
A Model Problem for an Open

Robotics Controller

Scott A. Hissam
Mark Klein

July 2004

Predictable Assembly from Certifiable
Components Initiative

Unlimited distribution subject to the copyright.

Technical Note
CMU/SEI-2004-TN-030

This work is sponsored by the U.S. Department of Defense.

The Software Engineering Institute is a federally funded research and development center sponsored by the U.S.
Department of Defense.

Copyright 2004 Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO,
WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED
FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF
ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and “No Warranty” statements are included with all reproductions and derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

This work was created in the performance of Federal Government Contract Number F19628-00-C-0003 with Carnegie
Mellon University for the operation of the Software Engineering Institute, a federally funded research and development
center. The Government of the United States has a royalty-free government-purpose license to use, duplicate, or disclose the
work, in whole or in part and in any manner, and to have or permit others to do so, for government purposes pursuant to the
copyright license under the clause at 252.227-7013.

For information about purchasing paper copies of SEI reports, please visit the publications portion of our Web site
(http://www.sei.cmu.edu/publications/pubweb.html).

CMU/SEI-2004-TN-030 i

Contents

Acknowledgements...vii

Abstract .. ix

1 Introduction..1
1.1 About This Report ...1

1.2 What Is a Model Problem? ..2

1.3 About the Open Robotics Controller (ORC)...2

2 Model Problem for the ORC ..4
2.1 Main Computer Task Descriptions...5

2.2 Significant States for the Model Problem...7

2.3 Design Issues ...7

2.4 Simplifications to the Model Problem...8

2.5 Summary Task Performance Specifications...8

3 Future Work..10

4 Summary .. 11

References...13

ii CMU/SEI-2004-TN-030

CMU/SEI-2004-TN-030 iii

List of Figures

Figure 1: High-Level Structure of a Model Problem.. 2

Figure 2: Tasks on the Main Computer .. 4

iv CMU/SEI-2004-TN-030

CMU/SEI-2004-TN-030 v

List of Tables

Table 1: Behavior of Tasks Ai, Bi, and C in Different States 7

Table 2: Performance Description of Model Problem Tasks.................................. 9

vi CMU/SEI-2004-TN-030

CMU/SEI-2004-TN-030 vii

Acknowledgements

The authors would like to gratefully acknowledge the assistance of Anders Wall for his
patience and thoughtfulness in answering all the questions raised regarding the abstractions
created for the Open Robotics Controller and in working through the details so that we had
the model problem correct.

viii CMU/SEI-2004-TN-030

CMU/SEI-2004-TN-030 ix

Abstract

This report describes the model problem created to support the continued enhancement and
development of the prediction-enabled component technology (PECT) reasoning frameworks
for an industrial trial in the domain of industrial robotics. The model problem described in
this report is an abstract representation of the parallel tasking and component configuration
typically seen in a successful industrial robotics controller. Although motivated by the
domain of industrial robotics, the model problem is applicable to other domains typified by
embedded control systems consisting of both periodic and stochastic behavior and using
fixed-priority scheduling with real-time performance characteristics.

x CMU/SEI-2004-TN-030

CMU/SEI-2004-TN-030 1

1 Introduction

The Predictable Assembly from Certifiable Components (PACC) Initiative at the Carnegie
Mellon Software Engineering Institute (SEI) investigates the technology and methods for
reliably predicting the runtime behavior of assemblies of components from their certifiable
properties.1 The approach to achieving assemblies that are predictable by construction is
based on the development of prediction-enabled component technologies (PECTs) [Wallnau
03].

A PECT comprises a construction framework and one or more reasoning frameworks. The
construction framework is associated with a specific component technology that provides the
essential means to construct any one assembly. A reasoning framework is based on a theory
and used to analyze the behavior of an assembly with respect to specific runtime properties
(for example, latency, safety, or liveness).

Two previous applications of the PECT approach have been documented [Hissam 01, Hissam
02]. The first was a proof of concept for the PECT approach using a component technology
developed initially to support the U.S. Environmental Protection Agency’s (EPA’s)
Department of Water Quality. The second was an industrial trial in substation automation
systems (within the domain of power generation and transmission) conducted in partnership
with the ABB Corporate Research Center (ABB/CRC).

In both prior applications, the reasoning frameworks constructed to achieve predictable
assembly were illustrated using the development of a model problem.

1.1 About This Report
This paper describes the model problem created to support the continued enhancement and
development of the PECT reasoning frameworks for a third industrial trial. That trial is in the
domain of industrial robotics and is being conducted in partnership with the ABB/CRC; ABB
Automation Technology Products, Robotics;2 and the Department of Computer Science and
Engineering, Mälardalen University.

 Carnegie Mellon is registered in the U.S. Patent and Trademark Office by Carnegie Mellon

University.
1 For more information on the PACC Initiative, go to http://www.sei.cmu.edu/pacc/pacc_init.html.
2 For more information on ABB robotics, go to http://www.abb.com/robotics.

2 CMU/SEI-2004-TN-030

The model problem described in this report is an abstract representation of the parallel
tasking and component configuration typically seen in ABB’s S4 generation robotics
controller.

1.2 What Is a Model Problem?
Essentially, a model problem is a reduction of a design issue to its simplest form from which
one or more model solutions can be investigated. A model solution is a demonstration of a
design, implementation, or example that addresses the issue posed by the model problem (see
Figure 1). The model problem approach is an adaptation of model problems discussed by
Wallnau, Hissam, and Seacord [Wallnau 01].

Design issue or question

Model problem

A concise statement of a
design issue (see Section 2.3)

A minimal system model that exposes the
design issue (see Section 2.1 and Figure 2)

A scenario description that relates the system
to the design issue (see Section 2.2)

Model solution

Extended system models that
describe solutions to the issue

Prototypical or analytical
demonstrations

(Not discussed
in this report)

Design issue or question

Model problem

A concise statement of a
design issue (see Section 2.3)

A minimal system model that exposes the
design issue (see Section 2.1 and Figure 2)

A scenario description that relates the system
to the design issue (see Section 2.2)

Model solution

Extended system models that
describe solutions to the issue

Prototypical or analytical
demonstrations

Model solution

Extended system models that
describe solutions to the issue

Prototypical or analytical
demonstrations

(Not discussed
in this report)

Figure 1: High-Level Structure of a Model Problem

In this report, we set up the model problem and describe the design issues, the minimal
system model, and the states of the model problem significant to the design issues. Any
specific model solutions to address those issues are the focus of future work and beyond the
scope of this report.

1.3 About the Open Robotics Controller (ORC)
ABB Robotics is contemplating its future robotics platform, currently dubbed the Open
Robotics Controller (ORC). A critical design feature of this new platform is the ability to
customize the controller with user-added extensions. These extensions, made by ABB or
other companies, are augmentations to the core controller platform. Although such capability
enables ABB to give continued strategic business value to its customers, such extensions to

CMU/SEI-2004-TN-030 3

the platform could introduce technical problems in controlling or predicting the impact any
one extension (once incorporated) may have on the robotics platform.

The ORC’s design is understandably focused on two quality attributes: performance and
safety. It is not difficult to foresee the potential poor performance or instability introduced
through a user-added extension. By analogy, common off-the-shelf operating systems (OSs)
permit third-party device drivers that, when flawed, cause unexpected or unwanted behavior
potentially impacting quality attributes of the system as a whole. ABB Robotics wants to be
able to permit the incorporation of third-party extensions to the ORC and predict the impact
the extensions will have on the core controller platform’s quality attributes.

The performance aspects of the ORC motivate this model problem. ABB wants to predict the
invasiveness one or more extensions will have on the core controller platform a priori. In this
way, ABB will be able to do two things: (1) know what the new performance characteristics
of the ORC will be once one or more extensions are incorporated and (2) determine whether
those characteristics still fall within the required performance envelope. Ultimately, such a
capability will enable the creation of component specifications that vendors can adhere to,
thereby ensuring that extensions will work in context without breaking the core controller
platform.

4 CMU/SEI-2004-TN-030

2 Model Problem for the ORC

The ORC can be thought of as a number of parallel, intercommunicating threads of execution
within the core controller platform. That platform typically consists of a single Intel Celeron
processor running VxWorks and is referred to as the main computer. The main computer
communicates with one or more computers called axis computers.

M

Feedback
to Ai

C

Axis Computers
A1 B1

Main Computer

A2

VL X

A3 B3

B2

Legend

thread / task

communication

M

Feedback
to Ai

CC

Axis Computers
A1A1 B1B1

Main Computer

A2

VL X

A3 B3

B2

Legend

thread / task

communication

Figure 2: Tasks on the Main Computer

The model problem focuses on the interaction between tasks in the main computer. That
computer is responsible for running programs (written in the high-level Rapid robot
programming language) that generate work orders.3 Those orders are decomposed into
subwork orders that ultimately result in communicating microcoordinates to an axis computer
that contains the device drivers responsible for the actual movement of the robotic arm (or
arms).

3 A Rapid program consists of one or more commands to a robot (much like setting a goal, such as

“move here at this speed”) that are broken down into one or more subwork orders (for instance,
steps to achieving that goal).

CMU/SEI-2004-TN-030 5

The threads that execute on the main computer are a mix of periodic4 and aperiodic5 tasks,
performing a mix of synchronous and asynchronous interthread communication. Much of the
asynchronous type of communication germane to this report is conducted through first in,
first out (FIFO) queues. Extensions, at this time, are envisioned to be separate threads of
control. For the purpose of this model problem, only a subset of threads housed on the main
computer are deemed critical. Those threads of control are shown in Figure 2 and described
in the remainder of this section.

2.1 Main Computer Task Descriptions
There are six main tasks: Ai, Bi, C, X, M, and VL, each described below.

Ai tasks. Three Ai tasks—where i stands for 1, 2, or 3—carry out planning activities:
primarily, they receive work orders and create plans. Each plan produced by Task Ai results in
a sequence of subwork orders that are asynchronously passed to Task Bi. Typically, the queue
size for subwork orders is set to 30 in the core controller platform. When Task Ai produces
subwork orders and attempts to place one into a full queue, Task Ai becomes blocked until
Task Bi removes an item from that queue, thereby making room for the new subwork order.
This system behavior is considered normal.

The axis computer sends feedback to Task Ai indirectly—that is, it delivers feedback first
synchronously to Task C (described below) in the main computer, and then Task C
“publishes” it to those tasks subscribed to that feedback (Task Ai being one of them). Because
this feedback informs the planning process; planning can’t be done entirely in advance.

The arrival rates of work orders to Task Ai vary ranging from 10 Hz (i.e., one every 100 ms)
to 15 Hz6 (i.e., one every 66.7 ms). For this model problem, we assume that the arrivals are
describable via Exponential(75) (i.e., exponential random distribution with a mean of 75 ms).

The execution time of Task Ai—the time needed to decompose a work order into a sequence
of subwork orders—is also highly variable. For this model problem, we assume that Task Ai’s
execution times are describable using Exponential(9).

Currently, Tasks A1 - A3 execute at a relatively low priority because they have a relatively
long execution time (in the aggregate). That is, although the execution time to decompose
one work order is fairly short [describable using Exponential(9)], given the relatively high
interarrival interval of the work orders to Tasks A1, - A3, a sudden large number of work

4 A periodic task is one that implements the response to a periodic event (one of a sequence of events

having constant interarrival intervals) and thus becomes ready to execute at fixed intervals [Klein
93].

5 An aperiodic task is one that implements the response to an aperiodic event (one of a sequence of
events not having constant interarrival intervals).

6 This is the maximum frequency; in practice, the frequency is less.

6 CMU/SEI-2004-TN-030

orders could cause those tasks to monopolize the central processing unit (CPU), if the tasks
are given a high priority.

The only timing requirement for the Ai tasks is to ensure that the queue between Task Ai and
its respective Task Bi does not become empty during the processing of a work order (see
Section 2.2).

Bi tasks. The Bi tasks—where i stands for 1, 2, or 3—also participate in planning. A queue
between Task Ai and Task Bi contains the subwork orders placed in that queue by Task Ai.
The Bi tasks have an execution time of between 1 and 2 ms and execute periodically with a
period of 24 ms. Once, each 24 ms period, Task Bi will remove one subwork order from this
queue, generate six individual microcoordinates, and place them in Task C’s queue. Task Bi’s
execution time includes the time it takes to transform a subwork order to six
microcoordinates and place them in Task C’s queue.

The Bi tasks execute at a much higher priority than the Ai tasks do. The Bi tasks must
complete their work before the end of their period.

Task C. The single Task C executes with a period of 4 ms. Task C receives microcoordinates
(i.e., robot movement command) from one or more Bi tasks and sends them regularly to the
various axis computers controlling the various robot arms—in this case, to three different
axis computers controlling three different robot arms. (Each Task Ai - Bi pair is associated
with its own robot arm.) Task C will read only one microcoordinate from the queue during its
4 ms period. The execution time of Task C is 0.5 to 1 ms, and its priority is very high. The
task’s deadline is the end of its period.

The queue between Task Bi and Task C must never become empty while the robot is turned
on. If it does, the robot’s controller will consider it to be an unsafe condition and abnormally
halt the robot.

Task X. Task X represents high-priority OS functions that occur rarely and execute for a
short amount of time.

M tasks. The M tasks are medium-priority tasks that represent the third-party controller
extensions. M tasks are important because, on one hand, they have timing requirements of
their own that must be satisfied; on the other hand, they can delay the execution of Task Ai
and therefore interfere with that task’s ability to keep at least one work order in the queue.
For this model problem, two types of M tasks are considered: one with stochastic
characteristics and one with deterministic characteristics. The characteristics of two M tasks
are listed in Table 2 below. We assume that the deterministic M task (M1) has a deadline at
the end of its period, while the stochastic M task (M2) has a soft deadline.

CMU/SEI-2004-TN-030 7

Task VL. Task VL represents miscellaneous work that is carried out at the lowest priority in
the system. We assume that this work arrives periodically with a period of 5 seconds and
executes for 250 ms (at a utilization of .02).

2.2 Significant States for the Model Problem
Although the ORC has a significant number of states in which it operates, representing all of
them is not necessary for the model problem. Instead, two operating states need to be
considered: in motion or not in motion. Further, the only transition is one that takes the model
problem from its initial not in motion state to an in motion state.7

That transition is triggered after Task Ai has received the first work order and successfully
placed the subwork orders in the queue between Task Ai and Task Bi. Tasks Ai, Bi, and C have
different behaviors when the model problem is in a not in motion state versus an in motion
state. Those behaviors are characterized in Table 1.8

TASK BEHAVIOR WHILE NOT IN MOTION BEHAVIOR WHILE IN MOTION

Ai Waiting for the first work order9 Consuming work orders and producing
subwork orders

Bi Only producing “stand still”
microcoordinates

Consuming subwork orders and producing
“movement” microcoordinates

C Consuming microcoordinates Consuming microcoordinates

Table 1: Behavior of Tasks Ai, Bi, and C in Different States

Once in motion, we assume (for the purpose of analysis) a steady state condition never to
return to a not in motion state.

2.3 Design Issues
Given the system context, there are two distinct design issues of interest:

1. the addition of platform extensions to the core controller platform

2. the potential for FIFO queue underflow conditions

With respect to the first issue, one of the main problems facing the ORC is how to predict the
consequences of extensions. Extensions are intended to be augmentations to the core
controller platform and are created by ABB or third-party “extension” developers (such as

7 Returning to a not in motion state was deemed unnecessary because the design issues concerned

behavior in the steady state (i.e., in motion).
8 n.b.: Because the M1, M2, X, and VL tasks behave in the same manner for the model problem

regardless of the state, they are not included.
9 Task Ai is considered not in motion until the first work order is received—at which point it is in

motion. The remaining tasks aren’t considered in motion until after the initial subwork orders are
produced and queued.

8 CMU/SEI-2004-TN-030

end users). For those reasons, it is critical to know what timing consequences can be
introduced into the core controller platform as a result of “plugging in” an extension. A goal
for this model problem, then, is to identify one or more model solutions that permit the
specification of performance parameters for extensions so those extensions will not cause
performance problems. In particular, extensions are envisioned for M tasks.

The second issue concerns the probability of a queue underflow exception, mainly between
Ai and Bi tasks. Since Ai tasks run at a priority relatively lower than Mi tasks, the introduction
of one or more extensions could conceivably starve Task Ai enough that it doesn’t receive
enough execution time to sufficiently feed the queue before Task Bi—thus resulting in an
underflow exception. In practice, prior to the concept of introducing platform extensions to
the controller, this particular queue has been known to empty in very rare situations.
Therefore, an additional goal for the model problem is to identify one or more model
solutions that would significantly decrease or absolutely eliminate the possibility of an
underflow exception occurring for this queue.

2.4 Simplifications to the Model Problem
Based on an understanding of the execution behavior and context of the ORC, we made a few
simplifications (of the abstractions presented in the prior section).

First, Task VL was deemed uninteresting because it operates at a priority below Task Ai and,
therefore, cannot impact Task Ai or any other task in the system. If the starvation of Task VL
becomes a design issue later, the task could be reintroduced into the model problem.

Although in the actual core controller platform, the Ai tasks cannot process all the work
orders without considering feedback from the axis computer, the feedback was removed as an
explicit interaction from the model problem. However, the time to process the feedback was
factored into the execution time for the Ai tasks.

Lastly, to keep the model problem as simple as possible, we decided to only allow one Ai/Bi
task pair (i.e., i=1). Therefore, the model problem will assume that the ORC being modeled
has only one robotic arm.

However, design issues might be identified later that will dictate the reintroduction of the
components we chose to remove.

2.5 Summary Task Performance Specifications
Table 2 summarizes the types of tasks in the model problem and their relevant performance
characteristics.

CMU/SEI-2004-TN-030 9

Periodic tasks are characterized as having constant arrivals. Aperiodic tasks have random
arrivals following an exponential distribution. Traffic intensity (ρ) is the quotient of expected
execution time (E[S]) over the expected interarrival interval (E[T]).

TASK PRIORITY ARRIVALS EXECUTION
TIME

ρ =
E[S]/E[T]

COMMENTS

A1 Low Exponential
75 ms

Exponential
9 ms

 .12 Planner: takes work orders
and produces subwork orders;
could result from a joystick or
a Rapid program. Must feed
queue so that it never under
runs

B1 High Constant
24 ms

Uniform
1-2 ms

 .06 Works on subwork orders

C Very high Constant 4
ms

Constant
0.5-1 ms

 .19 Sends command to axis
computer

M1 Medium Constant
100 ms

Constant
10 ms

 .10 Might be involved with
operating specific hardware.
Has a deadline at the end of
its period

M2 Medium Exponential
100 ms

Uniform
15-25 ms

 .20 Has a soft deadline of 750 ms
after its arrival; it must
complete before this deadline
with a probability of .9.

VL Very low Constant
250 ms

Constant
5 ms

 .02

X High Exponential
500 ms

Constant
1 ms

 .002 Represents rare OS services
with fairly constant execution
times

Table 2: Performance Description of Model Problem Tasks

10 CMU/SEI-2004-TN-030

3 Future Work

To address the two primary design issues discussed in this paper, we intend to apply the
Sporadic Server design pattern [Sprunt 89, Gonzalez Harbour 91]. This pattern offers a
possible solution for limiting the invasiveness of the introduced extensions on the remainder
of the core controller platform. Further, we intend to use that pattern to guarantee a sufficient
number of CPU cycles to Task Ai such that the task is guaranteed to supply the subwork order
queue at a sufficient rate.

We intend to use this model problem to further the development of the performance
reasoning framework for the PECT currently supporting our third industrial trial. In addition
to the design issues, this work will include the following research tasks:

• Generalize our performance reasoning framework to include the use of real-time queuing
theory and heavy traffic queuing theory.

• Develop a common approach to measuring task execution traces in the model problem
that is sufficient and compatible with the ORC and supporting trace queries.

• Specify the construction and analysis invariants that must be satisfied by components and
assemblies in order for the reasoning framework to produce valid results.

This performance reasoning framework will help predict the behavior of assemblies when the
following conditions are true:

• Embedded controllers are confined to a single CPU.

• Each periodic event is handled by one task or one sequence of tasks.

• Each aperiodic event is handled by one task or one sequence of tasks.

• Aperiodic arrivals are describable by a random, exponential distribution.

• Scheduling between the tasks in the controller is managed by a fixed-priority scheduler.

• Each task is describable as having a hard or soft deadline and has a fixed execution time.

The above characteristics apply to the model problem described in this report. The problem
also extends to other domains with similar characteristics.

CMU/SEI-2004-TN-030 11

4 Summary

The model problem approach has been used by the PACC Initiative in two prior application
domains to illustrate predictable assembly through the development of PECTs. This report
describes the model problem in the domain of industrial robotics (e.g., the ORC) and serves
as a sufficient abstraction of a real-world system (see Section 2.1) with real-world design
issues (see Section 2.3). Such an abstraction can result in potential solutions for the ORC.
Although situated in the domain of industrial robotics, this model problem can also be
extended to other domains and real-world situations with characteristics similar to those
described in this report.

12 CMU/SEI-2004-TN-030

CMU/SEI-2004-TN-030 13

References

URLs are valid as of the publication date of this document.

[Gonzalez Harbour 91] Gonzalez Harbour, M. & Sha, L. An Application-Level
Implementation of the Sporadic Server (CMU/SEI-91-TR-026,
ADA242129). Pittsburgh, PA: Software Engineering Institute,
Carnegie Mellon University, 1991.
http://www.sei.cmu.edu/publications/documents/91.reports
/91.tr.026.html

[Hissam 01] Hissam, S.; Moreno, G.; Stafford, J.; & Wallnau, K. Packaging
Predictable Assembly with Prediction-Enabled Component
Technology (CMU/SEI-2001-TR-024, ADA399793). Pittsburgh,
PA: Software Engineering Institute, Carnegie Mellon University,
2001. http://www.sei.cmu.edu/publications/documents/01.reports
/01tr024.html

[Hissam 02] Hissam, S.; Hudak, J.; Ivers, J.; Klein, M.; Larsson, M.; Moreno,
G.; Northrop, L.; Plakosh, D.; Stafford, J.; Wallnau, K.; & Wood, W.
Predictable Assembly of Substation Automation Systems: An
Experiment Report, Second Edition (CMU/SEI-2002-TR-031,
ADA418441). Pittsburgh, PA: Software Engineering Institute,
Carnegie Mellon University, 2002. http://www.sei.cmu.edu
/publications/documents/02.reports/02tr031.html

[Klein 93] Klein, M.; Ralya, T.; Pollak, B.; Obenza, R.; and Gonzalez Harbour,
M. A Practitioner’s Handbook for Real-Time Analysis: Guide to
Rate Monotonic Analysis for Real-Time Systems. Boston, MA:
Kluwer Academic Publishers, 1993.
http://www.sei.cmu.edu/publications/books
/other-books/rma.hndbk.html

14 CMU/SEI-2004-TN-030

[Sprunt 89] Sprunt, B.; Sha, L.; & Lehoczky, J. Scheduling Sporadic and
Aperiodic Events in a Hard Real-Time System (CMU/SEI-89-TR-
11, ADA211344). Pittsburgh, PA: Software Engineering Institute,
Carnegie Mellon University, 1989. http://www.sei.cmu.edu
/publications/documents/89.reports/89.tr.011.html

[Wallnau 01] Wallnau, K.; Hissam, S.; & Seacord, R. Building Systems from
Commercial Components. Boston, MA: Addison-Wesley, 2001
(ISBN 0201700646). http://www.sei.cmu.edu/publications/books
/engineering/building-systems.html

[Wallnau 03] Wallnau, K. Volume III: A Technology for Predictable Assembly
from Certifiable Components (CMU/SEI-2003-TR-009,
ADA413574). Pittsburgh, PA: Software Engineering Institute,
Carnegie Mellon University, 2003. http://www.sei.cmu.edu
/publications/documents/03.reports/03tr009.html

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching
existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding
this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters
Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY

(Leave Blank)

2. REPORT DATE

July 2004

3. REPORT TYPE AND DATES COVERED

Final
4. TITLE AND SUBTITLE

A Model Problem for an Open Robotics Controller

5. FUNDING NUMBERS

F19628-00-C-0003
6. AUTHOR(S)

Scott A. Hissam, Mark Klein
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2004-TN-030

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

HQ ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING AGENCY
REPORT NUMBER

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS

12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

This report describes the model problem created to support the continued enhancement and development of
the prediction-enabled component technology (PECT) reasoning frameworks for an industrial trial in the
domain of industrial robotics. The model problem described in this report is an abstract representation of the
parallel tasking and component configuration typically seen in a successful industrial robotics controller.
Although motivated by the domain of industrial robotics, the model problem is applicable to other domains
typified by embedded control systems consisting of both periodic and stochastic behavior and using fixed-
priority scheduling with real-time performance characteristics.

14. SUBJECT TERMS

model problem; sporadic server; robotics; performance; performance
theory; PACC; PECT; component technology; software engineering

15. NUMBER OF PAGES

26

16. PRICE CODE

17. SECURITY CLASSIFICATION

OF REPORT

Unclassified

18. SECURITY CLASSIFICATION OF
THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 298-102

	A Model Problem for an Open Robotics Controller
	Contents
	List of Figures
	List of Tables
	Acknowledgements
	Abstract
	1 Introduction
	2 Model Problem for the ORC
	3 Future Work
	4 Summary
	References

