 

 .06 Works on subwork orders 

C Very high Constant 4 
ms 

Constant  
0.5-1 ms 

 .19 Sends command to axis 
computer 

M1 Medium Constant  
100 ms 

Constant  
10 ms 

 .10 Might be involved with 
operating specific hardware. 
Has a deadline at the end of 
its period 

M2 Medium Exponential 
100 ms 

Uniform 
15-25 ms 

 .20 Has a soft deadline of 750 ms 
after its arrival; it must 
complete before this deadline 
with a probability of .9. 

VL Very low Constant 
250 ms 

Constant 
5 ms 

 .02  

X High Exponential 
500 ms 

Constant 
1 ms 

 .002 Represents rare OS services 
with fairly constant execution 
times 

Table 2: Performance Description of Model Problem Tasks 
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3 Future Work 

To address the two primary design issues discussed in this paper, we intend to apply the 
Sporadic Server design pattern [Sprunt 89, Gonzalez Harbour 91]. This pattern offers a 
possible solution for limiting the invasiveness of the introduced extensions on the remainder 
of the core controller platform. Further, we intend to use that pattern to guarantee a sufficient 
number of CPU cycles to Task Ai such that the task is guaranteed to supply the subwork order 
queue at a sufficient rate. 

We intend to use this model problem to further the development of the performance 
reasoning framework for the PECT currently supporting our third industrial trial. In addition 
to the design issues, this work will include the following research tasks: 

• Generalize our performance reasoning framework to include the use of real-time queuing 
theory and heavy traffic queuing theory. 

• Develop a common approach to measuring task execution traces in the model problem 
that is sufficient and compatible with the ORC and supporting trace queries. 

• Specify the construction and analysis invariants that must be satisfied by components and 
assemblies in order for the reasoning framework to produce valid results. 

This performance reasoning framework will help predict the behavior of assemblies when the 
following conditions are true: 

• Embedded controllers are confined to a single CPU. 

• Each periodic event is handled by one task or one sequence of tasks. 

• Each aperiodic event is handled by one task or one sequence of tasks. 

• Aperiodic arrivals are describable by a random, exponential distribution. 

• Scheduling between the tasks in the controller is managed by a fixed-priority scheduler. 

• Each task is describable as having a hard or soft deadline and has a fixed execution time. 

The above characteristics apply to the model problem described in this report. The problem 
also extends to other domains with similar characteristics. 
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4 Summary 

The model problem approach has been used by the PACC Initiative in two prior application 
domains to illustrate predictable assembly through the development of PECTs. This report 
describes the model problem in the domain of industrial robotics (e.g., the ORC) and serves 
as a sufficient abstraction of a real-world system (see Section 2.1) with real-world design 
issues (see Section 2.3). Such an abstraction can result in potential solutions for the ORC. 
Although situated in the domain of industrial robotics, this model problem can also be 
extended to other domains and real-world situations with characteristics similar to those 
described in this report. 
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